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ABSTRACT
Self-Preserving Genetic Algorithms (SPGA) combine the evolution-
ary strategy of a genetic algorithm with safety assurance methods
commonly implemented in safe reinforcement learning (SRL), a
branch of reinforcement learning (RL) that accounts for safety in the
exploration and decision-making process of the agent. Safe learning
approaches are especially important in safety-critical environments,
where failure to account for the safety of the controlled system
could result in the loss of millions of dollars in hardware or bodily
harm to people working nearby, as is true of many cyber-physical
systems. While SRL is a viable approach to safe learning, there are
many challenges that must be taken into consideration when train-
ing agents, such as sample efficiency, stability, and exploration—an
issue that is easily addressed by the evolutionary strategy of a ge-
netic algorithm. By combining GAs with the safety mechanisms
used with SRL, SPGA offers a safe learning alternative that is able
to explore large areas of the solution space, addressing SRL’s chal-
lenge of exploration. This work implements SPGA with both action
masking and run time assurance safety strategies to evolve safe
controllers for three types of discrete action space environments ap-
plicable to cyber physical systems (control, routing, and operations)
and under various safety conditions. Training and testing evalua-
tion metrics are compared with results from SRL trained controllers
to validate results. SPGA and SRL controllers are trained across 5
random seeds and evaluated on 500 episodes to calculate average
wall time to train, average expected return, and percentage of safe
action evaluation metrics. SPGA achieves comparable reward and
safety performance results with significantly improved training
efficiency (55x faster on average), demonstrating the effectiveness
of this safe learning approach.
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1 INTRODUCTION
Reinforcement learning (RL) is a branch of machine learning (ML)
based upon the concept of operant conditioning, which uses feed-
back to reinforce behavior in a system. With recent advances in
machine learning, sensing, and algorithm development, RL as a
method has been increasingly adopted in various domains, includ-
ing traffic control [21], robotics [15], chemistry [31], and advertising
[12], and it has been used to solve previously intractable problems,
such as in high-dimensional state spaces like Go [24] and real-
time strategy games like Starcraft [30]. These recent advances have
opened the door for the application of RL across various types of
cyber physical systems (CPS), including CPS with complex dynam-
ics which are difficult and costly to address by using traditional
approaches [18]. Current use cases of RL for CPS range from plant
operational control [11], transportation safety [5], electric power
systems [7], and communication and networking systems [19]. De-
spite tremendous advances in RL applied to CPS, the continued
adoption of RL trained systems is limited by safety and reliability
concerns—concerns that are reminiscent of many black box sys-
tems, where a lack of transparency in the decision-making process
leaves people wary of the decision made. To ensure the continued
widespread adoption of RL systems, safety and reliability must be
taken into consideration, especially in regard to safety-critical CPS.

Toward this end, Safe Reinforcement Learning (SRL) is a branch of
reinforcement learning that takes safety into consideration during
the training and/or execution of a policy. These methods include
shielding [1], run time assurance [16], and action masking [9, 13].
Although these mechanisms keep the training agent safe, they
also magnify issues associated with RL, such as sample efficiency,
stability, and most commonly—agent exploration. In regard to ex-
ploration, this issue can drastically affect an agent’s ability to learn
an optimal policy. During training, an agent must decide between
exploring new actions and states and exploiting previously learned
information. By focusing on exploitation, the learned policy will
likely get stuck in local minima. Similarly, if the agent focuses on ex-
ploration, positive behaviors are likely not reinforced in the learned
policy. Even if the optimal policy is explored, this means nothing if
the agent is not able to purposefully replicate this strategy with its
policy. This tradeoff between exploration and exploitation is further
magnified with the use of safety mechanisms, which obstruct much
of the state space and hinder agent exploration [4].

In addition to RL, Genetic Algorithms (GAs) are also used to
solve complex problems, especially where system dynamics are
too complicated or unknown. GAs are a subset of evolutionary
algorithms that use nature-inspired operators such as selection,
crossover, mutation, and update to evolve iteratively better solu-
tions to a given problem. GAs have been used to learn controllers
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for problems ranging from industrial systems [14, 20] to planning
[8, 28, 29]. In an interesting contrast to RL, GAs can be likened to an
educated guessing strategy, also known as guess-and-check. They
are exploratory in nature due to the stochastic nature of the selec-
tion, crossover, and mutation operators. This allows GAs to quickly
and effectively explore the solution space to the problem at hand.
As “good” traits are more likely to be passed on in nature, traits
that lead to “safe” solutions can be selected for in a population of
potential solutions, permeating through generations as they evolve.

Taking inspiration from SRL methods, this work integrates run
time assurance (RTA) and action masking safety methods into the
evolutionary process of a genetic algorithm, termed Self-Perserving
Genetic Algorithms (SPGA). By combining the safety methods of
SRL with the exploration benefits of GAs, we believe that SPGA
will provide a faster safe-learning alternative to SRL, one that can
quickly and safely explore large parts of the solution space. We
test and compare SPGA and SRL in discrete action control, routing,
and operations problems that can be applied to smart grid (control),
smart transportation (routing), and smart factories (operations).
To the best of the authors’ knowledge, this is the first work to
implement both action masking and RTA in the GA evolutionary
process.

