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Scattering amplitudes involving massive spin-2 particles typically grow rapidly with energy. In this
paper we demonstrate that the anomalous high-energy growth of the scattering amplitudes cancel for the
massive spin-2 Kaluza-Klein modes arising from compactified five-dimensional gravity in a stabilized
warped geometry. Generalizing previous work, we show that the two sum rules which enforce the
cancellations between the contributions to the scattering amplitudes coming from the exchange of the
(massive) radion and those from the exchange of the tower of Goldberger-Wise scalar states (admixtures of
the original gravitational and scalar fields of the theory) still persist in the case of the warping which would
be required to produce the hierarchy between the weak and Planck scales in a Randall-Sundrum model. We
provide an analytic proof of one combination of these generalized scalar sum rules and show how the sum
rule depends on the Einstein equations determining the background geometry and the mode-equations and
normalization of the tower of physical scalar states. Finally, we provide a consistent and self-contained
derivation of the equations governing the physical scalar modes, and we list, in appendixes, the full set of
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sum rules ensuring proper high-energy growth of all 2 — 2 massive spin-2 scattering amplitudes.
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I. INTRODUCTION

Historically, extradimensional theories of gravity were
introduced soon after Einstein’s discovery of the general
theory of relativity. In the original form extra dimensions
were introduced by Kaluza and Klein (KK) to unify
electromagnetism with gravity, the only two fundamental
forces known at the time [1,2]. Extradimensional models
have continued to evolve since the late 1970s, thanks in
large part to the development of string theory. Over the past
three decades, low-energy realizations of extradimensional
models gained prevalence as well-motivated scenarios of
physics beyond the standard model. One of the most
popular and phenomenologically viable models of extra
dimensions is the Randall-Sundrum model [3,4], wherein a
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compact extra dimension in anti—de Sitter space is used to
generate relative exponential factors; this factor allows
particles fixed to a brane to interact at electroweak strength
while also ensuring bulk-propagating gravity is weak in the
observed extended four-dimensional (4D) space, thus
providing a geometric solution for the hierarchy problem
of the standard model.

Low-energy four-dimensional effective field theories
arising from compactified theories of gravity involve
towers of interacting spin-0 and spin-2 fields (and potentially
spin-1 fields as well, though these are often eliminated by
imposing an orbifold symmetry on the compact extra
dimension). The massive spin-2 resonances—sometimes
called KK gravitons—are particularly interesting. The exist-
ence of self-interactions between these KK gravitons is
problematic because typically scattering amplitudes between
massive spin-2 particles grow far too rapidly with energy to
keep unitarity constraints satisfied much beyond the mass of
the lightest massive spin-2 state involved. For example,
theories of massive gravity that extend 4D general relativity
by adding a Fierz-Pauli mass term [5] result in 2-to-2
scattering amplitudes for the helicity-zero channel (the
channel whose amplitude has the highest energy growth)
that grow like 53/ (m$pM?3,) [6], where mgp is the mass of the
graviton, s the squared center-of-mass energy, and Mp, the
reduced Planck mass. Adding carefully chosen potential

Published by the American Physical Society
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terms to the model [7,8] can soften matrix element growth
down to O(s*). However, compactified theories of extra-
dimensional gravity should—due to higher-dimensional
diffeomorphism invariance, requiring a smooth mgyx — 0
limit—grow at most as O(s).

As we have demonstrated in earlier work [9-12],
while the individual contributions to massive helicity-zero
spin-2 scattering amplitudes do each grow like O(s)
in compactified gravity theories, cancellations occurring
between these contributions ultimately ensure the overall
2-to-2 scattering amplitudes grow no faster than O(s).'
These cancellations require that the couplings and masses
of the Kaluza-Klein spin-2 and spin-0 modes be con-
strained to satisfy various sum-rule relations, which we
have shown to be satisfied in both flat and warped
compactifications.

In the original formulation of the RS1 (Randall-
Sundrum I) model, extradimensional gravity generates
a massless radion in the effective 4D theory.” A massless
radion couples to the trace of the stress-energy tensor,
yielding a Brans-Dicke-like theory, in odds with pre-
dictions of the general theory of relativity. Additionally,
this massless radion sources a Casimir force [15], thereby
destabilizing the extra dimension and leading to its
collapse. A naive computation of scattering amplitudes
of massive spin-2 KK particles in a compactified theory
of gravity, with a radion mass introduced by hand,
reveals that scattering amplitudes grow like m? .  s*/
(myM3), ie., O(s?) instead of O(s). To stabilize the
extra dimension in a way that retains validity of the
theory up to the Planck scale, the radion must not only be
made massive, but its mass must be generated dynami-
cally. These dynamics must also provide additional
contributions guaranteeing that the overall scattering
amplitude grows no faster than O(s)—as we have
explicitly shown in [16] and explore here in detail.

In the same year that Randall and Sundrum published
their model, Goldberger and Wise published a dynamical
mechanism for stabilizing the model’s extra dimension
[17,18]. Their mechanism shares conceptual similarities
with the standard technique of generating massive gauge
bosons by spontaneously breaking the associated under-
lying gauge symmetry, wherein dynamics producing a
nonzero vacuum expectation value (VEV) for a gauge-
variant operator induces mixing between the longitudinal
components of the gauge bosons with Goldstone bosons.
In the Goldberger-Wise (GW) mechanism, a new five-
dimensional (5D) bulk scalar field ®(x, y) is appended to
the RS1 model and included in new potential terms
that also involve (via standard gravitational factors) the
usual RS1 metric fields. That bulk scalar field then
spontaneously acquires a background profile ¢ (y) with

'See also [13,14].
*Along with the usual massless 4D graviton.

nonconstant dependence on the extradimensional coor-
dinate y, causing mixing between background fluctua-
tions f of the bulk scalar field and scalar fluctuations 7 of
the RS1 metric. While this could in principle yield two
physically relevant superpositions of the bulk scalar field
and scalar metric fluctuations, one combination is auto-
matically forced to vanish in unitary gauge, leaving just
one physical 5D scalar field in the spectrum.

Quantitatively, the new mixed scalar sector decom-
poses into a tower of spin-0 modes, all described by a
single Sturm-Liouville equation with nontrivial Robin
boundary conditions involving delta function contribu-
tions at the boundaries of the RS1 geometry. In this way,
the GW mechanism ultimately generates an infinite tower
of physical massive spin-0 states. But what happened to
the radion? If the background profile of the bulk scalar
field were, instead, made constant in the extradimensional
coordinate, no extradimensional symmetries would be
spontaneously broken and all but the lowest state in the
spin-0 tower would cease to mix with the gravita-
tional sector of the theory. In this limit, the lowest state
would become massless, and—indeed—its couplings
would exactly match those of the original unstabilized
RS1 radion. Hence, in the GW-stabilized RS1 model we
are considering, the radion should be associated with the
lightest massive state among an entire tower of massive
spin-0 states.

The assessment of the validity of the GW-stabilized
RS1 effective field theory proceeds as for the correspond-
ing unstabilized case, by calculating 2 — 2 massive KK
graviton scattering, now with an extended scalar sector,
as compared to only the radion in the unstabilized case.
An account of this calculation was provided in [16],
where we formulated an extended set of sum rules
required to ensure that scattering amplitudes were well
behaved in a stabilized theory of extra dimension without
reference to any explicit GW model. In addition, we
proposed a simple model of a stabilized-but-approxi-
mately-flat extra dimension, the “flat stabilized” model,
and we demonstrated that the revised sum rules were
satisfied in this model.

In this work we extend prior results into a new domain
by computing the couplings and masses of the scalar and
spin-2 states in a Randall-Sundrum model with a
Goldberger-Wise stabilization mechanism in the phenom-
enologically interesting case in which the warping repro-
duces the hierarchy between the weak and Planck scales.
We provide a self-contained derivation of the equations
governing the physical scalar modes. We show how one
combination of the generalized sum rules in particular
relies explicitly on the equations determining the back-
ground bulk scalar field and metric, including the scalar
mode wave functions and their normalization condi-
tions. We introduce a model in which the Goldberger-
Wise dynamics are a small perturbation away from the
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unstabilized warped RS1 model. We then demonstrate
numerically that all of the sum rules needed to ensure
that the anomalous growth of the scattering amplitudes
cancel are satisfied to leading nontrivial order in pertur-
bation theory.

The computations performed in the pure gravity sector
in this paper and the preceding ones [9-11,16], demon-
strating that amplitudes in compactified extradimen-
sional theories grow no faster than O(s), have important
phenomenological consequences. The underlying higher-
dimensional diffeomorphism invariance that ensures that
scattering amplitudes are well behaved also guarantees
that scattering amplitudes involving matter particles
should also be compliant with the same principle. For
example, in calculations for cosmological observables
such as relic abundances of dark matter with KK graviton
portals (for both freeze-in and freeze-out), the velocity
averaged cross sections must be properly estimated at
large /s. An erroneous estimate with anomalously
growing cross sections would lead to inaccurate predic-
tions for cosmological observables within the scope of
these models. The subject of KK graviton/massive
graviton portals to dark matter have been considered
extensively in the literature [19-21]. In many of these
works, the velocity averaged cross section has been
incorrectly estimated due to anomalously growing scat-
tering amplitudes. An application of our works was
considered in [22] where some of these issues were
accurately addressed within unstabilized models. An
application of this work will be to accurately estimate
KK graviton portal scenarios in freeze-in/freeze-out
mechanisms within the phenomenologically relevant
Goldberger-Wise models, with a massive radion. In
addition, the Goldberger-Wise scalar sector of such
models has been neglected due to its complexity.
Here, we work out the details of the scalar sector.
These issues will be considered further in future work.

The rest of the paper is organized as follows. In Sec. 11
we describe the Lagrangian of the Goldberger-Wise
Randall-Sundrum model and set notation for the back-
ground geometry. In Sec. III we describe the spin-0 and
spin-2 mode expansions. Our analysis of the Kaluza-
Klein expansions for this system follows the computa-
tions of [23-26], generalized to de Donder gauge, and is
presented in detail for completeness and clarity in
Appendix A. A review of Kaluza-Klein mode scattering
and couplings, and description of the version of the sum
rules of [16] used here, as well as a description of the

|
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analytic proof of one combination of the sum rules
involving the scalar sector is given in Sec. IV. Details
of the analytic proof of the sum rule are given in
Appendix B5a. We also provide, in the totality of
Appendix B, a complete list of the sum-rule relations
which must be satisfied for all 2 — 2 massive spin-2
scattering amplitudes to grow no faster than O(s)—
completing the analyses begun in [9—12]. A description
and the analysis of the perturbative warped-stabilized
model is given in Sec. V. In particular, our numerical
checks of the sum rules in this model are illustrated in
Figs. 3 and 4 of Sec. VC. Our perturbative analysis
requires a slight generalization of Rayleigh-Schrodinger
perturbation theory to account for perturbations in the
weight function of the corresponding Sturm-Liouville
problem, and this formalism is described in Appendix C.
Our conclusions are given in Sec. VI. Mathematica [27] files
giving the expressions for all the spin-2 and spin-0 pertur-
bative wave functions can be found on GitHub [28].

II. THE LAGRANGIAN

In this section we outline schematically how a canonical
4D effective Lagrangian is derived from a 5D RS1 model
stabilized by the Goldberger-Wise mechanism. We provide
a self-contained discussion of the details of this derivation
in Appendix A utilizing arguments similar to those found in
Refs. [24-26], generalized to de Donder gauge to enable
consistent scattering amplitude computations for processes
involving the (massless) graviton. In this section we specify
our notation and outline the results needed to present our
computations.

We begin by writing down the Lagrangian which
consists of the following terms:

Lsp = Lgu + Loo + Lpot + Lony + AL. (1)

Here Lpy comes from the usual Einstein-Hilbert action,
Lo and L, are the kinetic and potential terms, respec-

tively, of a bulk scalar field ®(x, y), Lgyy is the Gibbons-
Hawking-York (GHY) boundary term [29,30], and AL is a
useful total derivative we define in Appendix A. The
combination of Lgyy and AL is required to have a
well-posed variational principle for the gravitational action
31]]. This Lagrangian is a function of the 5D metric G,
which we parametrize in terms of a 4D metric perturbation
9w and a scalar metric perturbation 7 as [32]

x) | 0
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in terms of coordinates xY = (x*,y), where y€
(—mr., +rr.] parametrizes an orbifolded extra dimension’;
for convenience we define ¢ =y/r. and use y or ¢
interchangeably as the coordinate of the fifth dimension.
Note that this form of the metric was used in our previous
works [9—11] for the unstabilized RS1 metric, following
[32] to bring the quadratic Lagrangian to a canonical form
from the outset. In the case of the stabilized model, the
situation is further complicated by a nontrivial mixing
between the bulk scalar field and the scalar metric fluctua-
tions. As we will explain below and demonstrate explicitly
in Appendix A, the total derivative AL helps us bring the
Lagrangian into a canonical form.

The warp factor A(y) encodes the warped background
geometry. In RS1 [3], in which the extra dimension is
unstabilized, A(y) = k|y|, where k is related to the space-
time curvature. The Goldberger-Wise mechanism [17,18]
complicates the background geometry such that the specific
form of A(y) becomes dependent on the details of the
mechanism’s bulk scalar interactions. Crucially, the scalar
(bulk and boundary) potential terms in £, are chosen such
that the scalar field gains a y-dependent background field
value, and the trade-off between the contributions to the
action from bulk kinetic energy terms Lgq and the scalar
potential(s) stabilizes the size of the extra dimension.

The Lagrangian thus far is written in terms of the metric
perturbations {g,,. 7} and the bulk scalar field ®. We next

expand g, and & about their background values:

G (X, ) = 1y + Kl (x,y),

)= b= )+ )

The background metric 7, = Diag(+1,-1,-1,-1) of g,,
is determined by demanding Lorentz invariance along the
extended dimensions, while the background value ¢/« of
® must be found by solving the theory’s field equations.
We normalize the Lagrangian such that the 5D gravitational
coupling « is related to the 5D Planck mass Mpsp
according to k* = 4/Mj3, 5. Note that the factors of «
(units: energy—>/?) included in Eq. (3) are such that ¢, and
f are unitless in natural units. Following KK decomposi-

tion, the 5D tensor field iz,w, the 5D scalar field 7, and the

5D scalar fluctuation field  give rise to an infinite tower of
4D states.

Perturbatively expanding the Lagrangian Eq. (1) order-
by-order in k yields terms containing various powers of /1,,,,

3That is, the extra dimension is a circle in which the points with
coordinates y and —y are identified. As we will see, this view of
the extra dimension (as opposed to treating it as a line segment)
allows us to motivate and use the boundary conditions of the
Kaluza-Klein mode equations at the orbifold fixed points at y = 0
and y = 7 more easily.

j‘, and 7. In particular, at quadratic order in the fields, we
find a complicated expression; c.f. Egs. (A58)—(A63).
Thankfully, there are residual five-dimensional diffeomor-
phism transformations which leave the form of Eq. (2)
invariant—these transformations allow us to reorganize
how the physical content is embedded in the fields and
thereby attain explicitly canonical quadratic Lagrangians.
This process will also mix the 5D fields # and f (and their
constituent 4D states) together in a process that eventually
leaves a single scalar tower of physical states. In particular,
to ultimately bring the quadratic SD Lagrangian into a form
suitable for generating canonical 4D Lagrangians, we
impose the gauge-fixing constraint

(9y¢po)f (x.y) = V6e*() (9, 7) (4)

to eliminate the field / in terms of #.” In this gauge the 5D
theory’s independent field degrees of freedom consist only
of the 5D scalar field 7 and the 5D tensor field }Azm/. To yield
a 4D effective theory, each of these 5D fields is sub-
sequently decomposed into a tower of 4D KK modes. We
emphasize here that bringing the Lagrangian to a canonical
form is a nontrivial task, and it is of paramount importance
to figure out all the interactions of both the gravitational
and the scalar sector that will eventually determine the
structure of the matrix elements and the couplings.

To calculate the desired matrix elements, we require the

cubic and quartic self-interactions of the 5D tensor field fl,w

as well as the /i i # cubic interaction. The & self-interactions
(and their 4D effective equivalents) are changed from our
previous works [9,10,12] only in the specific choice of
A(y). Following integration by parts and the elimination of
total derivatives, we find that the hh?# interaction is
similarly identical to the unstabilized case [11]:

3 A PN
5S¢ O = I (Y1 (5)

Lo = ——
hhr 2’_% D)

Thus, the primary difference between the stabilized and

unstabilized cases as far as /i /i # is concerned regards the
KK decomposition of the 5D field 7(x,y). In the unstabi-
lized case, 7 generates only a single massless scalar state
7(x) (see footnote 5)—the usual RS1 radion. In the
stabilized case, 7 has nontrivial y-dependence and instead
generates an infinite tower of massive scalars {#7(x)},
wherein the lightest of these scalars (with KK number
i = 0) is identified as the massive radion and the heavier

*A demonstration that one can always impose this gauge
constraint can be found in Refs. [24,26].

