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Abstract. Behavior Trees, which originated in video games as a method
for controlling NPCs but have since gained traction within the robotics
community, are a framework for describing the execution of a task. Be-
haVerify is a tool that creates a nuXmv model from a py tree. For
composite nodes, which are standardized, this process is automatic and
requires no additional user input. A wide variety of leaf nodes are auto-
matically supported and require no additional user input, but customized
leaf nodes will require additional user input to be correctly modeled. Be-
haVerify can provide a template to make this easier. BehaVerify is able to
create a nuXmv model with over 100 nodes and nuXmv was able to verify
various non-trivial LTL properties on this model, both directly and via
counterexample. The model in question features parallel nodes, selector,
and sequence nodes. A comparison with models based on BTCompiler
indicates that the models created by BehaVerify perform better.
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1 Introduction

Behavior Trees are a framework for describing the execution of a task that orig-
inated in computer games as a method of controlling Non-Player Characters
(NPCs), but have since expanded into the domain of robotics [14] [26]. Behavior
Trees are split into composite nodes that control the flow through the tree and
leaf nodes which execute actions. Behavior Trees have a variety of strengths:
they facilitate code re-use (nodes and sub-trees can easily be attached), their
modular nature makes reasoning about them easier, and changing one region of
a tree doesn’t affect how other regions function [1]. However, at present, tools
to verify the correctness of a Behavior Tree are scarce. Therefore, we present
BehaVerify, a tool for converting a py _tree into a .smv file which can be verified
using nuXmv [6].

Contributions. We present BehaVerify, a tool that enables verification with Lin-
ear Temporal Logic (LTL) model checking that improves upon BT Compiler, the
only previously existing tool for such a task, in terms of run time and in ease of
use with respect to Blackboard variables. Specifically, we present an automatic
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method to perform the translation and encoding of behavior trees to nuXmv
models, a description of this method in a publicly available software tool, a
characterization of the verification performance of these different encodings and
how they compare to the models created by BTCompiler, and apply the tool
to verify key LTL specifications of a challenging robotics case study for an un-
derwater robot used as a controller in an ongoing DARPA project. However, we
first define what Behavior Trees are.

1.1 Background

A Behavior Tree (BT) is a rooted tree. Each node has a single parent, save for
the root which has no parent. A BT does nothing until it receives a tick event,
at which point the tick event propagates throughout the tree. Composite nodes
serve to control the flow of execution, determining which children receive tick
events. By contrast, Leaf nodes are either actions, such as Accelerate, or guard
checks, such as GoingToSlow. Leaf nodes do not have children. Finally, decora-
tor nodes are used to customize the output of their children without actually
modifying the children themselves, allowing for greater re-usability. Usually, a
Decorator node will have one child.

There are three types of composite nodes: Sequence, Selector, and Parallel.
Sequence nodes execute a sequence of children. A Sequence node returns a value
if a child returns Failure or Running or there are no more children to run.
Sequences return Failure if any child returns Failure, Running if any child returns
Running, and Success if every child returned Success. Selector nodes, also known
as Fallback nodes [1] [24], execute children in order of priority. A Selector node
returns a value if a child returns Success or Running or there are no more children
to run. Selectors return Success if any child returns Success, Running if any child
returns Running, and Failure if every child returned Failure.

Parallel nodes execute all their children regardless of what values are re-
turned. At least three different definitions exist for parallel nodes. The first
definition, found in [24], states that parallel nodes return Failure if any child
returns Failure, Success if a satisfactory subset of children return Success, and
Running otherwise. The second definition, found in [11], [10], and [18] is similar,
but states that parallel nodes return Success only if all children return Success.
The third definition, found in [2], [25], [20], [14], [12], and [13], states that paral-
lel nodes return Success if at least m children return Success, Failure if n —m+1
children return Failure, and Running otherwise. Here n is the number of chil-
dren the parallel node has and m is a node parameter. BehaVerify, the tool
created alongside this paper, was designed for py trees and therefore utilizes
the definition presented in [24].

In addition to these differences, Composite nodes can be further characterized
into Nodes with Memory and Nodes without Memory. The above definitions
describe Nodes without Memory. Nodes with Memory allow the composite nodes
to remember what they previously returned and continue accordingly. Thus a
Sequence with Memory will not start from its first child if it previously returned
Running and will instead skip over each child that returned Success. Similarly, a
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Selector with Memory will skip over each child that returned Failure. A Parallel
node with Memory will only rerun children that returned Running.

