
1

Decentralized Safe Control for Distributed
Cyber-Physical Systems using Real-time

Reachability Analysis
Luan Viet Nguyen, Member, IEEE, Hoang-Dung Tran, Member, IEEE, Taylor Johnson, Member, IEEE,

and Vijay Gupta, Fellow, IEEE

Abstract— In this paper, we present a decentralized safe
control (DSC) approach for distributed cyber-physical systems
based on conducting reachability analysis in real-time. Each
agent can periodically compute the local reachable set from its
current local time to some time instant in the near future, and
then broadcast a message containing the computed reachable
set to the other agents via a shared communication channel.
By comparing its own reachable set to unsafe regions such as
obstacles, and received reachable sets in a peer-to-peer manner,
the agent can predict if any collision may exist shortly. In this
circumstance, the agent can utilize the unsafe intersection of
its computed reachable set, the unsafe regions and the received
reachable sets to recalculate a new set of waypoints and update its
corresponding control strategies. As a result, our DSC approach
can ensure a distributed system achieving a mission goal with a
collision-free guarantee. For evaluation, we applied the proposed
DSC method to perform a decentralized control, in real-time,
a group of quadcopters conducting a distributed patrol mission
with safety guarantees.

I. INTRODUCTION

A cyber-physical system (CPS) consists of computing de-
vices communicating with one another and interacting with the
physical world via sensors and actuators. Increasingly, such
systems are everywhere, from smart buildings to autonomous
vehicles to mission-critical military systems. In these applica-
tions, CPSs often operate distributively where each agent can
communicate and cooperate with each other via a high-speed
communication network. To ensure that the implementation
always meets safety-critical requirements, distributed CPSs
require an ability to predict, in real-time, maneuvers that cause
dangerous circumstances and then update control strategies to
avoid that. For instance, if an agent Ai can predict based on
its local clock that it will collide with either an obstacle or
an agent Aj in the next few seconds, it must perform some
intelligent control action such as immediately stopping and
quickly finding a safe path to avoid an accident. To provide
safety guarantees such as collision avoidance for a distributed
CPS in real-time, we need to constantly compute a reachable
set of the system and check it against correctness requirements.
Although several recent works on safety control and path plan-
ning [1]–[7], reachability analysis for CPSs [8]–[14], safety

L. Nguyen is with the Department of Computer Science, University of
Dayton, Dayton, OH, 45469, USA (e-mail:lnguyen1@udayton.edu)

H-D. Tran is with the School of Computing, University of Nebraska at
Lincoln, Lincoln, NE, 68588 USA (e-mail: dtran30@unl.edu)

T. Johnson is with the Department of Computer Science, Vanderbilt Uni-
versity, Nashville, TN, 37212 USA (e-mail: taylor.johnson@vanderbilt.edu)

V. Gupta is with the Department of Electrical Engineering, University of
Notre Dame, Notre Dame, IN, 46556, USA (e-mail: vgupta2@nd.edu)

Exchange reachable sets

Obstacle

Obstacle

Obstacle

𝑹𝒆𝒂𝒄𝒉𝟑

𝑹𝒆𝒂𝒄𝒉𝟐 𝑅𝑒𝑎𝑐ℎ1 𝑅𝑒𝑎𝑐ℎ2

Reachable set of 
agent 1 

Reachable set of 
agent 2 

Constrained reachable 
set of agent 2 

Constrained reachable 
set of agent 1 

𝑨𝟏

𝑨𝟐

𝑨𝟑

Example for no-collision requirement not being satisfied

Fig. 1. An overview of our DSC approach based on conducting reachability
analysis in real-time. Agents exchange local reachable sets. Any potential
safety violations can be identified and local controllers constrained to avoid
them in a peer-to-peer manner.

monitoring and verification for distributed CPSs [15]–[23]
have been introduced, there is a shortage of methodologies that
can efficiently control a distributed CPS to achieve its mission
objectives with safety guarantees in real-time, especially in a
decentralized manner.

In this paper, we propose a DSC approach for distributed
CPSs based on conducting reachability analysis in real-time.
Our approach considers both local safety constraints (e.g.,
ranges of velocity and operating boundaries) and global safety
requirements (e.g., an agent can avoid unsafe regions and
colliding with other agents). The overview of our approach
shown in Figure 1. Utilizing the face-lifting method [24],
each agent can periodically perform a reachability analysis
to compute a local reachable set based on its current local
clock to some future time instant; and then check against its
local safety properties in real-time. We emphasize that our
method considers communication in real-time verification. It
allows the computed reachable set of an agent to be encoded
in a message and then transferred to other agents via a
shared communication channel, with an assumption that all
agents are time-synchronized to some accuracy level. This
assumption is reasonable as it can be achieved using existing
time synchronization protocols such as the Network Time
Protocol [25]. When the agent receives the reachable set
messages, it immediately decodes them to obtain the reachable
sets of the senders. By comparing the agent’s own reachable
set to the unsafe regions (e.g., obstacles) and the reachable



2

sets received from other agents in a peer-to-peer manner, the
agent can predict if there will be any forthcoming collision. In
this circumstance, the agent can utilize the reachable set con-
straints, i.e., the intersection of its computed reachable set, the
unsafe regions and the received reachable sets to recalculate
a new set of waypoints and update its corresponding control
strategy to safely accomplish a mission. Moreover, we also
prove the soundness of the proposed DSC approach.

We implemented our DSC approach as a Java package in
StarL [26], which is a novel platform-independent framework
for programming and simulating distributed robotic systems on
Java/Android. For evaluation, we applied the proposed method
to perform a decentralized control, in real-time, a group of
three quadcopters conducting a distributed patrol mission with
safety guarantees. The experimental results demonstrate that
our proposed DSC approach based on reachability analysis can
ensure a distributed system achieving a mission goal with a
collision-free guarantee in real-time. We also discuss in details
a scalability of our approach.

The remainder of the paper is organized as follows. Sec-
tion II introduces the system modeling of a distributed
CPS. Section III formalizes the problem that we address in
this paper. Section IV explains how we compute a reachable
set for each agent in a real-time manner. Section V presents
our reachability analysis-based DSC approach to ensure a
distributed CPS achieving a mission goal with safety guaran-
tees in real-time. Section VI presents the implementation and
demonstrates the capability of our approach through a case
study of a distributed patrol mission. Section VII reviews the
related works and Section VIII concludes the paper with some
future directions.

II. SYSTEM MODELING

In this paper, we model a distributed CPS using hybrid
automata formalism [27], [28]. A distributed CPS with N
agents is a network of N hybrid automata where each agent
is essentially modeled as a finite state machine extended with
a set of real-valued variables evolving continuously over time.

Definition 1 (Hybrid automaton): A hybrid automaton of an
ith agent is a tuple ⟨Ai = V ari, Acti,Di, Ti, Initi⟩, which
includes the following components:

1) V ari is the set of variables, partitioned as Ii ∪ Xi ∪ Yi,
where i) Ii is the finite set of input variables ii) Xi is the set
of continuous variables including the special variable clki
which records the agent’s local time, and iii) Yi is the set
of discrete variables Yi including the special variable msgi
that records all sent and received messages. We denote vi

as the valuations (i.e., a function that maps each vi ∈ V ari
to a value in its type) of all variables. We write val(V ari)
for the set of all possible valuations of V ari. We abuse
a notion of vi to denote a state of Ai, and the set Qi

∆
=

val(V ari) is the state-space of Ai.
2) Acti is a set of actions consisting of the following subsets:

i) a set {sendi(m) | m ∈Mi,∗} of send actions (i.e., output
actions), ii) a set {receivei(m) | m ∈ M∗,i} of receive
actions (i.e., input actions), where Mi,∗ and M∗,i denote
the sending and receiving messages by agent i, respectively.