Note that in the limit in which there is no nontrivial scalar
background, ¢ — 0, this constraint leaves only the constant
(¢-independent) mode of 7 in the theory—a mode corresponding
to the massless radion of the unstabilized theory.
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states are called GW scalars.® From here on, we will drop
the argument ¢ in the warp factor A(¢p) for convenience.

III. KALUZA-KLEIN MODE EXPANSIONS

Upon KK decomposition, the scalar and tensor modes
come from extradimensional wave functions which satisfy
one-dimensional Sturm-Liouville (SL) problems. For com-
pleteness and notational consistency, we provide details of
the derivation of the SL problems in the tensor and scalar
sectors in Appendix A—following the procedures origi-
nally described in [25,26] (see also Ref. [16]). We report the
results here for the convenience of the reader and to
highlight the differences that arise when solving these
problems in the stabilized RS1 model.

A. Spin-2 sector
The tensor field 4, (x, y) is decomposed into a tower of
4D KK states fszf,) (x) in the usual way as follows: recalling
p=y/re

-

i 2 (@) (6)
¢ n=0

Here r. is the radius of the extra dimension and y,,(¢) is the
5D wave function of the nth mode that satisfies the
following SL differential equation:

B (x,y) =

d,[e=*0

ol W = —pae Ay, (7)

where the wave functions satisfy the boundary conditions
where (d,y,) =0 at ¢ € {0,7}. The eigenvalues u, =
m,r. are the masses m, of the nth spin-2 KK mode. The
wave functions are normalized as follows:

1 [+=
/ dqae_ZAWmWn = 5m,n’ (8)

T

and satisfy the completeness relation

—e4 i’//j((ﬂl)ll/j(%)' )

Jj=0

5y — 1) =

The form of this SL problem is identical to the unstabilized
case and differs only in how the new background geometry
influences the warp factor A. In the unstabilized case, the
warp factor is simply kr.|¢|. In the stabilized case, the bulk

®Note that, having chosen to express the physical degrees of
freedom in terms of the scalar field 7 in Eq. (4), the form of the
couplings between the massive spin-2 states and the tower of GW
states is precisely the same as the form of the radion coupling in
RS1. However, as we will see, the mode equation and normali-
zation conditions for the physical GW scalars lead to additional
complications.

scalar potential modifies the background geometry such
that A(¢) satisfies the (Einstein) equation

[(ﬁo +4va} (10)

i=1,2

in terms of the background scalar field ¢, and the brane-
localized potentials V|, at ¢ = 0 and ¢ = 7z, respectively
(refer to Appendix A for additional details).

B. Spin-0 sector

The spin-0 sector of the model arises from two sources.
The first is the scalar metric fluctuation (where even the
lightest mode will be y-dependent in the stabilized model),
and the second is the new bulk scalar field. The two sectors
mix via the gauge condition noted in Eq. (4). Consequently,
we attain a single physically relevant 5D physical scalar
perturbation 7(x,y). Similar to the tensor perturbation,
the KK decomposition of the 5D scalar field 7(x,y) into
a tower of spin-0 KK modes proceeds by introducing
extradimensional wave functions y;(¢) and a tower of 4D

scalar fields 7)(x) parametrized as follows:

-

0 (x)yi(@).
\/77; (X)7:(e) (11)

The mode equation that brings the 5D scalar Lagrangian to

canonical form, however, is quite different from the tensor
case and involves nontrivial boundary terms

2A 2A
9, [(;W (%yi)} - %h

Hx,y) =

A 28 28(p — 7
= _/'t%[) ﬁYl 1 + ((p) ¢H + (q) [3// ’
(4%) 2V =] [2Vare+ ]
(12)
where ¢, = o) and the eigenvalues p,, = m,r, are
here ¢ = (9, d the ei lues pu(y) = my)

the masses m,) of the nth scalar KK mode. The Dirac

deltas enforce the following (orbifold) boundary condi-
tions:

/!

o -1
(0p7i)lp=0 = — [2‘/1’ ¢ ﬂ()e Vz|¢ =0°
0

/!

¢ -1
(a(pyi)|(p:7r = |:2V27" + ﬂ%,’)eZA}/i’(p:ﬂ’ (13)

Po

where Vl,z are second functional derivatives of the brane
potentials evaluated at the background-field configuration.
Note that these boundary conditions reduce to Neumann
form in the “stiff-wall” limit, V1,2 — +00, a limit which
will be useful to us during our numerical work in Sec. V.
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In the form of Eq. (12), the Sturm-Liouville nature
of the problem is manifest, and the orthogonality and
completeness of the wave functions follow immediately
[24,25,33,34].

Due to the mixing between the gravitational and bulk
scalar sectors in Eq. (4), however, an unconventional
normalization of the scalar wave functions is required to
bring the scalar kinetic energy terms to canonical form,®

2

5 6”(}’1) /—Hr d e4A
mn — PYm¥n
P - (¢0)°

26 26(p —
x{1+ - ((ﬂ)¢,, 1 2o ”4)} (14)
pvlrc - ¢_Z] [2V2rc + 572]
6 [+n o2 oA
== d RV , 15
ﬂ/_” ¢[(¢6)2ymyn+ e ymyn} (15)

where the second line follows by applying the differential
equation (12) and integration-by-parts on the periodic
doubled orbifold. The scalar wave function completeness
relation follows from Eq. (14):

6 %)
2 =) = o0y
26 25 _
x{l-i— - ((m)w | 2l z;)}
[Zvlrc - ¢_E] [2V21"C + ¢—2]
“+oo
XD uri(n)r(e2). (16)
Jj=0

The second form of the normalization condition in
Eq. (15) is useful in computational work, since it does
not rely on knowledge of the eigenvalues. Details are given
in Appendix A.

Because of the Neumann boundary conditions (d,y,) =
0 and the simplicity of Eq. (7), there is always a massless

"The completeness of the solutions to the scalar Sturm-
Liouville problem in Eq. (12) and the positivity of the scalar
mass-squared eigenvalues /42[ are only assured if the coefficients
of the d-function terms are non-negative [33,34]. We will assume
that the brane potentials and background field are such as to
satisfy this condition (as they do in the stiff-wall limit we use
later). Physically this constraint is more easily understood in
the analogous case of the modes of a string: in that case the
o-functions can be understood as representing point masses
which can freely move at the boundary of the string, and
the coefficients are proportional to these masses and must
therefore be positive for stability.

8Because uzi > ( in the GW model, this normalization choice
(albeit unusual) is consistent. Taking the unstabilized limit
¢{, — 0 [in which #o) — 0 and all other scalar states decouple;
see Eq (4)], however, requires care. This limit is discussed in the

context of the “flat-stabilized” model in [16].

spin-2 mode (with a wave function constant in ¢) in the
tensor tower. This is not the case for the scalar tower. Due to
the nonconstant potential of the background scalar, along
with its vacuum expectation value, the lightest spin-0 state
(identified as the radion with a wave function y,) acquires a
mass /i(g)-

IV. MASSIVE SPIN-2 COUPLINGS, SCATTERING
AMPLITUDES, AND SUM RULES

As discussed extensively in the literature (see, for
example, [7,8], and references therein), phenomenological
calculations incorporating massive spin-2 states often
generate matrix element diagrams which exhibit anomalous
high-energy behavior. Extradimensional models of gravity
possess an underlying 5D diffeomorphism invariance that
ensures their amplitudes are well behaved. That is, any
overall bad high-energy growth necessarily signals the
omission of additional important physics. Such omissions
can produce erroneous phenomenological results.”

In our previous work we analyzed the diagrams which
contribute to 2 — 2 massive spin-2 mode scattering for
several variants of the Randall-Sundrum I model; within
each of these analyses, we found there exist individual
diagrams which diverge as fast as O(s”) at high energies (s
being the usual Mandelstam parameter) and that cancella-
tions between diagrams ensure the total matrix element
only grows as fast as O(s) [9-12]. This genuine O(s)
growth is important because it ensures the 4D effective
theory breaks down at an energy scale consistent with the
physics of the underlying extradimensional theory. The
central purpose of this paper is to verify the various
coupling relations and sum rules [16] required to ensure
these cancellations in a general Goldberger-Wise-stabilized
Randall-Sundrum I model, report how most of these rules
may be proved in full generality, and (in the next section)
numerically demonstrate leading O(s) growth of the matrix
element to second-order in a solvable warped stabi-
lized model.

In this section we review the definitions of the KK mode
couplings relevant to the scattering computations (Sec. IV A),
describe the sum rules which apply to these couplings, and
show how they are related to the physics of the Goldberger-
Wise model (Sec. IV B), and provide a brief summary of the
sum rules we numerically verify (Sec. IV C).

A. Scattering amplitudes and couplings

The tree-level diagrams relevant to the aforementioned
2 — 2 matrix element are shown in Fig. 1; details can be

9Following our previous computations [9—11] it was shown in
[22] that in freeze-out computations with KK-graviton portal dark
matter scenarios exhibit amplitudes that grow no faster than O(s)
in an unstabilized model. The stabilized and phenomenologically
relevant RS1 model is significantly more difficult to calculate and
will be presented in a future work.
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n n o n n o n n o n n
FIG. 1. Matrix element diagrams contributing to n,n — n,n
massive spin-2 KK boson scattering. Here n refers to the KK
mode number of the external state. The intermediate states x

include a massive radion, the graviton, a tower of massive spin-2
KK bosons, and a tower of GW scalars.

found in [9-12,16]. The general strategy employed in this
paper follows that of the unstabilized case. Briefly, the total
matrix element M involves a contact diagram (M,.) as
well as infinite sums over the diagrams (M, M x)
describing X = s, f, and u-channel exchanges of inter-
mediate spin-2 states and spin-0 states,

+00 +o0
M=M,+ Z {ZMj,X—l_ZM(i),X}’
0

Xe{s,tu} L j=0 i=l

where in general KK numbers within parentheses [the ()]
refer to those of the spin-0 states, while those without
parentheses (the j) reference the spin-2 states. We expand
the matrix element M in a Taylor series in s as [11]

M(s.0) =Y " M(0) - s (17)

1
c&;Z

and isolate the kinematic factors and the couplings.
Generally, 5D diffeomorphism demands that all coeffi-
cients of s° with ¢ > 1 in this expansion must vanish. At
present, because we consider the process involving helicity-
zero external states, half-integer values of ¢ automatically
vanish. Demanding O(s) growth at most in this matrix
element necessitates relationships between various masses
and coupling structures in the theory.

The couplings present in each of these diagrams
come from wave function overlap integrals attained
following Kaluza-Klein decomposition of the fields in
the Lagrangian; this procedure of attaining a 4D effective
theory from a Lagrangian such as Eq. (1) via KK decom-
position is explained in detail in Refs. [11,12].

(i) The contact diagram M, involves the 4-point

massive spin-2 vertex and contributes the following
wave function overlap integrals:

1 + oA
Akimn = ; d(pe Vil iy m¥ns

T

1 +
bk’l’mn =- d¢e_4A (a(/)l)”k) (a(/)l//l)l//ml//n
V-

Y4

As shown explicitly in [9-11,16] and references
therein, and can be argued from general power
counting arguments originating from external

polarization and the tensor structures, the helicity-
zero contribution to the M, diagrams diverge as fast
as O(s°).

(i) The spin-2 mediated diagrams M x involve 3-point
spin-2 vertices and contribute the following wave
function overlap integrals:

1 + oa
Al = — dpe™ iy,

T

1 +r A
bl’m’n = J_T ~ d[pe (a(pl/’l><a¢l//m)l//n-

/4

Just as the contact diagrams [9-11,16], the hel-
icity-zero contribution to the sum of the M,y
diagrams diverges as O(s%).

(iii) The spin-0 mediated diagrams M x involve
3-point scalar-(spin-2)-(spin-2) couplings and con-
tribute the following wave function overlap integrals:

1 [+=
Apm'(n) = ;/_ d(pe_zA (a(pl//l)(a(pl//m)yn'

T

Due to the structure of the Lagrangian, no corre-

sponding “by ()" Or “byyy ()" i generated. In this

case [9-11,16] the scalar-exchange diagrams grow

more slowly, where each M ;) y diverges like O(s?).
In general, (i) couplings labeled with an “a” have an ¢~24
weight factor, whereas those labeled with a “b” involve
e™A; (ii) the subscript KK indices indicate the relevant
wave functions to include in each integral (remembering
that parentheses indicate scalar modes); and (iii) a subscript
KK index with a prime denotes that the corresponding
mode number’s wave function should be differentiated with
respect to the extradimensional coordinate ¢.

We can reduce the number of coupling integrals present
by using the properties of the KK wave functions; namely,
the mode equation and completeness relations, Egs. (7) and
(9). For example, in prior work [11,12] we showed how the
spin-2 mode equation (7) and the corresponding complete-
ness relation (9) relate some of the a and b couplings:

1 Uz
bl/m’n :E[:ulz_F/ﬂm _ﬂ%]almm bn’n’nn :?narmnn' (18)

We use these relations and eliminate all b-type overlap
integrals in favor of a-type integrals. Doing so, we may
write the sum rules entirely using a-type overlap integrals.

B. Sum rules ensuring consistency
of scattering amplitudes

By requiring the scattering amplitude to grow no faster
than O(s) in the GW model [16], we previously determined
the following general sum rules should be satisfied:
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X;aﬁn, = Gy (19)
£

JZO#? = gﬂ%anm, (20)
Zu, 2= bt Ay = 302,0) Za .
Zﬂ; a2, = —4ula ,mo+9Z =12 ) (22)

The first two sum rules, Egs. (19) and (20), ensure that the
contributions to the scattering amplitudes growing like
O(s®) and O(s*) vanish. They follow directly from the
Sturm-Liouville form of the spin-2 KK mode equation (7)
and the corresponding completeness relation (9)—so the
proofs given in [10-12] apply to any model producing a
geometry defined by a warp function A(y). However, the
sum rules in Egs. (21) and (22), which ensure cancellation
of the contributions to the amplitude growing like O(s?)
and O(s?), involve the scalar tower present in the
GW model.

By combining the last two sum rules, Eqs. (21) and
(22), to eliminate the common sum ) _; aﬁ,n,m, we find a

mixed rule:

+o0 6

1 C
§ [Sﬂ% _ﬂ?]ﬂja%nj = ?Iugannnn +9 E /A%i)ai/n’(i)' (23)
j=0 i=0

As we show now, this combined sum rule can be expressed
in a way that depends only on the spin 2 wave functions.

The only scalar tower sum » ;% W )a (i) remaining in

this particular combination of the (’)( 3) and O(s?) sum
rules can be eliminated using the spin-0 completeness
relation Eq. (16). Since the spin-2 wave functions satisfy
Neumann boundary conditions, (9,y,) =0 at ¢ = 0 and
7, we find

1
Zﬂ%{)ai’n'(i) - 6 {/ d¢(a¢¢0)2e_8A (a(pl//n>4}' (24)

Hence the combination of sum rules in Eq. (23) does not
depend on the explicit form of the scalar wave functions
vi(@), but only on the spin-2 wave functions y,(¢), the
exponentiated warp factor ¢4(#), and (the derivative of) the
background scalar field ¢.

In Appendix B 5 a we show, by applying only the spin-2
mode equation (7), Neumann boundary conditions, and
completeness relations (9), that

+o0

> [5u - wdlutal,; =

6
ﬂn nnnn
j=0 3

n 18{% /_ ” d<p(a;A)e—8A(aWn)4}, (25)

In the GW model we have the Einstein equation [via
Eq. (10)] (BA) = (9,¢0)/12 + 3, Viredi(p)/3. The
Dirac delta terms vanish because (d,w,) =0 at the
boundaries, and hence

+00
Z[Sﬂ% - /‘Jz]ﬂ?a%nj
J=0

16 3
3 /"n nnnn + 2 {/d¢(a¢¢0>2e_8A(a¢Wn)4}' (26)

Applying Eq. (24) we immediately obtain Eq. (23). Hence
Eq. (23) depends nontrivially on the dynamics of the GW
model—in particular, on the Einstein equations for the
warp factor and on the scalar completeness relation which
follows from the mode equation and the scalar mode
normalization condition.

Using the spin-2 completeness relations and the relations
between the a and b couplings in Eq. (18) and the sum rule
in Eq. (19), we find

4
Z MJ nn] 4cn’n’n’n’ =+ g/’lflannnn' (27)

Here we have defined the quantity

Cun'n'n! = Z bnnj /d(pe_6A( (pl//n)4’ (28)

which depends only on the spin-2 wave functions. Plugging
this into Eq. (26) we find

Zm

/’ln nnnn T 20/’lnclz’n’n'n’

—j{ / dqo(aq,qso)%-“(awwn)“} (29)

which depends only on the spin-2 wave functions and the
background scalar-field configuration ¢.