However, memory is also not standardized. In [24], Nodes with Memory ‘for-
get’ if one of their ancestors returns Success or Failure. So, for instance, if a
Sequence with Memory returns Running, but its Parallel node parent returns
Success, the Sequence with Memory will not behave as though it returned Run-
ning. However, in section 1.3.2 of [14], the authors state “Control flow nodes
with memory always remember whether a child has returned Success or Fail-
ure, avoiding the re-execution of the child until the whole Sequence or Fallback
finishes in either Success or Failure”, and notably makes no mention of Paral-
lel nodes with Memory. Finally, note that py trees supports Selector with and
without Memory, Sequences with and without Memory, and both types of Par-
allel nodes. However, the Parallel nodes with Memory and without Memory are
instead called Synchronized Parallel and Unsynchronized Parallel, respectively.

Decorator nodes are generally used to augment the output of a child. For
instance, a RunninglsFailure decorator will cause an output of Running to be
interpreted as Failure. As there are many decorators, we omit attempting to
fully list or describe them here.

Furthermore, we note that in many of the above works, Selector nodes are
represented using ?, Sequence nodes are represented using —, and Parallel nodes
are represented using . However, we will utilize the notation given in py _trees,
as seen in Figure 1.

Sequence Selector succkidman Suceionone

Fig. 1. Composite Nodes in py_ trees.

1.2 The Blackboard

In certain situations, such as when multiple nodes need to use the result of a
computation, it can be useful to read and write information in a centralized
location. This sort of shared memory is frequently called a Blackboard [24] [5]
[16] [15]. Unfortunately, there are also drawbacks to using Blackboards. As [23]
points out, Blackboards can make BTs difficult to understand and reduce sub-
tree reuse. Ultimately, however, the fact remains that in many cases there are
substantial benefits to using a Blackboard, and various implementations, such
as py_trees seek to alleviate some of the aspects by creating visualization tools
for blackboards [24]. Accordingly, BehaVerify supports Blackboard variables.

2 Related Work

First, we clarify that the term “Behavior Tree” sometimes refer to different con-
cepts. Behavior Trees exist as a formal graphical modeling language, as part of
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Behavior Engineering and are used for requirement handling [19]. These are not
the BTs we are talking about.

2.1 Strengths and Uses of BTs

In [20], the author shows how general Hybrid Dynamical Systems can be written
as BTs and how this can be beneficial. Furthermore, the paper provides justifica-
tions for why BTs are useful to UAV guidance and control systems. [4] compares
BTs to a variety of other Action Selection Mechanisms (ASM) and proves that
unrestricted BTs have the same expressive capabilities as unrestricted Finite
State Machines. [1] presents a framework for verifying the correctness of BTs
without compromising on the main strengths of Behavior Trees, which they
identify as modularity, flexibility, and re-usability.

[17] considers the various implementations of BTs, such as BehaviorTree.cpp
and py_trees, and examines a variety of repositories that utilize BTs. In [25]
the authors propose an algorithm to translate an I/O automaton into a BT that
connects high level planning and low level control. The authors of [9] demonstrate
how it is possible to synthesize a BT that is guaranteed to be complete a task
specified by LTL. This does require restricting LTL to a fragment of LTL, so
there are limits to what BTs can be synthesized in this way. [8] describes a
tool-chain for designing, executing, and monitoring robots that uses BTs for
controlling high level behaviors of the robots while [7] formalizes the context
within which BTs are executed.

2.2 Expanded BTs

The capabilities of BTs have been expanded in several papers. In [3], the authors
consider how it is possible to expand BTs by introducing K-BTs which replace
Success and Failure with K different outputs. [10], [11], and [12] introduce Con-
current BTs and expand on them by introducing various nodes designed to better
enable synchronization in BTs that deal with concurrency. Meanwhile [18] ex-
tends BTs to Conditional BTs, which enforce certain pre and post conditions on
various nodes within the tree and introduces a tool which can confirm that the
entire tree is capable of being executed based on the pre and post conditions
given. [21] extends BTs to Belief BTs which are better suited to dealing with
non-deterministic outcomes of actions.

