
1D MODEL FOR THE 3D MAGNETOHYDRODYNAMICS

MIMI DAI*, BHAKTI VYAS, AND XIANGXIONG ZHANG

Abstract. We propose a one-dimensional (1D) model for the three-dimensional
(3D) incompressible ideal magnetohydrodynamics. For this 1D model, local
well-posedness is established, and a regularity criterion of the Beale-Kato-
Majda type is obtained. Without the stretching effect, the model with only
transport effect is shown to have global in time strong solution. Some nu-
merical simulations suggest that solutions of the model with certain smooth
periodic initial data are not likely to develop singularities in finite time, while
solutions starting from other initial data have the tendency to form singulari-
ties.
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1. Introduction

The ideal incompressible magnetohydrodynamics (MHD) governed by the set of
partial differential equations

ut + (u · ∇)u− (B · ∇)B +∇Π = 0,

Bt + (u · ∇)B − (B · ∇)u = 0,

∇ · u = 0, ∇ ·B = 0,

(1.1)

is an important model in geophysics and astrophysics. In the system, the vector
fields u and B denote the fluid velocity and magnetic field respectively; the scalar
function Π is the pressure. We notice that (1.1) reduces to the incompressible Euler
equation if B ≡ 0,

ut + (u · ∇)u+∇Π = 0,

∇ · u = 0.
(1.2)

The mathematical question of whether or not a solution of the 3D Euler (1.2)
develops singularity at finite time remains open. So does it for the 3D MHD (1.1).

Denote the vorticity by ω = ∇× u. Taking a curl on (1.2) gives

ωt + (u · ∇)ω + (ω · ∇)u = 0, (1.3a)

u = ∇× (−∆)−1ω. (1.3b)

We note that u can be recovered from ω through the Biot-Savart law (1.3b) which
involves a nonlocal operator. In (1.3a), the quadratic term (u · ∇)ω is regarded
as the transport term, while (ω · ∇)u represents the stretching effect. The general
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belief is that the stretching effect is responsible for dramatic wild behaviours of
solutions, for instance, the appearance of finite-time singularity.

1.1. 1D models for Euler equation and related equations. To gain insights
towards understanding the properties of solutions to the Euler equation (1.2), ap-
proximating models and toy models have been proposed and studied in the litera-
ture. One type of 1D models for the vorticity form of Euler equation has attracted
a great deal of attention, which can be traced back to the work of Constantin, Lax
and Majda [6]. The authors of [6] proposed the following 1D model for system
(1.3a)-(1.3b),

ωt = ωHω, (1.4a)
ux = Hω, (1.4b)

with ω = ω(t, x) and u = u(t, x) for t ≥ 0 and x ∈ R. In the system, H denotes the
Hilbert transform defined by

Hf =
1

π
P.V.

∫ ∞
−∞

f(y)

x− y
dy. (1.5)

We note that equation (1.4b) is a 1D analogue of the Biot-Savart law (1.3b). With
only stretching effect in equation (1.4a), the authors solved system (1.4a)-(1.4b)
exactly and showed the formation of finite-time singularities for a class of initial
data. Since then, various generalisations of (1.4a)-(1.4b) have been studied both
analytically and numerically. The De Gregorio model [9, 10]

ωt + uωx − ωHω = 0, (1.6a)
ux = Hω, (1.6b)

includes both transport and stretching effects. Numerical results of [9, 10] provide
evidence that finite-time blow-up may not occur for system (1.6a)-(1.6b) with some
smooth periodic initial data. It indicates that the convection (transport) term has
a regularization effect. Later on, in order to understand the competing effects of
convection and stretching terms, Okamoto, Sakajo and Wunsch [21] suggested to
study the following family of models

ωt + auωx − ωHω = 0, (1.7a)
ux = Hω, (1.7b)

with a parameter a ∈ R. The authors also conjectured global in time existence of
solutions to (1.7a)-(1.7b) with a = 1 which is the De Gregorio model (1.6a)-(1.6b).
Indeed, Jia, Stewart and Šverák [16] proved that solutions of (1.6a)-(1.6b) with
initial data near a steady state are global and converge to this steady state. Lei, Liu
and Ren [18] showed that the De Gregorio model with non-negative vorticity initial
data is globally well-posed. In contrast, Elgindi and Jeong [12] showed singularity
formation for (1.6a)-(1.6b) in classes of Hölder continuous solutions. Moreover, the
authors of [12] established that, there exists smooth initial data such that solution
of the Okamoto-Sakajo-Wunsch model (1.7a)-(1.7b) with small |a| develops self-
similar type of blow-up at finite time. Later on, Elgindi, Ghoul and Masmoudi
[11] further showed that such self-similar blow-up is stable. In [5], Chen, Hou and
Huang provided a novel method of analysis and established self-similar blowup for
the De Gregorio model with certain initial data on both R and S1. For (1.7a)-
(1.7b), Chen [3] showed finite time singularity from some smooth initial data when
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a < 1 and close to 1, and global well-posedness with the same initial data when
a > 1. When a = 1, Chen [2] proved finite time blowup for (1.7a)-(1.7b) on S1 with
Cα data for any α < 1. The model (1.7a)-(1.7b) with a viscosity term was also
studied in [4] for a ∈ R. Recently, Lushnikov, Silantyev and Siegel [19] performed
an extensive numerical and analytical study of (1.7a)-(1.7b) on the topic of global
existence versus finite time singularity formation for different values of a. They
identified a new critical value ac = 0.6890665337007457... below which self-similar
type of singularity develops in finite time. Moreover, for a = 0 and a = 1

2 , the
authors constructed exact analytical solutions with pole singularity.

In the literature, many other 1D simplified models for fluid equations have been
studied. A notable model is the nonlocal transport equation

θt − (Hθ)θx = 0 (1.8)

which has a connection with the integrodifferential Birkhoff-Rott equation modeling
vortex sheets, see [1, 20]. It has an analogy with (1.7a)-(1.7b) as well. Indeed,
taking derivative ∂x on (1.8), the resulted equation is equivalent to (1.7a)-(1.7b)
with a = −1. Moreover, it serves as a 1D simplified model for the surface quasi-
geostrophic equation. Córdoba, Córdoba and Fontelos [7, 8] showed finite-time
singularity formation for (1.8) with a general class of initial data. For axisymmetric
3D incompressible Navier-Stokes equation with swirl, Hou, Li, Shi, Wang and Yu
[14] proposed a 1D nonlocal model for a simplified 3D nonlocal system [15]. For
this 1D model, the authors proved finite-time singularity formation rigorously and
showed numerical evidences.

1.2. 1D models for MHD. Inspired by the works discussed above, we will pro-
pose a family of nonlocal nonlinear models for the MHD system (1.1) as an attempt
to understand the intricate structures involved in this system. In the context of
MHD, besides the convection and stretching effects, the coupling and interaction
between the fluid velocity and magnetic field also play crucial roles, which naturally
introduce additional challenges.

Denote the Elsässer variables by

p = u+B, m = u−B.

Equivalent to (1.1), (p,m) satisfies the system

pt + (m · ∇)p+∇Π = 0,

mt + (p · ∇)m+∇Π = 0,

∇ · p = 0, ∇ ·m = 0.

(1.9)

The structure of system (1.9) indicates that p and m are transported by each other.
We also note that (1.9) appears in a rather symmetric form. Denote the vorticity
of p and m by

Ω = ∇× p, ω = ∇×m.