As such, this work builds upon a standard set of environments
from OpenAI Gym [3] and OR-Gym [10] to introduce, develop,
and evaluate Self-Preserving Genetic Algorithms in discrete action
spaces. The primary contributions of this work are:

(1) the introduction and development of the SPGA safe learning
framework,

(2) an implementation and evaluation of SPGA in three different
discrete action environments,

(3) an implementation and comparison of SRL safety assurance
approaches in three discrete action environments, and

(4) an analysis and comparison of the SPGA and SRL safe learn-
ing methods across the different environments and methods.

The results of this analysis give insight into the effectiveness of
SPGAs as a method of safe learning in discrete action spaces.

2 PRELIMINARIES
In this section, we introduce background information related to
reinforcement learning, genetic algorithms, safety, action masking,
and run time assurance.

2.1 Learning Methods Overview
The learning methods used in this work are reinforcement learning
and genetic algorithms.

2.1.1 Reinforcement Learning. Reinforcement learning (RL)
uses the concept of operant conditioning to train agents to complete
designated tasks, or goals [25]. Reinforcements via positive and/or
negative rewards are dependent upon an agent’s behavior in the
environment. These rewards act as feedback to the agent’s actions
in the environment, and withmore experience, the agent learns how
to act to maximize the return (i.e. cumulative, discounted reward)
it achieves in an episode.

During training, an agent interacts with an environment by
taking an action 𝑎𝑡 ∈ 𝐴 in an observation state 𝑠𝑡 ∈ 𝑆 . The agent

receives feedback from the environment in the form of a reward
𝑟 = 𝑅(𝑠𝑡 , 𝑎𝑡 ) or 𝑟 = 𝑅(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1) and an observation state 𝑠𝑡+1 ∈ 𝑆 .
The combination of a state, action, reward, and next state transition
is known as an experience. Experiences are collected by various
strategies and used to intermittently update an agent’s policy, 𝜋 ,
which determines the best action to take given an observation state,
𝑎𝑡 = 𝜋 (𝑠𝑡 ). The overall goal of the agent is to learn a policy that
maximizes the cumulative, discounted reward gained per episode
in the environment [27].

An episode consists of a time ordered set of experiences:

{[𝑠0, 𝑎0, 𝑟0, 𝑠1], [𝑠1, 𝑎1, 𝑟1, 𝑠2], ..., [𝑠n−1, 𝑎n−1, 𝑟n−1, 𝑠𝑛]}

where 𝑛 ≤ 𝑇 , the maximum number of timesteps possible per
episode. In an episode, the initial observation state 𝑠0 is sampled
from the initial conditions of the environment. The system is then
actuated by an agent at each timestep with actions 𝑎𝑡 until a termi-
nation condition is true. A termination condition can either mean
that the controller successfully achieved the goal, a negative obser-
vation state was detected, or that the total timesteps allotted for
the episode were reached.

Deep reinforcement learning (DRL) uses the same concepts and
strategies as traditional RL but utilizes deep neural networks (DNN)
to approximate function estimators (e.g. transition models, policy,
value function, etc.), which are too large to represent with hash
maps in complex environments. This work uses a model-free, policy
optimization method known as proximal policy optimization (PPO)
[23]. PPO uses one neural network to approximate the policy (actor)
and a second neural network to approximate the value function
(critic). Where the policy network is used to select actions from a
given state, the value function is an estimate of the expected return
an agent should receive from that state until the end of the episode,
or rather how “good” that state is to be in. The actor controls the
behavior of the agent, and the critic is used to evaluate that behavior.
PPO also uses a clipping parameter to ensure that policy updates
are relatively small, increasing the stability of the training process.
The general learning framework of PPO consists of collecting
experiences with the current policy, policy improvement based
upon those experiences, and policy evaluation, which evaluates
the actor and critic models as shown in Figure 1.

This work uses the implementation of the PPO algorithm from
RLlib [17]. RLlib is an open-source RL library built upon Ray that
facilitates and scales parallel computing across available computa-
tional resources during training.

2.1.2 Safe Reinforcement Learning. To address the need for
safety in RL, safe reinforcement learning (SRL) incorporates safety
into the training and/or execution of the agent. Recent research
has addressed SRL by focusing on novel techniques in training [6],
such as shielding strategies, action masking, and run time assur-
ance (RTA) modules. This work implements and evaluates action
masking and the RTA Simplex Architecture, which are described
in Section 2.3.1 and Section 2.3.2.

2.1.3 Genetic Algorithms. Genetic algorithms (GAs) have also
been used to solve RL-type problems [26], and the RL terms de-
scribed above apply to this learning strategy as well. GAs mimic the
evolutionary process of natural selection and are effective in a vari-
ety of problems, including scheduling and planning. Whereas RL
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Figure 1: Action masking and RTA controllers in the training framework of Safe Reinforcement Learning and Self-Preserving
Genetic Algorithms. There are 4 main parts to this diagram. The red, topmost section of the central block describes an action
masking learning controller as indicated by the red 1. Using the current state of the system 𝑠𝑡 as input, action logits are generated
from the neural network controller. An action mask is applied to the action logits (red 2), where the black cube represents a
mask of value 0, and the white cube represents a mask of value 1. From the resulting masked action logits, a safe action is
sampled 𝑎𝑡 (red 3) and passed to the environment. In response, the environment returns a next state 𝑠𝑡+1 (red 4) and a reward 𝑟

(red 5). The next state contains both the actual observation state and the corresponding action mask. The blue, bottom most
section of the central block describes a RTA learning controller as indicated by the purple 1. Both the learning controller and the
backup controller receive the current state 𝑠𝑡 as input. The learning controller selects an action 𝑎𝑡 , and the backup controller
selects an action 𝑎𝑡 , which are passed to the RTA Monitor & Decision Switch (purple 2). Based on the switching mechanism
described in Section 2, a safe action, 𝑎, is determined and passed to the environment (purple 3). In response, the environment
returns a next state 𝑠𝑡+1 (purple 4) and a reward 𝑟 (purple 5). The leftmost side of the diagram shows the general learning strategy
of Safe Reinforcement Learning, and the rightmost side of the diagram shows the general learning strategy of Self-Preserving
Genetic Algorithms, both of which use experiences from the learning controllers in the central block.

uses experiences to update function approximator network weights,
GAs are better understood as an educated guess-and-check learning
strategy.

