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Scattering amplitudes involving massive spin-2 particles typically grow rapidly with energy. In this
paper we demonstrate that the anomalous high-energy growth of the scattering amplitudes cancel for the
massive spin-2 Kaluza-Klein modes arising from compactified five-dimensional gravity in a stabilized
warped geometry. Generalizing previous work, we show that the two sum rules which enforce the
cancellations between the contributions to the scattering amplitudes coming from the exchange of the
(massive) radion and those from the exchange of the tower of Goldberger-Wise scalar states (admixtures of
the original gravitational and scalar fields of the theory) still persist in the case of the warping which would
be required to produce the hierarchy between the weak and Planck scales in a Randall-Sundrum model. We
provide an analytic proof of one combination of these generalized scalar sum rules and show how the sum
rule depends on the Einstein equations determining the background geometry and the mode-equations and
normalization of the tower of physical scalar states. Finally, we provide a consistent and self-contained
derivation of the equations governing the physical scalar modes, and we list, in appendixes, the full set of
sum rules ensuring proper high-energy growth of all 2 → 2 massive spin-2 scattering amplitudes.
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I. INTRODUCTION

Historically, extradimensional theories of gravity were
introduced soon after Einstein’s discovery of the general
theory of relativity. In the original form extra dimensions
were introduced by Kaluza and Klein (KK) to unify
electromagnetism with gravity, the only two fundamental
forces known at the time [1,2]. Extradimensional models
have continued to evolve since the late 1970s, thanks in
large part to the development of string theory. Over the past
three decades, low-energy realizations of extradimensional
models gained prevalence as well-motivated scenarios of
physics beyond the standard model. One of the most
popular and phenomenologically viable models of extra
dimensions is the Randall-Sundrum model [3,4], wherein a

compact extra dimension in anti–de Sitter space is used to
generate relative exponential factors; this factor allows
particles fixed to a brane to interact at electroweak strength
while also ensuring bulk-propagating gravity is weak in the
observed extended four-dimensional (4D) space, thus
providing a geometric solution for the hierarchy problem
of the standard model.
Low-energy four-dimensional effective field theories

arising from compactified theories of gravity involve
towers of interacting spin-0 and spin-2 fields (and potentially
spin-1 fields as well, though these are often eliminated by
imposing an orbifold symmetry on the compact extra
dimension). The massive spin-2 resonances—sometimes
called KK gravitons—are particularly interesting. The exist-
ence of self-interactions between these KK gravitons is
problematic because typically scattering amplitudes between
massive spin-2 particles grow far too rapidly with energy to
keep unitarity constraints satisfied much beyond the mass of
the lightest massive spin-2 state involved. For example,
theories of massive gravity that extend 4D general relativity
by adding a Fierz-Pauli mass term [5] result in 2-to-2
scattering amplitudes for the helicity-zero channel (the
channel whose amplitude has the highest energy growth)
that grow like s5=ðm8

FPM
2
PlÞ [6], wheremFP is themass of the

graviton, s the squared center-of-mass energy, and MPl the
reduced Planck mass. Adding carefully chosen potential
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terms to the model [7,8] can soften matrix element growth
down to Oðs3Þ. However, compactified theories of extra-
dimensional gravity should—due to higher-dimensional
diffeomorphism invariance, requiring a smooth mKK → 0
limit–grow at most as OðsÞ.
As we have demonstrated in earlier work [9–12],

while the individual contributions to massive helicity-zero
spin-2 scattering amplitudes do each grow like Oðs5Þ
in compactified gravity theories, cancellations occurring
between these contributions ultimately ensure the overall
2-to-2 scattering amplitudes grow no faster than OðsÞ.1
These cancellations require that the couplings and masses
of the Kaluza-Klein spin-2 and spin-0 modes be con-
strained to satisfy various sum-rule relations, which we
have shown to be satisfied in both flat and warped
compactifications.
In the original formulation of the RS1 (Randall-

Sundrum I) model, extradimensional gravity generates
a massless radion in the effective 4D theory.2 A massless
radion couples to the trace of the stress-energy tensor,
yielding a Brans-Dicke–like theory, in odds with pre-
dictions of the general theory of relativity. Additionally,
this massless radion sources a Casimir force [15], thereby
destabilizing the extra dimension and leading to its
collapse. A naive computation of scattering amplitudes
of massive spin-2 KK particles in a compactified theory
of gravity, with a radion mass introduced by hand,
reveals that scattering amplitudes grow like m2

radions
2=

ðm4
KKM

2
PlÞ, i.e., Oðs2Þ instead of OðsÞ. To stabilize the

extra dimension in a way that retains validity of the
theory up to the Planck scale, the radion must not only be
made massive, but its mass must be generated dynami-
cally. These dynamics must also provide additional
contributions guaranteeing that the overall scattering
amplitude grows no faster than OðsÞ—as we have
explicitly shown in [16] and explore here in detail.

In the same year that Randall and Sundrum published
their model, Goldberger and Wise published a dynamical
mechanism for stabilizing the model’s extra dimension
[17,18]. Their mechanism shares conceptual similarities
with the standard technique of generating massive gauge
bosons by spontaneously breaking the associated under-
lying gauge symmetry, wherein dynamics producing a
nonzero vacuum expectation value (VEV) for a gauge-
variant operator induces mixing between the longitudinal
components of the gauge bosons with Goldstone bosons.
In the Goldberger-Wise (GW) mechanism, a new five-
dimensional (5D) bulk scalar field Φ̂ðx; yÞ is appended to
the RS1 model and included in new potential terms
that also involve (via standard gravitational factors) the
usual RS1 metric fields. That bulk scalar field then
spontaneously acquires a background profile ϕ0ðyÞ with

nonconstant dependence on the extradimensional coor-
dinate y, causing mixing between background fluctua-
tions f̂ of the bulk scalar field and scalar fluctuations r̂ of
the RS1 metric. While this could in principle yield two
physically relevant superpositions of the bulk scalar field
and scalar metric fluctuations, one combination is auto-
matically forced to vanish in unitary gauge, leaving just
one physical 5D scalar field in the spectrum.
Quantitatively, the new mixed scalar sector decom-

poses into a tower of spin-0 modes, all described by a
single Sturm-Liouville equation with nontrivial Robin
boundary conditions involving delta function contribu-
tions at the boundaries of the RS1 geometry. In this way,
the GW mechanism ultimately generates an infinite tower
of physical massive spin-0 states. But what happened to
the radion? If the background profile of the bulk scalar
field were, instead, made constant in the extradimensional
coordinate, no extradimensional symmetries would be
spontaneously broken and all but the lowest state in the
spin-0 tower would cease to mix with the gravita-
tional sector of the theory. In this limit, the lowest state
would become massless, and—indeed—its couplings
would exactly match those of the original unstabilized
RS1 radion. Hence, in the GW-stabilized RS1 model we
are considering, the radion should be associated with the
lightest massive state among an entire tower of massive
spin-0 states.
The assessment of the validity of the GW-stabilized

RS1 effective field theory proceeds as for the correspond-
ing unstabilized case, by calculating 2 → 2 massive KK
graviton scattering, now with an extended scalar sector,
as compared to only the radion in the unstabilized case.
An account of this calculation was provided in [16],
where we formulated an extended set of sum rules
required to ensure that scattering amplitudes were well
behaved in a stabilized theory of extra dimension without
reference to any explicit GW model. In addition, we
proposed a simple model of a stabilized-but-approxi-
mately-flat extra dimension, the “flat stabilized” model,
and we demonstrated that the revised sum rules were
satisfied in this model.
In this work we extend prior results into a new domain

by computing the couplings and masses of the scalar and
spin-2 states in a Randall-Sundrum model with a
Goldberger-Wise stabilization mechanism in the phenom-
enologically interesting case in which the warping repro-
duces the hierarchy between the weak and Planck scales.
We provide a self-contained derivation of the equations
governing the physical scalar modes. We show how one
combination of the generalized sum rules in particular
relies explicitly on the equations determining the back-
ground bulk scalar field and metric, including the scalar
mode wave functions and their normalization condi-
tions. We introduce a model in which the Goldberger-
Wise dynamics are a small perturbation away from the

1See also [13,14].
2Along with the usual massless 4D graviton.
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unstabilized warped RS1 model. We then demonstrate
numerically that all of the sum rules needed to ensure
that the anomalous growth of the scattering amplitudes
cancel are satisfied to leading nontrivial order in pertur-
bation theory.
The computations performed in the pure gravity sector

in this paper and the preceding ones [9–11,16], demon-
strating that amplitudes in compactified extradimen-
sional theories grow no faster than OðsÞ, have important
phenomenological consequences. The underlying higher-
dimensional diffeomorphism invariance that ensures that
scattering amplitudes are well behaved also guarantees
that scattering amplitudes involving matter particles
should also be compliant with the same principle. For
example, in calculations for cosmological observables
such as relic abundances of dark matter with KK graviton
portals (for both freeze-in and freeze-out), the velocity
averaged cross sections must be properly estimated at
large

ffiffiffi
s

p
. An erroneous estimate with anomalously

growing cross sections would lead to inaccurate predic-
tions for cosmological observables within the scope of
these models. The subject of KK graviton/massive
graviton portals to dark matter have been considered
extensively in the literature [19–21]. In many of these
works, the velocity averaged cross section has been
incorrectly estimated due to anomalously growing scat-
tering amplitudes. An application of our works was
considered in [22] where some of these issues were
accurately addressed within unstabilized models. An
application of this work will be to accurately estimate
KK graviton portal scenarios in freeze-in/freeze-out
mechanisms within the phenomenologically relevant
Goldberger-Wise models, with a massive radion. In
addition, the Goldberger-Wise scalar sector of such
models has been neglected due to its complexity.
Here, we work out the details of the scalar sector.
These issues will be considered further in future work.
The rest of the paper is organized as follows. In Sec. II

we describe the Lagrangian of the Goldberger-Wise
Randall-Sundrum model and set notation for the back-
ground geometry. In Sec. III we describe the spin-0 and
spin-2 mode expansions. Our analysis of the Kaluza-
Klein expansions for this system follows the computa-
tions of [23–26], generalized to de Donder gauge, and is
presented in detail for completeness and clarity in
Appendix A. A review of Kaluza-Klein mode scattering
and couplings, and description of the version of the sum
rules of [16] used here, as well as a description of the

analytic proof of one combination of the sum rules
involving the scalar sector is given in Sec. IV. Details
of the analytic proof of the sum rule are given in
Appendix B 5 a. We also provide, in the totality of
Appendix B, a complete list of the sum-rule relations
which must be satisfied for all 2 → 2 massive spin-2
scattering amplitudes to grow no faster than OðsÞ—
completing the analyses begun in [9–12]. A description
and the analysis of the perturbative warped-stabilized
model is given in Sec. V. In particular, our numerical
checks of the sum rules in this model are illustrated in
Figs. 3 and 4 of Sec. V C. Our perturbative analysis
requires a slight generalization of Rayleigh-Schrödinger
perturbation theory to account for perturbations in the
weight function of the corresponding Sturm-Liouville
problem, and this formalism is described in Appendix C.
Our conclusions are given in Sec. VI.Mathematica [27] files
giving the expressions for all the spin-2 and spin-0 pertur-
bative wave functions can be found on GitHub [28].

II. THE LAGRANGIAN

In this section we outline schematically how a canonical
4D effective Lagrangian is derived from a 5D RS1 model
stabilized by the Goldberger-Wise mechanism. We provide
a self-contained discussion of the details of this derivation
in Appendix A utilizing arguments similar to those found in
Refs. [24–26], generalized to de Donder gauge to enable
consistent scattering amplitude computations for processes
involving the (massless) graviton. In this section we specify
our notation and outline the results needed to present our
computations.
We begin by writing down the Lagrangian which

consists of the following terms:

L5D ≡ LEH þ LΦΦ þ Lpot þ LGHY þ ΔL: ð1Þ

Here LEH comes from the usual Einstein-Hilbert action,
LΦΦ and Lpot are the kinetic and potential terms, respec-
tively, of a bulk scalar field Φ̂ðx; yÞ, LGHY is the Gibbons-
Hawking-York (GHY) boundary term [29,30], and ΔL is a
useful total derivative we define in Appendix A. The
combination of LGHY and ΔL is required to have a
well-posed variational principle for the gravitational action
]31 ]. This Lagrangian is a function of the 5D metric G,

which we parametrize in terms of a 4D metric perturbation
gμν and a scalar metric perturbation r̂ as [32]

½GMN � ¼

0
B@ gμν exp

h
−2

�
AðyÞ þ e2AðyÞ

2
ffiffi
6

p κr̂ðx; yÞ
�i

0

0 −
�
1þ e2AðyÞffiffi

6
p κr̂ðx; yÞ

�
2

1
CA ð2Þ
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in terms of coordinates xM ≡ ðxμ; yÞ, where y ∈
ð−πrc;þπrc� parametrizes an orbifolded extra dimension3;
for convenience we define φ≡ y=rc and use y or φ
interchangeably as the coordinate of the fifth dimension.
Note that this form of the metric was used in our previous
works [9–11] for the unstabilized RS1 metric, following
[32] to bring the quadratic Lagrangian to a canonical form
from the outset. In the case of the stabilized model, the
situation is further complicated by a nontrivial mixing
between the bulk scalar field and the scalar metric fluctua-
tions. As we will explain below and demonstrate explicitly
in Appendix A, the total derivative ΔL helps us bring the
Lagrangian into a canonical form.
The warp factor AðyÞ encodes the warped background

geometry. In RS1 [3], in which the extra dimension is
unstabilized, AðyÞ ¼ kjyj, where k is related to the space-
time curvature. The Goldberger-Wise mechanism [17,18]
complicates the background geometry such that the specific
form of AðyÞ becomes dependent on the details of the
mechanism’s bulk scalar interactions. Crucially, the scalar
(bulk and boundary) potential terms in Lpot are chosen such
that the scalar field gains a y-dependent background field
value, and the trade-off between the contributions to the
action from bulk kinetic energy terms LΦΦ and the scalar
potential(s) stabilizes the size of the extra dimension.
The Lagrangian thus far is written in terms of the metric

perturbations fgμν; r̂g and the bulk scalar field Φ̂. We next
expand gμν and Φ̂ about their background values:

gμνðx; yÞ≡ ημν þ κĥμνðx; yÞ;