It follows from the Biot-Savart law that

p = ∇× (−∆)−1Ω, m = ∇× (−∆)−1ω.
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Taking the curl ∇× on the equations of (1.9) gives
Ωt + (m · ∇)Ω− (Ω · ∇)m+∇× (m∇p) = 0,

ωt + (p · ∇)ω − (ω · ∇)p+∇× (p∇m) = 0,

p = ∇× (−∆)−1Ω,

m = ∇× (−∆)−1ω,

(1.10)

where (m∇p)j = mi∂jpi and (p∇m)j = pi∂jmi for 1 ≤ j ≤ 3. Note

∇× (m∇p) = (∂2mi∂3pi − ∂3mi∂2pi, ∂3mi∂1pi − ∂1mi∂3pi, ∂1mi∂2pi − ∂2mi∂1pi) ,

∇× (p∇m) = (∂2pi∂3mi − ∂3pi∂2mi, ∂3pi∂1mi − ∂1pi∂3mi, ∂1pi∂2mi − ∂2pi∂1mi)

and ∇ × (m∇p) = −∇ × (p∇m). To reveal the anti-symmetry feature, we can
rewrite

∇× (m∇p) =
1

2
∇× (m∇p)− 1

2
∇× (p∇m),

∇× (p∇m) =
1

2
∇× (p∇m)− 1

2
∇× (m∇p).

Superficially we view ∇× (m∇p) and ∇× (p∇m) in analogy with (∇×m)∇p and
(∇×p)∇m, respectively. Thus we propose the following 1D model to mimic system
(1.10),

Ωt +mΩx − Ωmx +
1

2
ωpx −

1

2
Ωmx = 0,

ωt + pωx − ωpx +
1

2
Ωmx −

1

2
ωpx = 0,

px = HΩ, mx = Hω.

(1.11)

In this paper, we will work with a simplified version of (1.11) by dropping the
stretching effects Ωmx from the first equation and ωpx from the second equation,
and focusing on the transport effects and the nonlocal coupling, namely

Ωt + ãmΩx + ωpx = 0,

ωt + ãpωx + Ωmx = 0,

px = HΩ, mx = Hω,

with a parameter ã ∈ R. Applying the transform (Ω, ω) → (−Ω,−ω), the system
above is equivalent to the form

Ωt + amΩx − ωpx = 0,

ωt + apωx − Ωmx = 0,

px = HΩ, mx = Hω,

(1.12)

with a = −ã ∈ R. We will investigate (1.12) on the periodic interval S1 = [−π, π].
Correspondingly, the Hilbert transform for periodic functions on S1 can be defined
as

Hf(x) =
1

2π
P.V.

∫ π

−π
f(y) cot

(
x− y

2

)
dy. (1.13)

Indeed, the Cauchy kernel 1
x in definition (1.5) can be made periodic using the

following identity

1

2
cot

(
x− y

2

)
=

1

x
+

∞∑
n=1

(
1

x+ 2nπ
+

1

x− 2nπ

)
.
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To uniquely determine p from Ω and m from ω, we make the choice of Gauge by
taking zero-mean value ∫ π

−π
p(t, x) dx =

∫ π

−π
m(t, x) dx = 0. (1.14)

We note that the mean value of Ω and ω is invariant for system (1.12) with
a = 1. Indeed, we have for a smooth solution (Ω, ω) that

d

dt

∫ π

−π
Ω(t, x) dx =

∫ π

−π
(−amΩx + ωpx) dx

=

∫ π

−π
(amxΩ + ωpx) dx

=

∫ π

−π
(aΩHω + ωHΩ) dx

=(1− a)

∫ π

−π
ωHΩ dx

where we have used integration by parts and the skew symmetry property of the
Hilbert transform. Similarly, we have

d

dt

∫ π

−π
ω(t, x) dx =

∫ π

−π
(−apωx + Ωmx) dx = (1− a)

∫ π

−π
ΩHω dx.

Obviously when a = 1, it follows

d

dt

∫ π

−π
Ω(t, x) dx =

d

dt

∫ π

−π
ω(t, x) dx = 0,

and this is not true in general for a 6= 1. However, we observe that for odd initial
data (Ω0, ω0), the solution (Ω, ω) of (1.12) remains odd. While for odd functions Ω
and ω, the Hilbert transform HΩ and Hω are even, and hence∫ π

−π
ωHΩ dx =

∫ π

−π
ΩHω dx = 0.

Therefore it is appropriate to consider solutions of (1.12) in spaces of functions with
zero mean for general value of a, since at least odd solutions of (1.12) automatically
have zero mean.

Regarding the parameter a, for the Euler model (1.7a)-(1.7b), it is believed that
a = 1 is the most relevant case. In contrast, it is not clear for which value a, model
(1.12) is more relevant for the original MHD system. A speculation is that a = −2
may be more relevant by comparing (1.11) and (1.12). This indicates the difference
of the ideal MHD from the Euler equation due to the interaction of the velocity
and magnetic field. It is an interesting question to be further investigated in future
work.

Consider the rescaled variables

Ω̃ = aΩ, ω̃ = aω

with corresponding p̃ and m̃ such that

p̃x = HΩ̃, m̃x = Hω̃.



1D MODEL FOR MHD 6

We can verify that p̃ = ap and m̃ = am. In view of (1.12), (Ω̃, ω̃) satisfies the
system

Ω̃t + m̃Ω̃x − a−1ω̃p̃x = 0,

ω̃t + p̃ω̃x − a−1Ω̃m̃x = 0.
(1.15)

Formally, taking a → ∞, (1.15) turns to the system with only convection effect
(with the tilde sign suppressed),

Ωt +mΩx = 0,

ωt + pωx = 0,

px = HΩ, mx = Hω.

(1.16)

We will investigate both systems (1.12) and (1.16) in the paper. We point
out that formulating the problem in Elsässer variables does not give us essential
advantage; rather it has the benefit of dealing with less nonlinear terms.

1.3. Main results. For general a ∈ R, we show the existence of local in time
solutions to (1.12) in the space H1(S1).

Theorem 1.1. Let a ∈ R and Ω0, ω0 ∈ H1(S1). There exists a time T > 0 which
depends on ‖Ω0,x‖L2 and ‖ω0,x‖L2 such that there exists a unique solution (Ω(t, x),
ω(t, x)) to (1.12) with initial data Ω(0, x) = Ω0 and ω(0, x) = ω0 on [0, T ), which
satisfies

Ω, ω ∈ C0
(
[0, T );H1(S1)

)
∩ C1

(
[0, T );L2(S1)

)
.

The following theorem provides a Beale-Kato-Majda type of regularity criterion.

Theorem 1.2. Let (Ω(t, x), ω(t, x)) be the solution of (1.12) on [0, T ) obtained in
Theorem 1.1. If ∫ T

0

(‖HΩ(t)‖L∞ + ‖Hω(t)‖L∞) dt <∞, (1.17)

the solution can be extended beyond T in the space H1(S1)×H1(S1).

