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Neural network approximations have become attractive to compress data for automation
and autonomy algorithms for use on storage-limited and processing-limited aerospace hard-
ware. However, unless these neural network approximations can be exhaustively verified to
be safe, they cannot be certified for use on aircraft. An example of such systems is the un-
manned Airbone Collision Avoidance System (ACAS Xu), which is a very popular benchmark
for open-loop neural network control system verification tools. This paper proposes a new
closed loop extension of this benchmark, which consists of a set of ten closed loop properties
selected to evaluate the safety of an ownship aircraft in the presence of a co-altitude intruder
aircraft. These closed loop safety properties are used to evaluate 5 of the 45 neural networks
that comprise the ACAS Xu benchmark (corresponding to co-altitude cases) as well as the
switching logic between the 5 neural networks. The combination of nonlinear dynamics and
switching between five neural networks is a challenging verification task accomplished with
star set reachability methods in two verification tools. The safety of the ownship aircraft under

initial position uncertainty is guaranteed in every scenario proposed.
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Subscripts

cg =

angle to intruder w.r.t ownship heading, rad
heading of intruder w.r.t. ownship heading, rad
velocity, ft/s

time until loss of vertical separation, s

previous advisory

strong left

weak left

clear of conflict

weak right

strong right

position of the aircraft in cartesian x-direction, ft
position of the aircraft in the cartesian y-direction, ft
aircraft velocity in the x-direction, ft/s

aircraft velocity in the y-direction, ft/s

time rate of change in heading, rad/s

user defined constant control input to ownship, ft/s
third angle planar relative in aircraft geometry, rad
time to collision, s

tuple

set of states

mapping matrix

offset vector

vector

center vector

set of basis vectors

basis vector

predicate

polyhedron

constraint matrix

constraint vector

center of gravity



int = intruder
own = ownship
G = polyhedron

I. Introduction

The use of machine learning in information technology domains has drastically improved automated capabilities
like natural language processing [1], image classification [2], and object detection [3]. In the last several years machine
learning has also tackled complex game playing with high dimensional state spaces, beating world experts in Go [4, 5]
and StarCraft II [6]. In addition to potentially optimizing performance of complex systems, neural networks are often
much smaller and faster to compute than other optimization algorithms, making them attractive for use on Cyber-Physical
Systems (CPS) like robots, cars, drones, and satellites. For example, neural networks have been used to compress the 2
gigabytes of lookup tables used by the Airborne Collision Avoidance System X (ACAS X) to 5 megabytes of neural
network weights [7]. However, verification of machine learning in safety-critical system domains has historically been
limited to frameworks that treat neural networks like black boxes. Neural networks (NN) are not black boxes, they
compute deterministic mathematical functions that are increasingly amenable to formal reasoning methods [8, 9]. While
many of these methods focus on analyzing the networks in isolation, several recent methods attempt to verify neural
network control systems (NNCS) [10-22].

Despite the recent progress in NNCS verification, developing scalable and non-conservative methods remains a key
issue. Due to this growing trend and remaining challenges, several friendly competitions have been recently organized to
compare the performance of these verification tools, including [23] for NN verification and [24] for NNCS verification.
In addition to these competitions, studies by Ivanov et al. [25], Tran et al. [18] and D. Manzanas Lopez et al. [20],
have investigated the limits and capabilities of existing verification methods and tools [10, 19], and the trade-offs
between scalability and conservativeness. Similar to the proposed NNCS in this work, Julian and Kochenderfer [26]
and Akintunde et al. [16, 17] have formally verified another collision avoidance system for aircraft. Specifically, a
closed-loop variant of the simplified version of the vertical avoidance control system in aircraft, the Vertical Collision
Avoidance System (Vertical CAS) [27], is verified using reachability analysis and Mixed Integer Linear Programming
(MILP) methods respectively. In addition to the Vertical CAS, Julian and Kochenderfer [28, 29] presented the same
formal approach to verify the safety of Horizontal Collision Avoidance System (Horizontal CAS), which is another
advisory system inspired by early prototypes of the ACAS Xu and presents the same input-output space of the ACAS
Xu system, but with smaller size neural networks. Irfan et al. [21] formally verified the advisory system for small
unmanned aircraft [30] (ACAS sXu) via symbolic interval reachability analysis with ReluVal [31]. The research studied

a different state space and was comprised of smaller neural network controllers than the ACAS Xu NNCS presented here.



Similarly, Claviere et al. [22] use ReluVal to formally analyze one test case of the ACAS Xu NNCS in combination with
a validated simulation approach to approximate the reachable sets of the plant. This manuscript aims to extend and
improve the verification results of these studies to a comprehensive set of benchmarks in which two aircraft are travelling
at the same altitude. These benchmarks are evaluated using star set reachability methods via the NNV [19] and nnenum
[32] NNCS verification tools, which improve the scalability and over-approximation tightness of the symbolic interval
analysis approaches. To the best of our knowledge, without any additional modifications or enhancements to existing
NNCS reachability tools, these are the only NNCS tools that are able to verify this benchmark due to the switching
behavior of the classification-based controllers. These improvements are specially notable in 7 of the 10 test cases
where the intruder is approaching the ownship from either side. The symbolic interval analysis methods in [22] are only
able to verify 75% of the area considered in these cases, while increasing the verification time between 1 and 2 orders of
magnitude with respect to other areas. On the other hand, the star set methods utilized in this work are able to verify the
safety of the entire region considered for each of these test cases whilst maintaining a similar computation time as the
other experiments.
The main contributions of this paper are:
* A description of the ACAS Xu neural network compression closed loop benchmark and definition of ten closed
loop verification properties.
* Improved scalability and over-approximation tightness in star-set reachability methods by developing a verification
approach for neural network closed loop systems with switching classification-based controllers using star sets.
* Successful verification of 5 of 45 ACAS Xu Neural Networks corresponding to cases with no vertical separation,
and the switching behavior against all ten safety properties using two reachability analysis tools: NNV and
nnenum.
The rest of the paper is organized as follows. Section II describes the ACAS Xu NN compression system, and
Section III describe the plant model used as well as the NNCS benchmark. Section I'V describes the closed loop test
case generation of safety properties while in Section V the evaluation approaches used are defined. Finally, section VI

introduces the results and section VII provides the concluding remarks and future work plans.