Finally, having demonstrated that one linear combination
of Egs. (21) and (22) is determined entirely by the spin-2
sector of the GW model, we can also use Eq. (27) to isolate
the contribution from the GW scalar sector

1 1
Z a, cn’n/n’n/ + 9/'4)1 nnO Eﬂflannnn’ (30)
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which succinctly summarizes the necessary (but unproven)
relationship between the scalar and spin-2 couplings
(and hence wave functions) which must be satisfied in
order for the spin-2 scattering amplitudes to grow no faster
than O(s).

C. Sum-rule summary

In summary, the spin-2 coupling relations

a%n} pnnns ( 19 reVisited)

=0

2 i =

(20 revisited)

l’l nnnn ’

4 ..
Zﬂj Aiunj =4cywnn + gﬂiannnnv (27 rev151ted)

Zﬂ,

/’ln nnnn T 2Oﬂncn’n’n’n’

_ % { / d(p(0¢¢o)2‘3_8A(0w‘/’ﬂ)4}

(29 revisited)

follow from the form of the spin-2 mode equations, the
spin-2 wave function completeness, the Einstein equations
for the warp factor, and the scalar completeness relation
which follows from the scalar mode equation and the scalar
mode normalization condition. Analytic derivations of all
of these relations are given above or in Appendix B 5 a.
With respect to guaranteeing that the massive spin-2
scattering amplitudes grow no faster than O(s), these
relations show that the first two sum rules Egs. (19) and
(20) and one combination of the sum rules in Egs. (21) and
(22) are always satisfied."

Separately, the sum rule

l’l nnnn ’

za 2 o + g +
nnnn 9 ,Lt nnO 27
(30 revisited)

which depends on the spin-0 GW scalar couplings must
also be satisfied in order for the spin-2 scattering ampli-
tudes to grow no faster than O(s). With the methods
discussed here, we have been unable to prove analytically
that this scalar sum rule is satisfied in general.11

"Generalizations of the proven rules (and their proofs) as well
as additional unproven rules necessary for O(s) growth of the
inelastic amplitude (k, [) — (m, n) are provided in Appendix B.

'While this paper was under review, an analytic proof of this
remaining sum rule has been developed [35] by reframing the
problem in conformal coordinates to reveal a hidden N =2
supersymmetry structure of the mode equations.

In [16], we demonstrated that these sum rules in
Egs. (19)—(22) were satisfied in the “flat-stabilized”
model—a slight deformation of a flat extradimensional
model in which the radion is massive and the size of the
extra dimension is stable. We now demonstrate numerically
that these relations are satisfied in the presence of the
warping required to produce the hierarchy between the
weak and Planck scales in the Randall-Sundrum model.

V. PERTURBATIVE ANALYSIS
OF A WARPED STABILIZED MODEL

In the original formulation of the RS1 model [3,4],
Randall and Sundrum constructed a consistent solution
to the Einstein field equations by choosing a warp factor
A(p) = kr.|@| sourced by brane and bulk cosmological
constants. Once the Goldberger-Wise mechanism is imple-
mented, such a simple functional form becomes unavail-
able: the background geometry is augmented, the Einstein
field equations are changed, and the warp factor A(¢) is
made more complicated. The background Einstein field
equations of the stabilized model [Egs. (A26), (A27),
(A29), and (A30)] are coupled nonlinear equations with
respect to A(¢) that depend on the derivative of the scalar
background ¢{(¢) and are generally difficult to solve.
DeWolfe, Freedman, Gubser, and Karch have constructed a
specific class of exactly solvable potentials (the DFGK
model) [36] which make calculations in the stabilized RS1
model feasible.

In this section, we review the DFGK class of solutions to
set notation, and we detail a specific DFGK model which
enables perturbative expansion around the (solved) warped
unstabilized RS1 model [16]. Subsequently, for the physi-
cal spin-0 and spin-2 towers, we perturbatively compute the
wave functions and masses using the Sturm-Liouville
equations described in Sec. III. Finally, we demonstrate
that the sum rules defined in Sec. IV are numerically
satisfied at second order in the expansion parameter, the
lowest order necessary to generate a nonzero radion mass.

A. The DFGK model

A key strategy employed in the DFGK model [36] is the
introduction of a superpotential-inspired function W[g]
which is used to simplify the stabilized model’s back-
ground field equations [Egs. (A26), (A27), (A29), and
(A30)]. In particular, it is assumed that the scalar bulk and
brane potentials may be parametrized as

1 [dW\2 W?
Vire _+V;/+/)72[ (o) — P,
Vare = = + Bl(o) - h:] (32)
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In this case, the background scalar and Einstein equations
are solved if

0,4) =12 sign(p).  (@00) =TT sign(y)
=0 A

(33)

where ¢, = $(0) and ¢, = ¢(r). Reference [36] introdu-

ces a convenient W[g] with the following specific form'*:

Wblo)l = 2kr S dloPure. (34)

Plugging this into Eq. (33) we find solutions for the bulk
scalar vacuum and the warp factor:

Po(g) = e 7elo!, (35)

1
AW@) = krelol + 4o dile o 1. (36)
In the limit that the parameter u vanishes, this reduces to the
usual unstabilized RS1, with the bulk field acquiring a
constant vacuum expectation value. The parameters u, ¢,
and ¢, are related according to

ur, = l1 z; (37)

We next define the small-u limit carefully to facilitate a
perturbative analysis.

B. The perturbative DFGK model

The forms of ¢q(¢) and A(¢@) in Egs. (35) and (36) are
useful for solving the background equations, but it remains
difficult to find general analytic solutions (i.e., the KK
wave functions and masses) to the differential equations
defined in Sec. III. Therefore, we define a limit of the model
so that we may perturbatively expand ¢, and A around the
unstabilized background (for which analytic solutions are
well known), take the stiff wall limit [with V1,2 — 00 SO
that the scalar boundary conditions in Eq. (13) reduce to
Neumann conditions at ¢ = 0,z], and develop solu-
tions for the Sturm-Liouville problems order-by-order in
perturbation theory.13 Details of the perturbation theory can
be found in Appendix C. Here, we now proceed to

Here u is a parameter, and not the i field of Eq. (A3).

Spemflcally, we will solve this problem numerically in two
limits, both of which are phenomenologically relevant and
interesting. One corresponds to large values of kr,. that connects
the 4D Planck scale to TeV scale physics in the context of RS
models. The second limit corresponds to small values of ur,. that
give rise to small values of the radion mass and allow for us to
solve the relevant equations perturbatively.

introduce the effective warp parameter k and perturbation
parameter € [16].

Suppose we series expand A(g) with respect to the
unitless quantity ur.. Expanding around ur, = 0O yields

A(@) = tlol = | ol uro)
+ S0P 2 + 0y 39)

= [e= G ol [P o + 0. o9

The first term in the second line demonstrates that, when
ur, is sufficiently small, the stabilized model is a small
deformation of an unstabilized Randall-Sundrum I model
[3,4]. Because we intend to work in the ur, — 0 limit, we
will eliminate the actual warp parameter k in favor of the
effective warp parameter,

k=k—q¢lu/24, (40)

that applies in that limit."*

To simplify various factors that would otherwise be
present in multiple equations, we will also replace ur, (and
its role as our expansion parameter) with the rescaled
dimensionless perturbative parameter e = ¢, (ur,)/v/24.
This definition of e simplifies A(p) at O(€?),

. B (46
A(0) = Frdol + 55 [exp (= Eelol ) < 1] + 22 clo
(41)
= krelo| + €p|* + O(e), (42)

and yields, to all orders in ¢,
Wp(p)] = 12kr. +¢—fl[¢2 d(@)le.  (43)

bo(0) = by exp (—%em) — prexp(—aclgl).  (44)

where a = %6. It is the form of the warp factor shown

in Eq. (41) that we use in subsequent perturbative
computations.

“In [16] we discussed the properties of the “flat-stabilized
model” with k = 0. DS: Here we discuss the phenomenologically
relevant limit of large kr..
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1. Spin-2 wave functions and masses
in perturbation theory

To order O(e?), the spin-2 mode equation (7) becomes'

0

07[6_41er_{’7_4€2{/720{/)1//”] _ _M%e—2l~crc(ﬂ—252(/)2wn‘ (45)

The form of this equation, along with the Neumann
boundary conditions d,w, =0 at ¢ =0, x, ensures that
the zero mode (the graviton) is massless and has a wave
function which is constant in ¢. Expanding this equation in
powers of €2, we solve Eq. (7) using perturbation theory as
described in Appendix C. The perturbative expressions for
the spin-2 wave functions and masses are quite lengthy, and
to simplify them, we restrict ourselves to the limit when k7.
is large. The expressions for the spin-2 mass and wave
functions are given to order €2 in the large-kr, limit in
Appendix C 2.

To illustrate the effects of the geometry on the spin-2
masses, we calculate the masses for Eq. (7) using the
Wentzel-Kramers—Brillouin approximation. The asymp-
totic formula for the masses is given by16

4y = myr, = ”T” I — A" dpet.  (46)

The equations above show how the eigenvalues are positive
and form an infinite tower of states. Using the form of A(¢)
from Eq. (36), we find the mass of spin-2 KK modes for a
large mode number to be

(nm)kr. e [wkro(nkr. —2) +2] =2
Halps1 = T — (nz 7 k 2 ¢

e —1 kr.(e™ —1)

+ 0(&). (47)

In the limit when kr, > 1, which is the phenomenologi-
cally interesting limit, this expression further simplifies to

T [wkr,(zkr. —2) + 2]
:un|n>>1 = (n”)krce ¢ L{l - ]}2’,.2 €2 :
(48)

We can see how the effect of the on the geometry from the
bulk scalar field reduces the masses of the massive spin-2

"Here, and in subsequent equations related to the perturbative
model in this paper, we expand A(p) to O(e?) using Eq. (41),
but we do not record the expansion of the exponents in powers of
€ to retain succinctness of expressions when writing. However,
these exponents are actually expanded during our calculations,
e.g., when we define the perturbed differential equations in (C4)
and (C5).

There are O(1) corrections to u2£? that do not grow with n,
due to the Neumann boundary conditions. These effects can be
included, but do not affect the analysis given here.

-18.764
-18.766 |- ® Spin-2 KK mode mass correction
_18.768L = Asymptotic
al .
~gls, -18.770
= =& L -
2= r fre=20 L 1o73
Lo_qg772f g
_18.774L
_18.776 L ML TP ©®000000000000000 8
:I 1 1 1 1 I:
0 10 20 30 40 50

KK number (n)

FIG. 2.  'We show for each spin-2 KK mode 7, the ratio of mass
correction to leading order mass times €> (dots). The mass
correction 82 is calculated in the large kr. limit to order €2,
as shown in Eq. (C29). The line represents the asymptotic form
of the expression given in Eq. (49), which is valid for the large
spin-2 KK number.

modes. Further, the square of the ratio of the correction to

the mass (8u,,) to the leading order mass (/45,0)) is

2
ar ~ [—2752 fl—” - i +-- e (49)
(.“1(10)>2 w>1ikro>1 kre kzr%

We can therefore conclude that the perturbation theory we
use is valid when || < 1/(v/2x). In Fig. 2, we compare the
full expression for the mass corrections [given in Eq. (C29)
of Appendix C] to the asymptotic form shown here. Here
we see that the full form of the mass, represented by the
blue dots, approaches the asymptotic value, represented by
the bold red line.

While the asymptotic formula is simple and provides a
convenient cross-check of our calculations, it is insufficient
for our present purposes. To demonstrate cancellations and
verify sum rules, we need to be able to evaluate the O(e?)
wave functions and masses without approximation. We
provide exact expressions to order €” in the perturbation
theory within Appendix C 2. These expressions are con-
sistent with the large kr, limit results. Full expressions
(which are valid for arbitrary values of kr,) are provided as
supplementary Mathematica files [28].

2. Spin-0 wave functions and masses
in perturbation theory

Equation (44) implies that
(¢p)? = 24e*e™20c0 (50)

in the bulk. To simplify our analysis, we consider the
perturbative solution for the scalar tower in the “stiff-wall”
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limit, V1,2 — 400, so that Eq. (13) reduces to Neumann
conditions

a(pyi|(/):0,ﬂ =0. (51)

Using this and the expansion of A(¢) to order O(e?) from
Eq. (41), the spin-0 mode equation (12) becomes (after
multiplying through by 24¢?)

7 2.2 7 2.2
) [e(Zkrl.(p+2ae(p+2€ 7 )a{pyl_] _ 4626(2kr61p+26 7 >7/

i

7
A . 2.2
_ ﬂlze(4krglp+2(le(p+4e @ )71'7 (52)

while the normalization conditions to this order are

1 +7r -
un = ez | e w22,

2
dne” J_,

+ 4626(27(&4»262(/)2)(/1},?”}/”]. (53)

Expanding the spin-0 mode equation (52) in powers of ¢,
we solve the differential Eq. (12) using the perturbation
theory described in Appendix C. In particular, using
Eq. (C12), we find that the radion [identified as the zero
mode of the KK expansion in Eq. (11)] acquires a mass-
squared at order €? in perturbation theory

8¢?

= HO) (54)

Ho)
while the radion wave function evaluated to order € is

kr.zm - -
Yo) = T + C(kr.){2kr.@

+ sech(zkr,) sinh[kr,(z — 2¢)]
— tanh(zkr.)}e? + O(€3). (55)

Here C(kr,) is determined through normalization; the
normalized radion wave function is provided in
Appendix C in Eq. (C34). In the limit where € vanishes,
the gravitational degrees of freedom and the bulk scalar
cease mixing. This results in a massless radion, an
unstabilized extra dimension, and an entirely separate
tower of scalar states. Note that the leading order radion
wave function is flat, signaling that it is massless at
that order.

The GW scalar wave function to order € is given in
Eq. (C36). As expected, the wave functions are composed
of Bessel functions. Due to the normalization condition in
Eq. (53), the massive GW scalar mode wave functions have
no ¢” terms and start at order e. Since the sum rules in
Eq. (19) through Eq. (23) have only products of GW scalar
wave functions, when trying to verify them to order €2,
we only need expressions of the wave functions to order .

We therefore only provide expressions for the GW scalar
wave function and masses to leading order."’

C. Numerical verification of sum rules

We now verify the sum rules summarized in Sec. IV C
for the warped-stabilized model using our perturbative
computations. We can substitute expressions for wave
functions and masses calculated in the DFGK model and
provided in Appendix C2 and evaluate the overlap inte-
grals numerically. The sum rules in Egs. (19), (20), (27),
(29), and (30) can thereby be evaluated order-by-order in €.
We know that the sum rules are satisfied for the unstabilized
RS model [11], and therefore these expressions agree to
leading order (¢°). Using our perturbative expressions, we
verify here that the sum rules are satisfied to leading
nontrivial order, O(e?). Equivalently, we show that the
O(€?) contributions on the left- and right-hand sides of
Egs. (19), (20), (27), (29), and (30) agree.

Note that the left-hand sides of these expressions are
given as infinite sums over different overlap integrals. It is
therefore not possible to perform the entire sum. Instead,
we perform the sum up a “cutoff” KK number and show
that the relative error in the O(e?) contributions to the left-
hand side (LHS) converge to the O(e?) contributions to the
right-hand side (RHS) of each expression as the number of
KK modes included in the sum increases. For example, to
numerically verify Eq. (19), we take the coefficient of the €2
piece in ) ;a,,;, referred to as ALHS and divide by the

coefficient of the €? piece in a,,,,, referred to as ARHS. We
examine how the relative error log;,|1 — ALHS/ARHS]|
scales as we increase the number of KK modes in the sum
of ALHS.

1. Spin-2 sum rules and completeness

We begin with Egs. (19), (20), (27), and (29). The result
of this exercise is shown in Fig. 3, in the case n = 1 (e.g.,
for elastic scattering of spin-2 modes at KK level 1) and for
kr, =40/7 = 12.73. We see that each of the series
converges nicely with the relative error reducing with
the addition of terms to the sum on the LHS of the
equation. As described in detail in Sec. IV, Egs. (19),
(20), and (27) can be proven directly using the complete-
ness properties of the solutions of the spin-2 mode
equation (7). Their numerical verification demonstrates
that accuracy of our perturbative analysis. The first two of
these equations demonstrate that the O(s%) and O(s*)
contributions to helicity-0 spin-2 elastic scattering vanish to
this order in perturbation theory.