Furthermore, if the initial data is in a space with higher regularity, the solution
obtained in Theorem 1.1 also has higher regularity. Specifically, we will show:

Theorem 1.3. Assume Ω0, ω0 ∈ Hn(S1) with n ≥ 2. Let (Ω, ω) be a solution of
(1.12) with initial data (Ω0, ω0) on [0, T ), satisfying Ω, ω ∈ C([0, T );H1). Then,
we have

sup
0≤t<T

(‖Ω(t)‖Hn + ‖ω(t)‖Hn) <∞.

With only transport effect, the solution of (1.16) can be shown to exist in the
space H1(S1) for all the time. Namely, we have

Theorem 1.4. Assume Ω0, ω0 ∈ H1(S1). Then there exists a unique solution
(Ω(t), ω(t)) of (1.16) with initial data (Ω0, ω0) on [0,∞).

Remark 1.5. If p = m and Ω = ω, system (1.12) reduces to the 1D Euler model
(1.7a)-(1.7b). Therefore, in this special situation, the aforementioned solutions with
finite time singularity for the Euler model with various values of the parameter a
are also (trivial) solutions of (1.12).
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Remark 1.6. For the original ideal MHD (1.1) in 2D or 3D, it is known that
the Beale-Kato-Majda type regularity criterion with condition imposed only on the
velocity is valid. The main reason is that the magnetic field equation in (1.1) is
linear in B. A common interpretation of the BKM criterion with only velocity
dependence is that the velocity field plays a more dominant role for incompressible
MHD. In the 1D situation, the criterion of Theorem 1.2 relies on both the velocity
and magnetic field. The additional dependence of magnetic field is essentially due
to the loss of divergence free condition in 1D, that is, ∇ · u = ∇ ·B = 0 is not valid
any more. In general, the loss of divergence free is an artefact for 1D simplified
models, which causes deviation for the simplified models from the original PDE
systems in some aspects. For instance, the 1D model (1.8) does not conserve the
L2 norm of smooth solution θ, while the 2D SQG does conserve the L2 norm. Back
to the 1D model of MHD, such artefact brings forth more influence of the magnetic
field on the entire system.

Numerical study is presented in Section 6. The numerical results suggest that
starting from some smooth periodic initial data, solutions of the model (1.12) with
some values of a are unlikely to develop singularities in finite time; while solutions
of the model with some initial data and certain a have the tendency to form sin-
gularities. In particular, one of the observations agrees with the numerical results
done by De Gregorio [9, 10] and Okamoto, Sakajo and Wunsch [21] for the De
Gregorio model (1.6a)-(1.6b). Another interesting observation is that the solution
of (1.12) with an initial data and a = −1 seems regular. It is worth to point out
that the numerical indication of no singularity for (1.12) with a = −1 does not con-
tradict the finite time singularity formation result of [7]. Our numerical simulation
is performed for some particular initial data on the periodic domain S1, while the
singular solution of [7] is constructed on R for a specific class of initial data. In
addition, we note finite time blowup for (1.12) with a = −1 was also established on
S1 for a class of initial data by Chen, Hou and Huang [5]. Therefore it seems that
the choice of initial data plays an important role for the phenomena of finite time
singularity formation when a = −1.

To conclude, we mention that the analytical results established in Theorems 1.1,
1.2, 1.3 and 1.4 hold on the space R as well, with slight modifications of the proofs.
We present the results on the periodic domain S1 such that, as a consistent followup
in Section 6, numerical study in periodic settings is performed. We would like to
add that, we learned an interesting approach to transform 1D models between
periodic domain and R from [19] after the completion of the first version of our
manuscript. With the transform given by arctan function, one can study these 1D
models numerically on R as well.

2. Notations and preliminaries

2.1. Functional setting. Denote

L2(S1) =
{
f |f ∈ L2(−π, π), f is periodic on[−π, π]

}
,

Hk(S1) =
{
f |f (s) ∈ L2(−π, π), f (s) is periodic on[−π, π], for all 0 ≤ s ≤ k

}
.
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In particular, we consider the triplet of spaces

V =

{
f

∣∣∣∣f ∈ H2(S1),

∫ π

−π
f(x) dx = 0

}
W = H1(S1), X = L2(S1),

with the obvious embedding V ⊂ W ⊂ X .
We denote (, ) by

(f, g) =

∫ π

−π
fg dx.

The space Hk(S1) is a Hilbert space endowed with the natural inner product

(f, g)Hk =
k∑
s=0

(
f (s), g(s)

)
for functions f, g ∈ Hk(S1),

and norm (f, f)
1
2

Hk .
A bilinear form 〈, 〉 : V × X → R is defined as

〈f, g〉 = −
∫ π

−π
fxxg dx.

Applying the integration by parts, we have for all f ∈ V and g ∈ W

〈f, g〉 = (fx, gx).

For a space Z, we denote Z2 = Z×Z by convention. In the context of a coupled
system, for instance (1.12), it is convenient to introduce the triplet {V2,W2,X 2}.
Naturally, the Hilbert space W2 is endowed with the inner product

(f, g)W2 = (f1, g1)W + (f2, g2)W ∀ f = (f1, f2) ∈ W2, g = (g1, g2) ∈ W2.

In an analogous way, inner product can be defined for V2 and X 2. A bilinear form
〈, 〉 : V2 ×X 2 → R is defined as

〈f, g〉 = −
∫ π

−π
f1,xxg1 dx−

∫ π

−π
f2,xxg2 dx. (2.1)

For all f = (f1, f2) ∈ V2 and g = (g1, g2) ∈ W2, we also have

〈f, g〉 = (f1,x, g1,x) + (f2,x, g2,x).

Definition 2.1. A family {Z,H,Y} of three real separable Banach spaces is called
an admissible triplet if the following conditions hold:
(i) The inclusions Z ⊂ H ⊂ Y are continuous and dense.
(ii) H is a Hilbert space endowed with inner product (, )H and norm ‖‖H = (, )

1
2

H.
(iii) There is a continuous non-degenerate bilinear form on Z × Y , denoted by 〈, 〉,
such that

〈v, u〉 = (v, u)H, for v ∈ Z and u ∈ H. (2.2)

Denote Cw by the space of functions with weak continuity and C1
w the space of

functions with weak differentiability.
An abstract theorem of existence of Kato-Lai [17] is stated as follows.
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Theorem 2.2. Let {Z,H,Y} be an admissible triplet. Let A : H → Y be a weakly
continuous map such that

〈v,A(v)〉 ≥ −β(‖v‖2H), ∀ v ∈ Z (2.3)

where β(r) ≥ 0 is a monotone increasing function of r ≥ 0. Then for any u0 ∈ H,
there exists a time T > 0 such that the Cauchy problem

ut +A(u) = 0, u(0, x) = u0

has a solution u(t, x) on [0, T ] satisfying

u ∈ Cw([0, T ];H) ∩ C1
w([0, T ];Y).

Moreover, sup0<t<T ‖u(t)‖H depends only on T , β and ‖u0‖H.

In order to prove the existence part of Theorem 1.1, the Kato-Lai theorem will
be applied to system (1.12) with the admissible triplet {V2,W2,X 2}.

2.2. Properties of Hilbert transform. The Hilbert transform has the following
simple properties

H(cf) = cHf, for a constant c,

H sin(kx) =− cos(kx), H cos(kx) = sin(kx).

And more generally, we have

H sin(kx+ θ) = − cos(kx+ θ), H cos(kx+ θ) = sin(kx+ θ).