As shown in Figure 1, the general framework for a GA strategy
consists of three main stages: initialization, evolutionary cycle,
and final evaluation. Each of these stages is described in more
detail below.

(1) Initialization: The generation value is set to 𝑔 = 1 to rep-
resent the first generation of the evolutionary process, and
a population P𝑔 of 𝑛 individuals is randomly generated for
the first generation. Each individual is a potential solution
to the problem at hand. For example, an individual could be
an array of 10 floating point numbers such that 𝑥 ∈ [0, 1],
where 𝑥 is a single “gene” in the array, as shown below. P1

would then consist of 𝑛 of these randomly generated arrays.

𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙1 = [.2, .4, .1, .6, .7, .3, .5, .4, .8, .9]
.
.
.

𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑛 = [.7, .2, .2, .3, .9, .5, .1, .6, .7, .3]
P1 = {𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙1:𝑛}

(2) Evolutionary Cycle: The evolutionary cycle continues for
𝐺 generations or until a stopping criterion has been reached.
(a) Selection: Each individual (a particular solution) of the

population is scored according to a user defined fitness
function 𝑓 . For the example above, the fitness function
could be 𝑓 = 𝑠𝑢𝑚(𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙), so the closer the individ-
ual is to all 1’s, the more “fit” the individual is and the
better the score. Based on this fitness score, individuals
are selected to “reproduce offspring” for the next genera-
tion. While there are many selection strategies, this work
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utilizes tournament selection, which randomly pairs in-
dividuals from P𝑔 and the highest scoring individual is
chosen as a parent. This selection strategy is used to select
2 × 𝑛 parents. Individuals can be selected multiple times
to be a parent, reflective of nature. After enough parents
have been selected to reproduce offspring, the crossover
stage begins.

(b) Crossover: In crossover, the “genes” of the paired par-
ents combine to create a new potential solution, or child,
for the problem at hand. There are many strategies for
crossover, including one-point, two-point, and uniform
schemes. This work utilizes a two-point crossover strategy
demonstrated below by the TP operator. Two points are
randomly selected from the parents, and the solutions are
combined at those two points.

𝑝𝑎𝑟𝑒𝑛𝑡1 = [.2, .4, .1, .6, .7, .3, .5, .4, .8, .9]
𝑝𝑎𝑟𝑒𝑛𝑡2 = [.7, .2, .2, .3, .9, .5, .1, .6, .7, .3]

𝑐ℎ𝑖𝑙𝑑 = 𝑇𝑃 (𝑝𝑎𝑟𝑒𝑛𝑡1, 𝑝𝑎𝑟𝑒𝑛𝑡2)
𝑐ℎ𝑖𝑙𝑑 = [.2, .4, .1, .3, .9, .5, .1, .6, .8, .9]

(c) Mutation: After 𝑛 of children have been produced by
crossover, each child solution is then randomly mutated.
The rate of mutation 𝑚 is designated by the user. For
instance, a 20% mutation rate will change a gene 20% of
the time. An example of the mutation is shown below by
the M operator. Mutation helps to prevent the solution
space from getting stuck in a local optimum.

𝑐ℎ𝑖𝑙𝑑 = [.2, .4, .1, .3, .9, .5, .1, .6, .8, .9]
𝑐ℎ𝑖𝑙𝑑 : 𝑀 (𝑐ℎ𝑖𝑙𝑑) = [.2, .7, .1, .3, .9, .4, .1, .6, .8, .9]

(d) Update: Once each child has been randomly mutated, the
generation number is incremented by one (𝑔 = 𝑔 + 1),
and the current population P𝑔 is set to the children just
produced.

(3) Final Evaluation: After the set number of generations 𝐺
has evolved or the stopping criteria has been reached, the
resulting population of solutions is evaluated for multiple tri-
als, and the highest scoring individual is the selected solution
for the problem.

In this work, an individual is a neural network controller, which is
evaluated on its capability to safely actuate a control system. Please
see Section 4 for more details on the SPGA implementation.

2.1.4 Self-Preserving Genetic Algorithms. The same safety
concerns associated with RL agents are important to consider with
GA controllers. As such, this work applies the same safety concepts,
RTA and action masking, to the GA-derived controllers during the
training cycle. By incorporating safety into the fitness function and
selection process, the authors believe that safer agents will be more
likely to survive, leading to the derivation of a “safe” controller. This
training paradigm has thus been labeled, Self-Preserving Genetic
Algorithms (SPGA).

2.2 Safety Definition
In this work, a safety condition is a predicate over the state variables
(the variables contained in the observation state) of the system,

which is a boolean-valued function over those variables. For in-
stance, a safety condition predicate used in this work is: (𝑥 ≥ −1.5
∧ 𝑥 ≤ 1.5). Here, 𝑥 is a state variable in the observation state, which
the learning controller uses to determine what action 𝑎𝑡 to take at
that timestep. A controller is considered safe if the safety condition
holds true for all timesteps of an episode.