II. ACAS X
The Airborne Collision Avoidance System X (ACAS X) is under development to one day replace the Traffic Collision
Advisory System II (TCAS II) as a mid-air collision prevention system [33]. ACAS X is designed to be compatible with
the FAA’s Next-Generation Air Transportation System (NextGen), which uses new sensing and navigation technologies
coupled with new procedures to better optimize air traffic [33].
There are five variants of ACAS X [33], and this manuscript provides a collection of 10 closed loop properties to

analyze the safety of a neural network approximation of the ACAS Xu variant:



* ACAS Xa (active): Designed to provide protection from all tracked aircraft using onboard sensors on large manned
aircraft, ACAS Xa issues alerts and vertical advisories to the pilot [34].

e ACAS Xu (unmanned): Optimized for unmanned aircraft systems (UAS), ACAS Xu issues turn rate advisories to
remote pilots [35].

* ACAS Xo (operation): special alerts during operations such as parallel runway approaches [33].

* ACAS Xp (passive): tracks aircraft for potential collisions, but doesn’t produce advisories [33].

e ACAS sXu (small unmanned): Designed for small UAS (sUAS) to avoid collision with manned aircraft, UAS, and
other sUAS [30].

Both ACAS Xa and ACAS Xu have a goal to avoid near midair collisions (NMAC) [36], defined as separation less

than 100 ft vertically and 500 ft horizontally [37], as depicted in Fig. 1.
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Fig. 1 Near midair collision cylinder, defined as separation less than 100 ft vertically and 500 ft horizontally.

ACAS X functionality centers on the use of a set of look up tables generated offline with dynamic programming and
Markov decision processes (MDPs) [38]. The input to these lookup tables is a probabilistic state distribution of the
relative position and velocity of nearby aircraft approximated from sensor data. The output of the lookup tables is a
cost used by ACAS X to decide the optimal advisory to provide to the pilot: no alert, traffic advisory, or a resolution
advisory for pilots to maintain or increase safe separation from other aircraft [33].

This manuscript focuses on analysis of the ACAS Xu variant of ACAS X, described briefly in Section II.A, and
specifically, a neural network compression of this ACAS Xu algorithm, described in Section II.B. The ACAS Xu neural
networks receive actual states of the system, rather than probabilistic state distributions from sensor data, and output the

most optimal action.

A. ACAS Xu

ACAS Xu, the unmanned aircraft version, assigns values to a set of output actions based on a set of input variables
as described in Table 1. The first five variables describe 2D considerations, the sixth variable brings the scenario into
3D, and the seventh variable promotes advisory selection consistency. In the initial lookup tables, the state variables are
discretized in a seven dimensional grid with 120 million points [39] that assign a value to each of 5 different output
action options, resulting in 600 million floating point numbers. When the state of the system falls between discrete

points, the nearest neighbor point is used [39]. To deal with sensor uncertainty in the system state, ACAS Xu uses an



unscented Kalman filter [40].

Fig. 2 Diagram of the ACAS Xu physical variables.

Table 1 Input state variables used in ACAS Xu.

Variable Units Description Tables NN
P ft distance between ownship and intruder Y Y
0 rad angle to intruder w.r.t ownship heading Y Y
v rad heading of intruder w.r.t. ownship heading Y Y
Vown ft/s velocity of ownship Y Y
Vint ft/s velocity of intruder Y Y
T S time until loss of vertical separation Y N
Aprev deg/s previous advisory Y N

Table 2 ACAS Xu Actions (Horizontal Collision Avoidance).

Action  Description

SL strong left at 3.0 deg/s

WL weak left at 1.5 deg/s

coc clear of conflict (do nothing)
WR weak right turn at 1.5 deg/s
SR strong right turn at 3.0 deg/s

B. Neural Network Compression of ACAS Xu

A major challenge to the implementation of ACAS Xu is that the initial look up tables require hundreds of gigabytes
of floating point storage [7]. Using a technique called downsampling, values may be removed from the table in areas
where variation between the values is very small and has been shown to reduce ACAS Xu table size to approximately 2
gigabytes [7]. For ACAS Xa, which limits advisories to vertical maneuvers and has smaller lookup tables to begin with,

downsampling was sufficient [41]. However, ACAS Xu’s 2 gigabyte size may still be too large for the storage constraints



of certified avionics hardware on UAS[28].

Developed in [7] and evaluated in [35], 45 separate neural networks were used to compress the lookup table. Each
network is denoted N, g, where y corresponds to the index (1 to 5) of a specific value of previous advisory apey €
{COC,WL,WR,SL, SR} and B corresponds to the index (1 to 9) of a specific value of time to loss of vertical separation
T €40, 1,5, 10,20, 40, 60, 80, 100} seconds. For example, N> 3 corresponds to a neural network in which ap,e, = WL
and 7 = 5. Then each of these networks receives inputs for the remaining five state variables (p, 6, ¥, Voywn, and viy,)
and outputs a value associated with each of the five output variables ({COC, WL, WR, SL, SR}). Several architectures
and optimizers were considered and analyzed for the training of all the 45 neural networks. AdaMax, a variant of Adam,
was chosen as it proved to learn the fastest without getting stuck in local optima. As for the layer architecture, six hidden
layers of 50 neurons each proved to yield the best results while maintaining an efficient computation time [7]. Hence, all

the neural networks have five inputs, five outputs and six hidden layers of 50 neurons each, as depicted in Fig. 3.
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Fig.3 Depiction of the ACAS Xu neural network.
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C. Open-Loop vs. Closed-Loop Verification

Previous research has verified the neural networks using a set of open-loop test points [27, 28, 35, 39]. In other
words, for a single instant in time, the neural network is verified to output appropriate scores for a particular set of
inputs. The open-loop properties described in [35] became a popular benchmark for open loop verification, and are
summarized here in the Appendix. However, a much more important property that needs to be verified for these neural
networks is that, when used in closed-loop control, the neural network approximation of the lookup tables will not result
in control actions that violate the NMAC safety constraint depicted earlier in Fig. 1. The development and description

of a set of closed-loop safety properties is one of the main contributions of this paper.