Φ̂ðx; yÞ≡ 1

κ
ϕ̂≡ 1

κ
½ϕ0ðyÞ þ f̂ðx; yÞ�: ð3Þ

The background metric ημν ¼ Diagðþ1;−1;−1;−1Þ of gμν
is determined by demanding Lorentz invariance along the
extended dimensions, while the background value ϕ0=κ of
Φ̂ must be found by solving the theory’s field equations.
We normalize the Lagrangian such that the 5D gravitational
coupling κ is related to the 5D Planck mass MPl;5D

according to κ2 ¼ 4=M3
Pl;5D. Note that the factors of κ

(units: energy−3=2) included in Eq. (3) are such that ϕ0 and
f̂ are unitless in natural units. Following KK decomposi-
tion, the 5D tensor field ĥμν, the 5D scalar field r̂, and the
5D scalar fluctuation field f̂ give rise to an infinite tower of
4D states.
Perturbatively expanding the Lagrangian Eq. (1) order-

by-order in κ yields terms containing various powers of hμν,

f̂, and r̂. In particular, at quadratic order in the fields, we
find a complicated expression; c.f. Eqs. (A58)–(A63).
Thankfully, there are residual five-dimensional diffeomor-
phism transformations which leave the form of Eq. (2)
invariant—these transformations allow us to reorganize
how the physical content is embedded in the fields and
thereby attain explicitly canonical quadratic Lagrangians.
This process will also mix the 5D fields r̂ and f̂ (and their
constituent 4D states) together in a process that eventually
leaves a single scalar tower of physical states. In particular,
to ultimately bring the quadratic 5D Lagrangian into a form
suitable for generating canonical 4D Lagrangians, we
impose the gauge-fixing constraint4

ð∂φϕ0Þf̂ðx; yÞ≡
ffiffiffi
6

p
e2AðφÞð∂φr̂Þ ð4Þ

to eliminate the field f̂ in terms of r̂.5 In this gauge the 5D
theory’s independent field degrees of freedom consist only
of the 5D scalar field r̂ and the 5D tensor field ĥμν. To yield
a 4D effective theory, each of these 5D fields is sub-
sequently decomposed into a tower of 4D KK modes. We
emphasize here that bringing the Lagrangian to a canonical
form is a nontrivial task, and it is of paramount importance
to figure out all the interactions of both the gravitational
and the scalar sector that will eventually determine the
structure of the matrix elements and the couplings.
To calculate the desired matrix elements, we require the

cubic and quartic self-interactions of the 5D tensor field ĥμν
as well as the ĥ ĥ r̂ cubic interaction. The ĥ self-interactions
(and their 4D effective equivalents) are changed from our
previous works [9,10,12] only in the specific choice of
AðyÞ. Following integration by parts and the elimination of
total derivatives, we find that the ĥ ĥ r̂ interaction is
similarly identical to the unstabilized case [11]:

Lhhr ¼ −
κ

2r2c

ffiffiffi
3

2

r
e−2AðφÞ½ðĥ0Þ2 − ĥ0μνðĥμνÞ0�r̂: ð5Þ

Thus, the primary difference between the stabilized and
unstabilized cases as far as ĥ ĥ r̂ is concerned regards the
KK decomposition of the 5D field r̂ðx; yÞ. In the unstabi-
lized case, r̂ generates only a single massless scalar state
r̂ðxÞ (see footnote 5)—the usual RS1 radion. In the
stabilized case, r̂ has nontrivial y-dependence and instead
generates an infinite tower of massive scalars fr̂ðiÞðxÞg,
wherein the lightest of these scalars (with KK number
i ¼ 0) is identified as the massive radion and the heavier

3That is, the extra dimension is a circle in which the points with
coordinates y and −y are identified. As we will see, this view of
the extra dimension (as opposed to treating it as a line segment)
allows us to motivate and use the boundary conditions of the
Kaluza-Klein mode equations at the orbifold fixed points at y ¼ 0
and y ¼ π more easily.

4A demonstration that one can always impose this gauge
constraint can be found in Refs. [24,26].

5Note that in the limit in which there is no nontrivial scalar
background, ϕ0

0 → 0, this constraint leaves only the constant
(φ-independent) mode of r̂ in the theory—a mode corresponding
to the massless radion of the unstabilized theory.
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states are called GW scalars.6 From here on, we will drop
the argument φ in the warp factor AðφÞ for convenience.

III. KALUZA-KLEIN MODE EXPANSIONS

Upon KK decomposition, the scalar and tensor modes
come from extradimensional wave functions which satisfy
one-dimensional Sturm-Liouville (SL) problems. For com-
pleteness and notational consistency, we provide details of
the derivation of the SL problems in the tensor and scalar
sectors in Appendix A—following the procedures origi-
nally described in [25,26] (see also Ref. [16]). We report the
results here for the convenience of the reader and to
highlight the differences that arise when solving these
problems in the stabilized RS1 model.

A. Spin-2 sector

The tensor field hμνðx; yÞ is decomposed into a tower of

4D KK states ĥðnÞμν ðxÞ in the usual way as follows: recalling
φ≡ y=rc,

ĥμνðx; yÞ ¼
1ffiffiffiffiffiffiffi
πrc

p
Xþ∞

n¼0

ĥðnÞμν ðxÞψnðφÞ: ð6Þ

Here rc is the radius of the extra dimension and ψnðφÞ is the
5D wave function of the nth mode that satisfies the
following SL differential equation:

∂φ½e−4A∂φψn� ¼ −μ2ne−2Aψn; ð7Þ

where the wave functions satisfy the boundary conditions
where ð∂φψnÞ ¼ 0 at φ ∈ f0; πg. The eigenvalues μn ¼
mnrc are the masses mn of the nth spin-2 KK mode. The
wave functions are normalized as follows:

1

π

Z þπ

−π
dφe−2Aψmψn ¼ δm;n; ð8Þ

and satisfy the completeness relation

δðφ2 − φ1Þ ¼
1

π
e−2A

Xþ∞

j¼0

ψ jðφ1Þψ jðφ2Þ: ð9Þ

The form of this SL problem is identical to the unstabilized
case and differs only in how the new background geometry
influences the warp factor A. In the unstabilized case, the
warp factor is simply krcjφj. In the stabilized case, the bulk

scalar potential modifies the background geometry such
that AðφÞ satisfies the (Einstein) equation

A00 ¼ 1

12

�
ðϕ0

0Þ2 þ 4
X
i¼1;2

Vircδi

�
ð10Þ

in terms of the background scalar field ϕ0 and the brane-
localized potentials V1;2 at φ ¼ 0 and φ ¼ π, respectively
(refer to Appendix A for additional details).

B. Spin-0 sector

The spin-0 sector of the model arises from two sources.
The first is the scalar metric fluctuation (where even the
lightest mode will be y-dependent in the stabilized model),
and the second is the new bulk scalar field. The two sectors
mix via the gauge condition noted in Eq. (4). Consequently,
we attain a single physically relevant 5D physical scalar
perturbation r̂ðx; yÞ. Similar to the tensor perturbation,
the KK decomposition of the 5D scalar field r̂ðx; yÞ into
a tower of spin-0 KK modes proceeds by introducing
extradimensional wave functions γiðφÞ and a tower of 4D
scalar fields r̂ðiÞðxÞ parametrized as follows:

r̂ðx; yÞ ¼ 1ffiffiffiffiffiffiffi
πrc

p
Xþ∞

i¼0

r̂ðiÞðxÞγiðφÞ: ð11Þ

The mode equation that brings the 5D scalar Lagrangian to
canonical form, however, is quite different from the tensor
case and involves nontrivial boundary terms

∂φ

�
e2A

ðϕ0
0Þ2

ð∂φγiÞ
�
−
e2A

6
γi

¼ −μ2ðiÞ
e4A

ðϕ0
0Þ2

γi

(
1þ 2δðφÞh

2  V1rc −
ϕ00
0

ϕ0
0

iþ 2δðφ − πÞh
2  V2rc þ ϕ00

0

ϕ0
0

i
)
;

ð12Þ

where ϕ0
0 ≡ ð∂φϕ0Þ and the eigenvalues μðnÞ ¼ mðnÞrc are

the masses mðnÞ of the nth scalar KK mode. The Dirac
deltas enforce the following (orbifold) boundary condi-
tions:

ð∂φγiÞjφ¼0 ¼ −
�
2  V1rc −

ϕ00
0

ϕ0
0

�
−1
μ2ðiÞe

2Aγijφ¼0;

ð∂φγiÞjφ¼π ¼ þ
�
2  V2rc þ

ϕ00
0

ϕ0
0

�
−1
μ2ðiÞe

2Aγijφ¼π; ð13Þ

where  V1;2 are second functional derivatives of the brane
potentials evaluated at the background-field configuration.
Note that these boundary conditions reduce to Neumann
form in the “stiff-wall” limit,  V1;2 → þ∞, a limit which
will be useful to us during our numerical work in Sec. V.

6Note that, having chosen to express the physical degrees of
freedom in terms of the scalar field r̂ in Eq. (4), the form of the
couplings between the massive spin-2 states and the tower of GW
states is precisely the same as the form of the radion coupling in
RS1. However, as we will see, the mode equation and normali-
zation conditions for the physical GW scalars lead to additional
complications.

SPIN-2 KALUZA-KLEIN SCATTERING IN A STABILIZED … PHYS. REV. D 107, 035015 (2023)

035015-5



In the form of Eq. (12), the Sturm-Liouville nature
of the problem is manifest, and the orthogonality and
completeness of the wave functions follow immediately
[24,25,33,34].7

Due to the mixing between the gravitational and bulk
scalar sectors in Eq. (4), however, an unconventional
normalization of the scalar wave functions is required to
bring the scalar kinetic energy terms to canonical form,8

δmn ¼
6μ2ðnÞ
π

Z þπ

−π
dφγmγn

e4A

ðϕ0
0Þ2

×

(
1þ 2δðφÞ

½2  V1rc −
ϕ00
0

ϕ0
0

�
þ 2δðφ − πÞ
½2  V2rc þ ϕ00

0

ϕ0
0

�

)
ð14Þ

¼ 6

π

Z þπ

−π
dφ

�
e2A

ðϕ0
0Þ2

γ0mγ0n þ
e2A

6
γmγn

�
; ð15Þ

where the second line follows by applying the differential
equation (12) and integration-by-parts on the periodic
doubled orbifold. The scalar wave function completeness
relation follows from Eq. (14):

δðφ2 − φ1Þ ¼
6

π

e4Aðφ1Þ

ðϕ0
0ðφ1ÞÞ2

×

�
1þ 2δðφ1Þ

½2  V1rc −
ϕ00
0

ϕ0
0

�
þ 2δðφ1 − πÞ
½2  V2rc þ ϕ00

0

ϕ0
0

�

�

×
Xþ∞

j¼0

μ2ðjÞγjðφ1Þγjðφ2Þ: ð16Þ

The second form of the normalization condition in
Eq. (15) is useful in computational work, since it does
not rely on knowledge of the eigenvalues. Details are given
in Appendix A.
Because of the Neumann boundary conditions ð∂φψnÞ ¼

0 and the simplicity of Eq. (7), there is always a massless

spin-2 mode (with a wave function constant in φ) in the
tensor tower. This is not the case for the scalar tower. Due to
the nonconstant potential of the background scalar, along
with its vacuum expectation value, the lightest spin-0 state
(identified as the radion with a wave function γ0) acquires a
mass μð0Þ.

IV. MASSIVE SPIN-2 COUPLINGS, SCATTERING
AMPLITUDES, AND SUM RULES

As discussed extensively in the literature (see, for
example, [7,8], and references therein), phenomenological
calculations incorporating massive spin-2 states often
generate matrix element diagrams which exhibit anomalous
high-energy behavior. Extradimensional models of gravity
possess an underlying 5D diffeomorphism invariance that
ensures their amplitudes are well behaved. That is, any
overall bad high-energy growth necessarily signals the
omission of additional important physics. Such omissions
can produce erroneous phenomenological results.9

In our previous work we analyzed the diagrams which
contribute to 2 → 2 massive spin-2 mode scattering for
several variants of the Randall-Sundrum I model; within
each of these analyses, we found there exist individual
diagrams which diverge as fast as Oðs5Þ at high energies (s
being the usual Mandelstam parameter) and that cancella-
tions between diagrams ensure the total matrix element
only grows as fast as OðsÞ [9–12]. This genuine OðsÞ
growth is important because it ensures the 4D effective
theory breaks down at an energy scale consistent with the
physics of the underlying extradimensional theory. The
central purpose of this paper is to verify the various
coupling relations and sum rules [16] required to ensure
these cancellations in a general Goldberger-Wise-stabilized
Randall-Sundrum I model, report how most of these rules
may be proved in full generality, and (in the next section)
numerically demonstrate leadingOðsÞ growth of the matrix
element to second-order in a solvable warped stabi-
lized model.
In this section we review the definitions of the KK mode

couplings relevant to the scattering computations (Sec. IVA),
describe the sum rules which apply to these couplings, and
show how they are related to the physics of the Goldberger-
Wise model (Sec. IV B), and provide a brief summary of the
sum rules we numerically verify (Sec. IV C).

A. Scattering amplitudes and couplings

The tree-level diagrams relevant to the aforementioned
2 → 2 matrix element are shown in Fig. 1; details can be

7The completeness of the solutions to the scalar Sturm-
Liouville problem in Eq. (12) and the positivity of the scalar
mass-squared eigenvalues μ2ðiÞ are only assured if the coefficients
of the δ-function terms are non-negative [33,34]. We will assume
that the brane potentials and background field are such as to
satisfy this condition (as they do in the stiff-wall limit we use
later). Physically this constraint is more easily understood in
the analogous case of the modes of a string: in that case the
δ-functions can be understood as representing point masses
which can freely move at the boundary of the string, and
the coefficients are proportional to these masses and must
therefore be positive for stability.

8Because μ2ðiÞ > 0 in the GW model, this normalization choice
(albeit unusual) is consistent. Taking the unstabilized limit
ϕ0
0 → 0 [in which μð0Þ → 0 and all other scalar states decouple;

see Eq (4)], however, requires care. This limit is discussed in the
context of the “flat-stabilized” model in [16].