From this definition of safety, the percentage of safe actions can
also be monitored. The percentage of safe actions, therefore, is the
percentage of safe actions from the total actions taken in an episode
that evaluate to𝑇𝑟𝑢𝑒 from the boolean valued safety condition. The
percentage of safe actions is used as an evaluation metric in this
work.

2.3 Safety Mechanisms
The safety mechanisms used in this work are action masking and
run time assurance.

2.3.1 Action Masking. Action masking is a safety technique that
incorporates known knowledge about an environment into the
training process of a controller [9] as shown in the red, topmost
region of Figure 1. Based on the user’s knowledge of the environ-
ment, a mask update function is added to the environment and
reflected in the observation state. When a controller receives a state
as input, it is also receiving this action mask, as shown by the red
4 in Figure 1. The actual observation state of the environment is
still used as input to the neural network policy of the controller.
Once propagated through the network, the mask is applied to the
output logits of the policy, as demonstrated by the red 2 in Figure 1.
The mask filters out unsafe actions by adjusting the probability
distribution of possible actions. The mask is an array of 0s and/or
1s, where a 1 corresponds to a safe action and a 0 corresponds to an
unsafe action. This array is then the input to a logarithmic function,
which turns the 1s into 0s and the 0s into −∞. These values are then
added to the output logits of the controller, making the selection of
unsafe actions 0. After the mask is applied, the resulting masked
action logits are sampled from in order to calculate a safe action 𝑎𝑡
that is passed to the environment, as shown by the red 3 in Figure 1.
Once the safe action has been executed in the environment, the
environment responds with an updated observation state, includ-
ing an updated action mask. The action mask not only prevents
dangerous actions, but it also increases the probability of the safe
action being taken in the policy when an action mask is no longer
in use, as the neural network parameters are updated to reflect this
action.

2.3.2 Run Time Assurance: Simplex Architecture. Run time
assurance (RTA) methods ensure the safe behavior of safety critical
systems. RTA monitors the system state and intervenes at runtime
to assure specified constraints on the system are never violated. In
this work, we focus on one approach to RTA, the simplex architecture
[22].

The simplex architecture relies on two controllers, primary and
backup, and a decision monitor, as shown by the purple 2 in Fig-
ure 1. At run time, the decision monitor simulates the result of
executing the output of the primary controller (in our case, the
learning controller). If the resulting next state results in a 𝑇𝑟𝑢𝑒
boolean valued evaluation of the safety condition, then the primary
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control output is passed through to the system (𝑎 = 𝑎𝑡 ). If the sim-
ulated next state is not determined safe, then the backup control
output is passed to the system instead (𝑎 = 𝑎𝑡 ). This allows for the
use of a complex controller while still maintaining the guarantees
of the safety controller, which is designed to prevent unsafe states
from occurring. One possible implementation for a simplex RTA
filter is constructed as follows,

Simplex Filter

𝑎 =

{
𝑎𝑡 if 𝐶 (𝜙 (𝑠𝑡+1)) = 1
𝑎𝑡 otherwise

(1)

Here,𝜙 (𝑠𝑡+1) represents a prediction of the future state,𝐶 (𝜙 (𝑠𝑡+1))
is a boolean-valued evaluation of whether the predicted future state
of the action 𝑎𝑡 generated by the learning controller satisfies the
safety condition, and 𝑎𝑡 represents the action of the backup con-
troller if this evaluation is 𝐹𝑎𝑙𝑠𝑒 .

3 DISCRETE ACTION ENVIRONMENTS AND
SAFETY

The discrete action environments used in this work are from three
different domains applicable to cyber physical systems (CPS)—
control, routing, and operations. A discrete action environment
means that the controller has discrete output options that are envi-
ronment dependent. For instance, a gridworld controller can only
actuate up, down, left, or right (discrete actions). Each of the discrete
action environments use either an OpenAI Gym or an OR-Gym im-
plementation of a classic problem from the problem space. Gym is a
collection of environments used for developing and comparing rein-
forcement learning algorithms, and OR-Gym is a collection of class
operations research problems for RL. In each of the environments,
the learning agents are trained on varying levels of complexity or
safety conditions. The different versions of each environment and
the max reward obtainable, or solved score, for each are described
in Table 1.

Table 1: Environment Versions

Env. Type Env. Version Solved Score
CartPole-v0 𝑏 = 0.25 200
(Control) 𝑏 = 0.50 200

𝑏 = 0.75 200
𝑏 = 1.00 200
𝑏 = 1.25 200
𝑏 = 1.50 200

FrozenLake-v1 8x8 Grid 1.0
(Routing) 16x16 Grid 1.0

32x32 Grid 1.0
Knapsack-v0 5 Item 36.0
(Operations) 50 Item 103.0

100 Item 104.0

3.1 Control Environment
The control problem used in this work is the OpenAI Gym imple-
mentation of the classic CartPole-v0 as described in [2]. The goal of
this environment is to keep the pole upright for as long as possible
(𝑇𝑚𝑎𝑥 = 200) by actuating the system with a leftward force or a
rightward force based upon an observation state 𝑠𝑡 that acts as an
input to the controller. The observation state consists of the cart
position 𝑥 , cart velocity ¤𝑥 , the pole angle 𝜃 , and the pole angular
velocity 𝜔 . The safety conditions associated with this environment
are limits placed on the 𝑥 state variable, referred to as boundaries
𝑏, as shown in Table 1. In the boolean-valued safety function dis-
cussed in Section 2.2, 𝑏 corresponds to the predicate value to which
𝑥 is compared (𝑥 ≥ −𝑏 ∧ 𝑥 ≤ 𝑏).