D. Set-based Verification Compared to Monte Carlo and Design of Experiments

Set-based verification is a possible alternative to Monte Carlo simulation, which uses thousands or millions of
random samples to evaluate performance across the system state space [42]. An alternative approach to Monte Carlo,
especially when evaluating individual points is computationally expensive, is to apply Design of Experiments to sample
the state space in a structured way rather than randomly [43]. Latin Hypercube can be applied to Monte Carlo or Design
of Experiments approach to use a reduced sample spread evenly across the state space [44]. However, Monte Carlo and
Design of Experiments are not as comprehensive as set-based neural network verification, which is the focus of this

manuscript.

I11. Model
The verification effort in this paper focuses on verifying 5 of 45 total neural networks corresponding to cases where
the loss of vertical separation 7 is O (N, N2, Ni3, Ni4, and Nis). This reduces the problem to a two-dimensional
co-altitude case. Nonetheless, verification of these neural networks and the switching between them present a significant
challenge. Focusing on the co-altitude cases, the nonlinear plant model of the intruder and ownship aircraft are both

represented using Dubins aircraft model described in Eq. 1.

X1 =x=vcos(y),

Xy =y =vsin(y), (D

X3 =y =u,

This is a simplified yet reasonable model of the aircraft dynamics at a similar level of abstraction as the inputs to the
ACAS Xu NNCS, which represents the aircraft in terms of velocities, headings, and distances. However, the ACAS Xu
NN model requires inputs in terms of distance p, angle to intruder from ownship 6, and heading of intruder with respect
to ownship . Conversion between the states of the Dubins model of each aircraft and the variables used as inputs to the

NN is achieved via a set of complex nonlinear functions defined in Eq. 2.

p= \/(xint _xown)2 + (Yint - ygwn)2
Yint = Yown

Xint —Xown + P

U =Yint —¥Yown

0 = 2tan”'( ) —Yown (2

Verification tools are often not able to encode these equations. Thus, these functions are converted to ordinary

differential equations (ODEs) by computing their time derivatives. Finally, these and the Dubins models are combined



into a single nonlinear model with 9 state variables as described in Eq. 3.

X1 = Xown = vcos(Wown),

X2 = Yown = VSin(Yown),

X3 =Yown = U,

X4 = Xine = veos(Wing),

X5 = Yine = vsin(Yint), 3)

X6 = l/./int =,
ir=p= Yint = Yown) Yint = Yown) + (Xint = Xown) Kint — Xown)
V&int = Xown)? + Yint = Yown)?
2(Vint = Yown) Xint = Xown + P) = 2(Vint = Yown) (KXint = Xown + 0)
(Yint = Yown)*(Xown = Xint + p)?

>

-x8 = 6 = - lpown,

X9 = l/’ = ‘/’int - lj’own

ACAS Xu NN ir ‘7

the angles are alway

initSet (9)
1- Plant
advwy (7) . outPlant (5)
X =f({X,advyy)
Y=CX
4 — Advisory 2 - Pre-process

(Argmin) | (Normalize)

3 - NN switch

Choose NN,
outputyy (5) B:Isl\eld NN, inputyy (%)
on NN;
Previous NN,
Advisory| NN;

11
Fig. 4 Diagram of the ACAS Xu neural network closed loop system.

A. NNCS benchmark

Combining the ACAS Xu neural network system and the nonlinear dynamical model, the ACAS Xu NNCS
benchmark is presented in a diagram in Fig. 4. There are four main components or operations highlighted:

* 1: plantReach(): The plant dynamics are simulated based on a specified initial state (initSet) and advisory (advy )

for two seconds (sampling time).



 2: normalizeNNinputs(): Then, the outputs of the plant (outPlant) are scaled and normalized.

¢ 3 and 4: NNreach():

— 3:Reach(): The scaled outputs (inputy ) are processed by the corresponding neural network controller,
which is selected based on the previous advisory and the loss of vertical separation, as described in Section
IL.B.

— 4: argminNN(): Based on the five outputs of the neural network (outputy ), the turn rate advisory (advy n)
is computed (argmin) and commanded to the plant.

The name of the variables being processed by the next component are defined on top of the arrows and their
respective dimensions are specified in parenthesis, i.e. outPlant (5) is a five dimensional variable output in 1) and
normalized in 2). It is assumed that the velocities and the flight altitude of both aircraft is constant. Thus, the ACAS Xu
neural network system is able to choose between the five neural networks corresponding to no time to loss of vertical
separation (7 = 0). The sampling time of 2 seconds is selected based on the dynamics of the airplane, which doing it too

often and changing the direction of the trajectory may be chattering, while doing it too infrequently may lead to crashes.

IV. Closed Loop Verification Test Case Generation

The objective of the closed loop verification tests is to demonstrate that the ownship and intruder aircraft remain
safely separated given a set of initial conditions with uncertainty. The benchmarks presented here are not intended to
provide complete coverage of the state space, but rather provide a challenge for NNCS verification approaches with a
collection of 10 closed loop properties or test cases defined in Table 4 and depicted in Fig. 6. The closed loop properties
presented in this paper are a complement to the open loop properties, both of which sample portions of the state space.
The closed loop cases specifically sample from a set of cases on a collision course, while the open loop cases do not
specifically look at collision cases. A larger sampling outside of the 10 individual test cases is created by adding
uncertainty about these points (for example +5000 ft in x and + 200 ft in y). Then the set of states reachable from
the initial set of states is found using reachability tools such as NNV or nnenum. These benchmarks are not intended
to provide complete coverage of the state space, but rather demonstrate the capabilities of star set-based verification
approach, a more comprehensive approach with formal guarantees, as an alternative to Monte Carlo or Design of
Experiments-based simulation analysis.