"Note that the limit kr, = 0, dubbed as the flat stabilized
model, was studied previously in our work [16], where we show
that the sum rules required for the scattering amplitudes to grow
only as O(s) were satisfied to O(e?).
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FIG. 3. Verification of sum rules [Egs. (19), (20), (27), and (29),
reproduced at the bottom of the diagram] for elastic scattering of
KK mode number one (n = 1). The index j, shown on the x-axis,
is the number of spin-2 modes included in the sum of the left-
hand side of the sum rules. The y-axis indicates the log of relative
error (log;o(1 — A(LHS)/A(RHS))) between the O(e?) correc-
tions to the LHS and the RHS of the relevant equations. This has

been evaluated in the large kr, limit.

We also see that the sum rule in Eq. (29) converges as
well. As discussed above, Eq. (29) depends nontrivially on
the dynamics of the Goldberger-Wise model implemented
here—in particular on the Einstein equation coupling the
scalar potential to the curvature of the extra dimension
Eq. (10) and on the completeness conditions of the spin-0
modes Eq. (16). As discussed in Sec. IV C, this verifies that
one linear combination of Egs. (21) and (22) is also
satisfied.

Finally, in all cases we see that the series only converges
rapidly once we have included the j =2 term. This is
because the overlap integral defining the coupling between
two spin-2 level-1 states and a spin-2 state at level j is
largest for j = 2—which can be understood as a remnant of
the “discrete” KK momentum conservation, which would
be present in a flat extra dimension.

2. The spin-0 sum rule

Finally, we examine the sum rule in Eq. (30) for which
we have no analytic proof, and which depends on the
couplings of the individual spin-0 states to the massive
spin-2 KK modes. The result of this exercise is shown in
Fig. 4, in the case n = 1, 5, 11 (e.g., for scalar-exchange
contributions to elastic scattering of spin-2 modes at KK
levels 1, 5, and 11) and for kr, = 12.73. Again, what is
plotted here is the agreement between the O(e?) contri-
butions to the left- and right-hand sides of Eq. (30)—which,
at this order, depends explicitly on the forms of the scalar
wave functions that solve Eq. (12) and which are subject to
the normalization conditions of Eq. (15).
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T T
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Sum up to GW-Scalar number (imay)

FIG. 4. Verification of the scalar sum rule in Eq. (30) for elastic
scattering of spin-2 KK mode number n = 1 (red), n = 5 (blue),
and n = 11 (green). Here n represents the KK mode number of
the spin-2 particles in the external legs. On the x-axis we show the
number of GW-scalar modes included in the sum (i) of the left-
hand side of the sum rules in Eq. (30) versus the log of the relative
error (log;o(1 — A(LHS)/A(RHS))) between the O(e?) contri-
butions to both sides of the relevant equation. This has been
evaluated in the large kr, limit.

The nonzero difference between the left- and right-
hand sides of the O(e?) corrections to Eq. (30) at i = 1
demonstrate the need to include the tower of Goldberger-
Wise scalar states for the spin-2 scattering amplitudes to
have the proper high-energy behavior. Again we see that
the largest single contribution to the O(e?) corrections
comes from the exchange of the GW scalar state whose
mode number is twice that of the incoming particles—
i =2, 10, and 20, respectively, for incoming modes 1, 5,
and 10 spin-2 states. However, the continued conver-
gence when adding additional states is also clear and,
formally, the entire tower is needed for the sum rule to be
satisfied.

VI. CONCLUSION

In this paper we have presented a thorough analysis of
the scattering of massive spin-2 Kaluza-Klein excitations in
phenomenologically realistic models based on a warped
geometry [3.4] stabilized via the Goldberger-Wise [17,18]
mechanism. These results significantly extend the work
presented in [9—11] on the unstabilized RS1 model and the
results in [16] on the “flat-stabilized” model (/~ch. =0). We
briefly recap our findings here:

(i) We provided a complete and self-contained deriva-

tion of the mode expansions for the spin-2 and spin-
0 states and their interactions. Generalizing the
presentations in [24—26], our computations are given
in de Donder gauge for massless gravitons—
allowing us to consistently compute scattering am-
plitudes involving intermediate off-shell states.
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(i) In previous work [16] we had demonstrated the
extended sum-rule relationships between spin-2
and spin-0 modes, and their masses and cou-
plings, which must be satisfied in order for elastic
massive spin-2 KK scattering to grow no faster
than O(s). Here, we have provided an analytic
proof for one combination of these sum rules and
showed its relation to both the Einstein and the
scalar background field equations implementing
the Goldberger-Wise dynamics and also to the
properties of the mode equations for the physical
scalar fields (fields which are admixtures of bulk
scalar and gravitational modes in the original
theory).

(iii) We have provided, in Appendix B to this work,
a complete list of the sum-rule relations which
must be satisfied if all 2 — 2 massive spin-2
scattering amplitudes, elastic or inelastic, are to
grow no faster than O(s)—completing the analyses
begun in [9-12].

(iv) Finally, using a version of the DFGK model [36]
in which the Goldberger-Wise dynamics can be
treated perturbatively [16], we have checked nu-
merically that the sum rules which enforce the
proper high-energy behavior of massive spin-2
scattering continue to be satisfied in the case of
the large warping that would be required to
produce the hierarchy between the weak and
Planck scales. These numerical computations dem-
onstrate that, in models with a massive radion,
proper cancellation is achieved only after including
the contributions from the tower of scalar states
present in the Goldberger-Wise model.

In future work we will also explore the phenomenologi-
cal consequences of the fact that all spin-2 scattering
amplitudes in models of compactified gravity can grow
no faster than O(s); specifically, we will study the
implications for the computation of relic abundances of
dark matter particles in KK graviton-portal theories and
related theories.
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APPENDIX A: THE DERIVATION OF THE
SCALAR KALUZA-KLEIN MODES

The canonical quadratic Lagrangian for the Kaluza-
Klein modes in a Goldberger-Wise model has been
derived in Refs. [24-26]. Here, for completeness and

as a guide to the interested reader, we present our
derivation of the canonical quadratic Lagrangian. In
addition, since our computation includes diagrams with
off-shell gravitons, we are careful to derive our results in
de Donder gauge.18 We include all the necessary details
needed to reproduce our results: deriving the background
equations of motion for a Goldberger-Wise-stabilized
Randall-Sundrum I model, showing how the 5D scalar
field # and 5D tensor field & decouple, motivating the
gauge condition relating the fluctuation field f and the
5D scalar field 7, describing how the linear equations of
motion inspire the Kaluza-Klein decomposition of the 5D
scalar field 7, and demonstrating that the 5D scalar field
#(x,y) generates a tower of canonical spin-0 fields 7()(x)
with masses m;) = pg)/r..

1. The Lagrangian

The Goldberger-Wise-stabilized Randall-Sundrum I
Lagrangian is constructed from several elements, includ-
ing the spacetime metric. Focusing our attention on the
spin-2 (izw) and scalar (7) fluctuations about a geo-
metry determined by the warp factor A(y), we use the
following parametrization of the metric Gy and its 4D
projection G-

wg, 0 _
[GMN] = ) [G/w] = Wgﬂl/’ (Al)
0 —v
where (taking our parametrization from [32])
w = e_z[A(y>+f‘(x-)’)]’ v=1 + Zﬁ(x’ y), (AZ)
N R eZA()’) .
Y = M + Kh;w(xvy)’ u= 2\/6 Kr(x,y). (A3)

The compact extra dimension is parametrized on a circle of
radius r.. such that y € (—zr,, +xr.| and the 5D coordinates
XM = (x#,y) define a 4D Minkowski spacetime “slice”
at each fixed value of y. We impose an orbifold invari-
ance y <> —y on the infinitesimal spacetime interval
GundX"dx", and identify y = 0 and y = zr, as orbifold
fixed points. For our spacetime signatures, we use the mostly
minus convention, i.e., 7, =Diag(+1,-1,-1,-1).
Lowercase Greek letters (e.g., u, v, p, o) denote 4D indices,
uppercase Latin letters (e.g., M, N, R, S) denote 5D indices,
and lowercase Latin letters (e.g., m, n, i, j) denote Kaluza-
Klein mode numbers.

'8If one is only concerned with external gravitons, and not
doing scattering computations, one can impose the transverse-
traceless conditions on all of the fields to simplify the compu-
tations of the interactions.
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We then define the Lagrangian as

Lsp = Ly + Loo + Loo + Lony + AL, (A4)
where the Einstein-Hilbert (EH), Gibbons-Hawking-York
(GHY), scalar kinetic terms (®®), and scalar potential
terms (pot) are defined as

Ly = —%\/ER, (AS)
4 .
Lony = —Fay[\/EK]
W2 AW
— %ay [7 /- detg<gﬂ"ay(g,w) + 4a>v(v >)] .
(A6)
Lon = VG35 0ud)0u0)]. (A7)

Ly =22 | VGVIEL+ 3 VGV B)]. (a8)

i=12

respectively. Here R is the Ricci scalar and K is the extrinsic
curvature at the boundaries. G and G are the determinants
of the metric and the induced metric, respectively. The
Dirac deltas on the branes are defined in the limit as we
approach the branes from within the y € [0, zr,] half
of the bulk: §,(p) =68(p —0") and 8,(p) =6(p —77),
where ¢ = y/r..

Note that no dynamics are given to describe the physics
of the branes themselves, which are assumed to arise
through unspecified dynamics at some higher scale (e.g.,
string physics)—and, in particular, no modes arising from
that physics (fluctuations of the branes themselves) are
included. More on this below, when we discuss the effect of
taking the so-called “stiff-wall” limit on the scalar mode
expansions.

Meanwhile, the contribution AL in Lsp is a total
derivative we add for convenience which generalizes a
total derivative from our unstabilized analysis [11,12]. It
cancels terms in the Lagrangian at linear order, eliminates
mixing between tensor and scalar 5D fields at quadratic
order, and simplifies the vertices relevant to this paper.lg
Explicitly, we define it as

If such a term were not introduced here, we would recover its
effects (at least to quadratic order) as additional total derivative
terms needed to make the Lagrangian explicitly canonical. This
AL naively generalized the AL introduced in Refs. [11,12], and
(unlike the latter) does not eliminate Dirac deltas or twice-
differentiated quantities to all orders.

AL

The perturbative expansion of the gravitational contribu-
tions as series in k proceeds as usual. For convenience, we
rewrite the bulk scalar field ®(x, y) such that it is perturbed
about the background ¢,(¢)/x by an amount f/x, ie.,
d=¢/k= (¢o + j‘) /K. This rewrite allows us to expand
the bulk and brane potentials in L, about g?ﬁ = ¢y with
respect to the dimensionless scalar fluctuation field f like so:

VIé] =V + VT3 VR + O, (A10)

VI = Vit VSV OP +OGR). (Al

where dots denote éﬁ functional derivatives, and V and V;
(and their ¢ derivatives) are set to ® = ¢ (y)/x when their
functional arguments are unspecified.

The path forward is, in principle, clear: find the appropriate
solutions for the background fields A(y) and ¢y (y), compute
the Lagrangian that describes the dynamics of fluctuations
about these background fields, and then diagonalize the
quadratic terms in this Lagrangian to establish the (canoni-
cally normalized) physical modes and their interactions. In
practice this is difficult because of the complicated algebraic
structures involved in the mixing between the scalar com-
ponents of the metric and Goldberger-Wise scalar field in the
presence of a nontrivial scalar background. Some simplifi-
cation results from the fact that diffeomorphism invariance
implies that only one linear combination of the fields 7 and j’
are physical, and we can set the gauge of the calculation such
that these fields are related according to

Bof = V6. (A12)
We begin our analysis in general, without imposing this
gauge condition, and only use the gauge constraint Eq. (A12)
to identify the physical scalar modes after deriving the
background equations, which we turn to now.

2. The Lagrangian to quadratic order

After weak field expanding the Lagrangian Eq. (A4)

without applying the gauge condition Eq. (A12) or any
background field equations, we obtain

Lsp = Lspiked + Lspn + Lip, + Lip p + Lip py + Lip sy

+ AC;D’rf + ‘CSD,hh + ’C§D,rr + E;D,ff + O(K)
(A13)
to all orders in the background fields and up to quadratic

order in the fluctuations. The background-only terms in the
Lagrangian are
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oA
‘CSD,bkgd = W |:24 m_ 48<A,)2 - (¢6)2 - 8 (Vr% + izl;zvircéi>:| . (A14)
The terms linear in the fluctuations are
e 2 2 2 7
J— " ! /
Lson = 3z {24A —48(A")2 = (¢)? -8 (Vrc + izljzvirca,)] h, (A15)
V6e24 e—2A
LE = M =24V + —48A" + 48 +3(p)> +8(Vr2+2) Vrs; Al6
o, =0 - 24 zng W +8(vi ey v )| )
o4
Lip =~ ¢0f {Vr + > Vir 5} (A17)
i=12
where i = r]"”fzw. At quadratic order in the fluctuations, “off-diagonal” (mode-mixing) quadratic terms are
Lip e = E;D,rﬁ’ (A18)
* K 7
ESD.hf = EESD,fh’ (A19)

36_2 Se —2A
C;D’rfs\/: > Phif! +\/ [Vr +22Vr5]rf (A20)

and the “on-diagonal” quadratic terms are given by

Lopm = e {(a”fz,wxwz) _ (@h,)?

—4A
24A" — 48(A")?
1 1
Ly, =5¢4(0,7) - e 2(7)? + 377"] -
L oas 22 e
Lip s = 53_ (0.f)7 = 272 (f)?

Here we use an asterisk to denote that we have not yet
applied a gauge condition relating 7 and ]A‘

The first line of terms in Eq. (A21) will yield the usual
canonical spin-2 Lagrangians after Kaluza-Klein decom-
position. As we will soon demonstrate, the other terms in
Eq. (A21) will be canceled when the background fields
satisfy their equations of motion. However, as close as
Lsp qp 18 to the desired spin-2 result, the quadratic analysis
overall is complicated by the presence of the mixing terms
L3 and L3p -, which seemingly imply kinetic mixing
between the tensor field / and the scalar fields f‘ and 7. To
eliminate these mixing terms, we must derive the equations

1
+5 (0,h,)*

i=1,2

1 e .
- OBP] + S 02 - ()
(Vr + ZEI:ZV red; )] —2(hy,)2, (A21)
o { 48A" + 5(¢p))? + ]6,21:2‘” 5} )2, (A22)
oA
{Vr + ZV r 5} (A23)

of motion for the background fields and for the fluctuations,
which we discuss next.

3. Equations of motion

The Einstein field equations derived from Lsp equal

5r<¢)+v (@] r< ¢) %GMN
(

Gun — V[®|Gyy — |V, [D]

K2

=—Tun, A24
4 1 MN )
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where Gy = Ryn —%GMNR is the Einstein tensor, Ry

and R = G*BR,;; are the Ricci tensor and Ricci scalar,
respectively, and the stress-energy tensor equals

= (0u®)(ovDP) — Gy EGAB(aA(i)>(aBCi)) . (A25)

Recall that ® = ¢/k = (¢ + f)/k. We will discuss the
Einstein field equations in terms of their decomposition as
(M,N) ={(u,v), (1,5),(5,5)}, to the first two orders in «.

a. Background equations of motion

To lowest order in k, in which no fluctuation fields are
present, only the (u,v) and (5, 5) Einstein field equations
are nontrivial (because of the Lorentz invariance of the
constant-y subspaces, the (u,r) components of the curva-
ture are proportional to 7,,), and they imply

1 1
A" =2(A"N? + — ’2+—V2+E V.r.s;|,
( ) 24(¢0) 3|: re “ ile l:|

1
ViE = =64 + ¢ (4))% (A26)
respectively, for the background fields. The first of these
equations implies the boundary conditions [integrating over
the end points using an S'/Z, orbifold construction where
A(y) is assumed to be “even” under orbifold reflection]
Vl rC51 = +6A/51 s

V2r652 == —6A/52. (A27)

By combining the equations of (A26), we may also write

1
Al — 5 {(%)2 + 42 V,'Vc5,}~ ((10) revisited)
i=1.2

Note that Eq. (A26) ensures Lsp proq and Lspj from
Eqgs. (A14) and (A15) vanish, and ensures Lsp,;, yields
canonical spin-2 Lagrangians after Kaluza-Klein decom-
position. Equation (A26) also simplifies the various pieces
of the Lagrangian, including the linear 7 terms:

V6
’CSD,r = Tafp[e ZAV,]-

(A28)

While the mixing terms L3y, ), and L5, ), - remain at this
point, these will vanish once we have analyzed the scalar
sector, which we discuss now.