3.2 Routing Environment
The routing problem used in this work is derived from FrozenLake-
v1, where an agent must make it safely across a frozen lake toward
a goal location while avoiding holes in the frozen lake by moving
left (0), down (1), right (2), or up (3). The goal of this environment
is to plan a route in order to safely reach the goal destination while
traversing the dangerous terrain. In this environment, we look at
three different sizes of grids as shown in Table 1. The larger the
grid, the harder it should be for the agent to train as the number
of possible routes increases from 8 × 8 = 644 = 16777216 to 32 ×
32 = 10244 = 1.10𝑒12. The safety conditions associated with this
environment are evaluations of the state types, which include ice,
hole, or goal. If the state is a hole, it is considered unsafe. The
boolean-valued safety function is therefore: (𝑠𝑡𝑎𝑡𝑒𝑇𝑦𝑝𝑒 ≠ ℎ𝑜𝑙𝑒).

3.3 Operations Environment
The operations research environment used in this work is the classic
Unbounded Knapsack problem from OR-Gym, which consists of
several items with a weight and value. The agent must select from
among these items with replacement to maximize the total value of
the items selected while not exceeding the max weight allowed by
the environment. Similar to the FrozenLake-v1 environment, the
Knapsack-v0 environment focuses on three different versions that
increase in complexity as shown in Table 1. The safety condition
associated with this environment is an evaluation of the max weight
possible. If the max weight is exceeded, it is considered unsafe.
The boolean-valued safety function is therefore: (𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑊𝑒𝑖𝑔ℎ𝑡 ≤
𝑚𝑎𝑥𝑊𝑒𝑖𝑔ℎ𝑡 ).

4 EXPERIMENTAL METHODS
The SRL and SPGA implementations used in this work are discussed
in more detail below.

4.1 SPGA Implementation
The genetic algorithm framework used in this work is described
below.

(1) Initialization: A population of 𝑛 = 30 neural networks
are initialized with random weights from a uniform distri-
bution. The number of input nodes and output nodes are
environment dependent, where the number of input nodes
corresponds to the observation state dimensions and the
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number of output nodes corresponds to the action space
dimensions. Each neural network has 1 hidden layer with 16
nodes. For example, the neural network dimensions for the
CartPole environment are: 4 input, 16 hidden, and 2 output.
The generation value is set to 𝑔 = 1, representing the first
generation of the evolutionary process.

(2) Evolutionary Cycle: The evolutionary cycle ends when
𝑔 = 𝐺 = 500 or when the average of the fittest individual
from the last 30 generations is equal to the solved score of
the environment.

(a) Selection: The fitness function 𝑓 is the cumulative reward,
or return, acquired for a single episode. Each of the fitness
functions incorporates the safety mechanism used during
training (i.e., RTA or AM), where if triggered, it results in
a negative reward. Tournament selection is used to select
parents for crossover. 𝑛 pairs of parents are selected for
crossover.

(b) Crossover: The pairs of parents are crossed over using the
two-point strategy discussed in Section 2.1.3 to produce
a child neural network. Here, two random numbers are
selected between 0 and 16 (number of nodes in the hidden
layer) using a uniform distribution. The values of parent
one’s weights up until the first crossover point are applied
to the child, the second parent’s weights are applied until
the second crossover point, and the first parent’s weights
are applied from thereafter. This child is then added to the
new generation of individuals. After each pair of parents
has been crossed-over, there will be 𝑛 children in the new
generation.

(c) Mutation: The individuals in the new generation are mu-
tated with a mutation rate of 𝑚 = 0.2. This randomly
changes a value of the individual’s neural network weights
using a uniform distribution of generated values.

(d) Update: the current population is set to the new genera-
tion, and 𝑔 is incremented by 1 (𝑔 = 𝑔 + 1).

(3) Final Evaluation: The resulting population of solutions is
evaluated for one more episode. The individual achieving
the highest cumulative reward is selected as the learned
controller from the evolutionary process.

While this learning framework utilizes hyperparameters such as
mutation rate𝑚, generations 𝐺 , population size 𝑛, and one neural
network architecture, tuning methods were not utilized because the
chosen values performed well across all experiments. These values,
however, could be tuned with state-of-the-art tuning methods to
improve results in the future.

4.2 PPO Implementation
The PPO implementation used in this work is from RLlib. The
hyperparameter and architecture values are kept as the default PPO
RLlib values1 to match the scheme utilized with SPGA.

Training is stopped when the max number of training steps
(𝑁 = 500) is reached or when the average reward of the last 30
training steps is greater than or equal to the solved score of the
environment. The solved scores for each environment are listed in
Table 1.
1https://github.com/ray-project/ray/blob/master/rllib/algorithms/ppo/ppo.py

4.3 Safety Implementation
With both safety mechanisms (i.e., RTA and AM), the agent receives
a negative reward if the mechanism is triggered. For instance, if
the RTA module described in Section 2.3.2 switches to the backup
controller, the agent will receive a negative environment dependent
reward. Similarly, if the action mask contains a 0, meaning that
the action mask is in use to prevent the agent from making an
unsafe action, the agent will also receive a negative environment
dependent reward.