For the closed loop benchmarks, the unsafe set is defined by the NMAC cylinder when there is a separation of less
than 100 ft vertically or 500 ft horizontally. To scope the testing, the following ranges of variables are used: distances
from 0O to the maximum turn diameter (p € [0, 87472] ft), the full range of angles to the intruder and heading of the
intruder with respect to the ownship (6 € [—n, n],¢ € [—n, n]), and full range of reasonable velocities from a slow
takeoff velocity to over Mach 1 (v;;,; € [60, 1145] ft/s, vy, € [100, 1145] ft/s). These limits, including different

velocity ranges for the ownship and intruder, are inspired by previous work in defining open loop verification properties
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[35]. By law of sines, the variables used to describe the relative aircraft geometry are related with the time to collision T
as described in Eq. 4, and four examples (closing left, closing right, head on and tail chase) are depicted in Fig. 5.
Any collision test case can be generated by fixing the time to collision 7', 6, v;;,;, and p, and computing the remaining

variables as described in Table 3.

1% _ VownT _ Vint T
sinyg  sin(@-n—y) sin(2r —0)

“4)

? Vown Vown ?
: Vine vintI
| :

- = A A
v
p p |
Mown ‘;‘vown
\ W
L]
(a) Closing Left (b) Closing Right (c) Head On (d) Tail Chase

Fig. 5 Closed Loop Test Case Geometry Examples

Table3 Computing Ownship Velocity and relative heading from randomly selected angle to intruder, intruder
velocity, and distance to the intruder

Closing Left Closing Right Head On Tail Chase
6 O<6<nm -1<0<0 0==xm 6=0
v —sin”! (Tfm sin(|9|)) sin”! (Tgm sin(|9|)) 0 0or 7
¢ (from sum of angles) T — 6] — || T —16] - || - -
Vint Sin(¢) Vint Sin(¢) T Vint—p T Vinttp
Vown 5in(16]) sin(10]) T T

To generate a standard set of closed loop test cases, 6, v;,;, and p were selected from the following discretized sets of
values and used to calculate appropriate values of vy, and y: 6 € {-3n/4,-n/2,-37/8,-n/4,0,n/4,7/3,3n/4, n}
rad, v;,, € {60, 150,300,450, 600, 750,900, 1050, 1145} ft/s, and p € {10000, 43736, 87472, 120000} ft. Using a
Latin hypercube sampling of v;,; and € for baseline coverage, the test cases in Table 4 may be used to evaluate a range
of properties across the state space. To compute the Cartesian coordinates of the intruder, Eqs. 5-6 are used. With
the exception of the head on collision test case 10, represented by Fig. 5(c), each of the test cases are selected so that

both aircraft are traveling in roughly the same direction, as depicted in Fig. 6. This is because aircraft are generally

11



separated by at least 1000 feet in altitude when traveling in opposite directions, as commanded by Air Traffic Control or
federal regulations. For example, the Code of Federal Regulations, Title 14, Section 91.159 instructs pilots to fly at
an odd altitude (plus 500 feet for pilots operating under visual flight rules) when traveling East on a heading between
0-179 degrees, or an even altitude (plus 500 feet for pilots operating under visual flight rules) when traveling West on a
heading between 180-359 degrees [45]. This work did not consider non-straight trajectories of the ownship and intruder,

which would need to be considered in a more comprehensive safety assessment.

Xins = —p sin(6) )

Yint = psin(n/2 — 0) (6)

Table 4 ACAS Xu Benchmark Closed Loop Test Cases

Test Name Vine 0 p Vown ¥ Xint Yint
Point (ft/s) (rad) (ft) (ft/s) (rad)  (ft) (ft)
@1, Left Abeam 1050 m/2 43,736 954.6 -0.4296 -43,736 0

@2, Intruder Tail Chase 900 = 43,736 4626 0 0 -43,736
@3-, Right Gaining 200 -3m/4 43,736 100  0.3617 30,926 -30,926
@4, Left Gaining 600 3m/4 437736 2049 -0.5415 -30,926 -30,926
@5, Left Closing 300 /4 43,7736 362.3 -0.2379 -30933 30933
¢6-;, Right Abeam 750 -m/2 43,736 609.3 0.6226 43,736 0

@7, Right Isosceles 1145 -3n/8 87,472 11459 0.7835 80,814 33,474
@8-, Right Closing 450 -m/4 437736 6362 0.7577 30,926 30,926
©9c;  Ownship Tail Chase 60 0 43,736 4974 0 0 43,736
¢10-;, Head On Collision 600 0 120,000 600  « 0 120,000

V. Analysis Approaches
This section describes the fundamental theory behind star sets used to approximate reachable sets, as well as the
closed loop neural network verification approaches. In terms of complexity, the reachability analysis of nonlinear ODEs
is undecidable [46], NN reachability problem is NP-complete [35, 47], thus the reachability analysis of the NNCS with

nonlinear ODE plant is undecidable.