3) Di ⊆ val(V ari) × Acti × val(V ari) is called the set of
transitions. For a transition (vi, ai,v

′
i) ∈ Di, we write

vi
ai→ v′

i in short. If ai = sendi(m) or receivei(m), then all
the components of vi and v′

i are identical except that m is
added to msg in v′

i. That is, the agent’s other states remain
the same on message sends and receives. Furthermore, for
every state vi and every receive action ai, there must exist
a state v′

i such that vi
ai→ v′

i, i.e., the automaton must
have well-defined behavior for receiving any message in
any state.

4) Ti is a collection of trajectories for Xi. Each trajectory of
Xi is a function mapping an interval of time [0, t], t ≥ 0
to val(V ari), following a flow rate (i.e., a differential
equation) that specifies how a real variable xi ∈ Xi

evolving over time with respect to a control input.
5) Initi ∈ Qi is the set of initial states.

The behavior of each agent can be defined in terms of
executions, which are alternating sequences of continuous
trajectories and discrete transitions starting from an initial
state. Given an initial state v0

i ∈ Initi, an execution αi of an
agent Ai is a sequence of states starting from v0

i , defined as
αi = v0

i ,v
1
i ,v

2
i , . . ., and for each index k in the sequence, the

state update from vk
i to vk+1

i is either a transition or trajectory.
A state vk

i is reachable if there exists a finite execution that
ends in vk

i . We denote Reachi as the whole reachable set
of agent Ai evolved from the initial state, and Reachi[t

i
1, t

i
2]

denotes the partial reachable set reached from the state at a
local clock ti1 to the state at ti2.

The communication between agents is implemented by the
actions of sending and receiving messages over an asyn-
chronous communication channel. We formally model this
communication model as a single hybrid automaton, Ac,
which stores the set of in-flight messages that have been sent,
but are yet to be delivered. When an agent sends a message
m, it invokes a send(m) action. This action adds m to the in-
flight set. At any arbitrary time, Ac chooses a message in the
in-flight set to either deliver it to its recipient or remove it
from the set. All messages are assumed to be unique and each
message contains its sender and recipient identities. We denote
M as the set of all possible messages used in communication
between agents.

The formal model of the complete system, denoted as Σ,
is a network of hybrid automata that is obtained by parallel
composing the agent’s models and the communication channel.
Formally, we can write, Σ ∆

= A1∥ . . .AN∥Ac. The agent Ai

and the communication channel Ac are synchronized through
sending and receiving actions. When the agent Ai sends a
message m ∈ Mi,j to the agent Aj , it triggers the sendi(m)
action. At the same time, this action is synchronized in the
Ac automaton by putting the message m in the in-flight
set. After that, the Ac will trigger (non-deterministically) the
receivej(m) action. This action is synchronized in the agent
Aj by putting the message m into the msgj .

III. PROBLEM FORMULATION

The main goal of this work is to provide a DSC for dis-
tributed CPSs to achieving mission objectives while ensuring
local and global safety properties in real-time. A local safety



3

property specifies the physical constrains of state variables of
an agent, such as ranges of velocity and operating boundaries.

Definition 2 (Local safety property): We say that an agent
Ai satisfies a local safety property φi, denote Ai |= φi, if and
only if Reachi ⊆ φi.

On the other hand, a global property of is a collision
avoidance requirement such that an agent can avoid unsafe
regions (e.g., obstacles or interference vehicles differed from
an agent) and a pair of agents do not collide with each other.

Definition 3 (Global safety property): Let Υi be an unsafe
region, ti and tj be the local clocks of the agents Ai and Aj ,
respectively. In the next T seconds, we want to guarantee that
i) Ai can avoid the unsafe region, i.e., Reachi[ti, ti+T ]∩Υi =
∅, and ii) Ai will not collide with Aj , i.e., Reachi[ti, ti+T ]∩
Reachj [t

j , tj + T ] = ∅.
Without loss of generality, we can assume Υi is a convex

polytope and does not change over time. Otherwise, the unsafe
region Υi[t

i, ti+T ] with respect toAi can be handled similarly
to the received reachable set Reachj [tj , tj + T ] of Aj . Since
each agent has a decentralized control, the process of verifying
the global property needs to take into accounts: i) the clock
mismatches, and ii) the exchanging reachable set messages be-
tween agents. Each agent can locally and periodically compute
the local reachable set from the current local time to the next
T seconds, and broadcasts this information to the other agents.
When an agent receives such a reachable set message, it can
perform a peer-to-peer coupled constraint verification based
on its own current state and the reachable set of the sender.
For instance, if the reachable sets of the agents do not intersect
with each other, the system will satisfy a collision avoidance
property. Note that the local safety property of the agent is
verified simultaneously with the reachable set computation
process at runtime. When safety cannot be guaranteed, an
exception is generated and the control must be updated.

In our approach, we consider that the dynamic of each agent
has a form ẋi = f(xi,ui), where xi ∈ Rn is the state vector,
ui ∈ Rm is the control input vector and f : Rn × Rm 7→ Rn

is a Lipschitz mapping function. The states xi of the agent
are measured by the local sensors and the provided GPS. The
control signal ui is computed based on the state xi and a
reference signal, e.g., a set of waypoints that the agent needs
to follow to accomplish a mission, and then applied to the
actuator to control the motion of the agent. We note that
each agent can switch between different operation modes via
discrete transitions, and in each mode, the control law may
be different. When the agent computes its reachable set, the
only information it needs are its current set of states xi(t

i)
and the current control input ui(t

i). It should be clarified
that although the control law may be changed for different
operation modes, the control signal ui is updated with the
same control period T i

c . Consequently, ui is a constant vector
in each control period.

Problem 1: Design a DSC mechanism using real-time
reachability analysis such that any agent Ai of a distributed
CPS both satisfies its local safety property and global safety
property (i.e., Ai avoids the unsafe region and does not collide
with other agent) in the next (finite number of) T seconds from
the current local clock of Ai.

𝑒1

𝐵

𝑒1
′

𝑒2 𝑒2
′

መ𝑓𝑒2

𝑒3
′

𝑒3

𝑒0

𝐵′

Fig. 2. An illustration of a real-time reachability analysis using face-lifting
method. The reachable set evolved from the blue box B to the red dash box
B′ by lifting each face of B by its maximum outward components of f .

IV. REAL-TIME REACHABLE SET COMPUTATION

In this section, we present our algorithm to compute reach-
able set for each agent in a real-time manner. Assume that
the agent’s current time is ti = k × T i

c , and from its local
sensors and provided GPS, we have the current state of the
agent as xi. The actual state of the agent is in a set xi ∈ Xi.
From the current set of states Xi and the control signal ui,
we can compute the forward reachable set of the agent to the
time instance ti +T . This reachable set computation needs to
be completed after an allowable runtime T i

run < T i
c because

if T i
run ≥ T i

c , a new ui will be updated. The control period
T i
c is chosen based on the agent’s motion dynamics. Thus,

to control an agent with fast dynamics, the control period
T i
c needs to be sufficiently small. As a result, the allowable

runtime for reachable set computation is also tiny. We note that
the local sensors and the provided GPS can only measured the
information of interest to some accuracy.

A. The Face-Lifting Approach

We adapt the well-known face-lifting method [24] to com-
pute the reachable set of an agent in real-time. The core
idea is to over-approximately compute a reachable set based
on the maximum derivative along each face. Given a box B
represents a reachable set at time t, assume that f̂e is the
positive, maximum outward component of a Lipschitz flow
rate f relative to a face e of B, then the new box B′ represents
a reachable set at time t+∆ is constructed by lifting every face
e by an amount of ∆.f̂e + ϵ, where ϵ is some small amount
number that can be tuned. The overview of the face-lifting
method shown in Figure 2 illustrates how the reachable set
evolved from the blue box B to the red dash box B′. In the
figure, the black arrows illustrate the directions and values of
f on each face of the blue box B. Here, the faces e1, e2 and e3
have positive outward components of f and then being lifted to
e′1, e′2 and e′3, respectively. Despite the derivative component
of f along e0 moves into the box B, i.e., it does not add
new reachable states, the face must be extended vertically to
construct a new box together with its neighborhoods. We use
a box as our presentation for the set of states as we want
to estimate a reachable set in a very short reach time where
the over-approximation error is sufficient small enough. But
one can apply the face-lifting with a general polyhedron to
approximate a reachable set with higher accuracy but a longer
reach time. We want to emphasize that the novelty of this paper
is to provide a decentralized control mechanism for distributed
systems based on conducting real-time reachability analysis.