The reward functions used in these experiments were not ex-
tensively shaped, meaning that they could have been optimized
further to increase agent performance. A simple grid search of re-
ward functions was used to select the negative rewards associated
with the safety mechanisms in this work. Both SRL and SPGA use
the same reward function.

5 EXPERIMENTAL OVERVIEW
In order to evaluate and compare SPGA, the following methods
described in Section 42 are implemented:

(1) SPGA-AM: SPGA with Action Masking
(2) SPGA-RTA: SPGA with Run Time Assurance
(3) SRL-AM: SRL (PPO) with Action Masking
(4) SRL-RTA: SRL (PPO) with Run Time Assurance

Each of these methods are trained in each version of CartPole-
v0, FrozenLake-v1, and Knapsack-v0. Each version increases in
complexity, providing insight into the robustness of each of the
training methods. These experiments were conducted on an 2.3
GHz 8-Core Intel Core i9 processor with 16 GB 2667 MHz DDR4 of
memory.

5.1 Training
Each of the implementations (i.e., SRL-AM, SRL-RTA, SPGA-AM,
SPGA-RTA) are trained on the same 5 random seeds in each envi-
ronment and with each safety condition mentioned above. A seed is
used to set the randomization of both the environment and distribu-
tions of random number generators. The training time across these
five seeds is used to obtain an average wall training time metric.
The five random seeds generated with Numpy Random Randint in
this work were 2, 4, 27, 36, and 98.

5.2 Testing
To test the learned controllers, a random seed is then selected
from the training seeds to be used across all trained agents for
episode rollouts. Using the Numpy Random Choice function, seed
4 was selected from the five seeds above as the indicated trained
controller to use for every episode. Each of the selected learned
controllers were evaluated on 500 episodes. An episode starts from
a random initialization of the system, and the controller actuates
the system until a termination condition is reached. The average
of the cumulative reward across all episodes, or expected return, is
then used as an evaluation metric. Additionally, the number of safe
actions in each episode is averaged to calculate the percentage of
safe actions, where the safety conditions are discussed in Section 3.

2All code is available at https://doi.org/10.5281/zenodo.7706773, or https://github.com/
pkrobinette/spga

https://doi.org/10.5281/zenodo.7706773
https://github.com/pkrobinette/spga
https://github.com/pkrobinette/spga


Self-Preserving Genetic Algorithms for Safe Learning in Discrete Action Spaces ICCPS ’23, May 9–12, 2023, San Antonio, TX, USA

Table 2: Analysis of Self-Preserving Genetic Algorithms and Safe Reinforcement Learning

SPGA SRL

Environment Safety Method Variant/Safety Condition Training Time (s) Expected Return (%) Safe Actions Training Time (s) Expected Return (%) Safe Actions xSpeedUp

CartPole-v0 RTA 1.5 11.09 ± 2 200.0 ± 0 100.0 ± 0 178.03 ± 12 198.8 ± 0.8 100.0 ± 0 16.05

(Control) 1.25 10.90 ± 1 200.0 ± 0 100.0 ± 0 192.71 ± 10 196.4 ± 1.3 100.0 ± 0 17.68

1.0 10.57 ± 1 199.7 ± 0.2 100.0 ± 0 184.73 ± 4 199.8 ± 0.2 100.0 ± 0 17.48

0.75 15.41 ± 4 166.5 ± 2.0 100.0 ± 0 149.72 ± 7 200.0 ± 0 100.0 ± 0 9.72

0.5 14.71 ± 10 199.9 ± 0.0 100.0 ± 0 122.97 ± 1 199.6 ± 0.5 100.0 ± 0 8.36

0.25 12.84 ± 8.65 158.5 ± 3.2 96.1 ± 0.6 150.36 ± 10 199.9 ± 0.2 100.0 ± 0 11.71

AM 1.5 38.68 ± 9 200.0 ± 0 100.0 ± 0 147.90 ± 19 198.5 ± 1.0 100.0 ± 0 3.82

1.25 56.46 ± 18 200.0 ± 0 100.0 ± 0 418.02 ± 162 199.46 ± 0.3 100.0 ±0 7.40

1.0 58.24 ± 15 200.0 ± 0 100.0 ± 0 246.78 ± 8 200.0 ± 0 100.0 ± 0 4.24

0.75 51.23 ± 14 200.0 ± 0 100.0 ± 0 418.55 ± 159 199.71 ± 0.4 100.0 ± 0 8.17

0.5 167.73 ± 19 200.0 ± 0 100.0 ± 0 159.06 ± 3 196.44 ± 1.4 100.0 ± 0 0.95

0.25 132.44 ± 68 200.0 ± 0 100.0 ± 0 156.45 ± 3 200.0 ± 0 100.0 ± 0 1.18

FrozenLake-v1 RTA 8x8 Grid 5.49 ± 0.0 1.0 ± 0.0 100.0 18344.54 ± 7396.0 1.0 ± 0.0 100.0 3341.45

(Routing) 16x16 Grid 13.63 ± 5.0 0.86 ± 0.1 100.0 18196.31 ± 8220.0 1.0 ± 0.0 100.0 1335.02

32x32 Grid 55.39 ± 27.0 0.54 ± 0.34 100.0 20273.63 ± 10866.0 0.0 ± 0.0 100.0 366.02