2.3 Verification of BTs

Some of the above works deal with the verification of BTs. [1], for instance,
presents an algorithm for the verification of BTs. [9], on the other hand, presents
a method by which to synthesize a BT that is guaranteed to be correct, thereby
by-passing the need for verification, but the specifications are limited to a frag-
ment of LTL. The only existing tool we were able to find that allows the user to
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create and verify LTL specifications for BTs is BT Compiler '. Unfortunately, we
were not able to install the tool, and as such our knowledge of it is somewhat
limited. Most of what we understand comes from analyzing the various examples
in the smv folder in the github repository.

From what we understand, BT Compiler uses the following assumptions and
definitions. All composite nodes are assumed to have exactly 2 children. Parallel
nodes do not have memory. Parallel nodes utilize the third definition presented in
the background section. Sequence and Selector nodes with and without memory
are supported. Unlike the implementation in py trees, nodes with memory do
not ‘forget’ if an ancestor terminates. Please note that the requirement that
composite nodes have only 2 children does not impact expressiveness. By self-
composing nodes, it is possible to effectively create a node with any number
of children greater than 2. For a proof, see section 5.1 of [14]. Thus the only
downside is potential model complexity and readability.

We will compare the models created by BT Compiler and BehaVerify.

3 Overview of Approach

BehaVerify begins by recursively walking a py tree and recording relevant in-
formation. This information includes what the type of each node is, recording
any important parameters (like the Success policy for a parallel node), and the
structure of the tree. Once this process has finished, BehaVerify begins to create
the .smv file. Most of this process is straightforward. For instance, for each node
type, BehaVerify creates a module (basically a class) in the .smv file. These mod-
ules are static and don’t change between runs. For each node, BehaVerify creates
an instance of a module with the necessary parameters, like what children the
node has.

Fig. 2. A simple BT

However, not everything is simple or static. The primary sources of com-
plexity are Nodes with Memory. A lazy approach to implementing Nodes with
Memory is to have each node store an integer marking which child returned
Running. Such an encoding can greatly increase the number of states in the
model. Consider Figure 2. Seql has two children, while sell has three. The lazy
encoding would therefore produce six states to record which children returned

! https://github.com/CARVE-ROBMOSYS/BTCompiler
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Running. However, consider that if we know that node y returned Running,
then sell will also return Running. Thus we only need four states.

Next, BehaVerify begins to handle the blackboard. BehaVerify has several
ways of doing this. The first method is to have the user provide an input file which
is simply included in the .smv file. Assuming no such file is provided, BehaVerify
can generate the blackboard. If the user requests, the generated blackboard can
be saved. This allows the user to modify the generated blackboard file and use
it as an input file on subsequent runs. In addition, BehaVerify also allows the
user to specify a file containing LTL specifications which are then included in
the .smv file.

At this point, the .smv file is complete, and can be used with nuXmv [6],
either for simulation or verification.

4 Encodings

BehaVerify uses two primary encodings: Leaf and Total. The general ideas behind
these encodings are presented here. Note that the actual models BehaVerify
creates for use with nuXmv differ from what is presented here, but the general
motivations are the same. Also note that from this point forward, we write
Success as S, Failure as F', Running as R, and Invalid as /. For both encodings,
it is useful to consider how a BT operates. A BT remains inactive until it receives
a tick. Once a tick is received, it begins to propagate throughout the tree causing
various nodes to execute. The path of the tick signal through the Tree is similar
to a Depth First Search, though it will sometimes skip over branches of the tree.
A basic version of the Leaf encoding explicitly follows the tick signal as it moves
throughout the tree, tracing the exact path the tick signal takes through the
tree. The Leaf encoding presented here includes some optimizations to improve
performance, but the general idea is the same. The Total encoding doesn’t follow
the path of the signal. The state of the tree in the Total encoding is instead
represented by a chain of dependencies and by considering the path of the tick
signal through the tree, the chain can be resolved. Additional details follow.

4.1 Leaf

Fig. 3. A selector node with many children.