We obtain another background equation by considering
the Euler-Lagrange equation of the scalar field. The terms
independent of the fluctuations yield

V= 4A' g + 4Vt + 4 Z Vi, (A29)

i=12

which implies its own boundary conditions (again, assum-
ing the background scalar field configuration is even under
the orbifold projection)

. 1 . 1
V1r051 = +§¢651, Vzrc(Sz = —545652 (A30)

This simplifies E;D’f, such that

1 N
Lip s = _ma(p[e_M%ﬂ- (A31)
This completes our derivation of background equations.
Recall that whenever we write a quantity multiplying
61(p) or &,(¢), it is understood that the quantity is
evaluated in the limit as ¢ approaches the appropriate
orbifold fixed point from inside the [0, zr.] half of the bulk.
This implies, for example, via Eq. (A29),
D35: = (B)puid; = [4A'¢), + 4Vri]s;.  (A32)
This also ensures quantities such as A’(¢)5;(¢) in
Egs. (A27) and (A32) are written unambiguously, despite
A’(¢@) being orbifold odd across the orbifold fixed points.

b. Lagrangian at quadratic order: Mode equations

Next, we examine the equations of motion derived from
considering terms in the Lagrangian that are quadratic or
lower in the fluctuations. These will give us the equations
which will define the mode expansions—the Kaluza-Klein
decomposition—for the fluctuating fields. As mentioned in
the previous subsubsection, we will be ignoring the spin-2
fields—they will ultimately decouple from the scalar
fields after having performed the correct scalar-field mode
expansions.

We begin with the scalar fields in the metric. Simplifying
the expressions using the background equations (A26)—
(A29), the (u,v), (1,5), and (5, 5) Einstein field equations
at O(k) are satisfied only if, respectively,

0 = [9, — 4A"|[V6e* ¥ — ¢, ], (A33)

0 = 9,[V6e# — ¢, 7, (A34)

9 [ﬂ(ﬁ}] = 2 2(00F) +2A’{2?’+ {ﬁ(/)/}]}
[ \/6 0 4 \/6 0
) e N
+¢—6 [%fﬁof] +8(¢0)2”
—24
2060 | 2 4]. (A35)
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where the final equation has also utilized the jump con-
ditions of Eq. (A30). As noted in Ref. [23], integrating
Eq. (A35), we end up with a tautology and end up with
boundary terms that provide no additional physical infor-
mation. By moving the Dirac deltas of Eq. (A35) to the
LHS and evaluating the derivatives, we derive an alternative
form of the equation which lacks Dirac deltas (implicit or
explicit):

—2A

~ rny 8 PRI
e%(/)gf A2(OF) +4A'Y + (¢0) \/;e 247,27

(A36)

We may also consider the Euler-Lagrangian equation of
the fluctuation field f at this order, which yields

= X 2(0F) +4A'f +4Vi2f

\/:eQAgbO” \/ [4Vr2 + 3A' gy
[4V] rof + \/:ezAgbOA] 5
A 2 .
+ [4V2rcf - \/;eZAg{)Or} 5,.

This equation implies, via the orbifold construction, the
boundary conditions

(A37)

N .. A 1
f/51 = |:2V1rcf + %€2A¢0?:| o1,

A . oA 1
f/52 == [2V2"cf - —€2A¢6}} ) <A38)

V6

Multiply these jump conditions by e=*4¢,/1/6 and use
Eq. (A36) to get

4viz . 24
{e%rg(mf») +4A [ ¢,rc — 2V, rc] [e%qﬁf)f} }5,
0

o (A39)
{ezAr%(D?’) 4ATF [4;:2 +2V,r, ] [% #of } }52
o (A40)

Using Eq. (A32), we may instead write the jump conditions
Eq. (A38) as

// —2A
RO a7 1 |0 _gp_op rc} {—e 'A} }5
{eron E o (S| o
:0’

// —24
{eZArg(D%) | 4A’+2V2r} {e—%ﬂ }52

¢o V6
—0. (A41)

This form is more common in the literature.

The linear field equations (A33)—(A35) and (A37)
describe the scalar modes of the theory. Note, in particular,
the recurring quantity v/6e2*# — ¢ f. This will vanish
once we impose the gauge condition (A12), which is our
next focus.

c. The gauge condition

The form of the metric specified by (A1)-(A3) does not
completely fix the “gauge” for this calculation: we have
access to various five-dimensional diffeomorphism trans-
formations which maintain the form of the metric and with
which we can choose to simplify our computations. In
particular, as shown in [25], we can always perform a
change of coordinate to impose the gauge condition
introduced previously,

\/_eZAA/ _ ¢/

One immediate consequence of this gauge choice is that the
sum of the mixing terms L3y, ,, L3p, ,, vanishes, eliminat-

(A12)

ing (as promised) any problematic mixing between the
scalar and spin-2 mode sectors.

The physical implication of the gauge condition (A12) is
that one combination of the scalar fields is a gauge artifact,
and does not correspond to a propagating degree of
freedom.”” Note that the “mixing” of the scalar degree
of freedom in the five-dimensional metric 7 with the bulk
scalar field f only occurs in the presence of a y-dependent
scalar background field configuration (¢ # 0). It is pre-
cisely this mixing between the two sectors that enables
the dynamics which stabilize the size of the extra dimen-
sion in the Goldberger-Wise mechanism [17,18] and
which simultaneously give rise to a “radion” mass. One
advantage of working in this “unitary” gauge and elimi-
nating the fluctuations of the scalar field f in favor of
scalar fluctuations of the metric 7 is that all couplings
linear in the physical scalar fields have the same algebraic
form as couplings linear in the (massless) radion within
the unstabilized model—simplifying the required coupling
computations.

“The precise combination of Lagrangian fields which is
physical and the corresponding form of its interactions depend
on the gauge choice—although all physical amplitudes are gauge-
invariant.
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Having imposed this gauge condition, the (u,v) and
(u,5) linear Einstein field equations (A33) and (A34)
vanish, the (5, 5) linear Einstein field equation (A35)
simplifies to

™) 24,2 'y SV”% ?/
M =e*ri(0F) + [6A 70 ]
(¢o) +2(81 — 6)7, (A42)

and the jump conditions in Eq. (A41) reduce to

{EZAI’%U:W) - |:2V1r —ﬂ:| A/}él
Po

{e”‘ re(00F) + [2V2r +ﬁ ”}52 =0. (A43)
0

These equations of motion for the field 7 at quadratic order
will define the Kaluza-Klein decomposition of the 7 field.
Note that, being careful about Dirac deltas,21

2€2A €2A

2A "/ 262A 12/ //
[(4»0) }‘(%)2“ oy o+

- ((‘]”:)2 {— [6A’ n szg] ot V'}, (A44)

such that Eq. (A42) may also be written in a more
conventional form:

M ] e M
fiae?] - 2t oo
M
= AR rz(07). (A45)

In the next subsection, we use Eqgs. (A45) and (A43) to
define the Kaluza-Klein decomposition of the 5D scalar
field. [Note again that the jump conditions of the field 7 are
trivial in this form of the equation, and boundary conditions
in Eq. (A43) are required.]

4. Kaluza-Klein decomposition of the scalar field

Next, we assume we can decompose the 5D scalar field
7(x,y) into a tower of 4D fields 7;(x) and extradimensional
wave functions y;(¢):

1 &

MO ()ri().
i=0

oy = (A46)

IRefer to the discussion after Eq. (A65) for more details. In
short, the quantity 1/(¢{)* cannot generate Dirac deltas upon
differentiation.

where the states are arranged in order of increasing mass
and ¢ = y/r.. We will show that if the y; satisfies the
Sturm-Liouville-like equation [compare to Eq. (A45)]:

e e 24
9, {W (04:7:')} ~ i +2[6,(p) — 61 ()] W (0,7:)

, e
= Uy T Vi (A47)
D (¢5)
with boundary conditions [compare to Eq. (A43)]
177 -1
(a(p}/i)|¢=0+ |:2V1r ¢0:| ﬂ%[)62A7i|¢=0+7
¢// —1
(a¢Yi)|(p:lr— = |:2V2r +¢0:| ,u%l')€2AYi|(p:ﬂ—’ (A48)

the #7)(x) are the properly normalized scalar Kaluza-Klein
fields.

These scalar boundary conditions can alternatively be
enforced (recalling that 7 and hence y; are orbifold-even)
using the equation introduced in the body of the paper:

o2A o2A P
a(p [W (@,ﬂ’i)} - ?71' = —/4%,-) W?’i
26 26(¢p —
x {1+ () o+ o ”2,, } (12)
[2Vlrc - 4)_2] [2V2rc + ﬁ]

In this form, the Sturm-Liouville nature of the problem is
manifest [24,25,33,34]. We will choose to normalize the
wave functions such that

612 [+ A4
5m,n = - d(pymyn 5
T J-z

(#0)
x {1 n [2V2fi(¢) 7 N {22‘?((}/; +ﬂ(23]} (A49)
1 &, 2
6 [+ o2 24
= ;/+ dg |:(¢0)2 ym}/n + %ym}/n:| ’ (ASO)

where the second line follows by applying the differential
Eq. (12) and integration by parts on the periodic doubled
“orbifold.” We will show that this normalization will yield
properly normalized scalar Kaluza-Klein modes.** For
our numerical investigations, we consider the “stiff-wall”
limit Vl,z — o0, in which case the eigenmodes y; satisfy
Neumann boundary conditions. While the stiff-wall limit is
(ultimately) unphysical, it is consistent with the simplifi-
cation we made in ignoring the dynamics of the brane itself
—and we can expect the results of our analysis correctly

2Note that this choice is consistent since we have no massless
physical scalar modes in this model.
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describe low-energy properties of the system. Outside of
numerical investigations, we do not take the stiff-wall limit.

To facilitate manipulations at the 5D level, define the
following useful auxillary field:

+00

,CZ”%VA’(

1
g

Y*)rio).

(A51)

o b

ﬁ

o

Using Z and the decomposition in (A46), the wave function
differential equation becomes

- 1
?/’:—e2A2+[6A’+ qﬂ” ¢ (00’7 +2(8) = &),
0
(AS52)
such that
8V
(%”>bulkz—e2Az+[6A' ¢’] LGP (A%
0

and the wave function boundary conditions imply

5. The canonical scalar mode expansion
After applying the background equations of motion
Egs. (A26), (A27), (A29), and (A30), as well as the gauge
condition (A12), we find the collections of Lagrangian
terms Eqs. (A14)-(A23) are simplified. Most contributions
now explicitly vanish:

‘CSD,bkgd =Lspy = C;D,r + £§D,f = 'C;D,hr + £§D,hf =0.
(A55)
The tensor quadratic Lagrangian is now of the desired form

to yield a tower of canonical spin-2 states after Kaluza-
Klein decomposition:

Lxom = (@) @) = @) + 5 0,h,°
1 712 - 71\2 N2
_E(auh> + ) 2 [(h) - (h/w) ] (A56)

The scalar quadratic Lagrangian, however, remains quite
complicated. We organize the terms from each part of the

{ s [414/ N 4(‘;,%} ”}51 2V s, quadratic scalar Lagrangian as follows:
0 * * *
AV 2 Lsp.rr = Lip,r + [’5D,rf + ESD,ff (AS7)
{—e2A2 + [4A’ - } ”}52 = {2V, r.#}8,. (AS54)
¢0 = EEH,rr + EGHY,rr + E(DCD,rr + L"pot.rr + AErrv
These boundary conditions are written in such a way to (A58)
most easily replace away V; for future convenience. Let us
now return to the Lagrangian. where
|
U ooagy a2 AR _ S (w2 4M 8 raw 16
EEH,rr:_ge (0,7)* —5e r(Dr)—r—%(r’) _’”_c "+3—2A/ '+3—r3A"r, (A59)
4 . 4. .. 32 16 .
Loy = o3 ()2 + 7 = S5 A3 = S AR, (A60)
3 2A ~1\2 ’\// //"/ ! ~! 1 /\37% 2 (¢6>2 ~2
'CCD(D.rr = We (aﬂr) (¢0) ¢0 + 2A (¢0)r E (4)0) r + 3}"2 re, (A61)
4v 12V 4V, 8V, 12V,
Lootrr = — 11 ——— (#)> = { “2—1— - = = (¥ 2](2, A62
= e 2 s gy A2
3 3 8 4
AL, = —ﬁ(?’)2 - ;A —ZA’??’ —|— — A" (A63)

For ease of comparison, we present these results without yet
applying the background equations of motion or integration-
by-parts. Note that the squared quantity in Lgg - iS NOt
singular because the delta functions in ¢’ — ¢{# cancel.

035015-
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information is stored in the fields, but ultimately does not
change the physics described by the Lagrangian; a classic
example of this is the Gibbons-Hawking-York total deriva-
tive, which is used to make the Einstein-Hilbert Lagrangian
of 4D gravity into a Lagrangian which only depends on
fields and their first derivatives [30]. The total derivative we
add to Lsp - [in addition to the total derivative AL defined
in Eq. (A9), which is already folded into Lsp ] is

A 1 Anl 3 24 AR
A'Crr = r—gdfp{rr —@:—6)217’
2wt wr%](%’)’é‘} (A64)
@)

such that we consider the combination

ESD,rr + AErr' (A65)
The @-derivative in AL,, must be evaluated with care, lest
we generate spurious singularities. In particular, Dirac
delta-function singularities will be generated whenever
@-differentiating a discontinuity in a function’s slope.
In the present calculation, such a discontinuity only ever
happens at the orbifold fixed points. The standard example

|

A ( /)2 /! 662A < //) / 6 2A
AL,,:—{? + 74— (D) pu 2 —
2 (p)> O ()2

24 12
7 (A (#6)> + V'l (7 o + g
Tl (¢)*
Having evaluated AL,, as abO\_/e, we next consider the
quadratic scalar terms Lsp . + AL,, after performing the

following sequence of manipulations:
(1) Use 4D integration-by-parts to eliminate any 4D

d’Alembertian operators [] = 97 — V
HOR) to —(0,7).

(2) Eliminate all instances of 7/, A”, V, and ¢y (and their
Dirac delta-free bulk forms) via Egs. (A52), (A26),
and (A29), respectively. Having done so, all Dirac
deltas in the original weak field expanded Lagran-
gian have been made explicit.

(3) Eliminate V; and V,; via the background equa-
tions (A27) and (A30), respectively.

(4) Eliminate V; (which always multiplies an #’) via the
boundary conditions, Eq. (A54).

e.g., taking

23Technically these same considerations are important
when calculating, for example, AL; however, AL, =
0,[(4A’# —3%)#]/r2, and naive differentiation yields the
correct result.

A/A/’\/

1A (d0)* + 24" P ()b + V””%K?'P}'

of this from Randall-Sundrum models is the twice-
differentiated quantity |¢|” = d,,(|¢|') = 9,,(sign ¢), which
equals 2(8; —6,) in our scheme. If we are not careful
when taking @-derivatives more generally, we can acci-
dentally generate spurious Dirac deltas which contradict
our scheme. Consider ¢-differentiating a quantity which is
a square of a ¢-differentiated quantity, such as 1/(¢)>.
Naively, we attain —2¢/(¢,)°, which generates nonzero
Dirac deltas through the ¢{. These Dirac deltas are
spurious. First, note that ¢, is a function of |¢|, which
means ¢ is proportional to |¢|' = sign(p). Thus
1/(¢))? o 1/(signg)? =1 and 1/(¢hy)* lacks the overall
factor of |p|' necessary to generate Dirac deltas upon
@-differentiation. While naive differentiation yields
=2¢5/(¢p)°, careful analysis reveals the g-derivative
of 1/(¢y)?* is actually the Dirac delta-free quantity
=2(6)bun/ (60)°-

For these reasons, evaluation of the ¢-derivative
present in the total derivative AL,, yields fewer Dirac
deltas than naively expected. Namely, they are only
generated upon differentiating 7 in the first two terms
and A’ and V' in the third term. Explicitly, we thus
calculate™

32A

M// —48 (¢0)bulk [ /(¢6>2

/r2 ?./ 2
@) @)’ V)

(A66)

|
(5) Eliminate all instances of V, V/, and V", and in favor
of V and V' via chain rule relations, i.e.,

LV
V¢0, V:ﬁ,
0

VI =V + Vs, V= (A67)

where ¢ is then replaced by Eq. (A29), as done
earlier. With this, all Dirac deltas in AL are also
explicit.
After performing these replacements, we find all V and V'
terms cancel, all Dirac deltas cancel, and we are left with
very few terms**

*An alternate way of deriving the canonical quadratic La-
grangian is to start with the expression on the right-hand side of
Eq. (A68), and substituting Z from the (5, 5) Einstein equa-
tion (A36), as well as a similar expression for Z’ derived from the
Euler-Lagrange equation (A37). The resulting expression can be
shown to be equal to the combination Lsp ., + AL,,. It is useful,
when performing these manipulations, to remove explicit Dirac
delta terms by using the background equations of motion given in
Eqgs. (A26) and (A29).
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e ) 27
‘CSD.rr + A‘crr = 7 |:(aﬂr)2 - ?:|
362A R 2/?/
o [(aﬂﬂy - 7} (AG8)
0 c

Upon Kaluza-Klein decomposition via Egs. (A46) and
(AS51), Lsp,, + AL,, immediately yields

+00 1 . A A .