For any periodic function f , the mean value of its Hilbert transform is zero, that
is ∫ π

−π
Hf dx = 0. (2.4)

Lemma 2.3. [22] The Hilbert transform H is a bounded linear operator from space
Lp to Lp with 1 < p <∞ and

‖Hf‖Lp ≤ Cp‖f‖Lp (2.5)

for a constant Cp > 0 depending on p.

3. Local existence

This section is devoted to a proof of Theorem 1.1. The proof includes three
steps: (i) establishing the local existence of a solution by employing Theorem 2.2;
(ii) showing the uniqueness of solution by a rather standard argument; (iii) jus-
tifying the strong continuity which is a consequence of the uniqueness and the
time-reversible property of system (1.12).

Proof of Theorem 1.1: Denote u = (Ω, ω), q = (p,m), and naturally qx =
Hu = (HΩ, Hω). Denote A(u) = (A1(u), A2(u)) with

A1(u) = amΩx − ωpx, A2(u) = apωx − Ωmx.

Thus, system (1.12) can be written as

ut +A(u) = 0.

It is obvious that the family {V2,W2,X 2} is an admissible triplet associated with
the bilinear form 〈, 〉 defined in (2.1). To apply Theorem 2.2, we will need to show
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that the operator A maps W2 into X 2 continuously and it satisfies (2.3). Indeed,
for any u = (Ω, ω) ∈ W2 with q = (p,m) ∈ V2, we have

‖A(u)‖X 2 =
(
‖amΩx − ωpx‖2L2 + ‖apωx − Ωmx‖2L2

) 1
2

≤ ‖amΩx − ωpx‖L2 + ‖apωx − Ωmx‖L2

≤ |a|‖m‖L∞‖Ωx‖L2 + ‖ω‖L∞‖px‖L2

+ |a|‖p‖L∞‖ωx‖L2 + ‖Ω‖L∞‖mx‖L2

≤ c0 (|a|‖mx‖L2‖Ωx‖L2 + ‖ω‖H1‖px‖L2

+|a|‖px‖L2‖ωx‖L2 + ‖Ω‖H1‖mx‖L2)

≤ c0 (|a|+ 1) (‖Hω‖L2‖Ω‖H1 + ‖ω‖H1‖HΩ‖L2)

≤ c0 (|a|+ 1) (‖ω‖L2‖Ω‖H1 + ‖ω‖H1‖Ω‖L2)

where we have used the Hölder inequality, Sobolev inequality, the fact that p and
m have zero mean, and the property (2.5). It follows that A maps W2 into X 2.
On the other hand, for any u1 = (Ω1, ω1) ∈ W2 with q1 = (p1,m1) ∈ V2 and
u2 = (Ω2, ω2) ∈ W2 with q2 = (p2,m2) ∈ V2, we deduce

‖A(u1)−A(u2)‖X 2 =
(
‖(am1Ω1,x − ω1p1,x)− (am2Ω2,x − ω2p2,x)‖2L2

+‖(ap1ω1,x − Ω1m1,x)− (ap2ω2,x − Ω2m2,x)‖2L2

) 1
2

≤ ‖(am1Ω1,x − ω1p1,x)− (am2Ω2,x − ω2p2,x)‖L2

+ ‖(ap1ω1,x − Ω1m1,x)− (ap2ω2,x − Ω2m2,x)‖L2 .

(3.1)

Applying the Hölder inequality, Sobolev inequality, and (2.5) leads to

‖(am1Ω1,x − ω1p1,x)− (am2Ω2,x − ω2p2,x)‖L2

≤ |a|‖Ω1,x‖L2‖m1 −m2‖L∞ + |a|‖Ω1,x − Ω2,x‖L2‖m2‖L∞
+ ‖ω2‖L∞‖p2,x − p1,x‖L2 + |a|‖ω2 − ω1‖L∞‖p1,x‖L2

≤ c0|a|‖Ω1,x‖L2‖m1,x −m2,x‖L2 + c0|a|‖Ω1,x − Ω2,x‖L2‖m2,x‖L2

+ c0‖ω2‖H1‖p2,x − p1,x‖L2 + c0|a|‖ω2 − ω1‖H1‖p1,x‖L2

≤ c0(|a|+ 1) (‖Ω1‖H1 + ‖ω2‖H1) (‖Ω1 − Ω2‖H1 + ‖ω1 − ω2‖H1) ,

(3.2)

and similarly

‖(ap1ω1,x − Ω1m1,x)− (ap2ω2,x − Ω2m2,x)‖L2

≤ c0(|a|+ 1) (‖Ω1‖H1 + ‖ω2‖H1) (‖Ω1 − Ω2‖H1 + ‖ω1 − ω2‖H1) .
(3.3)

The estimates (3.1)-(3.3) together indicate that A :W2 → X 2 is strongly continu-
ous.

By the definition of the bilinear form in (2.1), we have for any u = (Ω, ω) ∈ V2

〈u,A(u)〉 =− (uxx, A(u)) = (ux, (A(u))x)

= (Ωx, (amΩx − ωpx)x) + (ωx, (apωx − Ωmx)x)

=

∫ π

−π
Ωx(amxΩx + amΩxx − ωxpx − ωpxx) dx

+

∫ π

−π
ωx(apxωx + apωxx − Ωxmx − Ωmxx) dx.

(3.4)
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Note that A(u) ∈ X 2 and (3.4) can be made rigorous through a standard approxi-
mating procedure. Applying integration by parts to the right hand side of (3.4), it
has

a

∫ π

−π
mΩxΩxx dx = −a

∫ π

−π
mxΩxΩx dx− a

∫ π

−π
mΩxxΩx dx.

Hence we conclude

a

∫ π

−π
mΩxΩxx dx = −a

2

∫ π

−π
mxΩ2

x dx, (3.5)

and similarly

a

∫ π

−π
pωxωxx dx = −a

2

∫ π

−π
pxω

2
x dx. (3.6)

Since px = HΩ and mx = Hω, combining (3.4)-(3.6) gives
〈u,A(u)〉 = (ux, (A(u))x)

=
a

2

∫ π

−π
(Hω)Ω2

x dx+
a

2

∫ π

−π
(HΩ)ω2

x dx

−
∫ π

−π
ΩxωxHΩ dx−

∫ π

−π
ωΩxHΩx dx

−
∫ π

−π
ΩxωxHω dx−

∫ π

−π
ΩωxHωx dx.

(3.7)

Applying Hölder’s inequality, Sobolev’s inequality, (2.4) and (2.5), we have∣∣∣∣∫ π

−π
HωΩ2

x dx

∣∣∣∣ ≤ ‖Hω‖L∞‖Ωx‖2L2

≤ c0‖Hωx‖L2‖Ωx‖2L2

≤ c0‖ωx‖L2‖Ωx‖2L2 ,

(3.8)

and similarly∣∣∣∣∫ π

−π
ΩxωxHΩ dx

∣∣∣∣+

∣∣∣∣∫ π

−π
ωΩxHΩx dx

∣∣∣∣ ≤ c0‖ω‖H1‖Ωx‖2L2 ,∣∣∣∣∫ π

−π
(HΩ)ω2

x dx

∣∣∣∣ ≤ c0‖ωx‖2L2‖Ωx‖L2 ,∣∣∣∣∫ π

−π
ωxΩxHω dx

∣∣∣∣+

∣∣∣∣∫ π

−π
ωxΩHωx dx

∣∣∣∣ ≤ c0‖ωx‖2L2‖Ω‖H1 .