4

Although the face-lifting method is conservative, we chose it
to estimate a reachable set because of its fast computational
advantage for real-time applications. One can extends our
approach by using other methods such as those presented in
[29]–[33] to compute reachable sets online. In what follows,
we will show our method to reduce the conservativeness by
attractively improve the accuracy of a computed reachable set
if time remains.

B. Real-time Reachable Set Computation

Next, we will explain our Algorithm 1 to compute a
reachable set and check a local safety property for each agent
in real-time. We first divide the time period [ti, ti + T ] by
M steps, where ∆i = T/M is reach time step. The core
step of face-lifting method is the single-face-lifting operation
illustrated in Figure 2. Using the reach time step, the current
state set Xi and control input, the face-lifting method performs
a single-face-lifting operation to compute a new reachable set
Ωi and update the remaining reach time T i

α < T . This step
is iteratively called until the reachable set for the whole time
period of interest [ti, ti + T ] is constructed completely, i.e.,
T i
α = 0. Note that with the reach time step ∆i defined above,

the face-lifting algorithm may be finished quickly after an
amount of time which is smaller than the allowable runtime
T i
run specified by a user. In this case, there is still an amount of

time called the remaining run time T i
β < T i

run that is available
to recall the face-lifting algorithm with a smaller reach time
step. It is important to note that if T i

β is still greater than zero,
Algorithm 1 will keep calling the face-lifting mechanism with
a new reach time step ∆i/2. As a result, the conservativeness
of the reachable set can be iteratively improved as the over-
approximate errors will be significantly reduced. Note that
the reachable set computation needs to be completed after
an allowable runtime T i

run. If this constraint is not met, the
algorithm returns the current reachable set, i.e., there is nothing
change in the agent’s reachable set.

As mentioned earlier, the local safety property of each
agent can be verified at runtime simultaneously with reachable
set computation process. Precisely, let φi be the local safey
property of the ith agent, the agent is said to be safe from
ti to ti + t ≤ ti + T if Reachi[t

i, ti + t] ⊆ φi. Since
the reachable set Reachi[ti, ti + t] is provided by face-lifting
method at runtime, the local safety verification of each agent
can be solved at runtime. Since the Algorithm 1 computes
an over-approximate reachable set of each agent in a short
time interval, it guarantees the soundness of the result, i.e.,
the computed reachable set contains all possible trajectories
of agent Ai from ti to ti + T .

V. DECENTRALIZED REACHABILITY ANALYSIS-BASED
CONTROL

The working principle of our DSC approach is based on
the exchanged reachable set messages between agents. Each
agent Ai will perform the following activities.

1) Each agent computes its reachable set for the next (finite
number of) T seconds corresponding to the current control
input, and check against its local safety properties.

Algorithm 1 Real-time reachable computation for agent Ai.
Input: Xi, ui, ti, T , ∆i, T i

run, φi

Output: Reachi[ti, ti + T ], safe

1: procedure REAL-TIME REACHABILITY ANALYSIS
2: T i

β = T i
run % remaining allowable runtime

3: while (T i
β > 0) do

4: safe = true % initially suppose Ai |= φi

5: Ωi = Xi % current reachable set
6: T i

α = T % remaining reach time
7: while T i

α > 0 do
8: % do single-face-lifting to compute reach set,

and update remaining reach time
9: Ωi, T

i
α = SingleFaceLifting(Ωi,∆i, T

i
α,ui)

10: if (Ωi ̸⊆ φi) then: safe = false

11: % update remaining runtime wrt. Ai’s current time
12: T i

β = T i
β − (Clock(Ai)− ti)

13: if T i
β ≤ 0 then break

14: else
15: ∆i = ∆i/2 % reduce reach time step
16: return Reachi[t

i, ti + T ] = Ωi, safe

2) Next, the agent encodes the computed reachable set as a
message, then broadcasts it to other agents and listens to
the reachable set messages sent from them.

3) When the agent receives the messages, it immediately
decodes the message to obtain the current reachable set
of the senders.

4) By comparing its own reachable set to the unsafe regions
and the received reachable sets in a peer-to-peer manner,
the agent can predict if any collision may exist in the
near future. In this case, the agent will recalculate a set
of waypoints and update its control strategy in the next
control period to avoid a collision.

We note that the agent must accomplish all of the above
activities within one control period of T i

c . It guarantees that
the agent can always update a new control signal in the next
control period if necessary.

A. Task Scheduling Architecture

Next, we will explain our real-time task scheduling ar-
chitecture for an agent, shown in Figure 3. There are six
specific tasks that the agent Ai needs to accomplish in order
as: i) computing reachable set starts at the time instant tir
ii) encoding reachable set starts at the time instant tie iii) trans-
ferring reachable set starts at the time instant tit iv) decoding
reachable set from other agents starts at the time instant tid
v) checking a collision avoidance property starts at the time
instant tic vi) recalculating waypoints and updating a control
signal at the time instant tiw. All time instants associated with
each activity are specified based on the agent Ai’s local clock
ti. Here, we assume tir = ti = k × T i

c and each activity must
be accomplished in order. Then actual real-time intervals for
each activity are specified as follows i) δir = tie − tir is the
reachable set computation time ii) δie = tit− tie is the encoding
time iii) δit ≈ t

j
d − tit is the transferring time iv) δid = tic − tid



5

𝑡𝑟
𝑖 𝑡𝑒

𝑖 𝑡𝑡
𝑖 𝑡𝑑

𝑖 𝑡𝑐
𝑖 𝑡𝑤

𝑖

𝛿𝑟
𝑖 𝛿𝑒

𝑖 𝛿𝑡
𝑖 𝛿𝑑

𝑖
𝛿𝑐
𝑖 𝛿𝑤

𝑖

𝑡𝑟
𝑖 + 𝑇𝑐

𝑖

𝑡𝑟
𝑗 𝑡𝑒

𝑗
𝑡𝑡
𝑗 𝑡𝑑

𝑗
𝑡𝑐
𝑗 𝑡𝑤

𝑗

𝛿𝑟
𝑗

𝛿𝑒
𝑗

𝛿𝑡
𝑗 𝛿𝑑

𝑗
𝛿𝑐
𝑗

𝛿𝑤
𝑗

𝑡𝑟
𝑗
+ 𝑇𝑐

𝑗

𝐴𝑗′s timeline

𝐴𝑖′s timeline

𝑡𝑟 𝑡𝑒 𝑡𝑡 𝑡𝑑 𝑡𝑐 𝑡𝑤 𝑡𝑟 + 𝑇𝑐

global timeline

𝛾𝑗

𝛾𝑖

𝐫𝐞𝐚𝐜𝐡 𝐬𝐞𝐭
𝐜𝐨𝐦𝐩𝐮𝐭𝐚𝐭𝐢𝐨𝐧

𝐞𝐧𝐜𝐨𝐝𝐢𝐧𝐠 𝐭𝐫𝐚𝐧𝐬𝐟𝐞𝐫𝐫𝐢𝐧𝐠 𝐝𝐞𝐜𝐨𝐝𝐢𝐧𝐠
𝐜𝐨𝐥𝐥𝐢𝐬𝐢𝐨𝐧
𝐜𝐡𝐞𝐜𝐤𝐢𝐧𝐠

𝐜𝐨𝐧𝐭𝐫𝐨𝐥
𝐮𝐩𝐝𝐚𝐭𝐞

𝐜𝐥𝐨𝐜𝐤
𝐦𝐢𝐬𝐦𝐚𝐭𝐜𝐡

Fig. 3. A real-time task scheduling architecture for each agent of a distributed CPS with respect to the agent’s local clock and the system’s global clock.

is the decoding time v) δic = tiw − tic is the collision checking
time vi) δiw ≤ ti + T i

c − tiw is the time required for updating
waypoints and control signals.