Z 3 [(9,7m)) (07 — P‘%m) #m) ()]

m,n=0
6 [+ e2A 24
-— do|——=77, +— . A69
”/_ﬂ (p|:(¢6)27m7/n+ ¢ rmyn] (A69)

Recall that the scalar state wave functions are normalized
according to Eq. (A50), such that the integral on the right
above (including the 6/x) equals 6,,,,. Consequently, we
finally achieve our desired result:

21, 1, .
£5D,rr+A[’rr: E {E(aﬂrm))z_iﬂ%n)(r(n))z} (A70)
n=0

That is, the 5D field 7#(x,y) generates a scalar tower of
canonical 4D scalar states {#")(x)}, each having mass
My) = W)/ Te, Where p,) is determined by solving the
differential equation problem for the wave functions {7, }
laid out between Eqs. (A47) and (A48).

APPENDIX B: THE INELASTIC SUM RULES
RELATING COUPLINGS AND MASSES

This section derives and summarizes relationships
between couplings and mass spectra that are relevant to
ensuring at most O(s) growth of tree-level inelastic 2-to-2
helicity-zero massive spin-2 KK mode scattering ampli-
tudes [i.e., the process (k,l) — (m,n)] in the Goldberger-
Wise-stabilized Randall-Sundrum I model. We briefly
consider the implications of completeness before deriving
a means of expressing all cubic and quartic (spin-2
exclusive) B-type couplings in terms of A-type couplings
and special objects By (mn)- These B-to-A formulas reduce
the problem of finding amplitude-relevant formulas to the
problem of simplifying sums of the form j ,u]zp At Apnj-
The relevant (inelastic and elastic) sum rules are derived
and then summarized in their own subsections. The final
subsection describes the remaining set of (unproven) sum
rules necessary for at-most O(s) growth in the fully
inelastic process.

This appendix is written as a stand-alone report of the
sum-rule relationships needed to ensure that all inelastic
scattering amplitudes (all 2 — 2 scattering amplitudes with
massive spin-2 fields of arbitrary mode number in the
external states) grow no faster than O(s) and report which
we have succeeded in proving—completing the program

begun in [9-12]. Section B 5 a derives relationships used in
Sec. IV B of the main body of this paper and can be read
independently.

1. Definitions

It is convenient to define generalized “couplings” to be
overlap integrals of spin-2 and spin-0 wave functions of the
form

(p) _! A€ (0 72) -y (D
x(k’~--l)--~m’~--n “r @& ( (ka) 71 ( (/)l//m) Yns

Y

(B1)

where A () is the warp factor, € = exp(—A), and we add an
additional factor of (d,A)/kr, to the integrand if only an
odd number of differentiated wave functions are present in
the integrand otherwise. The most common integrands
appearing in the 4D effective Lagrangian carry powers £~2
and e~* and are given special symbols:

(=2)

_ _
A 0)eemon = x(k’--~l)~--m’---n’

b(k’»--l)-"mlmn - x(k’-nl)n-m/---n'
(B2)

We will also encounter the label “c,” which is associated
with p = —6. In particular, we encounter this integral often:

— (=6)
Crim'n' = Xpppin

-1 / dp 50, O,w1) @pwn) @pw).  (B3)

Another object that will be useful throughout the rest
of this document is the symbol D = 8‘404,, which is a
combination of quantities that is often present as a result of
the spin-2 Sturm-Liouville equation. When desperate for
space, we will nest the notation even further, utilizing
D, =e*(0,yn)-

We will ultimately derive sum rules that allow us to
rewrite certain useful sums of intermediate masses and
couplings in terms of just the quartic A-type coupling a;;,,,,
three B (i;)(mn) Objects (of which any two fix the value of the
256?152)n’n’n’n"

third), and integrals ¢,y and x

2. Applications of completeness

The spin-2 mode completeness relation is

+o0

Sgr=01) = —elp) Yo (p2). (B4
=0

where £(¢) = e4®) and the wave functions y, satisfy
0,Dy,, = 0,[e*(0,w,)] = —pze*y,. Spin-2 mode com-
pleteness allows us to collapse certain sums of cubic
coupling products into a single quartic coupling, e.g.,
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Akimn = E AkljAmnj = E Akmjling = g AnjQAimj (BS)
J J J

bk’l’mn = Zbk'l'jamnj' (B6)
J

Furthermore, by combining cubic B-type couplings in this
same way, we arrive at

CKim'n = E bk’l’jbm’n’j = E bk’m’jbl’n’j = E bk’n’jbl’m’j'
J J J

This is as far as direct applications of completeness can get
us for now.

3. B-to-A formulas

This subsection details how to eliminate all B-type
couplings (e.g., by,s, and byy,,) in favor of A-type
couplings (e.g., aj,, and dy,,) and new structures
B (1) (mn)- To begin, we note we can absorb a factor of u
into A-type couplings with help from the Sturm-Liouville
equation. A standard application of this technique proceeds
as follows:

1
ﬂ%lalmn = ;/ d({)&‘_zl//[l//m [/'&Wn] (B7)

1

= / doe™yy,, €20, (Dy, )| (B8)
1

=— | dpd,lww.)(Dy) (B9)
1 -4

= ; d§0£ (a(pl//l)ll/m (a(pl//n)

1

+ ;/ dfﬂ€_4V/l(a¢Wm)(a¢Wn> (BIO)

= bl’mn’ + blm’n’v (Bll)

where integration by parts was utilized between Egs. (B8)
and (B9); because (Dy,,) vanishes on the boundaries, there is
no surface term. This and the equivalent calculation with the
quartic A-type coupling yield

bl’mn/ + blm’n’?

/‘%almn = (B 12)

FnGiamn = bt + Drrmn + biamin - (B13)
By considering different permutations of KK indices, each
of these equations corresponds to three and four unique
constraints, respectively. Because there are only three unique
cubic B-type couplings with KK indices [, m, and n
(specifically, by,ps by, and by,,), Eq. (B12) can be
inverted to yield

(B14)

1
bl’m’n = 5 [lulz + /’t%n - ﬂ%]almn

with which we can eliminate all cubic B-type couplings in
favor of the cubic A-type coupling.

There are six unique quartic B-type couplings with KK
indices k, [, m, and n. We first halve this set by rewriting
each quartic B-type coupling by,,, in terms of new objects
B (11)(mn)- These new objects are motivated as follows: note

that Eq. (B13) implies

1
5 [M% +:u12 _qun _ﬂrzz]aklmn = bk’l’mn - bklm’n/' (BIS)

Equivalently, we may write this as

1 1
bk/l’mn + 5 [/43,1 + /"%]aklmn = bklm'n/ + E [/’l% + ﬂ[z]aklmn'
(B16)

In other words, the quantity on the LHS possesses a sym-
metry under the pair swap (k,[) <> (m,n). Furthermore,
this symmetry is maintained under the addition of any

quantity E<k1)(mn) which is also symmetric under this pair
swap. Inspired by Eq. (B16), we define

1 -
B(kl)(mn) = bk’l'mn + 5 [/4%1 + ”tzi]aklmn + B(kl)(mn)- (B17)

We will choose the quantity B<k1><mn> momentarily. Because

the B-type couplings satisfy Eq. (B13), the sum of all
unique B objects satisfies

B 1ty (mn) + Bkm)(in) + Bkn)(im)

= /’_Z2aklmn + B(kl)(mn) + B(km)(ln) + B(kn)(lm)’ (B18)

where ji2 = p2 + u? + p2, + p>. That is, we can ensure the
convenient property

B(iy(mn) + Biem)(in) + Bien)(tm)= 0 (B19)
as long as we choose B(k,>(,,m) such that
Bty mn) + Blamyun) + Bnyim) = —H*@gimn-  (B20)

One immediate choice (and the choice we take now) is to
set each B equal to one-third of —f%a,

1

- gaklmn- (BZI)

B (k1) mn) =

This yields (as a replacement rule for by, and definition
of B(kl)(mn))

1
bk’l’mn = B(kl)(mn) + 6 [2</’l% + iulz) - (:u%l + M%)]aklmnv

(B22)
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where B is symmetric within each pair and between pairs

Bty (mn) = Bmn) (k1) = Bmn)(ik) (B23)
and satisfies the additional constraint
B i1yomn) T Biam)(in) + Bign)(im) = 0| (B24)

such that only two among {B ;) (mn)» Bm)(in)» B(kn)(im) }
are linearly independent. Note that B(i(m, has the
same symmetry properties as »_; y?p Apyj@myj- Because
Eq. (B22) reduces B-type couplings to A-type couplings
as much is as possible, we refer to it as the quartic B-to-A
rule. This and Eq. (B14) comprise the desired B-to-A
formulas.

The above rules are sufficient as is for reducing the sum
> H3agjay,; and yielding the first nontrivial sum rule.
Using the cubic coupling Eq. (B12) with completeness
yields

bk’l’mn = D‘z + ,u[ Akimn — (BZS)

§ /’ljakl/ mnj-

Meanwhile, the LHS can be simplified via Eq. (B22).
Solving for the undetermined sum then gives us
|

(B26)

1
_2B(kl)(mn) + _ﬂzaklmm

3

2 _
Zﬂjakljamnj =
=0

where ji> = p3 + p? + p2, + p3. We next turn our attention
4 6
t0 D {jakjamn; and then . pulay;ay,;.

4. The y sum rule

The > i y?akl i@y relation is relatively straightforward.
As defined in Eq. (B3), we can rewrite ¢y, In terms
of B-type cubic couplings, to which we can then apply the
B-to-A formulas:

Ck/[/ 'y = Zbk/l/ bm’n’] (B27)
1
= ZZ[M% + i = Hﬂ i + iy = :ujz‘]akljamnj (B28)
7
1 2 2 2 2
= Z (/"k + 4 )(/"m + ﬂn)aklmiz
1 . 1
1 (MZ)Zﬂjz‘akljamnj + 1 Zﬂj!akljamnj (B29)
J J

such that, using Eq. (B26) and solving for the undetermined
sum Zj /‘?akljamnjv

- 1
Z/"?akljamnj = 4ck’l’m’n’ - 2(ﬂ2)B(kl)(n1n) + |:§ (M2>2 - (/’t% + /412)(:“}%1 +/’l%):| Allmn
J

(B30)

. . . 6 . .
as d_esued. Deriving the > jMjakjanm,; relation requires
significantly more work.

5. The f sum rule
a. Elastic

As a warm-up to the inelastic case, let us first derive the
,uj? sum rule (and review the other sum rules) as they appear
|

2 2

1
bn’n’j = 5[2/471 _,uj]annj’ bj’n’n =

in the elastic case, i.e., when k = [ = m = n. This will
provide the general flow of the argument which is made
more complicated in the inelastic case. Definitions for x, a,
b, etc., are included in Sec. B 1.

Using the spin-2 completeness relation and differential
equation alone, we have previously derived many elastic
coupling relations [9—12]. For example, there are the elastic
B-to-A formulas

1 1
2
bn’n’nn g/’lnannnn’

Eﬂjz‘annj’ (B31)

which allow us to rewrite any spin-2 exclusive B-type couplings in terms of A-type couplings. Using these in combination

with completeness, we find
annnn

— 2
- E :annj’
J
E bn’n’/annj

nnnn

2 E 2
Hn annj
J

Zm

Con'n'nd = ann] ﬂnzannj _ﬂnZﬂ] nn] +- ZM} nn]’
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which imply various expressions for sums of the form

2
Z/ P %n].

Z agmj Anpnn» (B32)
Jj=0
Zﬂj ﬂn] ﬂn nnnn>s (B33)
4 2
Z'u/ n"/ 40”/”/”/"/ + gﬂnannnn- (B34)

These relations allow us to quickly rewrite various sums
between B-type couplings, including

E bn’n’jbj’n’n =

As discussed in the main text, a combination of the GW
model sum rules ensuring cancellation of the O(s®) and
O(s?) contributions to the amplitude may be written as

nannnn — Ca'w'n'n’ - (B35)

+o0

16
Stabilized RS1: Y _[Su; = pilufat,; = — Hiuum
j=0
+00
2 2
9D KBy (23)

We can use our existing relations to rewrite this expres-
sion as

4
/’ln ’1”’1”_'_92//[ (1// )

+00
Zﬂ?ainl = 20/1%6’”/”/” 'n' + = 3

=0
(B36)

It is this variant we now seek to prove.
To begin, note that the B-to-A formulas relate the sum
6,2 2121 .
> Hjy,; to the sum >, puib;, o like so:

Zﬂ] nnj

+00
= 1612 C +4 > 1202, (B37)
j=0

Thus, if we determine a means of rewriting ; yjz o in
terms of ¢,y and a,,,,, then we will have a means of
doing the same for the desired sum.

We will arrive at the desired form by considering
two integrals of total derivatives, each of which vanishes

because (d,y,) vanishes at the orbifold fixed points
@ €{0,7}.

Integral 1: To begin, consider the following trivial
integral:

711—/_+” da, {[(0,;) — 6(3,A)wle=0(d,y,)2} = 0.

(B38)

By evaluating the net derivative and using the spin-2 mode
differential equation to simplify second derivatives of
spin-2 wave functions,25 we attain

1 +r
0= —12{;/ d¢(0¢A)28_6(0,ﬂ1//,,)21//j}

+ 12(](}" )Mnx;(/l’n/) 2/’lnb//n'n
1 o 2 —6 2
-6 ; d¢(a¢A)€ (a(/)l//n) Y bn'n’]

(B39)

We can then construct an instance of )= u3b7,, within this
by multiplying it by b,,,,; and summing over j. This yields

1 +
0= —12{—/ d(p(a(,,A)%—S(awy/n)“}
T )z

—6)
+ 12(kr ),unx [ zﬂn an’n’jb]’n’n

nnnn

1 -
- 6{; /_ ) dp(%A)e™(0,w,) } Z D%
(B40)
Integral 2: Next consider the following trivial integral:

! /_ :” dcoaw{ B (9,A)e7(0,r,) = u%wn} e (Opya)? }

= 0. (B41)

Evaluating this derivative in the same way as we did with
the first integral, we find

+
0= 12{1/ d¢(a¢A)2e‘8(6wwn)4}
)z

—6
- 12(/(7‘0)/1%)61(1/”/)”/" - ﬂ%lcn’n’n’n’ + 3/41[7”/”/””

3(1 [+=
1540 [ @ o)

Combining: Summing Eqgs. (B40) and (B42) and then

solving for 371 u3by,,,  immediately yields

(B42)

It is useful to repackage each (0,w) instead as &™(Dy)
where D = 5‘40,,, because then the spin-2 mode equation may be
utilized more directly in the form d,Dy, = —u2e 2y,
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+00 +00

27,2 _ 2 4 2
E .ujbn'n/j = —UnChnwn T 3ﬂnbn’n’11n - 2ﬂn E bn’n’jbj’n’n
Jj=0 J=0

_g{l /_ +”d(p(ag,A)e‘S(%wn)“}- (B43)

T)-n

We already know how to rewrite b,/,,,, and > 0w ibjnn
in terms of ¢,y and a,,,,; namely, Eqs. (B31) and

(B35). Using these, Eq. (B43) becomes

+o00 1

212 — 2 6
§ :ujbn/n’j = UnCriw'n'n T g/"nammn
J=0

_2{1 / o d(,,(a;A)g—s(aWn)‘*}. (B44)

T T
Finally, applying this result to Eq. (B37) gives us an
expression for the desired “,u?” sum:

+0o0 4

6,2 __ 2 6
E /’tjannj - 20/’lncn’n’n’n’ + gﬂnannnn
Jj=0

1 +
- 18{— / dgo(diA)e‘g(dq,l;/n)“}. (B45)
T )z
Using the “,uj” sum in Eq. (B34) we obtain the result
quoted in the text:

+o0

> 5w - idluta,,
=0

16 1 [+=
— it +13{; [ do@a 0] 09

Y4

This is all that is required for the elastic case discussed in
the main text. The inelastic case covered in the next
subsubsection is logically similar, but involves longer
expressions and significantly more algebra.

b. Inelastic

Before beginning the derivation of the inelastic ,uj6- sum
rule, it is advantageous to define a well-organized poly-
nomial basis with which we can write our results succinctly.
In particular, because the sums we wish to simplify
> j uPay i@mpj) and relevant quartic degrees of freedom
|

all have (at least) the symmetries of B(y)(un)» it is useful to
define a symmetrization operation that forms quantities
with symmetries identical to B i) (n):

S rimn) = {frimn + (k< D] + (m < n)} + (kl < mn)
(B46)

= fklmn + flkmn + fklnm + flknm + fmnkl + fmnlk
+ fnmkl + fnmlk' (B47)