9Following our previous computations [9–11] it was shown in
[22] that in freeze-out computations with KK-graviton portal dark
matter scenarios exhibit amplitudes that grow no faster than OðsÞ
in an unstabilized model. The stabilized and phenomenologically
relevant RS1 model is significantly more difficult to calculate and
will be presented in a future work.
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found in [9–12,16]. The general strategy employed in this
paper follows that of the unstabilized case. Briefly, the total
matrix element M involves a contact diagram ðMcÞ as
well as infinite sums over the diagrams (Mj;X, MðiÞ;X)
describing X ¼ s, t, and u-channel exchanges of inter-
mediate spin-2 states and spin-0 states,

M ¼ Mc þ
X

X∈fs;t;ug

�Xþ∞

j¼0

Mj;X þ
Xþ∞

i¼0

MðiÞ;X

�
;

where in general KK numbers within parentheses [the (i)]
refer to those of the spin-0 states, while those without
parentheses (the j) reference the spin-2 states. We expand
the matrix element M in a Taylor series in s as [11]

Mðs; θÞ ¼
X
σ∈1

2
Z

MðσÞðθÞ · sσ ð17Þ

and isolate the kinematic factors and the couplings.
Generally, 5D diffeomorphism demands that all coeffi-
cients of sσ with σ > 1 in this expansion must vanish. At
present, because we consider the process involving helicity-
zero external states, half-integer values of σ automatically
vanish. Demanding OðsÞ growth at most in this matrix
element necessitates relationships between various masses
and coupling structures in the theory.
The couplings present in each of these diagrams

come from wave function overlap integrals attained
following Kaluza-Klein decomposition of the fields in
the Lagrangian; this procedure of attaining a 4D effective
theory from a Lagrangian such as Eq. (1) via KK decom-
position is explained in detail in Refs. [11,12].

(i) The contact diagram Mc involves the 4-point
massive spin-2 vertex and contributes the following
wave function overlap integrals:

aklmn ≡ 1

π

Z þπ

−π
dφe−2Aψkψ lψmψn;

bk0l0mn ≡ 1

π

Z þπ

−π
dφe−4Að∂φψkÞð∂φψ lÞψmψn:

As shown explicitly in [9–11,16] and references
therein, and can be argued from general power
counting arguments originating from external

polarization and the tensor structures, the helicity-
zero contribution to theMc diagrams diverge as fast
as Oðs5Þ.

(ii) The spin-2 mediated diagramsMj;X involve 3-point
spin-2 vertices and contribute the following wave
function overlap integrals:

almn ≡ 1

π

Z þπ

−π
dφe−2Aψ lψmψn;

bl0m0n ≡ 1

π

Z þπ

−π
dφe−4Að∂φψ lÞð∂φψmÞψn:

Just as the contact diagrams [9–11,16], the hel-
icity-zero contribution to the sum of the Mj;X

diagrams diverges as Oðs5Þ.
(iii) The spin-0 mediated diagrams MðiÞ;X involve

3-point scalar-(spin-2)-(spin-2) couplings and con-
tribute the following wave function overlap integrals:

al0m0ðnÞ ≡ 1

π

Z þπ

−π
dφe−2Að∂φψ lÞð∂φψmÞγn:

Due to the structure of the Lagrangian, no corre-
sponding “bl0m0ðnÞ” or “blm0ðn0Þ” is generated. In this
case [9–11,16] the scalar-exchange diagrams grow
more slowly, where eachMðiÞ;X diverges likeOðs3Þ.

In general, (i) couplings labeled with an “a” have an e−2A

weight factor, whereas those labeled with a “b” involve
e−4A; (ii) the subscript KK indices indicate the relevant
wave functions to include in each integral (remembering
that parentheses indicate scalar modes); and (iii) a subscript
KK index with a prime denotes that the corresponding
mode number’s wave function should be differentiated with
respect to the extradimensional coordinate φ.
We can reduce the number of coupling integrals present

by using the properties of the KK wave functions; namely,
the mode equation and completeness relations, Eqs. (7) and
(9). For example, in prior work [11,12] we showed how the
spin-2 mode equation (7) and the corresponding complete-
ness relation (9) relate some of the a and b couplings:

bl0m0n ¼
1

2
½μ2l þ μ2m − μ2n�almn; bn0n0nn ¼

μ2n
3
annnn: ð18Þ

We use these relations and eliminate all b-type overlap
integrals in favor of a-type integrals. Doing so, we may
write the sum rules entirely using a-type overlap integrals.

B. Sum rules ensuring consistency
of scattering amplitudes

By requiring the scattering amplitude to grow no faster
thanOðsÞ in the GWmodel [16], we previously determined
the following general sum rules should be satisfied:

FIG. 1. Matrix element diagrams contributing to n; n → n; n
massive spin-2 KK boson scattering. Here n refers to the KK
mode number of the external state. The intermediate states x
include a massive radion, the graviton, a tower of massive spin-2
KK bosons, and a tower of GW scalars.
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X
j¼0

a2nnj ¼ annnn; ð19Þ

X
j¼0

μ2ja
2
nnj ¼

4

3
μ2nannnn; ð20Þ

Xþ∞

j¼0

μ4ja
2
nnj ¼

4

15
μ4nð4annnn − 3a2nn0Þ þ

36

5

Xþ∞

i¼0

a2n0n0ðiÞ; ð21Þ

Xþ∞

j¼0

μ6ja
2
nnj ¼ −4μ6na2nn0 þ 9

Xþ∞

i¼0

ð4μ2n − μ2ðiÞÞa2n0n0ðiÞ: ð22Þ

The first two sum rules, Eqs. (19) and (20), ensure that the
contributions to the scattering amplitudes growing like
Oðs5Þ and Oðs4Þ vanish. They follow directly from the
Sturm-Liouville form of the spin-2 KK mode equation (7)
and the corresponding completeness relation (9)—so the
proofs given in [10–12] apply to any model producing a
geometry defined by a warp function AðyÞ. However, the
sum rules in Eqs. (21) and (22), which ensure cancellation
of the contributions to the amplitude growing like Oðs3Þ
and Oðs2Þ, involve the scalar tower present in the
GW model.
By combining the last two sum rules, Eqs. (21) and

(22), to eliminate the common sum
P

i a
2
n0n0ðiÞ, we find a

mixed rule:

Xþ∞

j¼0

½5μ2n − μ2j �μ4ja2nnj ¼
16

3
μ6nannnn þ 9

Xþ∞

i¼0

μ2ðiÞa
2
n0n0ðiÞ: ð23Þ

As we show now, this combined sum rule can be expressed
in a way that depends only on the spin-2 wave functions.
The only scalar tower sum

Pþ∞
i¼0 μ

2
ðiÞa

2
n0n0ðiÞ remaining in

this particular combination of the Oðs3Þ and Oðs2Þ sum
rules can be eliminated using the spin-0 completeness
relation Eq. (16). Since the spin-2 wave functions satisfy
Neumann boundary conditions, ð∂φψnÞ ¼ 0 at φ ¼ 0 and
π, we find

Xþ∞

i¼0

μ2ðiÞa
2
n0n0ðiÞ ¼

1

6

�Z
dφð∂φϕ0Þ2e−8Að∂φψnÞ4

�
: ð24Þ

Hence the combination of sum rules in Eq. (23) does not
depend on the explicit form of the scalar wave functions
γiðφÞ, but only on the spin-2 wave functions ψnðφÞ, the
exponentiated warp factor eAðφÞ, and (the derivative of) the
background scalar field ϕ0.
In Appendix B 5 a we show, by applying only the spin-2

mode equation (7), Neumann boundary conditions, and
completeness relations (9), that

Xþ∞

j¼0

½5μ2n − μ2j �μ4ja2nnj ¼
16

3
μ6nannnn

þ 18

�
1

π

Z þπ

−π
dφð∂2φAÞe−8Að∂φψnÞ4

�
: ð25Þ

In the GW model we have the Einstein equation [via
Eq. (10)] ð∂2φAÞ ¼ ð∂φϕ0Þ2=12þ

P
i VircδiðφÞ=3. The

Dirac delta terms vanish because ð∂φψnÞ ¼ 0 at the
boundaries, and hence

Xþ∞

j¼0

½5μ2n − μ2j �μ4ja2nnj

¼ 16

3
μ6nannnn þ

3

2

�Z
dφð∂φϕ0Þ2e−8Að∂φψnÞ4

�
: ð26Þ

Applying Eq. (24) we immediately obtain Eq. (23). Hence
Eq. (23) depends nontrivially on the dynamics of the GW
model—in particular, on the Einstein equations for the
warp factor and on the scalar completeness relation which
follows from the mode equation and the scalar mode
normalization condition.
Using the spin-2 completeness relations and the relations

between the a and b couplings in Eq. (18) and the sum rule
in Eq. (19), we find

Xþ∞

j¼0

μ4ja
2
nnj ¼ 4cn0n0n0n0 þ

4

3
μ4nannnn: ð27Þ

Here we have defined the quantity

cn0n0n0n0 ¼
Xþ∞

j¼0

b2n0n0j ≡
1

π

Z
dφe−6Að∂φψnÞ4; ð28Þ

which depends only on the spin-2 wave functions. Plugging
this into Eq. (26) we find

Xþ∞

j¼0

μ6ja
2
nnj ¼

4

3
μ6nannnn þ 20μ2ncn0n0n0n0

−
3

2

�Z
dφð∂φϕ0Þ2e−8Að∂φψnÞ4

�
; ð29Þ

which depends only on the spin-2 wave functions and the
background scalar-field configuration ϕ0.
Finally, having demonstrated that one linear combination

of Eqs. (21) and (22) is determined entirely by the spin-2
sector of the GW model, we can also use Eq. (27) to isolate
the contribution from the GW scalar sector

Xþ∞

i¼0

a2n0n0ðiÞ ¼
5

9
cn0n0n0n0 þ

1

9
μ4na2nn0 þ

1

27
μ4nannnn; ð30Þ
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which succinctly summarizes the necessary (but unproven)
relationship between the scalar and spin-2 couplings
(and hence wave functions) which must be satisfied in
order for the spin-2 scattering amplitudes to grow no faster
than OðsÞ.

C. Sum-rule summary

In summary, the spin-2 coupling relationsX
j¼0

a2nnj ¼ annnn; ð19 revisitedÞ

X
j¼0

μ2ja
2
nnj ¼

4

3
μ2nannnn; ð20 revisitedÞ

Xþ∞

j¼0

μ4ja
2
nnj ¼ 4cn0n0n0n0 þ

4

3
μ4nannnn; ð27 revisitedÞ

Xþ∞

j¼0

μ6ja
2
nnj ¼

4

3
μ6nannnn þ 20μ2ncn0n0n0n0

−
3

2

�Z
dφð∂φϕ0Þ2e−8Að∂φψnÞ4

�
ð29 revisitedÞ

follow from the form of the spin-2 mode equations, the
spin-2 wave function completeness, the Einstein equations
for the warp factor, and the scalar completeness relation
which follows from the scalar mode equation and the scalar
mode normalization condition. Analytic derivations of all
of these relations are given above or in Appendix B 5 a.
With respect to guaranteeing that the massive spin-2
scattering amplitudes grow no faster than OðsÞ, these
relations show that the first two sum rules Eqs. (19) and
(20) and one combination of the sum rules in Eqs. (21) and
(22) are always satisfied.10

Separately, the sum rule

Xþ∞

i¼0

a2n0n0ðiÞ ¼
5

9
cn0n0n0n0 þ

1

9
μ4na2nn0 þ

1

27
μ4nannnn;

ð30 revisitedÞ

which depends on the spin-0 GW scalar couplings must
also be satisfied in order for the spin-2 scattering ampli-
tudes to grow no faster than OðsÞ. With the methods
discussed here, we have been unable to prove analytically
that this scalar sum rule is satisfied in general.11

In [16], we demonstrated that these sum rules in
Eqs. (19)–(22) were satisfied in the “flat-stabilized”
model—a slight deformation of a flat extradimensional
model in which the radion is massive and the size of the
extra dimension is stable. We now demonstrate numerically
that these relations are satisfied in the presence of the
warping required to produce the hierarchy between the
weak and Planck scales in the Randall-Sundrum model.

V. PERTURBATIVE ANALYSIS
OF A WARPED STABILIZED MODEL

In the original formulation of the RS1 model [3,4],
Randall and Sundrum constructed a consistent solution
to the Einstein field equations by choosing a warp factor
AðφÞ ¼ krcjφj sourced by brane and bulk cosmological
constants. Once the Goldberger-Wise mechanism is imple-
mented, such a simple functional form becomes unavail-
able: the background geometry is augmented, the Einstein
field equations are changed, and the warp factor AðφÞ is
made more complicated. The background Einstein field
equations of the stabilized model [Eqs. (A26), (A27),
(A29), and (A30)] are coupled nonlinear equations with
respect to AðφÞ that depend on the derivative of the scalar
background ϕ0

0ðφÞ and are generally difficult to solve.
DeWolfe, Freedman, Gubser, and Karch have constructed a
specific class of exactly solvable potentials (the DFGK
model) [36] which make calculations in the stabilized RS1
model feasible.
In this section, we review the DFGK class of solutions to

set notation, and we detail a specific DFGK model which
enables perturbative expansion around the (solved) warped
unstabilized RS1 model [16]. Subsequently, for the physi-
cal spin-0 and spin-2 towers, we perturbatively compute the
wave functions and masses using the Sturm-Liouville
equations described in Sec. III. Finally, we demonstrate
that the sum rules defined in Sec. IV are numerically
satisfied at second order in the expansion parameter, the
lowest order necessary to generate a nonzero radion mass.

A. The DFGK model

A key strategy employed in the DFGK model [36] is the
introduction of a superpotential-inspired function W½ϕ̂�
which is used to simplify the stabilized model’s back-
ground field equations [Eqs. (A26), (A27), (A29), and
(A30)]. In particular, it is assumed that the scalar bulk and
brane potentials may be parametrized as

Vr2c ¼
1

8

	
dW

dϕ̂



2

−
W2

24
; ð31Þ

V1rc ¼ þW
2
þ β21½ϕ̂ðφÞ − ϕ1�2;

V2rc ¼ −
W
2
þ β22½ϕ̂ðφÞ − ϕ2�2: ð32Þ

10Generalizations of the proven rules (and their proofs) as well
as additional unproven rules necessary for OðsÞ growth of the
inelastic amplitude ðk; lÞ → ðm; nÞ are provided in Appendix B.