Note that we do not know the exact transferring time δit
since it depends on two different local clocks. The trans-
ferring time formula describes its approximation value when
neglecting the mismatch between two local clocks. The actual
reachable set computation time is close to the allowable
runtime chosen by a user, i.e., δir ≈ T i

run. The encoding time
and decoding time are fairly small in comparison with the
transferring time, i.e., δie ≈ δid ≪ δit. All of these runtimes are
useful information for selecting an appropriate control period
T i
c for an agent. However, for the goal of ensuring a distributed

CPS achieving a mission goal with a guarantee of the collision
avoidance property, we only need to consider the time instants
tir, tic, and tiw where an agent starts computing reachable set,
checking collision, and updating a control signal, respectively.

B. Reachable Set Message

A reachable set message contains three important infor-
mation including i) the reachable set which is a collection
of boxes ii) the time period (based on the local clock) in
which this reachable set is valid, i.e., the start time tir and
the end time tir + T of the computed reachable set, and
iii) the time instant tit that this message is transferred. Based
on the timing information of the reachable set and the time-
synchronization errors, an agent can examine whether or not
a received reachable set contains information about the future
behavior of the sent agent, which is useful for checking
collision and updating a control signal. The usefulness of the
received reachable sets is defined as follows.

Definition 4 (Useful reachable sets): Let γi and γj re-
spectively be the time-synchronization errors of agent Ai

and Aj in comparison with the virtual global time t, i.e,
t− γi ≤ ti ≤ t+ γi and t− γj ≤ tj ≤ t+ γj , where ti and tj

are current local times of Ai and Aj , respectively. Given the
reachable set Reachi[tir, t

i
r+T ] of the agent Ai, the reachable

set Reachj [tjr, t
j
r + T ] of the agent Aj that is available at the

agent Ai at time tic is useful for checking collision between
Ai and Aj if: i) tic < tjr + T − γi − γj and ii) tic < tir + T .

Assume that we are at the time instant when the agent Ai

checks if a collision occurs which means, the current local
time is tic. Note that agent Ai and Aj are synchronized to the
global time within some errors γi and γj , respectively. The

reachable set Reachj [tjr, t
j
r + T ] is useful if it contains some

information about the future behavior of agent Aj under the
view of the agent Ai based on its local clock. This can be
guaranteed if we have: tjr + T ≥ tir − γj + T > tic + γi.
Additionally, the current reachable set of agent Ai contains
information about its future behavior if tic < tir + T . It is
apparent that if tic > tjr + T + γi + γj , then the reachable set
of Aj contains a past information, and thus it is useless for
comparing their reachable sets.

Remark 5: In our DSC approach, we allow each activity to
be accomplished with runtime flexibility without considering
either fixed deadlines or worst-case execution time, as long
as all activities can be finished within a control period.
Consequently, the proposed approach does not rely on the
concept of Lamport happens-before relation [34] to compute
the local reachable set of each agent. If the agent could not
receive reachable messages from others until a requested time-
stamp expires, it still calculates the local reachable set based
on its current state and the state information of other agents in
the messages received previously. In other words, our method
does not require the reachable set of each agent to be computed
corresponding to the order of the events (sending or receiving
a message) in the system, but only relies on the local clock
period and the time-synchronization errors between agents.
Such implementation ensures that the computation process
can be accomplished in real-time, and is not affected by the
message transmission delay.

C. Decentralized Reachability Analysis-based Control

The overview of our DSC approach shown in Algorithm
2, and works as follows. First, the agent Ai call Algorithm
1 to compute its reachable set in the next T seconds. The
intersection Ψi between Reachi[t

i
r, t

i
r + T ] and the unsafe

region Υi is then determined. When the agent Ai receives
a new message from the agent Aj , Ai decodes the message
to obtain reachable set information of Aj . If the obtained
reachable set of Aj is useful, i.e., tic < tjr + T − γi − γj
and tic < tir + T , Ai will then determine the intersection
Θij [tir, t

i
r + T ] between its current reachable and the received

one. If the union of Ψi and Θij [tir, t
i
r+T ] is empty, then there

will be no collision in the next T seconds. Otherwise, the agent
Ai will recalculate a new set of waypoints list and update its
control signal in the next control period to safely achieving its
mission objectives based on Ψi and Θij [tir, t

i
r + T ].



6

Algorithm 2 Decentralized Safe Control using Real-time
Reachability Analysis at Agent Ai.
Input: a current set of states Xi, an unsafe set Υi, received
reachable messages Reachj [t

j
r, t

j
r + T ], j ∈ {1, 2, . . . , N},

and j ̸= i, a current set of waypoints Wi

Output: a new control signal ui and set of waypoints W ′

i

1: procedure REACHABILITY-BASED CONTROL
2: Reachi[t

i
r, t

i
r + T ]← Algorithm 1

3: Ψi ← Reachi[t
i
r, t

i
r + T ] ∩Υi

4: for every received reachable message
Reachj [t

j
r, t

j
r + T ] of Aj do

5: Θij [tir, t
i
r + T ]← ∅

6: % decode message and check usefulness
7: if Reachj [tjr, tjr + T ] is useful then
8: % determine an intersection of reachable sets
9: Θij [tir, t

i
r + T ]← Reachi[t

i
r, t

i
r + T ]

∩ Reachj [t
j
r, t

j
r + T ]

10: if (Θij [tir, t
i
r + T ] ∪Ψi) ̸= ∅ then

11: % recalculating a new set of waypoints
12: W ′

i ←WPUpdate(Wi,Ψ
i,Θij [tir, t

i
r + T ])

13: % update a control signal
14: ui ← ControlUpdate(Xi,W

′

i )

15: return ui, W
′

i

𝑅𝑒𝑎𝑐ℎ𝑖[𝑡𝑟
𝑖 , 𝑡𝑟

𝑖 + 𝑇]

𝑅𝑒𝑎𝑐ℎ𝑗[𝑡𝑟
𝑗
, 𝑡𝑟

𝑖 + 𝑇]

𝑅𝑒𝑎𝑐ℎ𝑖[𝑡𝑟
𝑖 − 𝑇𝑐

𝑖 , 𝑡𝑟
𝑖 − 𝑇𝑐

𝑖 + 𝑇]

𝑅𝑒𝑎𝑐ℎ𝑗[𝑡𝑟
𝑗
− 𝑇𝑐

𝑗
, 𝑡𝑟

𝑗
− 𝑇𝑐

𝑗
+ 𝑇]

Θ𝑖𝑗[𝑡𝑟
𝑗
, 𝑡𝑟

𝑖 + 𝑇]

𝑒1

𝑒2

𝑒3

𝑒0 መ𝑓𝑒2
′

መ𝑓𝑒2

𝑅𝑒𝑎𝑐ℎ𝑖[𝑡𝑟
𝑖 , 𝑡𝑟

𝑖 + 𝑇𝑠
𝑖]

Fig. 4. An illustration of a potential collision between the agents Ai and Aj .
The intersection Θij [tir, t

i
r + T ] is not empty because the positive outward

derivative f̂e2 has a large value that causes the crossing.