This allows us to quickly construct a finite basis for
polynomials of y> € {u2, u?, uz,, u>} having the aforemen-
tioned symmetry structures. For a single power of 42, there
is only one basis element:

11 -
aémf,,,,l) = (up) = 20> =2(pug + i + s + ). (B48)
For two powers of u?, there are three:

2.1 _ 22) 2.3 _
aékl)()mn) = <ﬂ2>’ agkl)()mn) = <ﬂ12ﬂ%>v O‘Ekz)gmn) = <M%n//‘%>’

(B49)
and for three powers of u?, there are four:
(E ) - (B2 _
Aty (mn) = (). A1) (mn) = (urnz),
33 3.4 _
agkl)()mn) = <ﬂ%’“ui>’ agkl)gmn) = <M%1//l12//t%> (BSO)

With these, we can generically construct any polynomial of
the squared masses (up to cubic degree) having the
aforementioned symmetry properties:

1 —
Mgkg)(mn)(cl) = 2C1/’l2’ (BS])
: (2.0)
M(kl)(mn)(cl’ €.¢3) = Zl Ci® () (mn)* (B52)
® )
M (€ricaicsics) =D iy, (BS3)

i=1

Note that these symbols are intentionally linear in their c;
arguments. In this language, Eq. (B30) may be rewritten as

- T &
Z/’tjakljamnj = 4ck’l’m’n’ —_ ZMZB(kl)(mn) + EMEkE)(m’O(] . 1, _1)ak1mn'
J

(B54)

We now proceed to the > ; y?akl jAmnj Tule.
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As in the previous subsection, we begin our derivation by applying the B-to-A formulas to a sum of cubic B-type
couplings, and then apply existing sum rules:

1 o | .
zj:ﬂ%bk’l’jbm’n’j =2 Zj:ﬂ?akljamnj — B Ctmn — Eﬂz(ﬂ% + ,Uzz — Mgy — /’lgl)zaklmn

1

+5 [G2)? = (i + 1) (i + 12)1 Bty o) - (B55)

On the RHS, only the desired sum » j ,u?akljamn ; remains undetermined. However, unlike the previous subsection, we do
not yet have a simplification of the LHS of this expression. To find such a simplification, we concoct a vanishing

combination of two integrals [namely, (I1)q,; and (12)y,,) of Eqs. (B56) and (B62)], each of which vanishes

independently because their integrands are total derivatives.
Integral 1: The first integral yields a vanishing combination of cubic quantities and is defined as

Imn

1 [+= 1
s = [ " aw0,d 300 = 30,0m] 0o | (B36)
1 t 1 +6 ! o2
= — d(p 0[/, — & DjDle —3A'e l//jDle . (B57)
) 2

where D, =Dy, = s“‘(d,ﬂz//x). By explicitly applying the differentiation and using the wave function of the spin-2 modes
(0,D, = —pie ?y,), we attain

_1 o " AVAPS ™) 1 +47,,2 2
(Il)(kl)j:; i doq [-3A" = 6(A")*]e Dlel//j_Eg [uewi Dy + ui Dy | D;

T

1
+ 3A/[/”%’//kpl + ﬂ[sz’//l]‘//j - §8+4kalﬂ?l//j}' (B58)

Next, to attain the desired index structure, we multiply by b,,,/; and sum over all j:

T

+00 1 +r 1 +00
Z(Il)(kl)jbm’n’j = ;/ d(p{{_:&AN - 6(A,)2]8+8DleDmDn} - EZﬂ?bk’l’jbm’n’j
_ =

1 +oo 3 +r
) E [)u%bkl’j’bm’n’j + ﬂlzbk’lj’bm’n’j] + ;/ d¢{A/5+6 W%Wkpl + ﬂ[szWl]DmDiz}' (B59)
Jj=0 -

Because (I1);;); vanishes, this sum vanishes too, as does the following combination:

+0o00

(In) = Z(Il)(kl)jbm’n’j + by (1) (B60)
=0
1 +r too
= [ doll-6a" - 124V DDDLD, ) = i b
), =

1 +00
) Z[ﬂ%bkl’j’bm’n’j + uiby 1y by + by By + Ha by o]
=0
3 +r
+- / dp{A'e*®[(uty)D,D,, D, + Di(uiw1) D,y Dy + DiDy(pn ) Dy + DiDiD,, (uzwr) ). (B61)

This completes our manipulations of the first integral quantity.
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Integral 2: The second integral directly yields a vanishing combination of quartic quantities and is defined as

@y =+ [ " d00,{ |3 0,000 = v e 0 0 00 |

T

1

T J)-x

+r 3
= — / d§0 aw {8 A/8+8DkD1DmD” - ﬂ%8+6l//leDmDn } .

(B62)

(B63)

As the previous integral, we next carry out the differentiation while making use of the spin-2 mode wave function

(0,D, = —pie~*y,) as we go, and thereby attain

1 [+= 13
(12) m) = ;/ dfﬂ{z [EA” + 12(A7)? —,u%e“] D, D,D,,D,

-

4

1
+- 8+4 (:u%l//k) [(IM%WI)DmDn + Dl (/’l%nl//m)pn + Dle (ﬂ%l//n)]

3
= g A€ 150ew) DDy Dy + Diptw 1) DDy + DiDi(pvn) P + DiDi Do ()] } (B64)

Next, we symmetrize over the indices, as to attain all unique combinations of indices:

(12) = (Iz)k(lmn) + (Iz)l(kmn) + (Iz)m(kln) + (Iz)n(klm)

1 3

T J)-n

+r
= —/ ng{ |:§A// + 12(A/)2]€+8DleDmDn

(B65)

1,
- Z HCrrmnw

1
+ E [Iu%:ulzbklm'n’ + /’l%ﬂ% bkl’mn’ + M%M% bkl’m’n + :u[z:u%n bk’lmn' + ,ulzl’l%tbk’lm’n + ﬂ%n”% bk’l’mn]

3 +r
- / dp{A'e*®|(u3w1)D/D,, D, + Dy (utw;) D, D, + DiDy(uzw ) Dy + Di DD, (uzw )]}

/4

(B66)

Because (12),;,,, vanishes, (I2) vanishes as well. This completes our manipulations of the second integral.
Combining: We finally add (I1) from Eq. (B61) and (I2) from Eq. (B66) to attain a new quantity that, of course, also

equals zero. Doing so, we attain

0= (I1) + (12)
9

+ 1. I
= Ton dp{A"e"*D,D/D,D,} - Zﬂ2ck’l’m’n’ - Zﬂfbk'z/jbm/n/j

T J-n

Jj=0

1 +oo
2 Z by j b j + UMb 1By + Habiey iBo i + Moy iDyrn ]
Jj=0

1
+ 5 b‘%ﬂlzbklm’n’ + /’t%ﬂzm bkl’mn’ + ﬂ%ﬂ%bkl’m’n + ﬂlzﬂznbk’lmn’ + /’llzﬂ%bk/lm’n + .u%nﬂ% bk’l’mn] .

The two integrals were intentionally weighted so as to
ensure all terms containing A’ exactly cancel between the
two expressions. The resulting expression possesses a
couple of important features.

First, Eq. (B67) contains the desired sum
Zj*:"g ,ujzbk/,/ b j» Which we have already demonstrated
generates our ultimate target E;"g u?ak,jam,,j via the
B-to-A formulas, as made explicit in Eq. (B55).

(B67)

Second, nearly all other terms in Eq. (B67) can be
expressed in terms of @y, the By (mny and ¢y, using
our existing relations. The only exceptional term is

9

+
dp A"e3D, DD, D,.

2r J_,

(B68)

which (as we describe now) contains important information
about the radion and the tower of Goldberger-Wise scalars.
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In the unstabilized model, A” is a sum of brane-
localized Dirac deltas (specifically, A” = (kr.|p|)" =
2kr[6(¢) — 8(¢p — x)]) and thus—because D, = ™40,y
vanishes at the branes for each spin-2 state—Eq. (B68)
vanishes in the absence of a stabilization mechanism. This
contrasts the Goldberger-Wise-stabilized Randall-Sundrum
I model, where the equations of motion demand

1 1
(05A) = —(0,600)* + 3 Vird(e) + 3 Vyrd(e —x)

(B69)

1
3

such that Eq. (B68) yields a nonzero contribution directly
originating from the nonconstant profile of ¢, through the
bulk. That is, a nonzero contribution from Eq. (B68) to our
calculations directly reflects the stabilization of the radion.

We may use the equation of motion Eq. (B69) to simplify
Eq. (B68). In particular,

thereafter reduces those results to the equivalent elastic
rules. Finally, the last section of these Supplemental
Material [28] reviews additional unproven rules necessary
to cancel any “bad” high-energy behavior from the tree-
level helicity-zero (k,l) — (m,n) matrix element in the
stabilized Randall-Sundrum model.

6. Summary of proven sum rules (inelastic)

All B-type couplings {by,/,, byrmn} can be eliminated
in favor of A-type couplings {d@yu., @umn} and new
B (41)(mn) Objects via the B-to-A formulas

1
bl’m’n =35 [/'{12 +/’l%n _H%]almnv
2

1
bk’l’mn = B(kl)(mn) + 6 [2(/‘% + :ulz> - (:u%n + ﬂ%)]aklmn’
(B71)

_i +7 dpA"e" D, DD, D where the By, are constrained such that B+
27 ), men B (kn)(im) + Bkiymn) = 0, and are symmetric in each indi-
3 [z ) 3 (g vidual pair (k, 1) and (m,n) as well as with respect to the
T T8z i, do(¢)*e "Dy DD, D, = ~g ek rmns pair swap replacement (k, ) <> (m, n). These sums are
(B70)
Zakljamnj = Akimn>» (B72)
To finish rewriting Eq. (B67), all that remains now is the =0
application of the B-to-A formulas, the sum relations, .
Eq. (B55), and a lot of algebra. The next section presents 200 a4 . — —2B +2a B73
the results of this process and summarizes the other ;ﬂj K %mn] (kD) (mn) 7 3 H Chtmn> (B73)
inelastic sum relations we have derived. The section
|
- 1.
Z/"?akljamnj = Acppmn = 207 By mn) + gMgki)(m@(l, L =1)agspmns (B74)
=0
Oy i = SH* M2 (1,1,1)B M2 (1,1,1)B
Zﬂjakl]amn] U Crmn + (km)(ln)( L) ) (km)(In) + (kn)(lm)( L) ) (kn)(Im)
=0
2) L0 3 -9
= M) (ny (05 1 0)B ity umy + BM(kl)(mn) (1,4, =4, 0)axm, — > o (B75)
where ji> = u? + p? + pa, + p and
1
Crlm'n' E;/d(p€_6(a(pl//k)(a(pl//l)(agal//m)(a(pl/’n)’ (B76)
-3 1 _
xg/;gfp)[’)k'l'm/n' = ; d(pé‘ 8(a(/)Q’)O)Z(a(pl//k)(a(pl//l)(aq)l//m)(a(pl//n)' (B77)
The last two sum rules can be combined so as to cancel all factors of ¢,y and thereby yield
s 225 Ly (511008 M2 (1,1,1)B M2 (1,1,1)B
Z”j Hj _Z/‘ AkljGmnj = 4 (kl)(mn)( .1,10) (ki) (mn) T (km)(ln)( 1L 1) (km)(in) T (kn)(lm)( 1.1) (kn)(lm)
=0
MO 1 21,16,0)ay,, — 2GY (B78)
24" (kD) (mn) AT T 2 klmn ™~ 2 gk Um'n'*
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These equations extend and generalize the sum rules
derived in [11].

7. Summary of proven sum rules (elastic)

Oftentimes, we are particularly interested in the elastic
massive spin-2 KK mode scattering process, wherein k =
I =m = n(#0) and the relations of the previous subsec-
tions simplify. Consider, for example, the B’s constraint in
this context:

elastic

B(km)(ln) + B(kn)(lm) + B(kl)(mn) =0— B(nn )(nn) — =0
(B79)

such that all of the B’s become identical and vanish. The
relevant B-to-A formulas become

1

_ 2 2 _ 2
bn’n’j _5[2ﬂn - ]annjv bj’n’n _Eﬂjannjv
1

bn’n’rm = gﬂ%armnn’ (Bgo)

whereas the sum rules reduce to
Zannj annnnv (Bgl)
Z'MJ nnj n Apnnns (BSZ)

4,

Zﬂj Ainj = 4Cynnw +§ﬂnannrznv (B83)

4 3 (=g
Zﬂj nnj = Zoﬂzcn’n'n’n’ + —,ugan,mn — Ex((j,,(;, wn'n'n

3
(B84)
with the last two expressions combining to yield
16 3 -
2 64 (=8)
Z[ﬂ 5.“11 /"J nnj 3 = Hnlnnnn — Equ dpn'n'n'n'*
(B85)

8. Unproven rules

The aforementioned rules are insufficient on their own
for ensuring cancellations of the (k,I) — (m,n) matrix
element [which naively contains O(s3) terms] down to
O(s) growth. This is true in both the fully elastic
(k =1 = m = n) and more general cases.

In the fully elastic case, only one additional rule is
required:

222

~ HaMn Qo | = lscn’n’n’n’ + Zﬂiannnn'

[9 Z a,
(B86)

The inelastic case provides a generalization of this rule, as
well as two additional rules we have yet to prove analyti-
cally. These analytic rules have been attained by calculating
the full (k, 1) — (m,n) matrix element (a nontrivial task),
asymptotically series expanding that matrix element in s
down to O(s*?) (also nontrivial; note odd powers of s
automatically vanish for this particular process), applying
the sum rules we previously derived, and demanding
coefficients of any s° for ¢ > 1 vanish.

Having done so, we find cancellations of “bad” high-
energy behavior additionally require

AmjQnj
6B 11y (mn) = (3 — Ham) (U7 — M%)Z%
j>0 Hj

ﬂm)z kn] lm]

>0 J

+ (U - (B87)

to cancel O(s*) growth and, noting the KK indices (k, 7, m)
are cycled through from term to term,

agia i
0= (4 — ) —2)y =5

j>0 Hj
AimjQknj
+ (1 — ) (W} — )y
>0 Hj
Ak jQinj
+ (=) (W — p2)> 5 (B88)
>0 Hj

to cancel O(s?) growth.
To simplify writing expressions such as those above,
define

ApljQmnj
Lt = (13 = 1) (2, —2) Y —55" . (B89)

j>0 J

Lyy.mn 1s antisymmetric under k <> [ and m < n, and is
symmetric under k! <> mn. The previously listed new sum
rules can thus be written succinctly as

6B (1) (mn)

= Lkm;ln + Lkn;lm’ (B9O)

0= Lkl;mn + le;kn + Lmk;ln' (Bgl)
This latter sum rule is mathematically distinct from the
defining constraint of B(y)(un) (i-€., that the sum of all
unique B vanishes). Note that L,,,.,, = 0, thus explaining
the absence of these relations when deriving our elastic
sum rules.
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Last, the O(s3) cancellations also necessitate the following generalization of the elastic radion rule [Eq. (B86)]:

~+o00
1
12 |:9 Z Ay Hyamn' (i) — ﬂ%ﬂ%ﬂakloamno 6ock’l’m’n’ +3 D) M

(4 8 S)lemn

apja
- 3(:“% - ﬂlz)z(/"m /’ln)zz ! mn] + 2/4 [Lkm an + Ly lm]

AkljUnnj
=3[} + 1) (W — p2)? + (= )y + p2))Y =5

where M (4,-8,5) = 8. In the unstabilized inelas-
. (nn)(nm) 72 ! . .

tic calculation, an identical rule is attained, but with the sum
Z, pkrA(iymy replaced simply by ayra(g)y - This
completes the rules necessary to ensure cancellatlons down
to O(s) for 2-to-2 spin-2 mode scattering in the stabilized

Randall-Sundrum model.

APPENDIX C: EIGENVALUES AND
EIGENFUNCTIONS OF SPIN-2
AND SPIN-0 MODES

The solutions to the SL problem for the spin-0 and
the spin-2 parts of the stabilized RS model determine the
eigenvalues and eigenfunctions. Here we outline two
related methods of computing the eigenvalues and eigen-
functions for both the spin-0 and the spin-2 SL. problem
in perturbation theory. In the following we introduced
the standard Rayleigh-Schrédinger perturbation theory in
the context of a SL problem. Here, the perturbed wave
functions are expressed as an infinite series in unperturbed
wave functions. On the other hand, being able to have
closed form expressions for the perturbed wave functions is
extremely useful, especially for the numerical part of our
analysis. This leads us to solving the perturbed SL problem
directly, by solving an inhomogeneous differential equa-
tion. In the end the normalized wave functions derived in
either of these methods are identical, and calculating the
wave function using these two methods serves as a cross-
check of our results.