11While this paper was under review, an analytic proof of this
remaining sum rule has been developed [35] by reframing the
problem in conformal coordinates to reveal a hidden N ¼ 2
supersymmetry structure of the mode equations.
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In this case, the background scalar and Einstein equations
are solved if

ð∂φAÞ ¼
W
12

����
ϕ̂¼ϕ0

signðφÞ; ð∂φϕ0Þ ¼
dW

dϕ̂

����
ϕ̂¼ϕ0

signðφÞ;

ð33Þ

where ϕ1 ≡ ϕ̂ð0Þ and ϕ2 ≡ ϕ̂ðπÞ. Reference [36] introdu-
ces a convenient W½ϕ̂� with the following specific form12:

W½ϕ̂ðφÞ� ¼ 12krc −
1

2
ϕ̂ðφÞ2urc: ð34Þ

Plugging this into Eq. (33) we find solutions for the bulk
scalar vacuum and the warp factor:

ϕ0ðφÞ ¼ ϕ1e−urcjφj; ð35Þ

AðφÞ ¼ krcjφj þ
1

48
ϕ2
1½e−2urcjφj − 1�: ð36Þ

In the limit that the parameter u vanishes, this reduces to the
usual unstabilized RS1, with the bulk field acquiring a
constant vacuum expectation value. The parameters u, ϕ1,
and ϕ2 are related according to

urc ¼
1

π
log

ϕ1

ϕ2

: ð37Þ

We next define the small-u limit carefully to facilitate a
perturbative analysis.

B. The perturbative DFGK model

The forms of ϕ0ðφÞ and AðφÞ in Eqs. (35) and (36) are
useful for solving the background equations, but it remains
difficult to find general analytic solutions (i.e., the KK
wave functions and masses) to the differential equations
defined in Sec. III. Therefore, we define a limit of the model
so that we may perturbatively expand ϕ0 and A around the
unstabilized background (for which analytic solutions are
well known), take the stiff wall limit [with  V1;2 → ∞ so
that the scalar boundary conditions in Eq. (13) reduce to
Neumann conditions at φ ¼ 0; π], and develop solu-
tions for the Sturm-Liouville problems order-by-order in
perturbation theory.13 Details of the perturbation theory can
be found in Appendix C. Here, we now proceed to

introduce the effective warp parameter k̃ and perturbation
parameter ϵ [16].
Suppose we series expand AðφÞ with respect to the

unitless quantity urc. Expanding around urc ¼ 0 yields

AðφÞ ¼ krcjφj −
�
ϕ2
1

24
jφj

�
ðurcÞ

þ
�
ϕ2
1

24
jφj2

�
ðurcÞ2 þOððurcÞ3Þ ð38Þ

¼
�
k −

ϕ2
1u
24

�
rcjφj þ

�
ϕ2
1ðurcÞ2
24

�
jφj2 þOððurcÞ3Þ: ð39Þ

The first term in the second line demonstrates that, when
urc is sufficiently small, the stabilized model is a small
deformation of an unstabilized Randall-Sundrum I model
[3,4]. Because we intend to work in the urc → 0 limit, we
will eliminate the actual warp parameter k in favor of the
effective warp parameter,

k̃≡ k − ϕ2
1u=24; ð40Þ

that applies in that limit.14

To simplify various factors that would otherwise be
present in multiple equations, we will also replace urc (and
its role as our expansion parameter) with the rescaled
dimensionless perturbative parameter ϵ≡ ϕ1ðurcÞ=

ffiffiffiffiffi
24

p
.

This definition of ϵ simplifies AðφÞ at Oðϵ2Þ,

AðφÞ ¼ k̃rcjφj þ
ϕ2
1

48

�
exp

	
−
4

ffiffiffi
6

p

ϕ1

ϵjφj


− 1

�
þ ϕ1

2
ffiffiffi
6

p ϵjφj

ð41Þ

¼ k̃rcjφj þ ϵ2jφj2 þOðϵ3Þ; ð42Þ

and yields, to all orders in ϵ,

W½ϕ̂ðφÞ� ¼ 12k̃rc þ
ffiffiffi
6

p

ϕ1

½ϕ2
1 − ϕ̂ðφÞ2�ϵ; ð43Þ

ϕ0ðφÞ ¼ ϕ1 exp

	
−
2

ffiffiffi
6

p

ϕ1

ϵjφj



¼ ϕ1 expð−αϵjφjÞ; ð44Þ

where α ¼ 2
ffiffi
6

p
ϕ1

. It is the form of the warp factor shown
in Eq. (41) that we use in subsequent perturbative
computations.

12Here u is a parameter, and not the û field of Eq. (A3).
13Specifically, we will solve this problem numerically in two

limits, both of which are phenomenologically relevant and
interesting. One corresponds to large values of k̃rc that connects
the 4D Planck scale to TeV scale physics in the context of RS
models. The second limit corresponds to small values of urc that
give rise to small values of the radion mass and allow for us to
solve the relevant equations perturbatively.

14In [16] we discussed the properties of the “flat-stabilized
model” with k̃ ¼ 0. DS: Here we discuss the phenomenologically
relevant limit of large k̃rc.
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1. Spin-2 wave functions and masses
in perturbation theory

To order Oðϵ2Þ, the spin-2 mode equation (7) becomes15

∂φ½e−4k̃rcφ−4ϵ2φ2

∂φψn� ¼ −μ2ne−2k̃rcφ−2ϵ
2φ2

ψn: ð45Þ

The form of this equation, along with the Neumann
boundary conditions ∂φψn ¼ 0 at φ ¼ 0; π, ensures that
the zero mode (the graviton) is massless and has a wave
function which is constant in φ. Expanding this equation in
powers of ϵ2, we solve Eq. (7) using perturbation theory as
described in Appendix C. The perturbative expressions for
the spin-2 wave functions and masses are quite lengthy, and
to simplify them, we restrict ourselves to the limit when k̃rc
is large. The expressions for the spin-2 mass and wave
functions are given to order ϵ2 in the large-k̃rc limit in
Appendix C 2.
To illustrate the effects of the geometry on the spin-2

masses, we calculate the masses for Eq. (7) using the
Wentzel–Kramers–Brillouin approximation. The asymp-
totic formula for the masses is given by16

μn ¼ mnrc ¼
nπ
l
; l ¼

Z
π

0

dφeA: ð46Þ

The equations above show how the eigenvalues are positive
and form an infinite tower of states. Using the form of AðφÞ
from Eq. (36), we find the mass of spin-2 KK modes for a
large mode number to be

μnjn≫1 ¼
ðnπÞk̃rc
eπk̃rc − 1

− ðnπÞ e
πk̃rc ½πk̃rcðπk̃rc − 2Þ þ 2� − 2

k̃rcðeπk̃rc − 1Þ2 ϵ2

þOðϵ3Þ: ð47Þ

In the limit when k̃rc ≫ 1, which is the phenomenologi-
cally interesting limit, this expression further simplifies to

μnjn≫1 ≃ ðnπÞk̃rce−πk̃rc
�
1 −

½πk̃rcðπk̃rc − 2Þ þ 2�
k̃2r2c

ϵ2
�
:

ð48Þ

We can see how the effect of the on the geometry from the
bulk scalar field reduces the masses of the massive spin-2

modes. Further, the square of the ratio of the correction to

the mass (δμn) to the leading order mass ðμð0Þn Þ is

δμ2n

ðμð0Þn Þ2
����
n≫1;k̃rc≫1

≃
�
−2π2 þ 4π

k̃rc
−

4

k̃2r2c
þ � � �

�
ϵ2: ð49Þ

We can therefore conclude that the perturbation theory we
use is valid when jϵj ≪ 1=ð ffiffiffi

2
p

πÞ. In Fig. 2, we compare the
full expression for the mass corrections [given in Eq. (C29)
of Appendix C] to the asymptotic form shown here. Here
we see that the full form of the mass, represented by the
blue dots, approaches the asymptotic value, represented by
the bold red line.
While the asymptotic formula is simple and provides a

convenient cross-check of our calculations, it is insufficient
for our present purposes. To demonstrate cancellations and
verify sum rules, we need to be able to evaluate the Oðϵ2Þ
wave functions and masses without approximation. We
provide exact expressions to order ϵ2 in the perturbation
theory within Appendix C 2. These expressions are con-
sistent with the large k̃rc limit results. Full expressions
(which are valid for arbitrary values of k̃rc) are provided as
supplementary Mathematica files [28].

2. Spin-0 wave functions and masses
in perturbation theory

Equation (44) implies that

ðϕ0
0Þ2 ¼ 24ϵ2e−2αϵφ ð50Þ

in the bulk. To simplify our analysis, we consider the
perturbative solution for the scalar tower in the “stiff-wall”

FIG. 2. We show for each spin-2 KK mode n, the ratio of mass
correction to leading order mass times ϵ2 (dots). The mass
correction δμ2n is calculated in the large k̃rc limit to order ϵ2,
as shown in Eq. (C29). The line represents the asymptotic form
of the expression given in Eq. (49), which is valid for the large
spin-2 KK number.

15Here, and in subsequent equations related to the perturbative
model in this paper, we expand AðφÞ to Oðϵ2Þ using Eq. (41),
but we do not record the expansion of the exponents in powers of
ϵ to retain succinctness of expressions when writing. However,
these exponents are actually expanded during our calculations,
e.g., when we define the perturbed differential equations in (C4)
and (C5).

16There are O(1) corrections to μ2nl2 that do not grow with n,
due to the Neumann boundary conditions. These effects can be
included, but do not affect the analysis given here.
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limit,  V1;2 → þ∞, so that Eq. (13) reduces to Neumann
conditions

∂φγijφ¼0;π ¼ 0: ð51Þ

Using this and the expansion of AðφÞ to order Oðϵ2Þ from
Eq. (41), the spin-0 mode equation (12) becomes (after
multiplying through by 24ϵ2)

∂φ½eð2k̃rcφþ2αϵφþ2ϵ2φ2Þ
∂φγi� − 4ϵ2eð2k̃rcφþ2ϵ2φ2Þγi

¼ −μ2i eð4k̃rcφþ2αϵφþ4ϵ2φ2Þγi; ð52Þ

while the normalization conditions to this order are

δmn ¼
1

4πϵ2

Z þπ

−π
dφ½eð2k̃rcφþ2αϵφþ2ϵ2φ2Þγ0mγ0n

þ 4ϵ2eð2k̃rcþ2ϵ2φ2Þφγmγn�: ð53Þ

Expanding the spin-0 mode equation (52) in powers of ϵ,
we solve the differential Eq. (12) using the perturbation
theory described in Appendix C. In particular, using
Eq. (C12), we find that the radion [identified as the zero
mode of the KK expansion in Eq. (11)] acquires a mass-
squared at order ϵ2 in perturbation theory

μ2ð0Þ ¼
8ϵ2

1þ e2πk̃rc
þOðϵ3Þ; ð54Þ

while the radion wave function evaluated to order ϵ2 is

γð0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k̃rcπ

e2k̃rcπ − 1

s
þ Cðk̃rcÞf2k̃rcφ

þ sechðπk̃rcÞ sinh½k̃rcðπ − 2φÞ�
− tanhðπk̃rcÞgϵ2 þOðϵ3Þ: ð55Þ

Here Cðk̃rcÞ is determined through normalization; the
normalized radion wave function is provided in
Appendix C in Eq. (C34). In the limit where ϵ vanishes,
the gravitational degrees of freedom and the bulk scalar
cease mixing. This results in a massless radion, an
unstabilized extra dimension, and an entirely separate
tower of scalar states. Note that the leading order radion
wave function is flat, signaling that it is massless at
that order.
The GW scalar wave function to order ϵ is given in

Eq. (C36). As expected, the wave functions are composed
of Bessel functions. Due to the normalization condition in
Eq. (53), the massive GW scalar mode wave functions have
no ϵ0 terms and start at order ϵ. Since the sum rules in
Eq. (19) through Eq. (23) have only products of GW scalar
wave functions, when trying to verify them to order ϵ2,
we only need expressions of the wave functions to order ϵ.

We therefore only provide expressions for the GW scalar
wave function and masses to leading order.17

C. Numerical verification of sum rules

We now verify the sum rules summarized in Sec. IV C
for the warped-stabilized model using our perturbative
computations. We can substitute expressions for wave
functions and masses calculated in the DFGK model and
provided in Appendix C 2 and evaluate the overlap inte-
grals numerically. The sum rules in Eqs. (19), (20), (27),
(29), and (30) can thereby be evaluated order-by-order in ϵ.
We know that the sum rules are satisfied for the unstabilized
RS model [11], and therefore these expressions agree to
leading order (ϵ0). Using our perturbative expressions, we
verify here that the sum rules are satisfied to leading
nontrivial order, Oðϵ2Þ. Equivalently, we show that the
Oðϵ2Þ contributions on the left- and right-hand sides of
Eqs. (19), (20), (27), (29), and (30) agree.
Note that the left-hand sides of these expressions are

given as infinite sums over different overlap integrals. It is
therefore not possible to perform the entire sum. Instead,
we perform the sum up a “cutoff” KK number and show
that the relative error in the Oðϵ2Þ contributions to the left-
hand side (LHS) converge to the Oðϵ2Þ contributions to the
right-hand side (RHS) of each expression as the number of
KK modes included in the sum increases. For example, to
numerically verify Eq. (19), we take the coefficient of the ϵ2

piece in
P

j annj, referred to as ΔLHS and divide by the
coefficient of the ϵ2 piece in annnn, referred to asΔRHS.We
examine how the relative error log10 j1 − ΔLHS=ΔRHSj
scales as we increase the number of KK modes in the sum
of ΔLHS.

1. Spin-2 sum rules and completeness

We begin with Eqs. (19), (20), (27), and (29). The result
of this exercise is shown in Fig. 3, in the case n ¼ 1 (e.g.,
for elastic scattering of spin-2 modes at KK level 1) and for
k̃rc ¼ 40=π ¼ 12.73. We see that each of the series
converges nicely with the relative error reducing with
the addition of terms to the sum on the LHS of the
equation. As described in detail in Sec. IV, Eqs. (19),
(20), and (27) can be proven directly using the complete-
ness properties of the solutions of the spin-2 mode
equation (7). Their numerical verification demonstrates
that accuracy of our perturbative analysis. The first two of
these equations demonstrate that the Oðs5Þ and Oðs4Þ
contributions to helicity-0 spin-2 elastic scattering vanish to
this order in perturbation theory.