AM 8x8 Grid 8.76 ± 0.0 1.0 ± 0.0 100.0 109.17 ± 4.0 1.0 ± 0.0 100.0 12.46

16x16 Grid 12.72 ± 1.0 1.0 ± 0.0 100.0 368.78 ± 160.0 1.0 ± 0.0 100.0 28.99

32x32 Grid 19.99 ± 1.0 1.0 ± 0.0 100.0 5323.37 ± 6448.0 1.0 ± 0.0 100.0 266.3

Knapsack-v0 RTA 5 Items 1.05 ± 0.0 36.0 ± 1.0 100.0 557.43 ± 361.0 36.0 ± 5.0 100.0 530.89

(Operations) 50 Items 50.95 ± 44.0 95.0 ± 1.0 100.0 15493.49 ± 15085.0 102.0 ± 22.0 100.0 304.09

100 Items 55.33 ± 3 99.0 ± 0.0 100.0 17245.11 ± 19016.0 99.0 ± 13.0 100.0 177.77

AM 5 Items 2.47 ± 0.0 36.0 ± 0.0 100.0 114.53 ± 4.0 34.2 ± 3.0 100.0 46.37

50 Items 21.13 ± 29.0 94.0 ± 0.0 100.0 458.39 ± 163.0 103.0 ± 18.0 100.0 21.69

100 Items 31.98 ± 48.0 104.0 ± 6.0 100.0 2285.08 ± 1706.0 104.0 ± 25.0 100.0 71.45

5.3 Evaluation Metrics
From training and testing, we evaluate each safe learning method
using three metrics:

(1) Training Time: The average wall time across 5 random
seeds to complete training.

(2) Expected Return: The average episode reward for 500
episode rollouts using a learned policy.

(3) Safe Actions (%): The number of safe actions from the to-
tal actions taken in an episode that evaluate to True from
the boolean valued safety condition. This value is averaged
across 500 episode rollouts.

6 RESULTS AND DISCUSSION
Table 2 shows the training and test results of SPGA and SRL in the
three discrete action environments using three different metrics
described in Section 5.3: Training Time, Expected Return, and Safe
Actions. The results of each environment are evaluated further in
the following sections.

6.1 Control Results (CartPole-v0)
Figure 2 compares 50 episode trajectories of the SRL-AM trained
controller and the SPGA-AM trained controller across different
safety conditions. A trajectory, in this case, is the time ordered set
of state variables for each timestep in an episode. The red zones
in Figure 2a indicate termination conditions of that state variable

Table 3: Geometric Mean xSpeedUp of SPGA vs. SRL

Environment Safety Method Mean xSpeedUp
CartPole-v0 RTA 12.95

AM 3.21
FrozenLake-v1 RTA 1177.54

AM 45.82
Knapsack-v0 RTA 306.16

AM 41.58
All Environments 55.28

for an episode, and the green zones highlight the goal condition
(𝑡 = 𝑇𝑚𝑎𝑥 = 200). While not trained for, the angle of the state is
an environment termination condition, which gives insight into
why an episode might not reach the max timesteps during a rollout,
shown by a trajectory stopping abruptly. Because the safety condi-
tions are not considered as termination conditions, the trajectory
of a controller could reach an “unsafe state” but still continue past
this timestep. If a termination condition is reached, however, the
episode is terminated, resulting in a lower cumulative reward for
that episode.

The plots in Figure 2 highlight the effects of training under dif-
ferent safety conditions 𝑏. As the size of the safe region decreases
during training, resulting in a smaller safe range, the learned con-
troller actuates closer to the origin. Additionally, almost all the
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(a) Position (𝑥) (b) Angle (𝜃 )

Figure 2: CartPole-v0 SPGA-Action Mask (SPGA-AM) vs. SRL-Action Mask (SRL-AM) for 50 episode trajectories in different
training boundary conditions 𝑏. 2a describes the 𝑥 state variable and 2b describe the 𝜃 state variable of the observation state. The
red zones indicate the environment termination condition threshold, and the green zone near the top of each plot highlights
the goal condition of the controller, which is to successfully actuate the system for 200 timesteps.

episodes that terminate early are a result of the 𝜃 termination con-
dition being violated, except in the Training Boundary: b=1.25 plot
of Figure 2a. Here, the trajectory of the SRL-AM agent violates the
safety condition. In this case, SPGA-AM is both safer and trains
faster. Most of the time, however, SPGA and SRL are the same in
terms of safety, but SPGA tends to train faster as shown in Table 2.

6.2 Routing Results (FrozenLake-v1)
Each of the learning methods are able to successfully learn a safe
route in each version of the FrozenLake-v1 environment, as shown

SPGA-AM SRL-AMKey:

Figure 3: FrozenLake-v1 SPGA-Action Mask (SPGA-AM) vs.
SRL-Action Mask (SRL-AM) learned path trajectories for the
16x16 Grid.

in Table 2. The routes learned by the SPGA controllers, however, are
more efficient, as fewer actuations are needed to reach the goal state.
For instance, in the FrozenLake-v1 16x16 Grid shown in Figure 3,
SPGA-RTA changes direction 2 times whereas SRL-RTA changes
direction 14 times. In addition to having fewer actuations, the SPGA
controllers are faster to train, as highlighted in Table 3. SPGA-RTA
is 1177.54x faster than SRL-RTA, and SPGA-AM is 45.82 times faster
than SRL-AM, demonstrating the benefit of the exploration strategy
of a genetic algorithm.