As was mentioned, an intuitive encoding for BTs follows the path of the
tick throughout the tree. At each time step ¢, one node is the Active Node
(ActNode(t)), its status is computed, and then another node becomes Active.
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Note that in this encoding each time step ¢ does NOT correspond to a tick. A tick
instead occurs between any time steps ¢ and ¢ + 1 such that ActNode(t) = —1.
Now consider Figure 3. In this simple encoding, we would start at wideSel, then
move to childl, then back to wideSel, then to child2, back to wideSel, etc., until
one of the children returned S or R, or we ran out of children. Thus this encoding
spends many steps going through wideSel. The Leaf encoding realizes that the
actual points of interest are the leaf nodes themselves. If childl returns S or R,
then the tree returns a status. If child1l returns F', then we need to check child2.
Thus we can eliminate many unnecessary steps in the traversal of the tree by
jumping from leaf to leaf. Formally, this encoding is as follows:

ift4+1<0, then —1
ActNode(t + 1) == 1 else if ActNode(t) = —1, then NextNode(root,t,—1)
else NextNode(ActNode(t),t, ActNode(t))

So at each time step t, ActNode(t) either indicates a Node that is active or
returns -1, which symbolizes the tree returning a value. In NextNode(n, t, prev),
n is either -1 or a node, ¢ is an integer indicating the time-step, and prev is
either -1 or a node and indicates which node asked for the Next Node. This is
used to determine which node should be active next.

NextNode(n, t, prev) =

if n=-—1, then — 1
else if status(n,t) # I, then NextNode(parent(n),t,n)
else if IsLeaf (n), then n
else if IsSel(n) A prev = parent(n),

then NextNode(Unskipped(FChi(n),t),t,n)
else if IsSel(n), then NextNode(rNeigh(prev),t,n)
else if IsSeq(n) A prev = parent(n),

then NextNode(Unskipped(FChi(n),t),t,n)
else if IsSeq(n), then NextNode(rNeigh(prev),t, n)
else if IsPar(n) A prev = parent(n),

then NextNode(Unskipped(FChl(n),t),t,n)
else if IsPar(n), then NextNode(Unskipped(prev,t),t, n)
else if IsDec(n) A SkipChl(n,t), then n
else NextNode(FChl(n),t,n)

parent(Root) = —1 and otherwise parent(n) returns the parent of n.

SkipChl(n, t) returns True if at time ¢ decorator n does not run it’s child.
IsLeaf (n), IsSel(n), IsSeq(n), IsPar(n), and IsDec(n) are all predicates that
return True if the node n is of the described type and False otherwise (all return
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False if n = —1). FChi(n) returns the first child of n, and rNeigh(n) indicates
the right neighbor of n.

if Skipped(n,t), then Unskipped(rNeigh(n),t)

Unskipped(n,t) == { |
else n

Unskipped(n, t) returns the first right Neighbor of n that is not Skipped (Nodes
with Memory can cause their children to be skipped in some cases). If there is
no right neighbor, then rNeigh(n) = —1.

if t <0, then L
else if 3a € Anc(n) s.t. status(a,t — 1) € {S, F},
then L
else if IsParSynch(parent(n)) A status(n,t — 1) =S,
then T
else if IsSeqWM (parent(n))A
Jx > 1 s.t. status(rNeigh(n)*,t — 1) = R, then T
else if IsSelWM (parent(n))A
Jx > 1 s.t. status(rNeigh(n)®,t — 1) = R, then T
else Skipped(n,t — 1)

Skipped(n, t) ==

Here rNeigh(n)® := rNeigh(rNeigh(n)*~ '), with rNeigh(n)" = rNeigh(n). In
other words, rNeigh(n)” is the x'" right neighbor. Anc(n) is the set of nodes
that are ancestors to n. This set does not include n or —1. IsSeqWM (n) and
IsSelWM (n) check if n is a Sequence/Selector node with memory, respectively.

status(n, t) =

if IsLeaf(n) A ActNode(t) = n, then LeafStatus(n,t)
else if IsSel(n) A (3¢ € Chi(n) s.t. status(c,t) € {S, R}), then status(c, t)
else if IsSel(n) A status(LChl(n),t) = F, then F
else if IsSeq(n) A (3¢ € Chi(n) s.t. status(c, t) € {F, R}), then status(c, t)
else if IsSeq(n) A status(LChl(n),t) = S, then S
else if IsPar(n)A
(3c € Chl(n) s.t. (status(c,t) # I) A Unskipped(c,t) = —1),
then ParStatus(n,t)
else if IsDec(n) A (ActNode(t) = n V status(FChi(n),t) # I),
then DecStatus(n, t)
else 1

n

status(n, t) describes the status of node n at time step t. Chl(n) is the set of
children of n. If both IsDec(n) and ActNode(t) = n, then n is a decorator that
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skipped its child.