A. Star Set Theory
A star set [48, 49] (or simply star) © is a tuple («, V, P) where « € R" is the center vector, V = {uy, o, -+ , m } 18

a set of m basis vectors in R", and P : R™ — {T, L} is a predicate. The set of states represented by the star is given as:
[O0] = {w]|w=«+Z" (a;u;) such that P(ay, -+ ,ay) = T}. @)

i=1

Sometimes both the tuple ® and the set of states [[©] are referred to as ©. In this work, the predicates are restricted

12



TVine = 105,000 ft
TVown =
95,500 ft

Vown

/ Vint

[
p = 43,736 ft

(a) Property @1, , Left Abeam

Vown =

Yownt 204.9 ft/s

b = 43,736ft

/Vine = 600 ft/s
e

(d) Property ¢4, , Left Gaining

TVine = 114,500 ft

TVown =
1,145,000 ft

VDWTL

—p =87472t

(g) Property 7., , Right Isosceles

Vown = 462.6

p = 43,736 ft

V=900

(b) Property ¢, , Intruder
Tail Chase

Vine = 300 ft/s

/
/I
.\( \
» 4 Vown =
i362.3 ft/s

p=43736 1t |

(e) Property s, , Left Closing

TVine = 45,000 ft

TVpyn = 63,620 ft

Vown

%: 43,736 ft

(h) Property ¢s, , Right Closing

TVown =
100 ft/s

UOW?I.

—

P Vi = 200ft/s
p = 43736t

(c) Property ¢3., ,Right Gaining

TVine = 75,000 ft
Tvown — int

60,900 ft

4 Vown

; Vint

N

~ p=437361t

(f) Property 6., , Right Abeam

TVine = 6,000 ft- 4,
|
TV = 49,756 ft
p = 43,736 ft
UOWTI

(i) Property ¢g., , Ownship Tail Chase

Fig. 6 Depiction of the aircraft encounter geometry for the closed loop ACAS Xu verification properties
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to be a conjunction of linear constraints, P(a) 2 Ha < d where, for p linear constraints, H € RP*™, « is the vector of
m-variables, i.e., @ = [a1, - ,am]T,and d € RP*! A star is an empty set if and only if P(«) is empty.

Any convex polyhedron can be represented as star set. An affine mapping of a star set ® = («,V, P) defined
by a mapping matrix W and an offset vector b is another star set ® = (Wk + b, WV, P). The intersection of
a star set ® = (x,V,P) with a polyhedron G £ Hga < dg is another star set ® = (x,V,P A Pg), where

Pc 2 Hg xXVa <dg — Hg X k.

B. Neural Network Verification (NNV) Tool

The NNV* tool is one of the two verification tools used to analyze the safety and functionality of the ACAS Xu NN
system. This tool is evaluated on the ten closed-loop benchmarks where the safety of the ownship is analyzed with
respect to one intruder aircraft. The analysis consists of evaluating, under multiple scenarios and initial state uncertainty,
the safety of the ownship aircraft using Algorithm 1, which follows the general computation flow to the one described in

section III.A. For the nonlinear plant reachability analysis NNV makes use of a CORA [50] integration.

Algorithm 1: ACAS Xu NNCS reachability algorithm in NNV
Result:
Rs: Plant reachable states
Initialize
initSet // Initial state set

Qprey /] Previous advisory

tF' // Number of control steps
N afe = True // Safety variable, change to false if NMAC violated
Vint // Intruder velocity

Vown // Ownship velocity

while safe do

for (i=0;i<tF;i=i+1)do

[state_set,outPlant] = plantReach(initSet , a,,¢y) // reachability analysis of the plant
p = extractDist(state_set) // Extract distance set

if p < 500 then
| safe = False

end

input NN = normalizeNNinputs(outPlant) // normalize inputs to the neural network

advypy = NNreach(aprev , inputNN) // reachability analysis of the Nueral Network (NN) controller, see Algorithm 2.
initSet = state_set

Aprev = advyn

Rs[i] = state_set

end

end
return: Rs

The sets are represented using star-sets and the reachability functions compute over-approximations of the reachable
sets. Due to the initial uncertainty added to the initial states of the aircraft, it is possible that multiple advisories are

issued at each time step, increasing the number of possible trajectories of the ownship. In this case, the reach sets are

*https://github.com/verivital/nnv
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split and paired with the corresponding advisory to decrease the number of operations and trajectories computed in
order to reduce the conservativeness and memory consumption. The workflow of this algorithm implemented in NNV
using star-set methods is presented in Algorithm 2. The importance of this algorithm is illustrated with the following
example with one initial advisory and one initial state set, where the number of operations is exponentially reduced. For
the purpose of this example, it is assumed that at each time step, there are 2 possible advisories (outputy ) issued for
each plant output (outputp) set computed.

EXAMPLE 1.

Step 1) There is 1 outputp set computed based on the initial state and previous advisory. For this outputp set, there are 2
possible advisories (outputy ) computed by a NN. Step 2) For each advisory, one outputp is computed based on the
initial state, obtaining 2 sets. For each possible combination of advisories and outputp sets (4), there are 2 advisories
issued, increasing the number of advisories to 8. However, since there is a limit of five maximum unique advisories
(COC,WL,WR,SL,SR), these 5 advisories are utilized for the remainder of the example. Step 3) There are 5 advisories
and 2 state sets, increasing the number of plant outputp sets to 10 in step 3. By computing all possible combinations
between the 10 outputp sets and 5 advisories, there are a total of 50 NN outputy  sets to compute, although the number
of advisories computed is limited to 5 as previously described. Step 4) There are now 10 initial sets and 5 advisories,
out of which 50 plant outputp sets are computed. Following this procedure, it is observed that the number of outputp
sets computed grows by a multiple of 5 at each future control step, i.e. in Step 5) there are 250 plant outputp sets, in
Step 6) there are 1250 sets and so on.

EXAMPLE 2.