(3.9)

Therefore, putting together (3.7)-(3.9), we deduce

|〈u,A(u)〉| ≤ c0(|a|+ 1)
(
‖ω‖H1‖Ωx‖2L2 + ‖ωx‖2L2‖Ω‖H1

)
≤ c0(|a|+ 1) (‖ω‖H1 + ‖Ω‖H1)

3
.

(3.10)

Hence, the operator A satisfies (2.3) with β(r) = c0(|a|+ 1)r
3
2 . As a consequence,

applying Theorem 2.2, we conclude that there exists a time T > 0 such that system
(1.12) has a solution (Ω(t, x), ω(t, x)) on [0, T ] satisfying

Ω, ω ∈ Cw([0, T ];W) ∩ C1
w([0, T ];X ).

Next we show the uniqueness of solution to (1.12). Let u1 = (Ω1, ω1) be a
solution to (1.12) with initial data u0 = (Ω0, ω0). Let q1 = (p1,m1) such that
p1,x = HΩ1 and m1,x = Hω1. Let u2 = (Ω2, ω2) be another solution to (1.12)
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with the same initial data (Ω0, ω0) and associated with q2 = (p2,m2). Since both
(Ω1, ω1) and (Ω2, ω2) satisfy (1.12), we are able to show that (details omitted)

1

2

d

dt

(
‖Ω1(t)− Ω2(t)‖2L2 + ‖ω1(t)− ω2(t)‖2L2

)
≤c0(|a|+ 1) max

0≤t≤T
(‖Ω1‖H1 + ‖Ω2‖H1 + ‖ω1‖H1 + ‖ω2‖H1)

·
(
‖Ω1(t)− Ω2(t)‖2L2 + ‖ω1(t)− ω2(t)‖2L2

)
.

(3.11)

Thus, uniqueness follows from (3.11) and Grönwall’s inequality.
Strong continuity in time follows from the uniqueness and the fact that system

(1.12) is time-reversible. Indeed, it follows from (3.10) that

‖Ωx(t)‖L2 + ‖ωx(t)‖L2 → ‖Ω0,x‖L2 + ‖ω0,x‖L2 as t→ 0.

Hence, we know

Ω(t)→ Ω0, ω(t)→ ω0 strongly in H1 as t→ 0.

As a consequence of uniqueness, Ω and ω are strongly right-continuous. In addition,
the property of time-reversibility implies that Ω and ω are strongly left-continuous
as well.

�

4. Regularity criterion

In this section, we prove Theorem 1.2 and the higher regularity result in Theorem
1.3.

Proof of Theorem 1.2: In view of the local existence theorem, we just need to
show that the H1 norm of Ω(t) and ω(t) remains bounded as t→ T under condition
(1.17).

Assume (Ω, ω) is a solution of (1.12) on [0, T ). We note that
1

2

d

dt

(
‖Ωx‖2L2 + ‖ωx‖2L2

)
= (Ωx,Ωtx) + (ωx, ωtx)

= (Ωx,−(amΩx − ωpx)x) + (ωx,−(apωx − Ωmx)x)

=− a

2

∫ π

−π
(Hω)Ω2

x dx−
a

2

∫ π

−π
(HΩ)ω2

x dx

+

∫ π

−π
ΩxωxHΩ dx+

∫ π

−π
ωΩxHΩx dx

+

∫ π

−π
ΩxωxHω dx+

∫ π

−π
ΩωxHωx dx

(4.1)

where we used (3.7) in the last step. Applying the identities

(v, u) = (Hv,Hu), H(vHv) =
1

2

(
(Hv)2 − v2

)
,

we infer ∫ π

−π
ωΩxHΩx dx =

∫ π

−π
(Hω)H(ΩxHΩx) dx

=
1

2

∫ π

−π
(Hω)

(
(HΩx)2 − (Ωx)2

)
dx,

(4.2)
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−π
ΩωxHωx dx =

∫ π

−π
(HΩ)H(ωxHωx) dx

=
1

2

∫ π

−π
(HΩ)

(
(Hωx)2 − (ωx)2

)
dx.

(4.3)

Combining (4.1)-(4.3), we have

1

2

d

dt

(
‖Ωx‖2L2 + ‖ωx‖2L2

)
=− a+ 1

2

∫ π

−π
(Hω)Ω2

x dx−
a+ 1

2

∫ π

−π
(HΩ)ω2

x dx

+
1

2

∫ π

−π
(Hω)(HΩx)2 dx+

1

2

∫ π

−π
(HΩ)(Hωx)2 dx

+

∫ π

−π
Ωxωx (HΩ +Hω) dx

≤|a+ 1|
2
‖Hω‖L∞‖Ωx‖2L2 +

|a+ 1|
2
‖HΩ‖L∞‖ωx‖2L2

+
1

2
‖Hω‖L∞‖Ωx‖2L2 +

1

2
‖HΩ‖L∞‖ωx‖2L2

+ ‖HΩ +Hω‖L∞‖Ωx‖L2‖ωx‖L2

≤ c0(|a|+ 1) (‖HΩ‖L∞ + ‖Hω‖L∞)
(
‖Ωx‖2L2 + ‖ωx‖2L2

)

(4.4)

for a constant c0 > 0. It follows from Grönwall’s inequality that(
‖Ωx(t)‖2L2 + ‖ωx(t)‖2L2

)
≤
(
‖Ωx(0)‖2L2 + ‖ωx(0)‖2L2

)
exp

{
2c0(|a|+ 1)

∫ t

0

(‖HΩ(τ)‖L∞ + ‖Hω(τ)‖L∞) dτ

}
.

Thus, the statement of the theorem is justified.
�

Proof of Theorem 1.3: The statement can be established through standard
energy method. We only deal with the case of n = 2 and obtain the a priori estimate
for ‖Ω(t)‖H2 and ‖ω(t)‖H2 . Formally, differentiating the equations of (1.12) twice
in space yields

Ωtxx =− 2amxΩxx + 2ωxpxx − amxxΩx

+ ωxxpx − amΩxxx + ωpxxx,

ωtxx =− 2apxωxx + 2Ωxmxx − apxxωx
+ Ωxxmx − apωxxx + Ωmxxx.

(4.5)

Taking the inner product of the first equation with Ωxx and the second one with
ωxx, we have

1

2

d

dt

(
‖Ωxx‖2L2 + ‖ωxx‖2L2

)
=− 2a(Ωxx,mxΩxx) + 2(Ωxx, ωxpxx)− a(Ωxx,mxxΩx)

+ (Ωxx, ωxxpx)− a(Ωxx,mΩxxx) + (Ωxx, ωpxxx)

− 2a(ωxx, pxωxx) + (ωxx,Ωxmxx)− a(ωxx, pxxωx)

+ (ωxx,Ωxxmx)− a(ωxx, pωxxx) + (ωxx,Ωmxxx).

(4.6)
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Notice that, by integration by parts,

−a(Ωxx,mΩxxx) = a(Ωxxx,mΩxx) + a(Ωxx,mxΩxx)

which implies

−a(Ωxx,mΩxxx) =
a

2
(Ωxx,mxΩxx).

Similarly, we have

−a(ωxx, pωxxx) =
a

2
(ωxx, pxωxx).