17Note that the limit k̃rc ¼ 0, dubbed as the flat stabilized
model, was studied previously in our work [16], where we show
that the sum rules required for the scattering amplitudes to grow
only as OðsÞ were satisfied to Oðϵ2Þ.
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We also see that the sum rule in Eq. (29) converges as
well. As discussed above, Eq. (29) depends nontrivially on
the dynamics of the Goldberger-Wise model implemented
here—in particular on the Einstein equation coupling the
scalar potential to the curvature of the extra dimension
Eq. (10) and on the completeness conditions of the spin-0
modes Eq. (16). As discussed in Sec. IV C, this verifies that
one linear combination of Eqs. (21) and (22) is also
satisfied.
Finally, in all cases we see that the series only converges

rapidly once we have included the j ¼ 2 term. This is
because the overlap integral defining the coupling between
two spin-2 level-1 states and a spin-2 state at level j is
largest for j ¼ 2—which can be understood as a remnant of
the “discrete” KK momentum conservation, which would
be present in a flat extra dimension.

2. The spin-0 sum rule

Finally, we examine the sum rule in Eq. (30) for which
we have no analytic proof, and which depends on the
couplings of the individual spin-0 states to the massive
spin-2 KK modes. The result of this exercise is shown in
Fig. 4, in the case n ¼ 1, 5, 11 (e.g., for scalar-exchange
contributions to elastic scattering of spin-2 modes at KK
levels 1, 5, and 11) and for k̃rc ¼ 12.73. Again, what is
plotted here is the agreement between the Oðϵ2Þ contri-
butions to the left- and right-hand sides of Eq. (30)—which,
at this order, depends explicitly on the forms of the scalar
wave functions that solve Eq. (12) and which are subject to
the normalization conditions of Eq. (15).

The nonzero difference between the left- and right-
hand sides of the Oðϵ2Þ corrections to Eq. (30) at i ¼ 1
demonstrate the need to include the tower of Goldberger-
Wise scalar states for the spin-2 scattering amplitudes to
have the proper high-energy behavior. Again we see that
the largest single contribution to the Oðϵ2Þ corrections
comes from the exchange of the GW scalar state whose
mode number is twice that of the incoming particles—
i ¼ 2, 10, and 20, respectively, for incoming modes 1, 5,
and 10 spin-2 states. However, the continued conver-
gence when adding additional states is also clear and,
formally, the entire tower is needed for the sum rule to be
satisfied.

VI. CONCLUSION

In this paper we have presented a thorough analysis of
the scattering of massive spin-2 Kaluza-Klein excitations in
phenomenologically realistic models based on a warped
geometry [3,4] stabilized via the Goldberger-Wise [17,18]
mechanism. These results significantly extend the work
presented in [9–11] on the unstabilized RS1 model and the
results in [16] on the “flat-stabilized” model (k̃rc ¼ 0). We
briefly recap our findings here:

(i) We provided a complete and self-contained deriva-
tion of the mode expansions for the spin-2 and spin-
0 states and their interactions. Generalizing the
presentations in [24–26], our computations are given
in de Donder gauge for massless gravitons—
allowing us to consistently compute scattering am-
plitudes involving intermediate off-shell states.

FIG. 4. Verification of the scalar sum rule in Eq. (30) for elastic
scattering of spin-2 KK mode number n ¼ 1 (red), n ¼ 5 (blue),
and n ¼ 11 (green). Here n represents the KK mode number of
the spin-2 particles in the external legs. On the x-axis we show the
number of GW-scalar modes included in the sum (i) of the left-
hand side of the sum rules in Eq. (30) versus the log of the relative
error ðlog10ð1 − ΔðLHSÞ=ΔðRHSÞÞÞ between the Oðϵ2Þ contri-
butions to both sides of the relevant equation. This has been
evaluated in the large k̃rc limit.

FIG. 3. Verification of sum rules [Eqs. (19), (20), (27), and (29),
reproduced at the bottom of the diagram] for elastic scattering of
KK mode number one (n ¼ 1). The index j, shown on the x-axis,
is the number of spin-2 modes included in the sum of the left-
hand side of the sum rules. The y-axis indicates the log of relative
error ðlog10ð1 − ΔðLHSÞ=ΔðRHSÞÞÞ between the Oðϵ2Þ correc-
tions to the LHS and the RHS of the relevant equations. This has
been evaluated in the large k̃rc limit.
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(ii) In previous work [16] we had demonstrated the
extended sum-rule relationships between spin-2
and spin-0 modes, and their masses and cou-
plings, which must be satisfied in order for elastic
massive spin-2 KK scattering to grow no faster
than OðsÞ. Here, we have provided an analytic
proof for one combination of these sum rules and
showed its relation to both the Einstein and the
scalar background field equations implementing
the Goldberger-Wise dynamics and also to the
properties of the mode equations for the physical
scalar fields (fields which are admixtures of bulk
scalar and gravitational modes in the original
theory).

(iii) We have provided, in Appendix B to this work,
a complete list of the sum-rule relations which
must be satisfied if all 2 → 2 massive spin-2
scattering amplitudes, elastic or inelastic, are to
grow no faster than OðsÞ—completing the analyses
begun in [9–12].

(iv) Finally, using a version of the DFGK model [36]
in which the Goldberger-Wise dynamics can be
treated perturbatively [16], we have checked nu-
merically that the sum rules which enforce the
proper high-energy behavior of massive spin-2
scattering continue to be satisfied in the case of
the large warping that would be required to
produce the hierarchy between the weak and
Planck scales. These numerical computations dem-
onstrate that, in models with a massive radion,
proper cancellation is achieved only after including
the contributions from the tower of scalar states
present in the Goldberger-Wise model.

In future work we will also explore the phenomenologi-
cal consequences of the fact that all spin-2 scattering
amplitudes in models of compactified gravity can grow
no faster than OðsÞ; specifically, we will study the
implications for the computation of relic abundances of
dark matter particles in KK graviton-portal theories and
related theories.
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APPENDIX A: THE DERIVATION OF THE
SCALAR KALUZA-KLEIN MODES

The canonical quadratic Lagrangian for the Kaluza-
Klein modes in a Goldberger-Wise model has been
derived in Refs. [24–26]. Here, for completeness and

as a guide to the interested reader, we present our
derivation of the canonical quadratic Lagrangian. In
addition, since our computation includes diagrams with
off-shell gravitons, we are careful to derive our results in
de Donder gauge.18 We include all the necessary details
needed to reproduce our results: deriving the background
equations of motion for a Goldberger-Wise-stabilized
Randall-Sundrum I model, showing how the 5D scalar
field r̂ and 5D tensor field ĥ decouple, motivating the
gauge condition relating the fluctuation field f̂ and the
5D scalar field r̂, describing how the linear equations of
motion inspire the Kaluza-Klein decomposition of the 5D
scalar field r̂, and demonstrating that the 5D scalar field
r̂ðx; yÞ generates a tower of canonical spin-0 fields r̂ðiÞðxÞ
with masses mðiÞ ≡ μðiÞ=rc.

1. The Lagrangian

The Goldberger-Wise-stabilized Randall-Sundrum I
Lagrangian is constructed from several elements, includ-
ing the spacetime metric. Focusing our attention on the
spin-2 (ĥμν) and scalar (r̂) fluctuations about a geo-
metry determined by the warp factor AðyÞ, we use the
following parametrization of the metric GMN and its 4D
projection ḠMN :

½GMN � ¼
	
wgμν 0

0 −v2



; ½Ḡμν� ¼ wgμν; ðA1Þ

where (taking our parametrization from [32])

w ¼ e−2½AðyÞþûðx;yÞ�; v ¼ 1þ 2ûðx; yÞ; ðA2Þ

gμν ¼ ημν þ κĥμνðx; yÞ; û ¼ e2AðyÞ

2
ffiffiffi
6

p κr̂ðx; yÞ: ðA3Þ

The compact extra dimension is parametrized on a circle of
radius rc such that y ∈ ð−πrc;þπrc� and the 5D coordinates
XM ¼ ðxμ; yÞ define a 4D Minkowski spacetime “slice”
at each fixed value of y. We impose an orbifold invari-
ance y ↔ −y on the infinitesimal spacetime interval
GMNdXMdXN , and identify y ¼ 0 and y ¼ πrc as orbifold
fixed points. For our spacetime signatures, we use themostly
minus convention, i.e., ημν ≡ Diagðþ1;−1;−1;−1Þ.
Lowercase Greek letters (e.g., μ, ν, ρ, σ) denote 4D indices,
uppercase Latin letters (e.g.,M, N, R, S) denote 5D indices,
and lowercase Latin letters (e.g., m, n, i, j) denote Kaluza-
Klein mode numbers.

18If one is only concerned with external gravitons, and not
doing scattering computations, one can impose the transverse-
traceless conditions on all of the fields to simplify the compu-
tations of the interactions.
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We then define the Lagrangian as

L5D ≡ LEH þ LΦΦ þ Lpot þ LGHY þ ΔL; ðA4Þ

where the Einstein-Hilbert (EH), Gibbons-Hawking-York
(GHY), scalar kinetic terms (ΦΦ), and scalar potential
terms (pot) are defined as

LEH ≡ −
2

κ2
ffiffiffiffi
G

p
R; ðA5Þ

LGHY ≡ −
4

κ2
∂y½

ffiffiffiffi
Ḡ

p
K�

¼ 2

κ2
∂y

�
w2

v

ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p 	
g̃μν∂yðgμνÞ þ 4

∂yðwÞ
w


�
;

ðA6Þ

LΦΦ ≡ ffiffiffiffi
G

p �
1

2
G̃MNð∂MΦ̂Þð∂NΦ̂Þ

�
; ðA7Þ

Lpot ≡ −
4

κ2

� ffiffiffiffi
G

p
V½Φ̂� þ

X
i¼1;2

ffiffiffiffi
Ḡ

p
Vi½Φ̂�δiðφÞ

�
; ðA8Þ

respectively. Here R is the Ricci scalar andK is the extrinsic
curvature at the boundaries. G and Ḡ are the determinants
of the metric and the induced metric, respectively. The
Dirac deltas on the branes are defined in the limit as we
approach the branes from within the y ∈ ½0; πrc� half
of the bulk: δ1ðφÞ≡ δðφ − 0þÞ and δ2ðφÞ≡ δðφ − π−Þ,
where φ ¼ y=rc.
Note that no dynamics are given to describe the physics

of the branes themselves, which are assumed to arise
through unspecified dynamics at some higher scale (e.g.,
string physics)—and, in particular, no modes arising from
that physics (fluctuations of the branes themselves) are
included. More on this below, when we discuss the effect of
taking the so-called “stiff-wall” limit on the scalar mode
expansions.
Meanwhile, the contribution ΔL in L5D is a total

derivative we add for convenience which generalizes a
total derivative from our unstabilized analysis [11,12]. It
cancels terms in the Lagrangian at linear order, eliminates
mixing between tensor and scalar 5D fields at quadratic
order, and simplifies the vertices relevant to this paper.19

Explicitly, we define it as

ΔL≡ 2

κ2
∂y

�
w2

v

ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p 	
−3

∂yðwÞ
w


�
: ðA9Þ

The perturbative expansion of the gravitational contribu-
tions as series in κ proceeds as usual. For convenience, we
rewrite the bulk scalar field Φ̂ðx; yÞ such that it is perturbed
about the background ϕ0ðφÞ=κ by an amount f̂=κ, i.e.,
Φ̂≡ ϕ̂=κ≡ ðϕ0 þ f̂Þ=κ. This rewrite allows us to expand
the bulk and brane potentials in Lpot about ϕ̂ ¼ ϕ0 with
respect to the dimensionless scalar fluctuation field f̂ like so:

V½Φ̂� ¼ V þ _V f̂þ 1

2
 Vðf̂Þ2 þOððf̂Þ3Þ; ðA10Þ

Vi½Φ̂� ¼ Vi þ _Vif̂ þ 1

2
 Viðf̂Þ2 þOððf̂Þ3Þ; ðA11Þ

where dots denote ϕ̂ functional derivatives, and V and Vi

(and their ϕ̂ derivatives) are set to Φ̂ ¼ ϕ0ðyÞ=κ when their
functional arguments are unspecified.
The path forward is, in principle, clear: find the appropriate

solutions for the background fieldsAðyÞ andϕ0ðyÞ, compute
the Lagrangian that describes the dynamics of fluctuations
about these background fields, and then diagonalize the
quadratic terms in this Lagrangian to establish the (canoni-
cally normalized) physical modes and their interactions. In
practice this is difficult because of the complicated algebraic
structures involved in the mixing between the scalar com-
ponents of the metric andGoldberger-Wise scalar field in the
presence of a nontrivial scalar background. Some simplifi-
cation results from the fact that diffeomorphism invariance
implies that only one linear combination of the fields r̂ and f̂
are physical, and we can set the gauge of the calculation such
that these fields are related according to

ϕ0
0f̂ ¼

ffiffiffi
6

p
e2Ar̂0: ðA12Þ

We begin our analysis in general, without imposing this
gauge condition, and only use the gauge constraint Eq. (A12)
to identify the physical scalar modes after deriving the
background equations, which we turn to now.