if IsFailure(n,t), then F
ParStatus(n, t) == < else if NumSucc(n,t) > SuccThresh(n), then S
else R

if Ja € Anc(n) U {n} s.t. status(a,t — 1) € {S, F'},
then L

else IsFailure(n,t — 1)V
Jde € Chi(n) s.t. status(c,t) = F

IsFailure(n, t) =

if 3a € Anc(n) U {n} s.t. status(a,t — 1) € {S, F},
then 0

NumSucc(n, t) = < else if 3¢ € Chi(n) s.t. status(n,t) =9,

then NumSucc(n,t —1)+1

else NumSucc(n,t)

4.2 Total

Unlike the Leaf encoding, in the Total encoding a tick occurs at each time step ¢
and we compute the entire state of the tree in one time step. Consider Figure 3.
By definition, the status of wideSel is S if a child returns S, R if a child returns
R, and F if all children return F' (a status of I is impossible for the root as the
root will always run). The Total encoding uses this sort of definition directly
for each node. Thus the status of each child is based on if the child runs and
the custom code of the leaf node. As a result, in this case child3 will only run
if child2 runs and returns F', and child2 will only run if child1 runs and returns
F. This is all directly encoded, though it is done formulaically. The state of the
tree is determined by resolving the dependency chain. Formally the encoding is
defined as follows:

IsActive(n, t) ==

if IsRoot(n), then T

else if —IsActive(parent(n),t) V Skipped(n,t), then L
else if n = FChl(parent(n)), then T

else if ResFrom(n,t), then T

else if IsSel(parent(n)), then status(INeigh(n),t) = F
else if IsSeq(parent(n)), then status(INeigh(n),t) =S
else if IsPar(parent(n)), then T

else L
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IsActive(n, t) is True if at time ¢ node n executed. In this encoding multiple
nodes can be active at the same time. Notation is reused from the Leaf encoding
where applicable. For instance, IsSel(n) is defined as before. [Neigh(n) functions
the same way as rNeigh(n), except with the Left Neighbor.

if t <0, then L
else if Ja € Anc(n) s.t. status(a,t — 1) € {S, F},
then L
else if IsParSynch(parent(n)) A status(n,t — 1) =9,
then T
else if IsSeqWM (parent(n))A
Jx > 1 s.t. status(rNeigh(n)®,t — 1) = R, then T
else if IsSelWM (parent(n))A
Jz > 1 s.t. status(rNeigh(n)®,t — 1) = R, then T
else Skipped(n,t — 1)

Skipped(n, t) ==

Skipped(n, t) is used to determine if a node with memory caused node n to be
skipped at time t.

ResFrom(n, t) := IsSeq(parent(n)) A 3z > 1 s.t. status(rNeigh(n)*,t — 1) = R

Intuitively, ResFrom(n,t) tells us if at time ¢ we are supposed to resume from
node n or not (only affects certain nodes with memory). As before status(n,t)
is used to describe the status of a node n at time t.

if —~IsActive(n,t), then I

else if IsSel(n), then SelStatus(n,t)
else if IsSeq(n), then SegStatus(n, t)
else if IsPar(n), then ParStatus(n,t)
else if IsDec(n), then DecStatus(n, t)
else LeafStatus(n,t)

status(n, t) =

if 3c € Chl(n) s.t. status(c, t) € {S, R},
SelStatus(n, t) = then status(c,t)
else F'

if 3¢ € Chl(n) s.t. status(c,t) € {F, R},
SeqStatus(n, t) = then status(c,t)
else S

if 3¢ € Chl(n) s.t. status(c,t) = F, then F
ParStatus(n, t) == ¢ else if NumSucc(n,t) > SuccThresh(n), then S
else R
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NumSuce(n, t) :=|{c: c € Chl(n) A (status(c,t) = SV Skipped(c,t))}|

SuccThresh(n) represents the number of nodes that need to return Success for
the parallel policy to return S. For the two default policies, Success On One and
Success On All, the values would be 1 and |Chl(n)| respectively. Therefore, if a
node is a Parallel node and isn’t I, then if any of the children returned F' the node
returns F. Otherwise, it compares against the SuccThresh(n). NumSucc(n,t)
is the number of children of n that returned S at time ¢. Since Leaf Nodes
can be customized, it is impossible to fully characterize their behavior, and
there are too many Decorator nodes to concisely list here. As such, we have
DecStatus(n, t) € {S, F, R} and LeafStatus(n,t) € {S, F, R}.