Applying Hölder’s inequality, the Hilbert transform boundedness on Lp, it follows

|(Ωxx,mxΩxx)| = |(Ωxx, (Hω)Ωxx)|
≤ c0‖Hω‖L∞‖Ωxx‖2L2

≤ c0‖ωx‖L2‖Ωxx‖2L2 ,

and similarly

|(ωxx, pxωxx)| = |(Ωxx, (Hω)Ωxx)| ≤ c0‖Ωx‖L2‖ωxx‖2L2 .

We estimate (Ωxx, ωxpxx) as

|(Ωxx, ωxpxx)| = |(Ωxx, ωxHΩx)|
≤ c0‖Ωxx‖L2‖ωx‖L4‖HΩx‖L4

≤ c0‖Ωxx‖L2‖ωx‖
3
4

L2‖ωxx‖
1
4

L2‖HΩx‖
3
4

L2‖HΩxx‖
1
4

L2

≤ c0‖Ωxx‖
5
4

L2‖HΩx‖
3
4

L2‖ωx‖
3
4

L2‖ωxx‖
1
4

L2

≤ c0‖Ωxx‖
15
8

L2‖HΩx‖
9
8

L2 + c0‖ωx‖
9
4

L2‖ωxx‖
3
4

L2

≤ c0‖Ωx‖L2‖Ωxx‖2L2 + c0‖ωx‖L2‖ωxx‖2L2 ,

where we used the inequalities of Hölder, Galiardo-Nirenberg and Young, and the
facts that ‖ωx‖L2 ≤ ‖ωxx‖L2 and ‖Ωx‖L2 ≤ ‖Ωxx‖L2 . Other terms on the right
hand side of (4.6) can be handled similarly as above. We conclude

1

2

d

dt

(
‖Ωxx‖2L2 + ‖ωxx‖2L2

)
≤ c0(1 + |a|) (‖Ωx‖L2 + ‖ωx‖L2)

(
‖Ωxx‖2L2 + ‖ωxx‖2L2

)
,

which immediately gives, by Grönwall’s inequality(
‖Ωxx(t)‖2L2 + ‖ωxx(t)‖2L2

)
≤
(
‖Ωxx(0)‖2L2 + ‖ωxx(0)‖2L2

)
e
∫ t
0

2c0(1+|a|)(‖Ωx(τ)‖L2+‖ωx(τ)‖L2) dτ .
(4.7)

Combining (4.7) with the assumption that Ω, ω ∈ C([0, T ];H1), it follows that

sup
0≤t≤T

(‖Ω(t)‖H2 + ‖ω(t)‖H2) <∞.

�
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5. Pure transport case

In this section we prove Theorem 1.4. According to Theorem 1.1, there exists a
unique solution (Ω(t), ω(t)) of (1.16) on [0, T ] for some T > 0. In view of Theorem
1.2, in order to show the global existence, it is sufficient to prove∫ T

0

(‖HΩ(t)‖L∞ + ‖Hω(t)‖L∞) dt <∞ for all T > 0.

On the other hand, due to the boundedness of Hilbert transform, we have

‖HΩ(t)‖L∞ ≤ c0‖HΩ(t)‖Cβ ≤ c0‖Ω(t)‖Cβ ,
‖Hω(t)‖L∞ ≤ c0‖Hω(t)‖Cβ ≤ c0‖ω(t)‖Cβ

for β ∈ (0, 1). As a consequence, we only need to prove:

Proposition 5.1. Assume Ω0, ω0 ∈ H1(S1). Let (Ω(t), ω(t)) be the solution of
(1.16) with initial data (Ω0, ω0) on [0, T ]. Then there exists β1, β2 ∈ (0, 1) such
that

sup
0≤t≤T

(‖ω(t)‖Cβ1 + ‖Ω(t)‖Cβ2 ) <∞. (5.1)

Proof: Recall the equations satisfied by (Ω, ω),

Ωt +mΩx = 0,

ωt + pωx = 0.

Consider the characteristics Xt(x) and Yt(x) satisfying

d

dt
Xt = p(t,Xt(ξ)), X0(ξ) = ξ, (5.2)

d

dt
Yt = m(t, Yt(ξ)), Y0(ξ) = ξ, (5.3)

such that
Ω(t, Yt(x)) = Ω0(x), ω(t,Xt(x)) = ω0(x). (5.4)

We notice that there exists a unique solution Xt(x) to the Cauchy problem (5.2)
and a unique solution Yt(x) to (5.3). Indeed, since Ω(t), ω(t) ∈ H1(S1) ⊂ C

1
2 (S1)

and the Hilbert transform is bounded on Cβ , we have

‖p(t)‖
C1, 1

2
≤ c0‖Ω(t)‖

C1, 1
2
<∞,

‖m(t)‖
C1, 1

2
≤ c0‖ω(t)‖

C1, 1
2
<∞.

Hence, p and m are Lipschitz in time. Thus, the standard ordinary differential
equation theory implies existence and uniqueness of solution to (5.2) and (5.3).

Denote the inverse (backward) trajectory of Xt(x) and Yt(x) by q1(t, x) =
X−1
t (x) and q2(t, x) = Y −1

t (x), respectively. Note that q1(t, x) and q2(t, x) sat-
isfy respectively,

∂tq1 = −p(t, q1(t, x)), q1(0, x) = x, (5.5)

∂tq2 = −m(t, q2(t, x)), q2(0, x) = x. (5.6)
We claim that p and m satisfy the estimate

|p(t, x)− p(t, y)| ≤ F (|x− y|), x, y ∈ [−π, π],

|m(t, x)−m(t, y)| ≤ G(|x− y|), x, y ∈ [−π, π],
(5.7)
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with

F (s) =

{
c0‖Ω0‖L∞s(1− log s), 0 ≤ s ≤ 1,

c0‖Ω0‖L∞ , s > 1,
(5.8)

and

G(s) =

{
c0‖ω0‖L∞s(1− log s), 0 ≤ s ≤ 1,

c0‖ω0‖L∞ , s > 1,
(5.9)

for a universal constant c0 > 0. We only need to show one of them, for instance,
the estimate for p. Recall that, by (1.13)

px(t, x) = HΩ =
1

2π
P.V.

∫ π

−π
Ω(t, y) cot

(
x− y

2

)
dy.

Hence, we have

p(t, x) =
1

π
P.V.

∫ π

−π
Ω(t, y) log

∣∣∣∣sin(x− y2

)∣∣∣∣ dy.
Without loss of generality, we take x, y ∈ (−π, π) such that −π < x < y < π and
δ = y − x. We split the interval [−π, π] into subintervals

I1 = [−π, x− δ

2
), I2 = [x− δ

2
, x+

δ

2
), I3 = [x+

δ

2
, y +

δ

2
), I4 = [y +

δ

2
, π].

In the case of x− δ
2 ≤ −π or y+ δ

2 > π, we treat I1 or I4 as an empty set. In order
to prove the estimate on p in (5.7), we proceed as

|p(t, x)− p(t, y)| =
∣∣∣∣ 1πP.V.

∫ π

−π
Ω(t, z)

(
log

∣∣∣∣sin(x− z2

)∣∣∣∣− log

∣∣∣∣sin(y − z2

)∣∣∣∣) dz

∣∣∣∣
≤
∣∣∣∣ 1πP.V.