Figure 4 illustrates an example where Θij [tir, t
i
r + T ] is

not empty, i.e., there is an intersection between the computed
reachable set of Ai and the received reachable set from Aj .
Here, the positive outward derivative (denoted as f̂e2 ) of
the face e2 has a large value that causes the crossing. The
WPUpdate function takes as input Θij [tir, t

i
r+T ] to calculate

the maximum amount (denoted as f̂
′

e2 ) that the face e2 can
be lifted to the right, and determine a safe time interval T i

s

from tir such that Ai can safely move forward based on its
current state and input signal. Moreover, one can see that
any outward extensions of other faces will be safe in this
case. Taking into accounts of the information acquired from
analyzing Θij [tir, t

i
r + T ], the current set of waypoints Wi

is then modified to avoid a potential collision. For instances,
the agent Ai can move further to the right by the amount
defined by f̂

′

e2 and T i
s , then travel in other directions. We

note that WPUpdate function will try to calculate new a
feasible path with the least effort to achieving a mission goal
with a collision-free guarantee instead of finding an optimal

solution. Consequently, the new control signal ui is computed
based on the current state set of Xi and the updated set of
waypoints W ′

i . Note that in this example, we assume that
the intersection Ψi between Reachi[t

i
r, t

i
r + T ] and the unsafe

region Υi is empty. If Ψi is not empty, the values of f̂
′

e2 and
T i
s can be also determined similarly based on analyzing the

union Ψi ∪Θij [tir, t
i
r + T ]. The following assumption gives a

condition where an agent can always calculate a new feasible
list of waypoints and update its control signal to achieve
a mission within the allowable time. It also guarantees the
continuity of the status of the agent when performing the
control update.

Assumption 6: The agent Ai can always calculate a new
feasible list of waypoints and update its control signal to
achieve a mission within the time interval δiw ≤ tir +T i

c − tiw.

Theorem 7 (Soundness): Suppose that the reachable set
intersection Reachi[t

i
r, t

i
r+T ]∩(Reachj [tjr, tjr+T ]∪Υi) ̸= ∅.

Let T i
s be a safe time interval from tir such that i) T i

s ≤
min(T + tjr − γi − γj − tir, T ), and ii) Reachi[t

i
r, t

i
r + T i

s ] ∩
(Reachj [t

j
r, t

j
r + T i

s ] ∪ Υi) = ∅. The Algorithm 2 is sound
in the sense that if T i

s ≥ Tc then Ai can achieve its mission
without either entering the unsafe region Υi or hitting Aj .

Proof: We have that Reachi[t
i
r, t

i
r + T ] contains all pos-

sible trajectories of the agent Ai from tir to tir + T , and
Reachj [t

j
r, t

j
r + T ] also includes all possible trajectories of

the agent Aj from tjr to tjr + T . Since T i
s < min(T + tjr −

γi − γj − tir, T ) so Reachi[t
i
r, t

i
r + T i

s ] ⊂ Reachi[t
i
r, t

i
r + T ]

and Reachj [t
j , tj + T i

s ] ⊂ Reachj [t
j
r, t

j
r + T ] that contain all

possible trajectories of the agent Ai and Aj up to a safe
interval T i

s from tir, respectively. Because Reachi[t
i
r, t

i
r+T

i
s ]∩

(Reachj [t
j
r, t

j
r+T

i
s ]∪Υi) = ∅, the collision avoidance property

is always satisfied in the time interval [tir, t
i
r+T

i
s ]. In addition,

if T i
s ≥ Tc > tiw − tir + δiw, so Ai has enough time to

recalculate a feasible waypoints to avoid Υi and a potential
collision with Aj based on Assumption 6. Consequently, the
condition T i

s ≥ Tc guarantees that the agent can always update
control signal in the next control period to avoid a collision.

VI. CASE STUDY

In this section, we demonstrate the capability of our ap-
proach in performing a real-time decentralized control for a
group of quadcopters conducting a distributed patrol mission
with safety guarantees. Figure 5 shows a scenario where three
quadcopters A1, A2 and A3 cooperatively conduct a patrol
mission to cover an oil spill following three distinct segments
A− B − C, C −D − E and E − F − A, respectively. Each
segment represents a set of initial way-points provided by a
user where each agent travels back and forth on it.

The dynamics of a quadcopter is given by the equations for
acceleration in the three-dimensions coordination (x, y, z) as
follows [35].

ẍ = (
f

m
)(sin(ψ) sin(ϕ) + cos(ψ) sin(θ) cos(ϕ)),

ÿ = (
f

m
)(sin(ψ) sin(θ) cos(ϕ)− sin(ϕ) cos(θ)),

z̈ = (
f

m
) cos(θ) cos(ϕ)− g,



7

A B

𝐸 𝐷

𝐹 𝐶

𝓐𝟏

𝓐𝟐

𝓐𝟑

Obstacle

Fig. 5. A group of three quadcopters conducting a distributed patrol mission
with safety guarantees.

where θ, ϕ, and ψ are the pitch, roll, and yaw angles in the
body frame, f is sum of the propeller forces, m is the mass of
the quad-copter, and g = 9.81m/s2 is the gravitational accel-
eration constant. We assume that the height of the quadcopter
is constant and only planar motion to waypoints in the (x, y)
plane is desired, i.e., z̈ = 0 and there is no acceleration in the
vertical direction. This assumption yields: f = mg

cos(θ) cos(ϕ) .

The quadcopter dynamics can be further simplified by
assuming the quadcopter’s planar orientation ψ is zero. This
assumption is reasonable in practice since the quadcopter’s
planar orientation ψ can be measured and controlled to stay
within a range [−σ,+σ], where σ is a very small value.
Substituting the above equation with ψ = 0, we have the
simplified model of the quadcopter as ẍ = g × tan(θ), and
ÿ = g × tan(ϕ)

cos(θ) .
To control the position of the quadcopter in the (x, y) plane,

two PID controllers are designed to supply the control inputs
(i.e., the pitch θ and the roll ϕ) for the quadcopter. In every
control period, θ and ϕ are computed based on the current
position of the quadcopter and the current target position
(i.e.,, the current way-points it needs to follow). Based on the
control inputs, the current positions and velocities information
given from GPS and the motion dynamics of the quadcopters,
each agent executes the real-time reachable set computation
algorithm (Algorithm 1) inside the controller. This algorithm
computes the reachable set of the quadcopter from its current
local time to the next T seconds specified by a user.

Implementation and Experiment Setting. The imple-
mentation of our proposed approach and all experimental
results are available at https://github.com/LuanVietNguyen/
DSC-CPS. We implemented our approach as a Java package in
StarL [26], which is a novel platform-independent framework
for programming and simulating distributed robotic systems
on Java/Android. StarL is specifically suitable for controlling a
distributed network of robots over WiFi since it provides many
useful functions and sophisticated algorithms for distributed
applications such as point-to-point motion, mutual exclusion,
registration and geocast. In our approach, we abuse the reliable
communication network of StarL assumed to be asynchronous
and peer-to-peer. There may be message dropouts and trans-
mission delays. However, we assume that every sent message
is eventually delivered to an agent with some time guarantees.

For the experiment, the PID controller of each agent has
control period of T i

c = Tc = 200 milliseconds. Each agent
computes a reachable set from its current local time to the
next T = 2 seconds with an initial reach time step ∆ = 1

milliseconds, and the allowable runtime for the computa-
tion is Trun = 10 milliseconds. The computed reachable
set is then encoded and sent to another quadcopter with a
transmission delay less than 2 milliseconds, and there is no
message dropouts. When a reachable set message arrives, the
quadcopter immediately decodes the message to reconstruct
the current reachable set of the sender. The GPS error is
assumed to be 2%. The time-synchronization error between
the quadcopters’ clocks and the virtual global clock is γ = 3
milliseconds. All experiments were performed with Android
Studio 3.5 executed on an x86-64 laptop with 2.8 GHz Intel(R)
Core(TM) i7-7700HQ processor and 32 GB RAM.

Experiment Scenario and Results. Suppose that the agent
A3 escapes at the middle of operation and there are only two
agents A1 and A2 to continue conducting a patrol mission.
Thus, each of them will cover the new segments A−B−C−D
and D−E−F−A respectively. Suddenly, A3 comes back at E
and travels toward D, while A2 also approaches E. Therefore,
there may be a potential collision between A2 and A3, and
the control must be updated to avoid that.