The number of plant outputp sets can be significantly reduced by using Algorithm 2. Step I) There is 1 outputp set, for
which there are 2 possible advisories computed by a NN. Step 2) Based on the initial state set, for each of the 2 advisories
the outputp set of the plant is computed, obtaining 2 sets. By tracking which set corresponds to which advisory, the
number of operations are reduced from 4 to 2. For each combination, there are 2 advisories issued, increasing the
number of advisories to 4. Step 3) There are 4 advisories and 2 outputp sets. For each advisory, the corresponding plant
outputp set is computed for a total of 4 plant outputp sets. Then, for each outputp set, there are 2 advisories issued for a
total of 8 advisories. Step 4). The relationship between the advisories and the plant outputp sets computed is one to one,
therefore 8 sets are obtained. Following this pattern, it is observed that the number of plant outputp sets increases by
2 for each control step, i.e. in Step 5) there are 16 plant outputp sets, in Step 6) there are 32 sets and so on. If both

examples are run for 10 control steps, the total number of outputp sets are reduced from 781250 to 512.
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Algorithm 2: Reachability algorithm of switching classification based controllers — NNreach
Result:
advy n: Advisories paired with each plant reach set
Inputs
Aprev [/ Previous advisory

inputy N // inputs to NNs

N // number of reach sets & previous advisory pairs
k=0
for(i=0;i<N;i=i+1)do
outputy y [i] = Reach(inputy n [a,,rev [i,1]1, Aprev [1,0]) // Compute reach set of neural network
advise[i] = argminNN(outputNN [1]) // Compute advisory based on minimum value of output reach set outputy N
for adv in advise[i] do
advy y [k] = [adv, 1] // Track advisories
k++
end
end
return: advyy

C. Neural Network Enumeration (nnenum) Tool

The second verification tool used for analysis is nnenum’, which uses star sets to reason over possible neural network
outputs given sets of input states. Nnenum combines many engineering improvements to the base star set method [51],
such as using quick bounds estimates using zonotopes with domain contraction to improve accuracy. This is further
combined with an abstraction-refinement approach [32], where star sets first analyze the system with overapproximation,
and then refine by splitting sets on individual neurons only if it is needed to prove the safety property.

In this work, first it is analyzed a set of states using the quicker overapproximation mode of nnenum to check
whenever multiple advisories are possible. Otherwise, exact analysis is used, which splits the set of states into many
smaller states, each with a unique classification. For the plant dynamics, rather than using CORA and the nonlinear
differential equations in Equation 3, nnenum instead performs numerical simulation within each set using the original
Dubin’s car dynamics in Equation 1 and observations from Equation 2, in order to produce a local numerical linearization
of the observed state variables. Since reachability analysis through linear differential equations is more efficient than
reachability with nonlinear equations, the method has better expected scalability. This result is demonstrated in our
evaluation section next, where larger uncertainties in the initial state can be checked, with accuracy that visually

resembles simulations of the closed-loop system.

VI. Results
The 10 closed loop test cases depicted on Fig. 6 are evaluated using NNV and nnenum under specified initial
uncertainty. For each scenario, an initial ownship uncertainty of £5000 in the x direction and +200 in the y direction is

used when evaluated. Although there are some small differences in 2 out of the 10 cases evaluated between NNV and

Thttps://github.com/stanleybak/nnenum
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nnennum (2, and ¢jg., ), both tools are able to succesfully verify the safety of the ownship aircraft with respect to
the intruder in all 10 cases. These results are depicted in ten figures, which consist of 5 subplots, organized as follows:
subplots a, b and ¢ correspond to nnenum results and subfigures d and e to NNV. For each tool there are zoomed in (b

and d) simulations results as well as the reachable sets (c and e), while a depicts the complete simulation trajectories of

the ownship in nnenum.
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Fig.7 Right Closing @3, with initial ownship uncertainty x(, yo = [+5000, +200].

To illustrate and explain the results from this investigation, 2 out of the 10 test cases are visualized in this section
Right Closing g3, (Fig. 7) and Head On Collision ¢, (Fig. 8). The remaining results are found in Figs. 9 to 16 in
the Appendix. This set of results can be summarized as the ownship is always safe, maintaining a much greater distance
than the safety distance specified in the NMAC 1. This is accomplished by turning to the opposite side from which the
intruder is approaching as depicted in Figs. 7 and 9, and Figs. 11 to 15. In the other 3 scenarios, the ownship is biased
to deviate towards the right in order to avoid a collision with the intruder when both are flying in the same path but
opposite direction or same direction and different speed. This bias is very evident in Fig. 8, and it is also observed in
Fig. 16, in which the ownship reachable sets split into two main paths, one towards the rights, and one towards the left.

If the ownship is initially located between approx. -2000 ft and +5000 in the x-axis, the ownship will deviate to the
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right. If initially located to the left of -2000 ft in the x-axis, then the ownship will avoid the collision by turning to the
left. The final scenario, Intruder Tail Chase ¢, does not present this bias and behaves more as initially predicted.
This result is demonstrated in Fig. 10 by both NNV and nnenum, although the tools present slightly different reachable
set trajectories. The initial state set is split into two halves at x = O ft in both simulations and reachable sets. If the
ownship is initially located in the positive x-axis, it will turn to the right and vice versa.

The first test case, Right Closing ¢s,., , is illustrated in Fig. 7. It is observed in the simulation plots that when the
ownship approaches the intruder’s trajectory at approximately y = 25000 ft, the controllers start issuing weak and strong
left commands to the ownship to maintain a safe distance with the intruder. These decisions are specially evident in the
zoomed in and reach set plots, where the trajectories turn towards the left for a few steps, followed by clear of conflict
commands as the ownship safety is maintained. On the other scenario in Fig. 8, the Head On Collision ¢1¢,., test case
demonstrates the ownship’s safety when the ownship faces another aircraft in the same path but in the opposite direction.
Both tools show very similar results as the ownship deviates to the right when flying at approximately y = 30000 ft,

issuing only weak right commands to maintain safety with respect to the intruder.
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Fig. 8 Head On Collision ¢o., with initial ownship uncertainty xg, yo = [+5000, +200].