6.3 Operations Results (Knapsack-v0)
In the Knapsack-v0 environments, SPGA trained learning methods
are faster to train when compared to the SRL trained agents and
have equivalent safety evaluations as shown in Table 2. While
not as significant an improvement compared to the FrozenLake-v1
environment, SPGA-RTA is 306.16x faster than SRL-RTA, and SPGA-
AM is 41.58x faster than SRL-AM. In each version of the knapsack
environment, both learning methods key in on one or two items
with high value to weight ratio, picking between them in each step
as demonstrated in Figure 4. Each safe learning method learns the
optimal solution of selected items in each version of Knapsack-v0,
except for in the 50 Item version. In the 50 Item version, SPGA-
RTA and SRL-RTA are unable to learn the optimal solution during
training. This could be due to the random nature of RTA. If the
RTA safe controller is triggered, a viable next state is randomly
selected, preventing the learning agent from using a strategy to
select between the available options. In action masking, though,
the agent is still able to apply its knowledge to selecting the next
state, resulting in a more self-guided exploration of the state space.
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(a) SPGA-RTA (b) SRL-RTA

Figure 4: A comparison of SPGA-RTA and SRL-RTA in the 5 Item Knapsack-v0 environment. The orange striped bars represent
the weight of the item picked for that step, the blue solid bars represent the cumulative weight of the knapsack, the green solid
line shows the cumulative value of the knapsack, the dashed red line shows the max weight allowed in the knapsack, and the
lime green circle represents the optimal value of the environment. Both learning strategies end up learning the same policy;
SPGA-RTA, however, does so in less time.

6.4 Training Time
The training time of the SPGA learned controllers, SPGA with Ac-
tion Masking (SPGA-AM) and SPGA with Run Time Assurance
(SPGA-RTA), is significantly faster compared to SRL by a geometric
mean of 55.28x. SPGA achieves a speedup of up to 3341.45x the
average wall training time compared to the SRL methods. With
respect to the safety assurance methods, RTA usually trains faster
than its action masking counterpart for each experiment in SPGA,
even though both safety methods have extra computational steps:
specifically, RTA has the probe step, and action masking has cal-
culating the mask. Also, the overall effect of using SPGA for safe
learning increases as the complexity of the environment increases,
as shown by the correlation between environment difficulty and
speedup value. In terms of safety conditions, the smaller the safety
condition, the smaller the speedup observed. As the safety condi-
tion decreases, the range of available safe states decreases. This
could result in more time needed for both learning methods to learn
a more precise controller, one that can operate in a smaller range.

6.5 Safety of Controllers
In terms of safety, SPGA and SRL demonstrate similar results,
achieving high levels of safety within each of the environments.
In reference to the safety methods used in this work, controllers
trained with action masking achieve higher percentages of safe
actions than those trained with RTA, as shown in Table 2.

6.6 Risks to Validity
While this work provides an extensive evaluation of SPGA, there are
design choices that could affect these results. Both SPGA and SRL
utilize early stopping criterion in the training process. While they
both rely on the last thirty training steps or evolutionary cycles,
SRL is using the mean of episode rollouts while SPGA is using the

max score of the fitness function of the population. The mean of SRL
is necessary because the episode rollouts are stemming from the
same controller policy, which can vary in performance as a result
of the initial state of the system. Additionally, the max is necessary
in SPGA because of the mutation operator, which leads to poor
performing individuals as well as high performing individuals for
every generation.

This work also uses default hyperparameter values for each
learning method. We leave architecture and hyperparameter tuning
for future work. Even without hyperparameter tuning, though,
SPGA trains quickly.

7 CONCLUSIONS AND FUTUREWORK
This work presents a novel approach to safe learning termed Self-
Preserving Genetic Algorithms (SPGA) and demonstrates the ef-
fectiveness of this approach in three different discrete action con-
trol environments compared to Safe Reinforcement Learning (SRL)
methods. SPGA achieves similar performance results to SRL trained
controllers in each of the discrete action environments used in
this work, while training significantly faster (an average of 55.28x).
There are many potential use cases for using SPGA, including rout-
ing, operations, and control problems for cyber physical systems.
The ability to solve these types of problems will be paramount
for the future of smart technologies, such as smart transportation,
smart cities, smart buildings, smart grids, and smart factories, which
rely on efficient and safe control. A major benefit of using SPGA
is with the occurrence of resource constraints (e.g., monetary con-
straints, time constraints). For instance, if a user is utilizing cloud
resources to train a controller for a continuous stirred-tank reactor,
the difference between 24 hours of compute time and 0.4 hours
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(55.28x faster) of compute can make a drastic difference in compu-
tational costs, which magnifies as problems increase in complexity
and the required computation time increases.

While this work provides an in-depth analysis of different learn-
ing controllers and safety methods, more work is needed to analyze
Self-Preserving Genetic Algorithms as a training method for cyber
physical systems. Possible areas of future work are listed below.

7.1 Environments
Evaluating SPGA in environments with larger action and state
spaces would help to further analyze the robustness of this solution,
as well as provide insight into potential use cases.

7.2 SPGA Hyperparameter Optimization
Hyperparameter and architecture tuning methods are used in order
to increase overall learning and controller performance. Common
optimization algorithms include random search, grid search, and
Bayesian optimization methods, which can work in tandem with
schedulers like Asynchronous HyperBand, an early-stopping sched-
uler. Future work could implement hyperparameter and architec-
ture optimization into the SPGA training framework in order to
further improve performance.

Overall, this work provides insight into a novel framework for
safe learning and lays the groundwork for many interesting areas
of future work related to Self-Preserving Genetic Algorithms.
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