4.3 BTCompiler

The encoding for the BTCompiler, as best we understand it, has been included
in [22]. Unfortunately, we were unable to install the tool. However, based on
various examples in the BTCompiler repository, we concluded that the file
‘bt_ classic.smv’ 2 contains the relevant encoding. The encoding presented in [22]
is meant to approximate this, in the same way that the Leaf and Total encodings
approximate the actual encodings used by BehaVerify.

5 Results

We include the results of two main experiments: Checklist and BlueROV. Check-
list is a parameterized example that takes as input an integer n and produces
a BT that contains n checks which must either succeed or a fallback triggers.
For each check we include two LTL specs, one to be proved and one to be
disproved. Leaf v2, Total v2, Total v3, and BTC models were used in this
experiment, where Leaf v2 is based on the Leaf encoding, Total v2 and To-
tal v3 are based on the Total encoding, and BTC is based on the BT Compiler
encoding. The other example is BlueROV, the controller in an ongoing DARPA
project. As this example requires blackboard variables which BT Compiler does
not support, it is not included, so only the 3 BehaVerify encodings are consid-
ered. We include timing results for verifying the LTL spec as well as memory
usage. Timing values are based on nuXmv’s ‘time’ command. Maximum Resident
Size values are based on nuXmv’s usage command, which uses getrusage(2) [6].
Maximum Resident Size is the maximum amount of RAM that is actually used
by a process. All tests were run on a computer using Ubuntu 22.04 with 32 gb
of ram and an i7-8700K Intel processor. Both the tool and instructions on how
to recreate these tests are available 2. The tests only consider the time to verify
LTL specifications in nuXmv. Time spent building the model in nuXmv is not
included as it never exceeded .2 seconds. The time spent converting the BTs to
models is not included as it is also fairly negligible, but can be found in [22].

% https://github.com/CARVE-ROBMOSYS/
BTCompiler/blob/master /smv/bt_ classic.smv
3 https://github.com /verivital /behaverify
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5.1 Checklist and Parallel-Checklist

Time in Seconds to verify LTL Specs in checklist Time in Seconds to verify LTL Specs in parallel-checklist
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Fig.4. Timing and memory results for verifying LTL specifications in nuXmv for
Checklist and Parallel-Checklist. Timeout is set to 5 minutes. If a timeout occurred, a
value of 350 is used for timing and -1000 for memory. After 3 timeouts, the remaining
tests for the version are skipped. BTC is based on BTCompiler, Leaf v2 is a model
based on the Leaf encoding, and Total _v2 and Total v3 are models based on the Total
encoding.

The checklist examples consist of a series of checks that run in order by
nested sequence nodes. Each check consists of a selector node, a safety check leaf
node that can return S or F', and a backup node that can only return S. Thus if
the safety check fails, the selector will run the backup which will return S. This
process continues until each check has been run. See [22] for visual examples.
Parallel-checklist replaces the sequence nodes with parallel nodes. Each check has
two LTL specifications, one True and one False. The True/False specifications
require that if a safety check fails, then a backup is triggered/not triggered.
Due to differences in encodings, the specifications are slightly different for each
version. We include one example here. The remainder can be found in [22].

For Total v2 and Total v3:
G(safety checkX.status = F = backupX.status = S);
G(safety checkX.status = F = l(backupX.status = S));
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Checklist Results Discussion Having re-run the checklist and parallel check-
list experiments three times for BT Compiler only, we have found that the spikes
are present each time. These results can be found in [22]. The results are ex-
tremely similar, so we find it unlikely that this is a fluke. Furthermore, we note
that there is a spike at 19 in both the checklist and parallel-checklist experi-
ments. Since nuXmv is using a BDD model to verify the LTL Specifications,
we assume that there is some sort of awkward break point with the number of
variables that causes the efficiency to greatly suffer at certain points.

Fig. 5. Two examples with 3 children.