The similarity between the simulation and verification results observed in these plots is an indication of the reduced
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over-approximation errors computed by both tools using star-set methods. Despite both tools successfully verifying
the safety of the ownship with respect to the intruder aircraft in all 10 cases, there are some main differences between

nnenum and NNV, discussed in the next section.

VII. Discussion

The results in Section VI and in Appendix I demonstrate the capabilities of nnenum and NNV for the verification of
real-world unmanned CPSs, where it can also be observed some of the main differences between these tools. NNV
needs to compute an initial partition on the initial set and then compute the reachable sets for each partition, while
nnenum is able to compute these partitions as needed at each control step, improving its efficiency with respect to NNV.
Another main difference is the nonlinear ODE reachability analysis, where NNV is also capable of computing and
displaying the complete continuous-time reachable sets of NNCS, but for consistency purposes, only the reachable sets
of the ownship at each control step are shown for ease of comparison against nnenum. The results also show some of
the complexities of deploying and verifying these complex systems. In 8 out of 10 cases, NNV and nnenum obtain the
same results, but there are two cases in which there are differences in both the simulations and the reachability analysis.
There is a specific step in each scenario in which NNV and nnenum do not issue the same advisory commands. In
test case @1, (Fig. 8), the main difference is in the first reachable set shown, in which nnenum only selects COC
commands while NNV also has some weak right commands towards the center of the reachable set. The other test
case, @2, (Fig. 10) seems similar to the previous test case in the sense that there is one main step in the reachable set
computation that differs between NNV and nnenum (step 5) in both sides of the path, which leads to different final
paths. To complement the reachability analysis presented and try to better understand the differences between NNV and
nnenum, the simulation differences between NNV and nnenum have been analyzed across 1000 randomly initialized
simulations and the results are introduced in Table 5.

It is observed that even in the test cases in which NNV and nnenum return the same results, there are still some
minor differences between the two. Some possible sources of error are the different solvers used for the computation of
the states of the plant, or a slightly different implementation on the plant model, among others. NNV computes the
reachability analysis of the plant model using all 9 state variables described in Eq. 3, but nnenum makes use of only the
first 6 variables, and then uses those to compute the remaining 3 (7 to 9) a posteriori. These differences in computation
may lead to small computation differences between the two, which accumulate through time and eventually lead to
slightly different final paths, although both tools successfully verify the safety of the ownship in every case. Another
main difference between NNV and nnenum is the different reachability schemes utilized, which lead to significant
differences in the computation time. In average, nnenum is able to compute the reachable set of each closed loop
property in 172 seconds, while NNV completes each test case in 140819 seconds, approximately 39 hours. The main

reasons for the difference in computation time are the different partitioning routines and the plant reachability techniques.
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Table 5 Simulation differences between NNV and nnenum across all 10 closed-loop properties. For each
experiment, 1000 random simulations were sampled. x,,,,, and y,,,, values are in ft and v, in rad, and they
correspond to the average values of the absolute difference between the recorded variables in NNV and nnenum.

Closed-Loop Properties

Pler P2cr P3cr Pacr P5cr P6cr Plcr P81 Pocr P10cr

mean 024 24329 99e-11 7.4e-10 5.6e-11 1.4e-09 23¢9 2.1e-9 9.5¢-10 71.86

Xown std 0.039 355.89 1.5¢-10 5.6e-10 2.0e-10 1.5¢-9 3.3e¢-9 2.8¢-9 1.0e-9 105.41
max 0.95 1.1e+3 3.7¢-10  1.3e-9 8.8¢-10 3.7¢-9 89¢-9 6.2¢-9 23¢9 270.77

mean 0.0562 51.58 4.8e-11 1.9¢-10 1.3¢-9 29e-10 7.3e-10 1.1e-10 1.2¢-10 14.54

Yown std 0.098 7594 7.7e-11 1.7¢-10 1.5¢-9 3.8e-10 1.3e-9 1.5¢-10 1.3e-10 2442
max 026  241.61 27e-10 4.2e-10 4.7¢-9 1.0e-9  3.9¢-9 4.6e-10 3.4e-10 68.43

mean 1.2e-5 0.039 83e-16 6.3e-15 3.2e-16 2.6e-15 1.6e-15 2.0e-15 2.3e-15 0.0069

Yown  std 32e-5 0.048 1.6e-15 4.9e-15 1.1e-15 2.8e-15 2.6e-15 3.0e-15 2.6e-15 0.011
max  1.0e-4 0.11 57e-15 1.2e-14 49e-15 8.6e-15 8.5¢-15 7.7e-15 5.7e-15 0.025

When compared to other validation techniques such as Monte Carlo simulations, these reachability techniques can
prove and guarantee the safety of the ownship under the whole initial uncertainty of the ownship aircraft, while Monte
Carlo simulations can only provide probable guarantees, determined by the number of simulations run. In terms of
computation time, nnenum is equivalent to running 0.13 simulations per sqft of the initial set of the ownship, while NNV
is equivalent to running 114 simulations per sqft. In this aspect, nnenum is preferable over Monte Carlo simulations and

NNV due to its efficient computation of the reachable sets of this ACAS Xu closed-loop benchmark.

VIII. Conclusion

This paper introduced a set of 10 new closed loop verification properties and developed and applied a closed loop
verification approach to verify both the output of NNCS and the switching behavior between neural network controllers.
The approach was demonstrated using the NNV and nnenum tools on 5 of 45 ACAS Xu neural networks with switching
between all five corresponding to co-altitude collision cases. Both tools show reachable states of an ownship aircraft
with modified Dubins dynamics on a collision course with an intruder aircraft. The reachability computation considers
initial state uncertainty and ownship control inputs provided by 5 switched NNs. The verification objective was to
show that the switch NNCS resulted in collision free courses, even a large initial uncertainty. This study showed that it
is possible to do a comprehensive safety verification analysis of a complex air collision advisory system for aircraft
travelling in straight, co-altitude paths, but further research is needed to determine if climbing or descending flights can
also be proven safe using these tools. In the tool demonstration, nnenum showed a tighter and faster computation of the
over-approximation of its reachability methods, as observed by the similarity between the simulation and reachable plots,
while NNV is able to present the complete continuous-time reachable sets of the ownship trajectories. A summary of

the main outcomes of our methods can be summarized as follows:
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For an initial assessment, a small amount of Monte Carlo simulations may be sufficient, in combination of other

testing routines, to check the proper behavior of the CPS and its implementation.