2. The Lagrangian to quadratic order

After weak field expanding the Lagrangian Eq. (A4)
without applying the gauge condition Eq. (A12) or any
background field equations, we obtain

L5D ≡ L5D;bkgd þ L5D;h þ L�
5D;r þ L�

5D;f þ L�
5D;hr þ L�

5D;hf

þ L�
5D;rf þ L5D;hh þ L�

5D;rr þ L�
5D;ff þOðκÞ

ðA13Þ
to all orders in the background fields and up to quadratic
order in the fluctuations. The background-only terms in the
Lagrangian are

19If such a term were not introduced here, we would recover its
effects (at least to quadratic order) as additional total derivative
terms needed to make the Lagrangian explicitly canonical. This
ΔL naively generalized the ΔL introduced in Refs. [11,12], and
(unlike the latter) does not eliminate Dirac deltas or twice-
differentiated quantities to all orders.
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L5D;bkgd ≡ e−4A

2r2cκ2

�
24A00 − 48ðA0Þ2 − ðϕ0

0Þ2 − 8

	
Vr2c þ

X
i¼1;2

Vircδi


�
: ðA14Þ

The terms linear in the fluctuations are

L5D;h ≡ e−4A

4r2cκ

�
24A00 − 48ðA0Þ2 − ðϕ0

0Þ2 − 8

	
Vr2c þ

X
i¼1;2

Vircδi


�
ĥ; ðA15Þ

L�
5D;r ≡

ffiffiffi
6

p
e−2A

r2cκ
½r̂00 − 2A0r̂0� þ e−2A

2
ffiffiffi
6

p
r2cκ

�
−48A00 þ 48ðA0Þ2 þ 3ðϕ0

0Þ2 þ 8

	
Vr2c þ 2

X
i¼1;2

Vircδi


�
r̂; ðA16Þ

L�
5D;f ≡ −

e−4A

r2cκ
ϕ0
0f̂

0 −
4e−4A

r2cκ

�
_Vr2c þ

X
i¼1;2

_Vircδi

�
f̂; ðA17Þ

where ĥ ¼ ημνĥμν. At quadratic order in the fluctuations, “off-diagonal” (mode-mixing) quadratic terms are

L�
5D;hr ≡ κ

2
L�
5D;rĥ; ðA18Þ

L�
5D;hf ≡ κ

2
L�
5D;fĥ; ðA19Þ

L�
5D;rf ≡

ffiffiffi
3

2

r
e−2A

r2c
ϕ0
0r̂f̂

0 þ
ffiffiffi
8

3

r
e−2A

r2c

�
_Vr2c þ 2

X
i¼1;2

_Vircδi

�
r̂ f̂; ðA20Þ

and the “on-diagonal” quadratic terms are given by

L5D;hh ≡ e−2A
�
ð∂νĥμνÞð∂μĥÞ − ð∂νĥμνÞ2 þ

1

2
ð∂μĥνρÞ2 −

1

2
ð∂μĥÞ2

�
þ e−4A

2r2c
½ðĥ0Þ2 − ðĥ0μνÞ2�

þ e−4A

16r2c

�
24A00 − 48ðA0Þ2 − ðϕ0

0Þ2 − 8

	
Vr2c þ

X
i¼1;2

Vircδi


�
½ðĥÞ2 − 2ðĥμνÞ2�; ðA21Þ

L�
5D;rr ≡ 1

2
eþ2Að∂μr̂Þ2 −

1

r2c
½2ðr̂0Þ2 þ 3r̂r̂00� − 1

12r2c

�
−48A00 þ 5ðϕ0

0Þ2 þ 16
X
i¼1;2

Vircδi

�
ðr̂Þ2; ðA22Þ

L�
5D;ff ≡ 1

2
e−2Að∂μf̂Þ2 −

e−4A

2r2c
ðf̂0Þ2 − 2e−4A

r2c

�
 Vr2c þ

X
i¼1;2

 Vircδi

�
ðf̂Þ2: ðA23Þ

Here we use an asterisk to denote that we have not yet
applied a gauge condition relating r̂ and f̂.
The first line of terms in Eq. (A21) will yield the usual

canonical spin-2 Lagrangians after Kaluza-Klein decom-
position. As we will soon demonstrate, the other terms in
Eq. (A21) will be canceled when the background fields
satisfy their equations of motion. However, as close as
L5D;hh is to the desired spin-2 result, the quadratic analysis
overall is complicated by the presence of the mixing terms
L�
5D;hr and L�

5D;hf, which seemingly imply kinetic mixing

between the tensor field ĥ and the scalar fields f̂ and r̂. To
eliminate these mixing terms, we must derive the equations

of motion for the background fields and for the fluctuations,
which we discuss next.

3. Equations of motion

The Einstein field equations derived from L5D equal

GMN −V½Φ̂�GMN −
�
V1½Φ̂�δ1ðφÞ

rc
þV2½Φ̂�δ2ðφÞ

rc

� ffiffiffiffi
Ḡ

p
ffiffiffiffi
G

p ḠMN

¼ κ2

4
TMN; ðA24Þ
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where GMN ¼ RMN − 1
2
GMNR is the Einstein tensor, RMN

and R ¼ G̃ABRAB are the Ricci tensor and Ricci scalar,
respectively, and the stress-energy tensor equals

TMN ¼ 2
δLΦΦ

δG̃MN −GMNLΦΦ

¼ ð∂MΦ̂Þð∂NΦ̂Þ − GMN

�
1

2
G̃ABð∂AΦ̂Þð∂BΦ̂Þ

�
: ðA25Þ

Recall that Φ̂≡ ϕ̂=κ≡ ðϕ0 þ f̂Þ=κ. We will discuss the
Einstein field equations in terms of their decomposition as
ðM;NÞ ¼ fðμ; νÞ; ðμ; 5Þ; ð5; 5Þg, to the first two orders in κ.

a. Background equations of motion

To lowest order in κ, in which no fluctuation fields are
present, only the ðμ; νÞ and (5, 5) Einstein field equations
are nontrivial (because of the Lorentz invariance of the
constant-y subspaces, the ðμ; νÞ components of the curva-
ture are proportional to ημν), and they imply

A00 ¼ 2ðA0Þ2 þ 1

24
ðϕ0

0Þ2 þ
1

3

�
Vr2c þ

X
i¼1;2

Vircδi

�
;

Vr2c ¼ −6ðA0Þ2 þ 1

8
ðϕ0

0Þ2; ðA26Þ

respectively, for the background fields. The first of these
equations implies the boundary conditions [integrating over
the end points using an S1=Z2 orbifold construction where
AðyÞ is assumed to be “even” under orbifold reflection]

V1rcδ1 ¼ þ6A0δ1; V2rcδ2 ¼ −6A0δ2: ðA27Þ

By combining the equations of (A26), we may also write

A00 ¼ 1

12

�
ðϕ0

0Þ2 þ 4
X
i¼1;2

Vircδi

�
: ðð10Þ revisitedÞ

Note that Eq. (A26) ensures L5D;bkgd and L5D;h from
Eqs. (A14) and (A15) vanish, and ensures L5D;hh yields
canonical spin-2 Lagrangians after Kaluza-Klein decom-
position. Equation (A26) also simplifies the various pieces
of the Lagrangian, including the linear r̂ terms:

L�
5D;r ¼

ffiffiffi
6

p

r2cκ
∂φ½e−2Ar̂0�: ðA28Þ

While the mixing terms L�
5D;hr and L�

5D;hf remain at this
point, these will vanish once we have analyzed the scalar
sector, which we discuss now.
We obtain another background equation by considering

the Euler-Lagrange equation of the scalar field. The terms
independent of the fluctuations yield

ϕ00
0 ¼ 4A0ϕ0

0 þ 4 _Vr2c þ 4
X
i¼1;2

_Vircδi; ðA29Þ

which implies its own boundary conditions (again, assum-
ing the background scalar field configuration is even under
the orbifold projection)

_V1rcδ1 ¼ þ 1

2
ϕ0
0δ1; _V2rcδ2 ¼ −

1

2
ϕ0
0δ2: ðA30Þ

This simplifies L�
5D;f, such that

L�
5D;f ¼ −

1

r2cκ
∂φ½e−4Aϕ0

0f̂�: ðA31Þ

This completes our derivation of background equations.
Recall that whenever we write a quantity multiplying

δ1ðφÞ or δ2ðφÞ, it is understood that the quantity is
evaluated in the limit as φ approaches the appropriate
orbifold fixed point from inside the ½0; πrc� half of the bulk.
This implies, for example, via Eq. (A29),

ϕ00
0δi ¼ ðϕ00

0Þbulkδi ≡ ½4A0ϕ0
0 þ 4 _Vr2c�δi: ðA32Þ

This also ensures quantities such as A0ðφÞδiðφÞ in
Eqs. (A27) and (A32) are written unambiguously, despite
A0ðφÞ being orbifold odd across the orbifold fixed points.

b. Lagrangian at quadratic order: Mode equations

Next, we examine the equations of motion derived from
considering terms in the Lagrangian that are quadratic or
lower in the fluctuations. These will give us the equations
which will define the mode expansions—the Kaluza-Klein
decomposition—for the fluctuating fields. As mentioned in
the previous subsubsection, we will be ignoring the spin-2
fields—they will ultimately decouple from the scalar
fields after having performed the correct scalar-field mode
expansions.
We begin with the scalar fields in the metric. Simplifying

the expressions using the background equations (A26)–
(A29), the ðμ; νÞ, ðμ; 5Þ, and (5, 5) Einstein field equations
at OðκÞ are satisfied only if, respectively,

0 ¼ ½∂φ − 4A0�½
ffiffiffi
6

p
e2Ar̂0 − ϕ0

0f̂�; ðA33Þ

0 ¼ ∂μ½
ffiffiffi
6

p
e2Ar̂0 − ϕ0

0f̂�; ðA34Þ

∂φ

�
e−2Affiffiffi

6
p ϕ0

0f̂

�
¼ e2Ar2cð□r̂Þ þ 2A0

�
2r̂0 þ

�
e−2Affiffiffi

6
p ϕ0

0f̂

��

þ 8 _Vr2c
ϕ0
0

�
e−2Affiffiffi

6
p ϕ0

0f̂

�
þ 1

6
ðϕ0

0Þ2r̂

þ 2ðδ1 − δ2Þ
�
e−2Affiffiffi

6
p ϕ0

0f̂

�
; ðA35Þ
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where the final equation has also utilized the jump con-
ditions of Eq. (A30). As noted in Ref. [23], integrating
Eq. (A35), we end up with a tautology and end up with
boundary terms that provide no additional physical infor-
mation. By moving the Dirac deltas of Eq. (A35) to the
LHS and evaluating the derivatives, we derive an alternative
form of the equation which lacks Dirac deltas (implicit or
explicit):

e−2Affiffiffi
6

p ϕ0
0f̂

0 ¼ e2Ar2cð□r̂Þ þ 4A0r̂0 þ 1

6
ðϕ0

0Þ2r̂þ
ffiffiffi
8

3

r
e−2A _Vr2cf̂:

ðA36Þ

We may also consider the Euler-Lagrangian equation of
the fluctuation field f̂ at this order, which yields

f̂00 ¼ e2Ar2cð□f̂Þ þ 4A0f̂0 þ 4  Vr2cf̂

þ
ffiffiffi
3

2

r
e2Aϕ0

0r̂
0 þ

ffiffiffi
2

3

r
e2A½4 _Vr2c þ 3A0ϕ0

0�r̂

þ
�
4  V1rcf̂ þ

ffiffiffi
2

3

r
e2Aϕ0

0r̂

�
δ1

þ
�
4  V2rcf̂ −

ffiffiffi
2

3

r
e2Aϕ0

0r̂

�
δ2: ðA37Þ

This equation implies, via the orbifold construction, the
boundary conditions

f̂0δ1 ¼
�
2  V1rcf̂ þ 1ffiffiffi

6
p e2Aϕ0

0r̂

�
δ1;

f̂0δ2 ¼ −
�
2  V2rcf̂ −

1ffiffiffi
6

p e2Aϕ0
0r̂

�
δ2: ðA38Þ

Multiply these jump conditions by e−2Aϕ0
0=

ffiffiffi
6

p
and use

Eq. (A36) to get

�
e2Ar2cð□r̂Þ þ 4A0r̂0 þ

�
4 _Vr2c
ϕ0
0

− 2  V1rc

��
e−2Affiffiffi

6
p ϕ0

0f̂

��
δ1

¼ 0; ðA39Þ

�
e2Ar2cð□r̂Þ þ 4A0r̂0 þ

�
4 _Vr2c
ϕ0
0

þ 2  V2rc

��
e−2Affiffiffi

6
p ϕ0

0f̂

��
δ2

¼ 0: ðA40Þ

Using Eq. (A32), we may instead write the jump conditions
Eq. (A38) as

�
e2Ar2cð□r̂Þ þ 4A0r̂0 þ

�
ϕ00
0

ϕ0
0

− 4A0 − 2  V1rc

��
e−2Affiffiffi

6
p ϕ0

0f̂

��
δ1

¼ 0;�
e2Ar2cð□r̂Þ þ 4A0r̂0 þ

�
ϕ00
0

ϕ0
0

− 4A0 þ 2  V2rc

��
e−2Affiffiffi

6
p ϕ0

0f̂

��
δ2

¼ 0: ðA41Þ

This form is more common in the literature.
The linear field equations (A33)–(A35) and (A37)

describe the scalar modes of the theory. Note, in particular,
the recurring quantity

ffiffiffi
6

p
e2Ar̂0 − ϕ0

0f̂. This will vanish
once we impose the gauge condition (A12), which is our
next focus.

c. The gauge condition

The form of the metric specified by (A1)–(A3) does not
completely fix the “gauge” for this calculation: we have
access to various five-dimensional diffeomorphism trans-
formations which maintain the form of the metric and with
which we can choose to simplify our computations. In
particular, as shown in [25], we can always perform a
change of coordinate to impose the gauge condition
introduced previously,

ffiffiffi
6

p
e2Ar̂0 ¼ ϕ0

0f̂: ðA12Þ

One immediate consequence of this gauge choice is that the
sum of the mixing terms L�

5D;hr L
�
5D;hf vanishes, eliminat-

ing (as promised) any problematic mixing between the
scalar and spin-2 mode sectors.
The physical implication of the gauge condition (A12) is

that one combination of the scalar fields is a gauge artifact,
and does not correspond to a propagating degree of
freedom.20 Note that the “mixing” of the scalar degree
of freedom in the five-dimensional metric r̂ with the bulk
scalar field f̂ only occurs in the presence of a y-dependent
scalar background field configuration (ϕ0

0 ≠ 0). It is pre-
cisely this mixing between the two sectors that enables
the dynamics which stabilize the size of the extra dimen-
sion in the Goldberger-Wise mechanism [17,18] and
which simultaneously give rise to a “radion” mass. One
advantage of working in this “unitary” gauge and elimi-
nating the fluctuations of the scalar field f̂ in favor of
scalar fluctuations of the metric r̂ is that all couplings
linear in the physical scalar fields have the same algebraic
form as couplings linear in the (massless) radion within
the unstabilized model—simplifying the required coupling
computations.