∫
I1

Ω(t, z)

(
log

∣∣∣∣sin(x− z2

)∣∣∣∣− log

∣∣∣∣sin(y − z2

)∣∣∣∣) dz

∣∣∣∣
+

∣∣∣∣ 1πP.V.
∫
I2

· · · dz
∣∣∣∣+

∣∣∣∣ 1πP.V.
∫
I3

· · · dz
∣∣∣∣+

∣∣∣∣ 1πP.V.
∫
I4

· · · dz
∣∣∣∣ .

The second term on the right hand side can be estimated as∣∣∣∣ 1πP.V.
∫
I2

Ω(t, z)

(
log

∣∣∣∣sin(x− z2

)∣∣∣∣− log

∣∣∣∣sin(y − z2

)∣∣∣∣) dz

∣∣∣∣
≤c0‖Ω(t)‖L∞P.V.

∫ x− δ2

x− δ2
|log |x− z||+ |log |y − z|| dz

≤c0‖Ω(t)‖L∞δ (1 + | log δ|)

≤

{
c0‖Ω0‖L∞δ (1− log δ) , 0 < δ < 1

c0‖Ω0‖L∞ , δ ≥ 1.

The integrals on I1, I3 and I4 can be estimated similarly. The estimate for m in
(5.7) can be established in an analogous way.

In view of (5.2)-(5.3) and (5.7), we have

∂t |q1(t, x)− q1(t, y)| ≤ F (|q1(t, x)− q1(t, y)|),
∂t |q2(t, x)− q2(t, y)| ≤ G(|q2(t, x)− q2(t, y)|).

(5.10)
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Denote β1(t) = e−c0‖Ω0‖L∞ t and β2(t) = e−c0‖ω0‖L∞ t. For fixed x and y with
|x− y| < 1, define

z1(t) =

{
|x− y|β1(t)e1−β1(t), 0 ≤ t < t0,

1 + c0‖Ω0‖L∞(t− t0), t ≥ t0,

where t0 is such that |x − y|β1(t0)e1−β1(t0) = 1. Note that β1(0) = 1 and z1(0) =
|x− y| < 1. Hence, z1(t) is well-defined on [0,∞). One can verify that z1(t) is the
solution of the differential equation

∂tz = F (z), z(0) = |x− y|.

Combining with the first inequality of (5.10), we conclude

|q1(t, x)− q1(t, y)| ≤ z1(t). (5.11)

Similarly, we define

z2(t) =

{
|x− y|β2(t)e1−β2(t), 0 ≤ t < t0,

1 + c0‖ω0‖L∞(t− t0), t ≥ t0,

with t0 such that |x−y|β2(t0)e1−β2(t0) = 1. Analogously, using the second inequality
of (5.10), we infer

|q2(t, x)− q2(t, y)| ≤ z2(t). (5.12)
We are ready to show (5.1). Noticing that ω(t, x) = ω(0, X−1

t (x)), we deduce

|ω(t, x)− ω(t, y)| =
∣∣ω(0, X−1

t (x))− ω(0, X−1
t (y))

∣∣
=

∣∣∣∣∣
∫ X−1

t (x)

X−1
t (y)

ω0,x(ζ) dζ

∣∣∣∣∣
≤ c0‖ω0,x‖L2

∣∣X−1
t (x)−X−1

t (y)
∣∣ 12

≤ c0‖ω0,x‖L2 |q1(t, x)− q1(t, y)|
1
2

where mean value theorem and Hölder’s inequality were applied. As a consequence,
we conclude

sup
0≤t≤T

‖ω(t)‖Cβ1 <∞.

thanks to (5.11). Analogously, we can show

sup
0≤t≤T

‖Ω(t)‖Cβ2 <∞.

It completes the proof of the proposition.
�

6. Numerical simulations

In this section, we perform some numerical study for the 1D model (1.12) of
MHD. For convenience, we recall (1.12) here,

Ωt + amΩx − ωpx = 0,

ωt + apωx − Ωmx = 0,

px = HΩ, mx = Hω,

x ∈ [−π, π] (6.1)
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and the Hilbert transform for a periodic function

Hf =
1

2π
P.V.

∫ π

−π
f(y) cot

(
x− y

2

)
dy.

As mentioned earlier, in order for p and m to be uniquely defined, we can choose
the gauge and set them to have either zero mean over the interval [−π, π] or zero
point value at a fixed point, e.g., p(x0, t) = m(x0, t) = 0 for some x0, see [16].

We use a Fourier-collocation spectral method for the spatial approximation and
a five stage fourth order low storage Runge-Kutta method for time discretization.
An exponential type filter is used for stabilization of the spectral method, see [13].
For a periodic function f(x), its Hilbert transform can be approximated in spectral
method via the following formula:

Ĥf(k) = −isgn(k)f̂(k),

where f̂(k) are coefficients in Fourier series of f(x), see [14, 21]. Similarly, for
periodic functions p(x) and Ω(x), the equation px = HΩ can be approximated in
spectral method through the relation

ikp̂(k) = −isgn(k)Ω̂(k).

6.1. Numerical results for the 1D model of MHD. One can check that, for
arbitrary constants A1, A2, θ1, θ2 and k

Ω(x) = A1 sin(kx+ θ1), ω(x) = A2 sin(kx+ θ2)

and
Ω(x) = A1 cos(kx+ θ1), ω(x) = A2 cos(kx+ θ2)

are steady states of system (6.1). Thus, we choose to consider the following initial
conditions composed of steady states with possible perturbations

Ω0 = sin(x) + cos(4x) + 5, ω0 = sin(2x) + 2, (6.2)

Ω0 = sin(x) + sin(4x) + 0.05, ω0 = sin(2x) + 0.02, (6.3)

Ω0 = ω0 = −4

3

(
sinx+

1

2
sin(2x)

)
. (6.4)

We conduct simulations for (6.1) with initial data (6.2)-(6.4) and various values of a:
a = 1, a = 1

2 , a = 0, a = −1 and a = −2. In the computation, we take N = 12800
points in the Fourier-collocation spectral method. The outcome indicates that for
some data and value of a, solutions are likely regular, while for some data and a
we observe the tendency of singularity formation. In particular, (i) the numerical
solutions of (6.1) with data (6.2) and the values of a = 1, a = 0, a = −1 and a = −2
look regular; (ii) solutions of (6.1) with data (6.3) and a = 1, a = 0 tend to develop
singularities; with the same data and a = −1, a = −2, solutions seem regular;
(iii) solutions of (6.1) with data (6.4) and a = 0.5, a = 0 are likely to develop
singularities. Rigorous analysis on the possible singularity formation scenarios is
forthcoming in a follow-up work. More details on the numerical study are provided
below.
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6.1.1. Solutions of (6.1) with the initial data (6.2). Figure 1 shows the numerical
results for the solution to (6.1) with data (6.2) and a = 1. The time evolution of
Ω(t, x) and ω(t, x) are plotted in Figure 1(a) and Figure 1(b), respectively. One
can see that Ω(t, x) and ω(t, x) are rather smooth. The first order derivative Ωx
shown in Figure 1(c) seems smooth as well, while ωx illustrated in Figure 1 (d)
develops some mild spines at time t = 4. However, we observe spines for the second
derivatives Ωxx and ωxx at larger time in Figure 1(e) and (f). In particular, there
is a notable spine near x = 0 at t = 4. Notice that

u =
1

2
(p+m), B =

1

2
(p−m),

and hence

ux =
1

2
(px +mx) =

1

2
H(Ω + ω), Bx =

1

2
(px −mx) =

1

2
H(Ω− ω),

HΩ = ux +Bx, Hω = ux −Bx.
(6.5)

Figure 1(g) shows the time evolution of ‖HΩ‖L∞ + ‖Hω‖L∞ , while Figure 1(h)
shows ‖ux(t)‖L∞ and ‖Bx(t)‖L∞ . We observe oscillations in these graphs and
the amplitudes grow slowly in a linear manner. Combined with the regularity
criterion (1.17), it seems that the solution starting with data (6.2) may not develop
singularities in finite time.