* In safety-critical applications, Monte Carlo simulations cannot provide formal guarantees, which is vital for
safety-critical systems such as autonomous aircraft. In this case, formal verification tools such as nnenum and
NNV would be needed.

e NNV and nnenum can both provide formal guarantees on the safety of the aircraft using reachability analysis for
neural networks as well as nonlinear ODE:s.

* nnenum has proven to compute the reachable sets of the NNCS much faster than NNV, about 4 orders of magnitude

faster, largely due to ts efficient partitioning scheme and the nonlinear ODE reachability method.

Appendix I: Closed Loop Verification Results
The ACAS Xu NN compression closed loop verification benchmark presents a total of 10 properties described in
Section IV, specified in Table 4 and illustrated in Fig. 6. In section VI, a summary of the verification results for all ten
properties was presented, but only properties ¢g ., and @10, were depicted. In this Appendix, the remainder of the

verification results are illustrated in Figs. 9 to 16.
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Fig. 10 Intruder Tail Chase ¢,., with initial ownship uncertainty x,, yo = [+5000, +200].

Appendix II: Open Loop Verification Properties
An ACAS Xu verification benchmark proposed 10 open loop properties of the neural network approximation. These
properties are summarized in this appendix with visual depictions of the geometry to give provide the reader with more
intuition into how these neural networks have been verified in the past and how this compares to the closed loop test
cases. Itis worth noting that these neural networks assign a value to each of the five possible outputs with the convention
that the lowest output is the best choice (in other neural network designs, the highest input may be the best choice).
Property ¢ may select a value of p (approximately 10.5 miles away) that is larger than the maximum turning radius
of an aircraft going at 1145 ft/s (43,736). This maximum velocity of 1145 ft/s is approximately 780 miles per hour
(mph), which as a conservative upper bound is much larger than what a commercial aircraft would typically fly (Mach
1 is 761 mph at sea level, decreasing to 678 mph at a 30,000 ft typical commercial aircraft cruise altitude). The 60
ft/s (40 mph) velocity of the intruder in this property is a conservative lowest velocity for a fixed wing aircraft. While
the selection of variables seems reasonable, this first property isn’t necessarily a good property because it specifies a
value of the output which is an artefact of the design choices for the neural network rather than an ordinal ranking of
the desired outcome for the aircraft encounter. In other words, a better property might specify that the selected action

produced by the neural network should be clear of conflict. Property ¢, is a slightly better variation of ¢ because it test
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Fig. 11 Right Gaining ¢3_, with initial ownship uncertainty xo, yo = [+5000, +200].

Table 6 ACAS Xu Benchmark Open Loop Properties.

P 6 W Vown Vint Networks Output
(ft) (rad) (rad) (ft/s) (ft/s)
Q1 > 55,948 X X >1145 <60 All COC < 1500
©2 > 55,948 X X >1145 <60 Ny>2,y, COC not max
w3 € [1500,1800] € [—0.06,0.06] >3.10 >980 >960 # Ni,y>7 COC not min
¢4 €[1500,1800] € [-0.06,0.06] 0 >1000 € [700,800] # Ni,y»7 COC not min
s € [250,500] € [0.2,0.4] X -7 € [100,400] € [0,400] N1 SR min
w6 € [12000, € [0.7,x]Vv X € [100,1200] € [0, 1200] N1 COC min
62000] € [-pi,—0.7]
©7 € [0, 60760] € [-m, n] € [-n,n] €[100,1200] € [0,1200] Nig SL,SR min
©s € [0, 60760] € [-n,-0.757] € [-0.1,0.1] € [600,1200] € [600,1200]  Nazg9 WL v COC
@9 € [2000,7000] € [-0.4,-0.14] X -7 € [100,150] € [0, 140] N33 SR min
w10 € [36000,60760] € [0.7, x] X -7 € [900,1200] € [600,1200]  Nas COC min

that clear of conflict is not the last choice of the neural network for a subset of the conditions of ¢;.
Properties @3 and ¢4 checks that the neural network does not output clear of conflict in cases where the intruder

is ahead of the ownship and a collision is imminent. Property ¢3 checks when the two aircraft are approaching for a
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Fig. 12 Left Gaining ¢4, with initial ownship uncertainty x,, yo = [+5000, £200].

head on collision within less than a second (unless there is sufficient vertical separation). Property ¢4 checks when the
ownship is directly behind and closing on the intruder at a rate of 200-300 ft/s, which will result in a collision in less
than 9 seconds.

The remaining 6 properties check a wide range of conditions. Property ¢s checks that the neural network favors
the strong right advisory if the intruder is passing very close to the ownship’s left. Property ¢¢ checks that the neural
network outputs clear of conflict if the intruder is sufficiently far away behind and moving away from the ownship.
Property ¢7 check that the neural network does not output a strong left or right advisory when vertical separation is
large (r = 100s) and the previous advisory was clear of conflict. Property g checks that the neural network outputs
weak left or clear of conflict as the minimal score when the previous advisory was weak left, there is 100 seconds until a
loss of vertical separation, and the intruder is behind and to the right of the ownship. Property g9 checks that the neural
network outputs a strong left signal in a potential head on collision where the intruder is passing to the right. Property

@10 checks that the neural network outputs clear of conflict if the intruder aircraft is far away and moving away.
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Fig. 13 Left Closing ¢s., with initial ownship uncertainty xy, yo = [+5000, £200].
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