Figure 6 shows the intermediate reachable sets of the three
quadcopters A1, A2, and A3 in the next T = 2 seconds
time interval corresponding to their local clocks t1, t2 and
t3, respectively. These intermediate reachable sets (appar-
ently shown in the zoom area) are represented by lists of
hyper-rectangles which are essential for verifying the local
safety property at runtime. Here the local safety property
φ

∆
= ẋi < 100 ∧ ẏi < 100, (i.e., the maximum allowable

velocities along the x-axis and y-axis of each agent are less
than 100) is always satisfied. For checking the global safety
property, we use the interval hull of these hyper-rectangles.
Because the intermediate reachable set may contain hundreds
of hyper-rectangles, so it is too large to be transferred via a
network. Instead, we transfer the corresponding interval hull
that covers all possible trajectories of a quadcopter in the time
interval of 2 seconds. We note that transferring the interval
hull instead of the convex hull of the reachable set increases
the approximation errors and yields more conservative results.
However that significantly reduces a transfer time, and is then
more practical in performing a real-time distributed control for
safety-critical systems.

In Figure 6, we can observe that the intersection between
the computed reachable sets of A2 and A3 is not empty,
so there will be a potential collision between them in the
next 2 seconds. The intersection indicates that the maximum
horizontal position that A2 can travel to the right and A3 can
move to the left at x ≈ 1861 from their current positions to
avoid a collision. Also, the safe time instances in the future of
A2 and A3 are T 1

s = 1.415 seconds and T 2
s = 0.8474 seconds,

respectively. The agents use these useful information to update
their waypoints. Since T 1

s and T 2
s are both greater than the

control period Tc, a reasonable control strategy for each agent
is that A2 and A3 will stop at the next control period. Then,
A2 will travel back toward the point E and perform a patrol
mission on the segment A − F − E while A3 will move
back toward the point D and continue a patrol mission on the
segment B − C − D. Consequently, each agent recalculates

https://github.com/LuanVietNguyen/DSC-CPS
https://github.com/LuanVietNguyen/DSC-CPS


8

Fig. 6. The blue, red and green reachable sets of the three quadcopters A1,
A2, A3 in the next T = 2 seconds time interval corresponding to their
local clocks t1, t2 and t3, respectively. The zoomed area shows a very short-
time interval reachable set of the quadcopters. As the intersection between
the computed reachable sets of A2 and A3 is not empty so there will be a
potential collision between them in the next 2 seconds.

Fig. 7. The reachable sets of the three quadcopters A1, A2, A3 in the next
T = 2 seconds time interval corresponding to their local clocks t1 + Tc,
t2 + Tc and t3 + Tc, respectively. After updating the control signals, the
computed reachable sets of A2 and A3 is no longer intersected.

the new list of waypoints and the PID controller then updates
a control signal to drive the motion of the agent following the
new reference signal. Figure 7 shows the reachable sets of the
three quadcopters in the next control period. In this figure, the
computed reachable sets of A2 and A3 in the next 2 seconds
is no longer intersected so the system will continue satisfying
its safety properties. We note that the proposed approach can
be also applied to unmanned ground vehicles and fixed-wing
aircrafts. Indeed, their controllers can be modeled as hybrid
automata including different operation modes (e.g., left, right,
straight and stop), and the vehicle dynamics can be modeled as
a planar-body motion with two degrees of freedom, similarly
to the platform of quadrotors presented in this paper.

Scalability. Next, we investigate the scalability of our
approach. For a distributed system with N agents, the total
time required to performing all activities (including reachable
set computing, encoding, transferring decoding, checking for
a collision, recalculating waypoints and updating a control
signal) of each agent is

T i
total = T i

run + δie + (N − 1)× (δit + δid + δic + δiw).

For our case study, with T i
run = 10 milliseconds, the total

time for each agent (T i
total) are T 1

total = 33.6232 milliseconds,
T 2
total = 37.9 milliseconds and T 3

total = 38.9363 milliseconds,
respectively. We can observe that T i

total is significant less
than the control period of T i

c = 200 milliseconds, then the
procedures of reachable set computation, collision checking,
waypoints and control updates do not affect the performance
of the PID controller. Based on the equation of T i

total, we can
estimate the lower bound of the number of agents that our real-
time reachability analysis-based control approach can handle.
Let δ̄e, δ̄t, δ̄d, δ̄c and δ̄w be the maximum times allocated
for reachable set encoding, transferring decoding, checking
for a collision, recalculating waypoints and updating a control
signal, then the number of agents, at least that our approach
can deal with

N̄ =
Tc − Trun − δ̄e
δ̄t + δ̄d + δ̄c + δ̄w

+ 1.

VII. RELATED WORKS

In this section, we situate our proposed methodology to the
existing literature in the three following categories.

Safe Control and Shield Synthesis for Distributed CPSs.
There are only a few works that can provide an efficient
control for distributed CPSs with safety guarantees. The au-
thors of [3] proposed a decentralized control algorithm that
uses vehicle-to-vehicle communication to determine whether
automatic control is needed to prevent a collision. However,
the approach is limited to a particular scenario of two-vehicle
collision avoidance, where the vehicle dynamics are piecewise
continuous. Although the work proposed in [7] introduces an
interesting distributed control framework for a real-time path
planning under adversarial environment, it does not provide
a real-time safe guarantee for multi-agent systems. Sadigh
et al. [5] introduced an offline algorithm to synthesize safe
controllers given the constraints derived from the probabilis-
tic signal temporal logic specifications, while our approach
can perform an online DSC based on conducting real-time
reachability analysis, where the agent’s dynamics is nonlinear.
Bharadwaj et al. [36] presented the automatic construction of
minimum-cost shield to enforce safety for multi-agent systems.
Another shield synthesis approach proposed in [37] can be
used to ensure the safety in a reinforcement learning setting
for real-timed systems.

Monitoring, and Verification for Distributed CPSs. Ex-
amples of safety monitoring and verification for distributed
CPSs include the formal approach for verifying parame-
terized protocols in mobile CPSs introduced in [16], the
distributed graph queries for runtime monitoring of safety-
critical CPSs presented in [17], and the formal modeling and
offline verification based on model checking and Multirate
PALS methodologies proposed in [38]. The work of [20]
utilizes contraction theory and convex optimization to generate
certifiably safe trajectories for robotic systems with nonlinear
dynamics subject to bounded disturbances, input and online
state constraints. Convex optimization was also applied to
compute fail-safe trajectories in real-time for self-driving cars
in [21]. Although these works can provide safety guarantee
for specific distributed CPSs in a centralized manner, the main



9

difference from our approach is that they do not provide an
adaptive decentralized control for a generic distributed CPS to
achieve its mission objectives with safety guarantees during
runtime operation.

The approaches proposed in [29]–[31] are very first works
using set-based verification and prediction for a system of
automated vehicles, whose dynamics can be linearized. Al-
thoff, et al. [32] introduced the set of interconnectable modules
which enforces the safety of assembled robots through self-
programming and self-verification. The most related to our
work is the online verification proposed in [33] which utilizes
CORA toolbox [10] to perform a reachability analysis that
can guarantee safe motion of mobile robots with respective to
walking pedestrians modeled as hybrid systems. However, this
work does not consider a time-elapse for encoding, transferring
and decoding the reachable set messages between each agent,
which plays an important role in distributed systems.

Reachability Analysis Techniques and Tools. There are
several significant research and tools have been introduced
to compute the set of reachable states for a distributed
CPS modeled as a network of hybrid automata, where the
motion dynamics can be either linear (e.g., d/dt [39] and
SpaceEx [40]) or nonlinear (e.g., Flow*[13] and dReach[14]).
The works presented in [41], [42] can be also used to verify
distributed CPSs. However, all of these approaches do not
consider a real-time aspect and have expensive computation
cost. Our decentralized control approach utilizes the face-
lifting technique [24] to efficiently compute the reachable set
of an agent with a high precision degree in real-time.