The evolution of numerical solution to (6.1) with data (6.2) and a = 0 is illus-
trated in Figure 2. It is easy to notice that the behavior of the solution is similar
to that in Figure 1. The solution of (6.1) with data (6.2) and a = −1 is plotted
in Figure 3. One can see from Figure 3(a) and (b) that the solution is less reg-
ular compared to the solutions in Figure 1(a) and (b) and Figure 2(a) and (b).
This suggests that the convection term with a negative sign causes the solution to
behave more singularly. Nevertheless, 3(c) and 3(d) show that the amplitudes of
‖HΩ‖L∞ + ‖Hω‖L∞ , ‖ux(t)‖L∞ and ‖Bx(t)‖L∞ grow faster than that in Figure
1(c) and (d), but remain in a linear growth. Thus one may speculate that the
solution of system (6.1) with a = −1 starting from the initial data (6.2) do not
develop singularity in finite time. We also note that the solution of (6.1) with data
(6.2) and a = −2 shown in Figure 4 behaves similarly as the solution in Figure 3.

6.1.2. Solutions of (6.1) with the initial data (6.3). The behavior of the numerical
solution of (6.1) with the initial data (6.3) and a = 1 is shown in Figure 5. We
observe dramatic oscillations of Ω and ω near x = 0 in (a) and (b), and spines of
derivatives near x = 0 in (c), (d), (e) and (f) with large amplitudes. Moreover, the
norms ‖HΩ(t)‖∞+‖Hω(t)‖∞ and ‖H(Ω−ω)(t)‖∞ tend to grow fast as seen in (g)
and (h). In the situation of a = 0 with the same initial data, the solution is more
singular, see Figure 6. Spines with large amplitudes appear for Ω and ω shown in (a)
and (b), and for their derivatives shown in (c), (d), (e) and (f). We also notice that
the amplitudes are of much higher orders compared to (c), (d), (e) and (f) in Figure
5. In the end, the exponential like growth of the norms ‖HΩ(t)‖∞ + ‖Hω(t)‖∞
and ‖H(Ω + ω)(t)‖∞ as shown in Figure 6(g) and (h) indicates the formation of
singularity. The singularity seems to develop after the time t = 1.8 and near t = 2.
Indeed, the evolution of the solution before time t = 1.8 is shown in Figure 7.
Comparing the amplitudes of Ω, ω and their derivatives between Figure 6 and
Figure 7, it seems that the dramatic behavior of the solution occurs after time
t = 1.8.
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In contrast, no evidence of singularity is observed for the solutions of (6.1) with
data (6.3) in the cases of a = −1,−2, see Figure 8 and Figure 9. Although high
concentrations and spines are noted for Ω and ω and their derivatives near x = −π,
x = 0 and x = π, the norms of ‖HΩ(t)‖∞+‖Hω(t)‖∞ and ‖H(Ω±ω)(t)‖∞ shown
in Figure 8(g) and (h), Figure 9(g) and (h), grow mildly in the beginning and then
become stabilized. Thus according to the Beale-Kato-Majda type of regularity
criterion established in Theorem 1.2, we speculate that no singularity is to occur
in the situations of a = −1,−2.

6.1.3. Solutions of (6.1) with the initial data (6.4). Data (6.4) was used in [19]
to produce solutions with potential singularities for the generalized Constantin-
Lax-Majda model. Recall that if Ω = ω, system (6.1) reduces to the generalized
Constantin-Lax-Majda model. Hence we investigate the solutions of (6.1) with the
initial data (6.4). When a = 0.5 and a = 0, the solutions appear regular in the
early time, see Figure 12. However, rapid growth of the solutions Ω and ω and their
derivatives are observed near x = 0 after certain time, as shown in Figure 10 and
Figure 11. It looks like that the fast growth starts after the time t = 1.4 in the case
of a = 0.5 from Figure 10, and the fast growth starts after t = 0.8 when a = 0 from
Figure 11. In particular, the exponential like growth of ‖HΩ(t)‖∞ + ‖Hω(t)‖∞
and ‖H(Ω + ω)(t)‖∞ seen in Figure 10(g), (h) and Figure 11(g), (h) suggests that
singularities are likely to develop in finite time. In fact the data (6.4) falls in the
class of the initial data used in [6]; hence the numerical result here reproduces the
numeric evidence of blowup discussed in [6].

6.2. Numerical results for the De Gregorio model revisited. Numerical
simulations for the De Gregorio model (1.6a)-(1.6b) have been performed in [9, 10,
19, 21] among others. One outcome is that singularity formation for this model
with certain smooth initial data is unlikely to happen in the periodic case.

We apply our numerical scheme to (1.6a)-(1.6b) with the initial data

ω0(x) = sinx+ 0.1 sin(2x)

by taking N = 12800 points in the Fourier-collocation spectral method. The ob-
tained simulations are shown in Figure 13, which recover the numerical results done
by Okamoto, Sakajo, and Wunsch [21].

We note that ux = Hω for the De Gregorio model (1.6a)-(1.6b) and ux =
1
2H(Ω + ω) for our 1D MHD model (6.1), see (6.5). Comparing Figure 1(h) and
Figure 13(e), we observe oscillations of ‖ux‖L∞ for the 1D MHD model and absence
of such oscillations for the pure fluid model. It is reasonable to infer that the
interactions between fluid velocity and magnetic field cause such oscillations and
more complicated dynamics.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 1. a = 1 in (6.1) with initial data (6.2).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 2. a = 0 in (6.1) with initial data (6.2).



1D MODEL FOR MHD 25

(a) (b)

(c) (d)

Figure 3. a = −1 in (6.1) with initial data (6.2).
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(a) (b)

(c) (d)

Figure 4. a = −2 in (6.1) with initial data (6.2).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5. a = 1 in (6.1) with initial data (6.3).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6. a = 0 in (6.1) with initial data (6.3).
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(a) a = 0 (b) a = 0

(c) a = 0 (d) a = 0

(e) a = 0 (f) a = 0

Figure 7. The smooth solutions in early time in (6.1) using a = 0 with initial data (6.3).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 8. a = −1 in (6.1) with initial data (6.3).
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(a) (b)
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Figure 9. a = −2 in (6.1) with initial data (6.3).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 10. a = 0.5 in (6.1) with initial data (6.4).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 11. a = 0 in (6.1) with initial data (6.4).
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(a) a = 0 (b) a = 0

(c) a = 0.5 (d) a = 0.5

Figure 12. The smooth solutions in early time in (6.1) with initial data (6.4).
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(a) (b)

(c) (d)

(e)

Figure 13. The De Gregorio model.