20The precise combination of Lagrangian fields which is
physical and the corresponding form of its interactions depend
on the gauge choice—although all physical amplitudes are gauge-
invariant.
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Having imposed this gauge condition, the ðμ; νÞ and
ðμ; 5Þ linear Einstein field equations (A33) and (A34)
vanish, the (5, 5) linear Einstein field equation (A35)
simplifies to

r̂00 ¼ e2Ar2cð□r̂Þ þ
�
6A0 þ 8 _Vr2c

ϕ0
0

�
r̂0

þ 1

6
ðϕ0

0Þ2r̂þ 2ðδ1 − δ2Þr̂0; ðA42Þ

and the jump conditions in Eq. (A41) reduce to

�
e2Ar2cð□r̂Þ −

�
2  V1rc −

ϕ00
0

ϕ0
0

�
r̂0
�
δ1

¼
�
e2Ar2cð□r̂Þ þ

�
2  V2rc þ

ϕ00
0

ϕ0
0

�
r̂0
�
δ2 ¼ 0: ðA43Þ

These equations of motion for the field r̂ at quadratic order
will define the Kaluza-Klein decomposition of the r̂ field.
Note that, being careful about Dirac deltas,21

∂φ

�
e2A

ðϕ0
0Þ2

r̂0
�
¼ 2e2A

ðϕ0
0Þ2

A0r̂0 −
2e2A

ðϕ0
0Þ3

ðϕ00
0Þbulkr̂0 þ

e2A

ðϕ0
0Þ2

r̂00

¼ e2A

ðϕ0
0Þ2

�
−
�
6A0 þ 8 _Vr2c

ϕ0
0

�
r̂0 þ r̂00

�
; ðA44Þ

such that Eq. (A42) may also be written in a more
conventional form:

∂φ

�
e2A

ðϕ0
0Þ2

r̂0
�
−
e2A

6
r̂þ 2½δ2ðφÞ − δ1ðφÞ�

e2A

ðϕ0
0Þ2

r̂0

¼ e4A

ðϕ0
0Þ2

r2cð□r̂Þ: ðA45Þ

In the next subsection, we use Eqs. (A45) and (A43) to
define the Kaluza-Klein decomposition of the 5D scalar
field. [Note again that the jump conditions of the field r̂ are
trivial in this form of the equation, and boundary conditions
in Eq. (A43) are required.]

4. Kaluza-Klein decomposition of the scalar field

Next, we assume we can decompose the 5D scalar field
r̂ðx; yÞ into a tower of 4D fields r̂iðxÞ and extradimensional
wave functions γiðφÞ:

r̂ðx; yÞ ¼ 1ffiffiffiffiffiffiffi
πrc

p
Xþ∞

i¼0

r̂ðiÞðxÞγiðφÞ; ðA46Þ

where the states are arranged in order of increasing mass
and φ ¼ y=rc. We will show that if the γi satisfies the
Sturm-Liouville-like equation [compare to Eq. (A45)]:

∂φ

�
e2A

ðϕ0
0Þ2

ð∂φγiÞ
�
−
e2A

6
γi þ 2½δ2ðφÞ − δ1ðφÞ�

e2A

ðϕ0
0Þ2

ð∂φγiÞ

¼ −μ2ðiÞ
e4A

ðϕ0
0Þ2

γi; ðA47Þ

with boundary conditions [compare to Eq. (A43)]

ð∂φγiÞjφ¼0þ ¼ −
�
2  V1rc −

ϕ00
0

ϕ0
0

�
−1
μ2ðiÞe

2Aγijφ¼0þ;

ð∂φγiÞjφ¼π− ¼ þ
�
2  V2rc þ

ϕ00
0

ϕ0
0

�
−1
μ2ðiÞe

2Aγijφ¼π−; ðA48Þ

the r̂ðiÞðxÞ are the properly normalized scalar Kaluza-Klein
fields.
These scalar boundary conditions can alternatively be

enforced (recalling that r̂ and hence γi are orbifold-even)
using the equation introduced in the body of the paper:

∂φ

�
e2A

ðϕ0
0Þ2

ð∂φγiÞ
�
−
e2A

6
γi ¼ −μ2ðiÞ

e4A

ðϕ0
0Þ2

γi

×

�
1þ 2δðφÞ

½2  V1rc −
ϕ00
0

ϕ0
0

�
þ 2δðφ − πÞ
½2  V2rc þ ϕ00

0

ϕ0
0

�

�
: ð12Þ

In this form, the Sturm-Liouville nature of the problem is
manifest [24,25,33,34]. We will choose to normalize the
wave functions such that

δm;n ¼
6μ2n
π

Z þπ

−π
dφγmγn

e4A

ðϕ0
0Þ2

×

�
1þ 2δðφÞ

½2  V1rc −
ϕ00
0

ϕ0
0

�
þ 2δðφ − πÞ
½2  V2rc þ ϕ00

0

ϕ0
0

�

�
ðA49Þ

¼ 6

π

Z þπ

−π
dφ

�
e2A

ðϕ0
0Þ2

γ0mγ0n þ
e2A

6
γmγn

�
; ðA50Þ

where the second line follows by applying the differential
Eq. (12) and integration by parts on the periodic doubled
“orbifold.” We will show that this normalization will yield
properly normalized scalar Kaluza-Klein modes.22 For
our numerical investigations, we consider the “stiff-wall”
limit  V1;2 → ∞, in which case the eigenmodes γi satisfy
Neumann boundary conditions. While the stiff-wall limit is
(ultimately) unphysical, it is consistent with the simplifi-
cation we made in ignoring the dynamics of the brane itself
—and we can expect the results of our analysis correctly

21Refer to the discussion after Eq. (A65) for more details. In
short, the quantity 1=ðϕ0

0Þ2 cannot generate Dirac deltas upon
differentiation.

22Note that this choice is consistent since we have no massless
physical scalar modes in this model.
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describe low-energy properties of the system. Outside of
numerical investigations, we do not take the stiff-wall limit.
To facilitate manipulations at the 5D level, define the

following useful auxillary field:

ẑ≡ 1ffiffiffiffiffiffiffi
πrc

p
Xþ∞

i¼0

μ2ðiÞr̂
ðiÞðxÞγiðφÞ: ðA51Þ

Using ẑ and the decomposition in (A46), the wave function
differential equation becomes

r̂00 ¼ −e2Aẑþ
�
6A0 þ 8 _Vr2c

ϕ0
0

�
r̂0 þ 1

6
ðϕ0

0Þ2r̂þ 2ðδ1 − δ2Þr̂0;

ðA52Þ

such that

ðr̂00Þbulk ≡ −e2Aẑþ
�
6A0 þ 8 _Vr2c

ϕ0
0

�
r̂0 þ 1

6
ðϕ0

0Þ2r̂; ðA53Þ

and the wave function boundary conditions imply

�
−e2Aẑþ

�
4A0 þ 4 _Vr2c

ϕ0
0

�
r̂0
�
δ1 ¼ fþ2  V1rcr̂0gδ1;�

−e2Aẑþ
�
4A0 þ 4 _Vr2c

ϕ0
0

�
r̂0
�
δ2 ¼ f−2  V2rcr̂0gδ2: ðA54Þ

These boundary conditions are written in such a way to
most easily replace away  Vi for future convenience. Let us
now return to the Lagrangian.

5. The canonical scalar mode expansion

After applying the background equations of motion
Eqs. (A26), (A27), (A29), and (A30), as well as the gauge
condition (A12), we find the collections of Lagrangian
terms Eqs. (A14)–(A23) are simplified. Most contributions
now explicitly vanish:

L5D;bkgd ¼ L5D;h ¼ L�
5D;r þ L�

5D;f ¼ L�
5D;hr þ L�

5D;hf ¼ 0:

ðA55Þ

The tensor quadratic Lagrangian is now of the desired form
to yield a tower of canonical spin-2 states after Kaluza-
Klein decomposition:

L5D;hh ≡ e−2A
�
ð∂νĥμνÞð∂μĥÞ − ð∂νĥμνÞ2 þ

1

2
ð∂μĥνρÞ2

−
1

2
ð∂μĥÞ2

�
þ e−4A

2r2c
½ðĥ0Þ2 − ðĥ0μνÞ2�: ðA56Þ

The scalar quadratic Lagrangian, however, remains quite
complicated. We organize the terms from each part of the
quadratic scalar Lagrangian as follows:

L5D;rr ¼ L�
5D;rr þ L�

5D;rf þ L�
5D;ff ðA57Þ

¼ LEH;rr þ LGHY;rr þ LΦΦ;rr þ Lpot;rr þ ΔLrr;

ðA58Þ

where

LEH;rr ¼ −
1

6
e2Að∂μr̂Þ2 −

2

3
e2Ar̂ð□r̂Þ − 3

r2c
ðr̂0Þ2 − 4

r2c
r̂r̂00 þ 8

3r2c
A0r̂r̂0 þ 16

3r2c
A00r̂2; ðA59Þ

LGHY;rr ¼
4

r2c
ðr̂0Þ2 þ 4

r2c
r̂r̂00 −

32

3r2c
A0r̂r̂0 −

16

3r2c
A00r̂2; ðA60Þ

LΦΦ;rr ¼
3

ðϕ0
0Þ2

e2Að∂μr̂0Þ2 −
3

r2cðϕ0
0Þ4

�
ϕ0
0r̂

00 − ϕ00
0 r̂

0 þ 2A0ðϕ0
0Þr̂0 −

1

2
ðϕ0

0Þ3r̂
�
2

þ ðϕ0
0Þ2

3r2c
r̂2; ðA61Þ

Lpot;rr ¼
4 _V
ϕ0
0

r̂r̂0 −
12  V
ðϕ0

0Þ2
ðr̂0Þ2 −

X
i¼1;2

�
−
4Vi

3rc
r̂2 þ 8 _Vi

rcϕ0
0

r̂r̂0 −
12  Vi

rcðϕ0
0Þ2

ðr̂0Þ2
�
δi; ðA62Þ

ΔLrr ¼ −
3

r2c
ðr̂0Þ2 − 3

r2c
r̂r̂00 þ 8

r2c
A0r̂r̂0 þ 4

r2c
A00r̂2: ðA63Þ

For ease of comparison, we present these results without yet
applying the background equations of motion or integration-
by-parts. Note that the squared quantity in LΦΦ;rr is not
singular because the delta functions in ϕ0

0r̂
00 − ϕ00

0 r̂
0 cancel.

Rather than consider this quadratic scalar Lagrangian
directly, we first add a convenient total derivative
(which we determined through trial and error). Generally,
adding a total derivative to a Lagrangian reorganizes how
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information is stored in the fields, but ultimately does not
change the physics described by the Lagrangian; a classic
example of this is the Gibbons-Hawking-York total deriva-
tive, which is used to make the Einstein-Hilbert Lagrangian
of 4D gravity into a Lagrangian which only depends on
fields and their first derivatives [30]. The total derivative we
add to L5D;rr [in addition to the total derivative ΔL defined
in Eq. (A9), which is already folded into L5D;rr] is

Δ̄Lrr ¼
1

r2c
∂φ

�
r̂r̂0 −

3e2A

ðϕ0
0Þ2

ẑr̂0

þ 12

ðϕ0
0Þ4

½A0ðϕ0
0Þ2 þ V 0r2c�ðr̂0Þ2

�
ðA64Þ

such that we consider the combination

L5D;rr þ Δ̄Lrr: ðA65Þ

The φ-derivative in Δ̄Lrr must be evaluated with care, lest
we generate spurious singularities. In particular, Dirac
delta-function singularities will be generated whenever
φ-differentiating a discontinuity in a function’s slope.
In the present calculation, such a discontinuity only ever
happens at the orbifold fixed points. The standard example

of this from Randall-Sundrum models is the twice-
differentiated quantity jφj00 ¼ ∂φðjφj0Þ ¼ ∂φðsignφÞ, which
equals 2ðδ1 − δ2Þ in our scheme. If we are not careful
when taking φ-derivatives more generally, we can acci-
dentally generate spurious Dirac deltas which contradict
our scheme. Consider φ-differentiating a quantity which is
a square of a φ-differentiated quantity, such as 1=ðϕ0

0Þ2.
Naively, we attain −2ϕ00

0=ðϕ0
0Þ3, which generates nonzero

Dirac deltas through the ϕ00
0 . These Dirac deltas are

spurious. First, note that ϕ0 is a function of jφj, which
means ϕ0

0 is proportional to jφj0 ¼ signðφÞ. Thus
1=ðϕ0

0Þ2 ∝ 1=ðsignφÞ2 ¼ 1 and 1=ðϕ0Þ2 lacks the overall
factor of jφj0 necessary to generate Dirac deltas upon
φ-differentiation. While naive differentiation yields
−2ϕ00

0=ðϕ0
0Þ3, careful analysis reveals the φ-derivative

of 1=ðϕ0
0Þ2 is actually the Dirac delta-free quantity

−2ðϕ00
0Þbulk=ðϕ0

0Þ3.
For these reasons, evaluation of the φ-derivative

present in the total derivative Δ̄Lrr yields fewer Dirac
deltas than naively expected. Namely, they are only
generated upon differentiating r̂0 in the first two terms
and A0 and V 0 in the third term. Explicitly, we thus
calculate23

Δ̄Lrr ¼
1

r2c

�
ðr̂0Þ2 þ r̂r̂00 þ 6e2A

ðϕ0
0Þ3

ðϕ00
0Þbulkẑr̂0 −

6e2A

ðϕ0
0Þ2

A0ẑ0r̂0 −
3e2A

ðϕ0
0Þ2

ẑr̂00 − 48
ðϕ00

0Þbulk
ðϕ0

0Þ5
½A0ðϕ0

0Þ2 þ V 0r2c�ðr̂0Þ2

þ 24

ðϕ0
0Þ4

½A0ðϕ0
0Þ2 þ V 0r2c�r̂0ðr̂00Þbulk þ

12

ðϕ0
0Þ4

½A00ðϕ0
0Þ2 þ 2A0ϕ0

0ðϕ00
0Þbulk þ V 00r2c�ðr̂0Þ2

�
: ðA66Þ

Having evaluated Δ̄Lrr as above, we next consider the
quadratic scalar terms L5D;rr þ Δ̄Lrr after performing the
following sequence of manipulations:
(1) Use 4D integration-by-parts to eliminate any 4D

d’Alembertian operators □ ¼ ∂
2
t −  ∇2, e.g., taking

r̂ð□r̂Þ to −ð∂μr̂Þ2.
(2) Eliminate all instances of r̂00, A00, V, and ϕ00

0 (and their
Dirac delta-free bulk forms) via Eqs. (A52), (A26),
and (A29), respectively. Having done so, all Dirac
deltas in the original weak field expanded Lagran-
gian have been made explicit.

(3) Eliminate Vi and _Vi via the background equa-
tions (A27) and (A30), respectively.

(4) Eliminate  Vi (which always multiplies an r̂0) via the
boundary conditions, Eq. (A54).

(5) Eliminate all instances of  V, V 0, and V 00, and in favor
of _V and _V 0 via chain rule relations, i.e.,

V 00 ¼ _V 0ϕ0
0 þ _Vϕ00

0; V 0 ¼ _Vϕ0
0;  V ¼

_V 0

ϕ0
0

; ðA67Þ

where ϕ00
0 is then replaced by Eq. (A29), as done

earlier. With this, all Dirac deltas in Δ̄L are also
explicit.