VIII. CONCLUSION AND FUTURE WORKS

In this paper, we have presented a DSC approach based
on conducting real-time reachability analysis for distributed
CPSs. Each agent can periodically compute the local reachable
set from the current local time to some time instant in the near
future, and then broadcast a message containing the computed
reachable set to the other agents via a shared communication
channel. When an agent receives such a reachable set message,
it can perform a peer-to-peer coupled constraint collision
checking based on its own current state and the reachable set of
the sender. The agent can also compare its computed reachable
set to unsafe regions such as obstacles. If the agent detects a
potential collision, it will recalculate waypoints and update
the corresponding control signal in the next control period
to avoid that happens. We demonstrated the applicability of
our approach by using it to efficiently perform a real-time
decentralized control for a group of quadcopters conducting
a distributed patrol mission with safety guarantees. We also
discussed the scalability of our approach.

Future Works. To increase scalability and practicability
of the proposed method, we plan to i) model all activities
as a periodic scheduling model with a period, a deadline,
and a bound on execution time, ii) exploit the benefit of
parallel processing, i.e., each agent simultaneously handles
multiple reachable set messages and collision checks, and
iii) cope with network communication issues such as message
drop-outs and arbitrary communication delays. iv) deploy our

DSC method on a real-platform and extend it to work with
distributed learning-enabled CPSs that have heterogeneous
agents whose motion dynamics are unknown, but can be
learned and verified [43]–[45].

ACKNOWLEDGMENTS

The material presented in this paper is based upon work sup-
ported through Defense Advanced Research Projects Agency
(DARPA) contract number FA8750-18-C-0089, Air Force Of-
fice of Scientific Research (AFOSR) award FA9550-22-1-
0019, the National Science Foundation (NSF) grant numbers
2028001 and 2220418. Any opinions, findings, and conclu-
sions or recommendations expressed in this publication are
those of the authors and do not necessarily reflect the views
of DARPA, AFOSR, nor NSF.

REFERENCES

[1] T. Fraichard and H. Asama, “Inevitable collision states—a step towards
safer robots?” Advanced Robotics, vol. 18, no. 10, pp. 1001–1024, 2004.

[2] S. Bak, D. K. Chivukula, O. Adekunle, M. Sun, M. Caccamo, and
L. Sha, “The system-level simplex architecture for improved real-time
embedded system safety,” in 2009 15th IEEE Real-Time and Embedded
Technology and Applications Symposium. IEEE, 2009, pp. 99–107.

[3] M. R. Hafner, D. Cunningham, L. Caminiti, and D. Del Vecchio,
“Cooperative collision avoidance at intersections: Algorithms and ex-
periments,” IEEE Transactions on Intelligent Transportation Systems,
vol. 14, no. 3, pp. 1162–1175, 2013.

[4] L. V. Nguyen, H.-D. Tran, and T. T. Johnson, “Virtual prototyping for
distributed control of a fault-tolerant modular multilevel inverter for
photovoltaics,” IEEE Transactions on Energy Conversion, vol. 29, no. 4,
pp. 841–850, 2014.

[5] D. Sadigh and A. Kapoor, “Safe control under uncertainty
with probabilistic signal temporal logic,” in Proceedings
of Robotics: Science and Systems XII, June 2016. [On-
line]. Available: https://www.microsoft.com/en-us/research/publication/
safe-control-uncertainty-probabilistic-signal-temporal-logic/

[6] P. Zhou, D. Zuo, K.-M. Hou, and Z. Zhang, “A decentralized composi-
tional framework for dependable decision process in self-managed cyber
physical systems,” Sensors, vol. 17, no. 11, p. 2580, 2017.

[7] M. Abdelkader, H. Jaleel, and J. S. Shamma, “A distributed framework
for real time path planning in practical multi-agent systems,” IFAC-
PapersOnLine, vol. 50, no. 1, pp. 10 626–10 631, 2017.

[8] C. Le Guernic and A. Girard, “Reachability analysis of hybrid systems
using support functions,” in Computer Aided Verification. Springer,
2009, pp. 540–554.

[9] A. Girard, C. Le Guernic, and O. Maler, “Efficient computation of
reachable sets of linear time-invariant systems with inputs,” in Hybrid
Systems: Computation and Control. Springer, 2006, pp. 257–271.

[10] M. Althoff, “An introduction to cora 2015,” in Proc. of the Workshop
on Applied Verification for Continuous and Hybrid Systems, 2015.

[11] T. A. Henzinger, P.-H. Ho, and H. Wong-Toi, “Hytech: A model checker
for hybrid systems,” in Computer aided verification. Springer, 1997,
pp. 460–463.

[12] G. Frehse, C. Le Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel,
R. Ripado, A. Girard, T. Dang, and O. Maler, “Spaceex: Scalable ver-
ification of hybrid systems,” in International Conference on Computer
Aided Verification. Springer, 2011, pp. 379–395.

[13] X. Chen, E. Ábrahám, and S. Sankaranarayanan, “Flow*: An analyzer
for non-linear hybrid systems,” in International Conference on Computer
Aided Verification. Springer, 2013, pp. 258–263.

[14] S. Kong, S. Gao, W. Chen, and E. Clarke, “dreach: δ-reachability
analysis for hybrid systems,” in International Conference on Tools and
Algorithms for the Construction and Analysis of Systems. Springer,
2015, pp. 200–205.

[15] S. Balasubramaniyan, S. Srinivasan, F. Buonopane, B. Subathra, J. Vain,
and S. Ramaswamy, “Design and verification of cyber-physical systems
using truetime, evolutionary optimization and uppaal,” Microprocessors
and microsystems, vol. 42, pp. 37–48, 2016.

[16] L. Zhang, W. Hu, W. Qu, Y. Guo, and S. Li, “A formal approach
to verify parameterized protocols in mobile cyber-physical systems,”
Mobile Information Systems, vol. 2017, 2017.

https://www.microsoft.com/en-us/research/publication/safe-control-uncertainty-probabilistic-signal-temporal-logic/
https://www.microsoft.com/en-us/research/publication/safe-control-uncertainty-probabilistic-signal-temporal-logic/


10

[17] M. Búr, G. Szilágyi, A. Vörös, and D. Varró, “Distributed graph queries
for runtime monitoring of cyber-physical systems,” in International Con-
ference on Fundamental Approaches to Software Engineering. Springer,
Cham, 2018, pp. 111–128.

[18] H.-D. Tran, L. V. Nguyen, P. Musau, W. Xiang, and T. T. Johnson,
“Decentralized real-time safety verification for distributed cyber-physical
systems,” in International Conference on Formal Techniques for Dis-
tributed Objects, Components, and Systems. Springer, 2019, pp. 261–
277.

[19] A. Majumdar and R. Tedrake, “Funnel libraries for real-time robust feed-
back motion planning,” The International Journal of Robotics Research,
vol. 36, no. 8, pp. 947–982, 2017.

[20] S. Singh, A. Majumdar, J.-J. Slotine, and M. Pavone, “Robust online mo-
tion planning via contraction theory and convex optimization,” in 2017
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2017, pp. 5883–5890.

[21] C. Pek and M. Althoff, “Computationally efficient fail-safe trajectory
planning for self-driving vehicles using convex optimization,” in 2018
21st International Conference on Intelligent Transportation Systems
(ITSC). IEEE, 2018, pp. 1447–1454.

[22] D. Fridovich-Keil, S. L. Herbert, J. F. Fisac, S. Deglurkar, and C. J.
Tomlin, “Planning, fast and slow: A framework for adaptive real-time
safe trajectory planning,” in 2018 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2018, pp. 387–394.

[23] S. Manzinger and M. Althoff, “Tactical decision making for cooperative
vehicles using reachable sets,” in 2018 21st International Conference on
Intelligent Transportation Systems (ITSC). IEEE, 2018, pp. 444–451.