Note that Total _v2 works much better on Parallel-Checklist than on Check-
list. This is because of the logic chain created by Selector and Sequence nodes.
Consider the Selector Example in Figure 5. The status of child3 depends on
if child3 is active, which depends on the status of child2, which depends on
if child2 is active, which depends on the status of childl, which depends on if
childl is active, which depends on if sel0 is active. The chain quickly becomes
unmanageable (see [22] for visual examples of the BTs). This is not the case
with Parallel-Checklist. Consider the Parallel Example in Figure 5. The status
of child3 depends on if child3 is active, which depends only on par0 and what
child3 returned last time. Thus the dependency chain is much shorter and thus
Total v2 performs better on Parallel-Checklist. Total v3 avoid this by ‘guiding’
nuXmv through this dependency chain by introducing intermediate variables.

Finally, note that the timing results in Figure 4 clearly demonstrate that the
Total v3 encoding outperforms the rest.

5.2 BlueROV

We considered three versions of BlueROV: warnings only, small, and full. The
differences between these versions is what range of values each blackboard vari-
able is allowed to use. See [22] for an image of the BT. We consider 5 sets of
2 LTL specifications. The timeout for each set of specifications was 10 minutes.
For each warning, the first LTL specification requires that if the warning is set to
True, then the appropriate Surface Task is triggered. This specification is False
in all cases except battery low warning. The second LTL specification requires
that if in a given tick a warning is set, then during that tick a surface task will
trigger. This is true for all warnings except the home reached warning.
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Table 1. blueROV, Time in Seconds to Compute LTL

Model LTL Spec Leaf v2 Total v2 Total v3
warnings only low battery 0.39 4.16 0.12
warnings only emergency stop 0.48 4.21 0.14
warnings only home reached 0.66 - 1.70
warnings only obstacle 0.54 7.79 0.17
warnings only sensor degradation 0.49 4.11 0.13
small low battery 23.43 5.06 0.33
small emergency stop 3047  6.40 1.02
small home reached 3148 - 2.58
small obstacle 39.34 9.87 0.39
small sensor degradation 31.73 5.23 0.34
full low battery 79.08  5.54 0.60
full emergency stop 156.20 6.49 1.81
full home reached 107.05 - 3.59
full obstacle 323.00 10.06 1.10
full sensor degradation 106.16 6.57 1.46

For the Leaf v2 encoding, these look as follows for battery:

G(next(battery low warning) = 1 A active_node = battery2bb —>
(active_node > —1U (active_node = sur face)));
G(next(battery low warning) = 1 A active_node = battery2bb —
(active_node > —1U (active _node € {sur face, sur facel, sur face2,
sur face3, sur faced})));

For the Total encodings, these look as follows for battery:

G(next(battery _low_warning) = 1) A battery2bb.active)
= (surface.active));

G(next(battery low warning) = 1) A battery2bb.active)
= (surface.active|sur facel.active|

sur face2.active|sur face3.active|sur faced.active));

BlueROV Results Discussion The BlueROV models differ from each other
only in the number of values that each blackboard variable can take. Thus based
on the results in Table 1, we can see that the Leaf v2 encoding has the worst
scaling of the three with respect to blackboard variable size. Total v3 improves
upon both Total v2 and Leaf v2. BTCompiler does not support blackboard
variables.
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6 Conclusions and Future Work

We introduced BehaVerify, a tool for turning a py_tree into a .smv file for use
with nuXmv. We consider several possible encodings for this task and compared
them to the encoding that BT Compiler uses. The results indicate that the en-
coding used by Total v3 is the best choice.

Future work includes general polish and improvements and expanding sup-
port for the various built-in nodes in py_trees. In addition to this, we plan to
re-work certain elements of BehaVerify. For instance, currently, in order for Be-
haVerify to detect blackboard variables in a py tree using custom leaf nodes,
the user must create a field that BehaVerify looks for within the custom node.
This could certainly be handled better in the future. In terms of encodings, we
plan to focus on Total v3. An improvement that has been considered, but not
yet implemented, would be to restrict the incoming values to the leaf nodes to
reduce state space. Specifically, in cases where a leaf node does not run, there is
no need to consider the incoming status. Currently, this could be accomplished
by tying the incoming value to the active value. However, this would likely cause
worse performance for the same reason that Total v2 performs worse than To-
tal _v3. Therefore, the intended solution would be to, in some sense, enumerate
all possible input values, which would hopefully shift some of the burden off of
nuXmv and onto BehaVerify.
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