1. Perturbation theory and a general
Sturm-Liouville problem

Here we discuss the application of Rayleigh-Schrodinger
perturbation theory to a general Sturm-Liouville problem,
including one in which the weight function is also per-
turbed. We compute the first-order shifts to the eigenvalues
and eigenfunctions, and we demonstrate that completeness
holds to the appropriate order. In Sec. C 1 a we show how
the perturbed eigenfunctions can be calculated as a linear
combination of unperturbed eigenfunctions. In practice
performing an infinite sum of wave functions to determine
the perturbed wave function is not computationally effi-
cient, so in Sec. C I b we outline an equivalent method of
determining the perturbed wave functions as closed form

Jj>0 ’u}

(B92)
j>0 'uj

[

expressions and show how it is related to Rayleigh-
Schrodinger perturbation theory.

a. Mass corrections

Consider a generic SL problem for the Kaluza-Klein
modes, which is of the form
Zl//n = _/Inpl//n’ (Cl)
where L is the SL operator (given appropriate boundary
conditions) acting on eigenfunctions y,, with eigenvalues
2, and a weight factor . The solutions to the SL problem
are orthogonal with respect to the weight factor p

1

L dvromomo) =0 (€

These solutions then satisfy the completeness relation®®
Zﬁ((ﬂ)l//f((ﬂ)ll/f(
7

Depending on the nature of the SL problem, the boundary
conditions can be Dirichlet or Neumann as pointed out in
the main body of the paper. For the rest of this appendix, we
will drop the argument ¢ in wave functions and weight
factors for simplicity.

In perturbation theory, the SL operator and weight

function can be expanded as £L=L+68L and p = p + p,

@) =n5(p—q). (C3)

while we expand the eigenvalue /Nl,, = /120) +A,(11) +

i£,2) + ---. Here both £ and 6L are of Sturm-Liouville form:
=—|p— , C4
i [p d(p} +4q (C4)
d d
oL = o oq. C5
a0 [ P } + 8¢ (Cs5)

In our problems, the perturbations dp, d¢q, and dp come
from expanding Eqgs. (45) and (52), respectively, in powers

*The symmetry of the 5-function implies that the argument of
p in the sum could be either ¢ or ¢'.
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of ¢.*” We then expand the eigenfunction in perturbation To the lowest order, the SL equation reads
theory as
Lyl = =20 oy, (C8)
va =i )y 4 (Co)
where /1,(10) is the lowest order (unperturbed) eigenvalue.

As usual in perturbation theory, we expand the first-order )

perturbed wave function as a sum of unperturbed wave  Additionally, y,” is the lowest order eigenfunction.
functions, Expanding the SL equation to first order, and using

the fact the lowest order SL problem satisfies Eq. (C8), we
o 0) obtain, to first order,
= Z Cnml//m . (C7)
"0 Lyt 5Lyl = = oo + 2 purl) + 4 py).
The coefficients C,,, can be determined using perturbation (C9)

theory, as will be described later. Here, as usual in

Rayleigh-Schrédinger perturbation theory, we assume that Multiplying the first-order perturbed equation by y? and
y/fll) is chosen to be orthogonal to 1;/5,0). integrating,

|

/ oy Ly + / dpsL(y)? = - / (2 sp(ur > + A p w2 + a0 oy ). (C10)

In the first term in the equation above, we have used the fact that the operator £ is self-adjoint. Using Eq. (C8) and
rearranging, we obtain

1( (= "
= (/ do op(yy’ )’ +/ do 1/1510)5&//510)). (C11)

Since 6L = d% [6p] 4+ 6q, we can integrate the above equation by parts to obtain

0t FUCNCI . ,
,15,1)__;[_/ dqoép(W +/ do 5q(p") +/ dpspys’)’). (C12)

Now that we have the perturbed eigenvalue, we can proceed to calculate the perturbed eigenfunctions. We describe two
methods to do this. The first one involves directly solving the nonhomogenous differential equation in Eq. (C9). The second
one makes use of standard Rayleigh-Schrodinger perturbation theory. In the end, both methods lead to the same
eigenfunctions, and the use of these two methods serves as a cross-check of our results.

b. Solving the inhomogeneous differential equation using variation of parameters

In this first method, one simply solves the nonhomogeneous differential equation that is derived by substituting into
Eq. (C9) the unperturbed eigenvalue and eigenfunction

d d () d d ) m |
= 2050 = = (sp=) =g+ 29p + 2V . C13
Llcp( dfl’>+q }// { d<0<pd<p> 9T 0Pt P\ (€13)

To solve this equation for the spin-2 KK modes, we have used the method of variation of parameters. Using the solution z;/s,l)

(0) (1)

found using this method, the wave function v, + y, ' must then be normalized with respect to p + dp as follows:

-, (normalized) (0) (1) 510)
Yn =W + |Wn

1
dg/ (pwff)wff) + 55/)(11/510))2)} : (C14)

?"Note that the spin-2 system in Eq. (45) yields a perturbation expansion in 2, whereas that for the spin-0 system in Eq. (52) gives an
expansion in powers of e.
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In the following we describe how to determine the same wave function using the Rayleigh-Schrodinger perturbation theory.
We reiterate that the wave functions determined in either method are identical and that the advantage of determining the
wave function in this way is that we get closed form solutions for the perturbed wave functions and masses.

c. Wave functions in Rayleigh-Schrodinger perturbation theory

The perturbed wave function is determined as a sum over the unperturbed wave function as shown in Eq. (C7). To

determine the coefficients C,,,, we multiply the perturbed SL equation (C9) by 1//5,?) (m # n) and integrate

—A 7Coy + /” dpyi (5Lyy)) = -

leading to

Using the definition of 6L and integrating by parts, we get

(Aff)) / “doyDspy? + Aflo)frCnm> : (C15)
0) (r 0 0 4 0 0
C = L[5, dpyi spy + [7, dpwhy) (5Ly)) Ci6
nm — T (0) (0) ' ( )
T An - 2'l’i‘l
0) 5 (0)
[ L dop S g dpaytP )+ A T dppr? ) e

Cnm:_

T

In Rayleigh-Schrodinger perturbation theory, we usually
assume that the first-order perturbed solutions are orthogo-
nal to the lowest order solution so that C,,, = 0. However,
in the presence of a perturbation to the weight function, that
is no longer the case. Here, to obtain the coefficient C,,,, we
use the normalization condition

p3 y 3 2
/ dopips = / d¢(p+5p)<v/fq°>+ anmwi?)> =7,

T

(C18)
which, to first order, implies
L[~ (0)
C,,=- dedp(wy’)?. C19
nn 2 ). Pop(yn’) ( )

We have checked, numerically, that the wave functions
derived using Eqgs. (C7) and (C17) are identical to the ones
derived using Egs. (C13) and (C14).

2. Wave function and masses of KK modes
in the DFGK model

Here we present the wave functions and mass corrections
for the spin-2 as well as the scalar sector for the DFGK
model in the stiff-wall limit. These expressions are derived
by solving the differential equations described in Sec. C
and specifically using Egs. (C12) and (C13). The expres-
sions presented here are relevant for the large kr, limit. The
general expressions, valid for all kr, are quite cumbersome
and are provided in supplementary Mathematica files on
GitHub [28].

=)

|
a. Spin-2 mass and wave function corrections

To verify sum rules to order ¢> we need the spin-2 wave
function and masses to order €. We start by expanding the
spin-2 Sturm-Liouville equation in (7) up to order €2. We
also expand the wave function and masses, as described
earlier, to order €2

ya=wl) ) (C20)
0
e = ()l 4 (C21)

We have dropped the l//,(,” term since the corrections to the

spin-2 Sturm-Liouville problem start at order €> as can be
seen from its expanded form below

0= (3} —4krd, + (uy")" ey

+ e {[=800, + 2 (83 + 202 () Ny

+ [0 — 4kr 0, + o (WP} + 0. (C22)
Here we see that the leading term for 1//20) is the usual one
that we encounter in the unstabilized limit. Solutions to the
leading order differential equation are well known and can
be found in Ref. [11]. We reproduce some of these results
here later. After solving for 1//9, we then proceed to solve
the above differential equation at order €.

b. The massless graviton to order >

The massless graviton is the easiest, since it does not
acquire a mass, and its wave function is derived by setting
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pt(()o) = duy = 0. The wave function is a constant, and any €

dependence comes from the normalization condition (8).
The normalized wave function for the massless graviton to
order €” is of the form

1 —1/2
wo = {— / d(pe‘“}
T
— eﬂfcr(. ﬂl}rc
B eZn:fcr[ -1

N €2 \/Eeﬂicr(. [_271.27(2 z —~27T]~€rc + 32”7”’1- _ ]]
8,,3/2[,}(62”1% _ 1)]3/2

+ 0. (C23)

c¢. Massive spin-2 modes to order ¢

Before we present results on the perturbed wave functions
and masses of the massive spin-2 modes, we remind the
reader about the unperturbed wave functions and masses that
are identical to the unstabilized case. Since the full expres-
sions can be quite lengthy, we present only results that are
valid in the large kr,. limit and provide the full expressions in
supplementary Mathematica files on GitHub [28]. The wave
function for the massive spin-2 modes to order €” is the same
as those derived in the unstabilized RS model and in the large
kr, limit is of the form

[ai _ 47{’.00()0 + (ﬂl(lo))zeﬂ}rc(ﬂ]wglz) — 2cle3(/)/}rc |:8/¢£10)§0J1 (

el;rﬁ(/)ﬂ” - elzrr(l}ﬂl(lo)
e R R A G | R EY

wy) = ezfﬂ’?’c\/ _ ek
eZkr(:ﬂJZ (jl,n)z - J2 (e_ﬂkr‘:jl,n)2

x J,(ekere=mre) j, . (C24)

Here J; are Bessel-J functions. The masses of the spin-2
modes are determined by solving a transcendental equation
that is derived from the Neummann boundary condition
satisfied by the spin-2 modes:

7z1~<r,; Jr/}r(:
J1<e~ ﬂn>Y1<fl">—J1<fl—H)Y1<e~—ﬂn)_0
kr, kr, kr, kr,

(C25)

In the large kr. limit, the solution to the transcendental
equation reduces to a simple form:

s

_ T —nkr, ;
= ke,
rC

(C26)

m, =

Here j, , are the roots of J;.

Substituting the above form of the leading order spin-2
wave function and masses into Eq. (C22), we end up with a
nonhomogeneous differential equation which can be solved
using the method of variation of parameters. Alternately, the
same differential equation can also be derived from Eq. (C13)
and in the large kr, limit is of the form given below:

(0)
kr,

Cc

©

Here ¢ corresponds to the normalization of the leading order wave function y,, ). Below we write down the perturbation of

(2)

the spin-2 wave function ;. The resulting expressions at order e

supplementary Mathematica files on GitHub [28]:

() _ c1¥2(z)
! 384yt

2 are quite lengthy and are also provided in

3
€2 {ﬂ%ﬂz63F4 (E ,2,2,1,3,3,4 —Z2> [1 —4log(pz)]

3
+ 272, F;3 (5 .2;1,3.4; —22) [21log(Bz) — 1]

+ 384772 [<1F2 (%, 1,1: —z2> -2,F, (%, 1,2; —zz>> log(Bz) + log(ﬂ)]

3
+ 7%, F s (5,2, 2,2;1,3,3.3,4; —z2)

+ 192y/77? {cg;g <z2

11
2?
)—2G
0,0,0,0

11
2.1 Zz 2
“( o,o,—1,0>]

— 48mpl 24, (2)*[4B70u2 + (2[log(Bz) — 1] log(Bz) + 1)]

+ 4872241 (2)J5(2)[45%6us + (2[log(Bz) — 1] log(Bz) + 1)]}
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20 )Wéﬂ% + log?(p2)]

N 1] 1134
2’ 23 b ’2’2
-Gz, log(fz
2'0,0,2,—,—1) 46( 2‘13 ~1,0,0.1 )] 8(f2)
] lv_lvlsl 1 1 1 17 )
4.1 2°72 2.4 303
+”%ﬁ{4G4?6<Z’5’0 0.0.2.—1 —l) +G5’7<Z’5’1 3.-1.0.0.0 1)]
9’ b b b 9, 2 9’ b b b b ’2

+ 8u; log(z)[2log(B) + log(z)]} + P22[c3]2(2) + e4Y5(2)).

+uivalai (=

(C28)

Here f=kr./u,, 7= (ﬂn//}rc)e’;’ﬁ‘”, Gf]l are Meijer-G functions [37], ;F; are hypergeometric functions, ¢, is a
normalization constant given in Eq. (C19), and c¢; and ¢4 are constants that are determined from the Neummann
boundary condition that the wave function must satisfy. Additionally, we provide these expressions as well as those valid
also for arbitrary values of kr, in supplementary Mathematica files on GitHub [28].

Corrections to the mass to order €? are calculated using Eq. (C12). The large kr, limit is given in terms of Bessel
functions and hypergeometric functions as follows:

2.2
2 = —% {(11 2> [1610<j1,n>2(6nkrc — 1) = 487, (jy )2 (2kro(whr, — 1) + 1)

3 3
+963F4<1, 1,5;2,2,2,2§—(j1,z1)2> —96,F, (1’ 1,5;2, 2, 2,3;—(j1,n)2)

: 3 . :
+efs(3.2.2201.33.3,6-00°) | - 3200007 - 3} (©29)

3. Spin-0 mass and wave functions in the DFGK model

To verify the sum rules to order > we need the radion mass squared and wave function corrections to order 2. On the
other hand, due to the normalization condition in Eq. (15) in the stiff-wall limit, the GW scalar wave functions do not have a
€" piece, but instead start at order €. Therefore, it is only necessary to calculate their masses and wave functions to leading
order in €. To determine the wave functions to the required order in €, we start with the Sturm-Liouville problem for the
scalar modes defined in Eq. (12), and we perform an expansion of the same up to order €* as follows:

- . 4
103 + 2kred,, + (uy)) ey + € D—fa ]
1

. 2 ~ z 2
+ e {[4ga, — 4+ X0 (002 + 202 (Ui + (0% + 2Kkre,, + e (u) i} = 0.

n

(C30)

a. Radion wave function and mass to order ¢ function is constant and only acquires nontrivial depend-
ence at order €2. We can substitute the above expansion into

@) (0

We expand the wave function and mass in perturbation
Eq. (C30) and solving for 7, 7', (,u(n))z, and 5;4% order

theory as described earlier. For the massless radion we start

with the ansatz by order. This amounts to determining the unperturbed

wave function and using Eq. (C13) to determine the
perturbed wave function by solving the resulting nonho-
mogeneous differential equation

Yn =17 S’l) 1(1)+"'7

= (Ui + o2, + (C31)

(03 + 2kr.0, + (33 ¥ =)y =0, (C32)
Note the absence of the order e term in the expansion above

although there is an explicit order ¢ term in the differential
equation. It is easy to see that up to order e, the radion wave

We find the normalized radion mass and wave function to
order €2 to be
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[ 2
Ho) = 2e 1+ e27zkri.’

-5+ 662(/}kr + 362ﬂkrc — 6e (p+4n)kr, _

/ 27tkr

3/2( Ankr, _

7rkr
2nkr

2;rkr[ 2kr —2(p+ﬂ>+2(p)+5€6”kr

—6€2<” @)kr, + 66 (Br—p)kr, _

(C33)

6kr ( 2rkr, + 1)2

3e4hr] 4 O(e3). (C34)

Note that the expression is valid for arbitrary values of kr,. It is possible to simplify this expression further in the large k7.

limit to
2

4k> r%

0
70|I~<rﬂ>>l = }’(() ){1 +

In the large kr, limit, the wave function for the unstabilized

.0 _k
radion is yé) = e kT

zkr..
b. GW-scalar mass and wave function
to leading order

As remarked upon earlier, to verify the sum rules to order
€2, we need the GW-scalar wave function to order €, which,
due to the normalization condition in Eq. (15), is in fact the
leading order for the massive GW scalars. Hence we only
need to solve the leading term in Eq. (C30). The normalized
GW-scalar wave function to order ¢ is

ron , <u(>>
”’."C . . 1 7. '
S L G

kr.

2¢e
Vi=—¢€ N
1226 ezﬂer.JI(

—I;rc(p

(C36)

o i s
(—krc (n%kr, — 2 + 1) + e720K7e — 2o-mkre 6) } +0(e?).

(C35)

|
Looking at the normalization condition of Eq. (15), we see
that there is no €° piece. Here we have used the large kr,
limit and omitted Bessel-Y functions. The masses of GW
scalars are determined by solutions of the following
transcendental equation:

krfr n'kr
0! K (i) K
J| —= 1Y —-J Y, [————=) =0.
2( r, ) 2<kr> 2<kr> 2( kr, )
(C37)

In the large kr, limit, this reduces to the simple form

m ;) :/le): 7( —7kr,

L.]217 (C38)

where j,; are roots of J;.
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