[24] T. Dang and O. Maler, “Reachability analysis via face lifting,” in Hybrid
Systems: Computation and Control (HSCC ’98). Springer, 1998, pp.
96–109, lNCS 1386.

[25] D. L. Mills, Computer network time synchronization: the network time
protocol on earth and in space. CRC press, 2017.

[26] Y. Lin and S. Mitra, “Starl: Towards a unified framework for program-
ming, simulating and verifying distributed robotic systems,” in Proceed-
ings of the 16th ACM SIGPLAN/SIGBED Conference on Languages,
Compilers and Tools for Embedded Systems 2015 CD-ROM, 2015, pp.
1–10.

[27] T. A. Henzinger, “The theory of hybrid automata,” in IEEE Symposium
on Logic in Computer Science (LICS). Washington, DC, USA: IEEE
Computer Society, 1996, p. 278.

[28] N. Lynch, R. Segala, F. Vaandrager, and H. B. Weinberg, Hybrid i/o
automata. Springer, 1996.

[29] M. Althoff and J. M. Dolan, “Online verification of automated road
vehicles using reachability analysis,” IEEE Transactions on Robotics,
vol. 30, no. 4, pp. 903–918, 2014.

[30] M. Althoff and S. Magdici, “Set-based prediction of traffic participants
on arbitrary road networks,” IEEE Transactions on Intelligent Vehicles,
vol. 1, no. 2, pp. 187–202, 2016.

[31] D. Althoff, M. Althoff, and S. Scherer, “Online safety verification of
trajectories for unmanned flight with offline computed robust invariant
sets,” in 2015 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). IEEE, 2015, pp. 3470–3477.

[32] M. Althoff, A. Giusti, S. B. Liu, and A. Pereira, “Effortless cre-
ation of safe robots from modules through self-programming and self-
verification,” Science Robotics, vol. 4, no. 31, 2019.

[33] S. B. Liu, H. Roehm, C. Heinzemann, I. Lütkebohle, J. Oehlerking,
and M. Althoff, “Provably safe motion of mobile robots in human en-
vironments,” in Intelligent Robots and Systems (IROS), 2017 IEEE/RSJ
International Conference on. IEEE, 2017, pp. 1351–1357.

[34] L. Lamport, “Time, clocks, and the ordering of events in a distributed
system,” Communications of the ACM, vol. 21, no. 7, pp. 558–565, 1978.

[35] T. Luukkonen, “Modelling and control of quadcopter,” Independent
research project in applied mathematics, Espoo, 2011.

[36] S. Bharadwaj, R. Bloem, R. Dimitrova, B. Konighofer, and U. Topcu,
“Synthesis of minimum-cost shields for multi-agent systems,” in 2019
American Control Conference (ACC). IEEE, 2019, pp. 1048–1055.

[37] R. Bloem, P. G. Jensen, B. Könighofer, K. G. Larsen, F. Lorber,
and A. Palmisano, “It’s time to play safe: Shield synthesis for timed
systems,” arXiv preprint arXiv:2006.16688, 2020.

[38] K. Bae, J. Krisiloff, J. Meseguer, and P. C. Ölveczky, “Designing
and verifying distributed cyber-physical systems using multirate pals:
An airplane turning control system case study,” Science of Computer
Programming, vol. 103, pp. 13–50, 2015.

[39] E. Asarin, T. Dang, and O. Maler, “The d/dt tool for verification
of hybrid systems,” in International Conference on Computer Aided
Verification. Springer, 2002, pp. 365–370.

[40] G. Frehse, C. Le Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel,
R. Ripado, A. Girard, T. Dang, and O. Maler, “SpaceEx: Scalable
verification of hybrid systems,” in Computer Aided Verification (CAV),
ser. LNCS. Springer, 2011.

[41] P. Kumar, D. Goswami, S. Chakraborty, A. Annaswamy, K. Lampka, and
L. Thiele, “A hybrid approach to cyber-physical systems verification,” in
Proceedings of the 49th Annual Design Automation Conference. ACM,
2012, pp. 688–696.

[42] S. M. Loos, A. Platzer, and L. Nistor, “Adaptive cruise control: Hybrid,
distributed, and now formally verified,” in International Symposium on
Formal Methods. Springer, 2011, pp. 42–56.

[43] H.-D. Tran, X. Yang, D. M. Lopez, P. Musau, L. V. Nguyen, W. Xiang,
S. Bak, and T. T. Johnson, “NNV: The neural network verification tool
for deep neural networks and learning-enabled cyber-physical systems,”
in 32nd International Conference on Computer-Aided Verification (CAV),
July 2020.

[44] H.-D. Tran, P. Musau, D. M. Lopez, X. Yang, L. V. Nguyen, W. Xiang,
and T. T. Johnson, “Parallelizable reachability analysis algorithms for
feed-forward neural networks,” in 2019 IEEE/ACM 7th International
Conference on Formal Methods in Software Engineering (FormaliSE).
IEEE, 2019, pp. 51–60.

[45] ——, “Star-based reachability analysis for deep neural networks,” in
23rd International Symposium on Formal Methods (FM’19). Springer
International Publishing, October 2019.

Luan V. Nguyen is currently an Assistant Professor
at the Department of Computer Science, Univer-
sity of Dayton. He received his Ph.D. degree in
Computer Engineering at the University of Texas at
Arlington in May 2020. Dr. Nguyen’s research inter-
est is to develop formal verification techniques and
state-of-the-art tools to enforce safety, reliability, se-
curity and resiliency of autonomous cyber-physical
systems (CPS), with practical applications across
CPS domains such as automotive, medical devices,
aerospace, robotics, power and energy systems.

Hoang-Dung Tran is currently an Assistant Profes-
sor in the School of Computing at the University of
Nebraska (UNL), Lincoln. He earned a Ph.D. degree
in Computer Science at Vanderbilt University in
August 2020. His research interests are specification
language, formal verification, monitoring, safe con-
trol, planning, and learning for autonomous cyber-
physical systems (CPS), focusing on in-road and off-
road autonomous driving, human-robot-interaction
in construction and surgery. His work on verification
of learning-enabled CPS has won the prestigious

IEEE TCCPS outstanding dissertation award 2021.

Taylor T. Johnson is A. James and Alice B. Clark
Foundation Chancellor Faculty Fellow and Associate
Professor of Computer Science at Vanderbilt Univer-
sity. He received his B.S.E.E. from Rice University
and M.S. and Ph.D. from the University of Illinois
at Urbana-Champaign. He is a recipient of the Air
Force Office of Scientific Research (AFOSR) Young
Investigator Program (YIP) Award and several best
paper and artifact awards. His research interests are
in formal methods and verification for autonomous
CPS that incorporate machine learning components.

Vijay Gupta is in the Elmore Family School of
Electrical and Computer Engineering at the Purdue
University. He received his B. Tech degree at Indian
Institute of Technology, Delhi, and his M.S. and
Ph.D. at California Institute of Technology, all in
Electrical Engineering. He received the 2018 Anto-
nio J Rubert Award from the IEEE Control Systems
Society, the 2013 Donald P. Eckman Award from
the American Automatic Control Council and a
2009 National Science Foundation (NSF) CAREER
Award. His research interests are broadly at the

interface of communication, control, distributed computation, and human
decision making.


	I Introduction
	II System Modeling
	III Problem Formulation
	IV Real-time Reachable Set Computation
	IV-A The Face-Lifting Approach
	IV-B Real-time Reachable Set Computation

	V Decentralized Reachability Analysis-based Control
	V-A Task Scheduling Architecture
	V-B Reachable Set Message
	V-C Decentralized Reachability Analysis-based Control

	VI Case Study
	VII Related Works
	VIII Conclusion and Future Works
	References
	Biographies
	Luan V. Nguyen 
	Hoang-Dung Tran 
	Taylor T. Johnson 
	Vijay Gupta