After performing these replacements, we find all _V and _V 0

terms cancel, all Dirac deltas cancel, and we are left with
very few terms24

23Technically these same considerations are important
when calculating, for example, ΔL; however, ΔLrr ¼
∂φ½ð4A0r̂ − 3r̂0Þr̂�=r2c, and naive differentiation yields the
correct result.

24An alternate way of deriving the canonical quadratic La-
grangian is to start with the expression on the right-hand side of
Eq. (A68), and substituting ẑ from the (5, 5) Einstein equa-
tion (A36), as well as a similar expression for ẑ0 derived from the
Euler-Lagrange equation (A37). The resulting expression can be
shown to be equal to the combination L5D;rr þ Δ̄Lrr. It is useful,
when performing these manipulations, to remove explicit Dirac
delta terms by using the background equations of motion given in
Eqs. (A26) and (A29).
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L5D;rr þ ΔLrr ¼
e2A

2

�
ð∂μr̂Þ2 −

ẑ r̂
r2c

�

þ 3e2A

ðϕ0
0Þ2

�
ð∂μr̂0Þ2 −

ẑ0r̂0

r2c

�
: ðA68Þ

Upon Kaluza-Klein decomposition via Eqs. (A46) and
(A51), L5D;rr þ ΔLrr immediately yields

Xþ∞

m;n¼0

1

2
½ð∂μr̂ðmÞÞð∂μr̂ðnÞÞ − μ2ðmÞr̂

ðmÞr̂ðnÞ�

·
6

π

Z þπ

−π
dφ

�
e2A

ðϕ0
0Þ2

γ0mγ0n þ
e2A

6
γmγn

�
: ðA69Þ

Recall that the scalar state wave functions are normalized
according to Eq. (A50), such that the integral on the right
above (including the 6=π) equals δm;n. Consequently, we
finally achieve our desired result:

L5D;rr þ ΔLrr ¼
Xþ∞

n¼0

�
1

2
ð∂μr̂ðnÞÞ2 − 1

2
μ2ðnÞðr̂ðnÞÞ2

�
: ðA70Þ

That is, the 5D field r̂ðx; yÞ generates a scalar tower of
canonical 4D scalar states fr̂ðnÞðxÞg, each having mass
mðnÞ ≡ μðnÞ=rc, where μðnÞ is determined by solving the
differential equation problem for the wave functions fγng
laid out between Eqs. (A47) and (A48).

APPENDIX B: THE INELASTIC SUM RULES
RELATING COUPLINGS AND MASSES

This section derives and summarizes relationships
between couplings and mass spectra that are relevant to
ensuring at most OðsÞ growth of tree-level inelastic 2-to-2
helicity-zero massive spin-2 KK mode scattering ampli-
tudes [i.e., the process ðk; lÞ → ðm; nÞ] in the Goldberger-
Wise-stabilized Randall-Sundrum I model. We briefly
consider the implications of completeness before deriving
a means of expressing all cubic and quartic (spin-2
exclusive) B-type couplings in terms of A-type couplings
and special objects BðklÞðmnÞ. These B-to-A formulas reduce
the problem of finding amplitude-relevant formulas to the
problem of simplifying sums of the form

P
j μ

2p
j akljamnj.

The relevant (inelastic and elastic) sum rules are derived
and then summarized in their own subsections. The final
subsection describes the remaining set of (unproven) sum
rules necessary for at-most OðsÞ growth in the fully
inelastic process.
This appendix is written as a stand-alone report of the

sum-rule relationships needed to ensure that all inelastic
scattering amplitudes (all 2 → 2 scattering amplitudes with
massive spin-2 fields of arbitrary mode number in the
external states) grow no faster than OðsÞ and report which
we have succeeded in proving—completing the program

begun in [9–12]. Section B 5 a derives relationships used in
Sec. IV B of the main body of this paper and can be read
independently.

1. Definitions

It is convenient to define generalized “couplings” to be
overlap integrals of spin-2 and spin-0 wave functions of the
form

xðpÞðk0���lÞ���m0���n ≡
1

π

Z þπ

−π
dφ εpð∂φγkÞ � � � γl � � � ð∂φψmÞ � � �ψn;

ðB1Þ

where AðφÞ is the warp factor, ε≡ expð−AÞ, and we add an
additional factor of ð∂φAÞ=krc to the integrand if only an
odd number of differentiated wave functions are present in
the integrand otherwise. The most common integrands
appearing in the 4D effective Lagrangian carry powers ε−2

and ε−4 and are given special symbols:

aðk0���lÞ���m0���n ≡ xð−2Þðk0���lÞ���m0���n; bðk0���lÞ���m0���n ¼ xð−4Þðk0���lÞ���m0���n:

ðB2Þ

We will also encounter the label “c,” which is associated
with p ¼ −6. In particular, we encounter this integral often:

ck0l0m0n0 ≡ xð−6Þk0l0m0n0

¼ 1

π

Z
dφ ε−6ð∂φψkÞð∂φψ lÞð∂φψmÞð∂φψnÞ: ðB3Þ

Another object that will be useful throughout the rest
of this document is the symbol D≡ ε−4∂φ, which is a
combination of quantities that is often present as a result of
the spin-2 Sturm-Liouville equation. When desperate for
space, we will nest the notation even further, utilizing
Dn ≡ ε−4ð∂φψnÞ.
We will ultimately derive sum rules that allow us to

rewrite certain useful sums of intermediate masses and
couplings in terms of just the quartic A-type coupling aklmn,
three BðklÞðmnÞ objects (of which any two fix the value of the

third), and integrals ck0l0m0n0 and xð−8Þϕ0
0
ϕ0
0
n0n0n0n0 .

2. Applications of completeness

The spin-2 mode completeness relation is

δðφ2 − φ1Þ ¼
1

π
εðφ1Þ−2

Xþ∞

j¼0

ψ jðφ1Þψ jðφ2Þ; ðB4Þ

where εðφÞ≡ eAðφÞ and the wave functions ψn satisfy
∂φDψn ¼ ∂φ½ε−4ð∂φψnÞ� ¼ −μ2nε−2ψn. Spin-2 mode com-
pleteness allows us to collapse certain sums of cubic
coupling products into a single quartic coupling, e.g.,
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aklmn ¼
X
j

akljamnj ¼
X
j

akmjalnj ¼
X
j

aknjalmj; ðB5Þ

bk0l0mn ¼
X
j

bk0l0jamnj: ðB6Þ

Furthermore, by combining cubic B-type couplings in this
same way, we arrive at

ck0l0m0n0 ¼
X
j

bk0l0jbm0n0j ¼
X
j

bk0m0jbl0n0j ¼
X
j

bk0n0jbl0m0j:

This is as far as direct applications of completeness can get
us for now.

3. B-to-A formulas

This subsection details how to eliminate all B-type
couplings (e.g., bl0m0n and bk0l0mn) in favor of A-type
couplings (e.g., almn and aklmn) and new structures
BðklÞðmnÞ. To begin, we note we can absorb a factor of μ2

into A-type couplings with help from the Sturm-Liouville
equation. A standard application of this technique proceeds
as follows:

μ2nalmn ¼
1

π

Z
dφε−2ψ lψm½μ2nψn� ðB7Þ

¼ 1

π

Z
dφε−2ψ lψm½−εþ2

∂φðDψnÞ� ðB8Þ

¼ 1

π

Z
dφ∂φ½ψ lψm�ðDψnÞ ðB9Þ

¼ 1

π

Z
dφε−4ð∂φψ lÞψmð∂φψnÞ

þ 1

π

Z
dφε−4ψ lð∂φψmÞð∂φψnÞ ðB10Þ

¼ bl0mn0 þ blm0n0 ; ðB11Þ
where integration by parts was utilized between Eqs. (B8)
and (B9); because ðDψnÞvanishes on the boundaries, there is
no surface term. This and the equivalent calculation with the
quartic A-type coupling yield

μ2nalmn ¼ bl0mn0 þ blm0n0 ; ðB12Þ
μ2naklmn ¼ bk0lmn0 þ bkl0mn0 þ bklm0n0 : ðB13Þ

By considering different permutations of KK indices, each
of these equations corresponds to three and four unique
constraints, respectively. Because there are only three unique
cubic B-type couplings with KK indices l, m, and n
(specifically, bl0m0n, bl0mn0 , and blm0n0 ), Eq. (B12) can be
inverted to yield

bl0m0n ¼
1

2
½μ2l þ μ2m − μ2n�almn ðB14Þ

with which we can eliminate all cubic B-type couplings in
favor of the cubic A-type coupling.
There are six unique quartic B-type couplings with KK

indices k, l, m, and n. We first halve this set by rewriting
each quartic B-type coupling bk0l0mn in terms of new objects
BðklÞðmnÞ. These new objects are motivated as follows: note
that Eq. (B13) implies

1

2
½μ2k þ μ2l − μ2m − μ2n�aklmn ¼ bk0l0mn − bklm0n0 : ðB15Þ

Equivalently, we may write this as

bk0l0mn þ
1

2
½μ2m þ μ2n�aklmn ¼ bklm0n0 þ

1

2
½μ2k þ μ2l �aklmn:

ðB16Þ

In other words, the quantity on the LHS possesses a sym-
metry under the pair swap ðk; lÞ ↔ ðm; nÞ. Furthermore,
this symmetry is maintained under the addition of any
quantity B̃ðklÞðmnÞ which is also symmetric under this pair
swap. Inspired by Eq. (B16), we define

BðklÞðmnÞ ≡ bk0l0mn þ
1

2
½μ2m þ μ2n�aklmn þ B̃ðklÞðmnÞ: ðB17Þ

Wewill choose the quantity B̃ðklÞðmnÞ momentarily. Because
the B-type couplings satisfy Eq. (B13), the sum of all
unique B objects satisfies

BðklÞðmnÞ þ BðkmÞðlnÞ þ BðknÞðlmÞ

¼  μ2aklmn þ B̃ðklÞðmnÞ þ B̃ðkmÞðlnÞ þ B̃ðknÞðlmÞ; ðB18Þ

where  μ2 ≡ μ2k þ μ2l þ μ2m þ μ2n. That is, we can ensure the
convenient property

BðklÞðmnÞ þ BðkmÞðlnÞ þ BðknÞðlmÞ _¼ 0 ðB19Þ

as long as we choose B̃ðklÞðmnÞ such that

B̃ðklÞðmnÞ þ B̃ðkmÞðlnÞ þ B̃ðknÞðlmÞ ¼ −  μ2aklmn: ðB20Þ

One immediate choice (and the choice we take now) is to
set each B̃ equal to one-third of −  μ2aklmn,

B̃ðklÞðmnÞ _¼ −
1

3
aklmn: ðB21Þ

This yields (as a replacement rule for bk0l0mn and definition
of BðklÞðmnÞ)

bk0l0mn ¼ BðklÞðmnÞ þ
1

6
½2ðμ2k þ μ2l Þ − ðμ2m þ μ2nÞ�aklmn;

ðB22Þ
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where B is symmetric within each pair and between pairs

BðklÞðmnÞ ¼ BðmnÞðklÞ ¼ BðmnÞðlkÞ ðB23Þ

and satisfies the additional constraint

BðklÞðmnÞ þ BðkmÞðlnÞ þ BðknÞðlmÞ ¼ 0 ðB24Þ

such that only two among fBðklÞðmnÞ; BðkmÞðlnÞ; BðknÞðlmÞg
are linearly independent. Note that BðklÞðmnÞ has the

same symmetry properties as
P

j μ
2p
j akljamnj. Because

Eq. (B22) reduces B-type couplings to A-type couplings
as much is as possible, we refer to it as the quartic B-to-A
rule. This and Eq. (B14) comprise the desired B-to-A
formulas.
The above rules are sufficient as is for reducing the sumP
j μ

2
jakljamnj and yielding the first nontrivial sum rule.

Using the cubic coupling Eq. (B12) with completeness
yields

bk0l0mn ¼
1

2
½μ2k þ μ2l �aklmn −

1

2

X
j¼0

μ2jakljamnj: ðB25Þ

Meanwhile, the LHS can be simplified via Eq. (B22).
Solving for the undetermined sum then gives us

X
j¼0

μ2jakljamnj ¼ −2BðklÞðmnÞ þ
1

3
 μ2aklmn; ðB26Þ

where  μ2 ≡ μ2k þ μ2l þ μ2m þ μ2n. We next turn our attention
to

P
j μ

4
jakljamnj and then

P
j μ

6
jakljamnj.

4. The μ4j sum rule

The
P

j μ
4
jakljamnj relation is relatively straightforward.

As defined in Eq. (B3), we can rewrite ck0l0m0n0 in terms
of B-type cubic couplings, to which we can then apply the
B-to-A formulas:

ck0l0m0n0 ¼
X
j¼0

bk0l0jbm0n0j ðB27Þ

¼ 1

4

X
j

½μ2k þ μ2l − μ2j �½μ2m þ μ2n − μ2j �akljamnj ðB28Þ

¼ 1

4
ðμ2k þ μ2l Þðμ2m þ μ2nÞaklmn

−
1

4
ð  μ2Þ

X
j

μ2jakljamnj þ
1

4

X
j

μ4jakljamnj ðB29Þ

such that, using Eq. (B26) and solving for the undetermined
sum

P
j μ

4
jakljamnj,

X
j

μ4jakljamnj ¼ 4ck0l0m0n0 − 2ð  μ2ÞBðklÞðmnÞ þ
�
1

3
ð  μ2Þ2 − ðμ2k þ μ2l Þðμ2m þ μ2nÞ

�
aklmn ðB30Þ

as desired. Deriving the
P

j μ
6
jakljamnj relation requires

significantly more work.

5. The μ6j sum rule

a. Elastic

As a warm-up to the inelastic case, let us first derive the
μ6j sum rule (and review the other sum rules) as they appear

in the elastic case, i.e., when k ¼ l ¼ m ¼ n. This will
provide the general flow of the argument which is made
more complicated in the inelastic case. Definitions for x, a,
b, etc., are included in Sec. B 1.
Using the spin-2 completeness relation and differential

equation alone, we have previously derived many elastic
coupling relations [9–12]. For example, there are the elastic
B-to-A formulas

bn0n0j ¼
1

2
½2μ2n − μ2j �annj; bj0n0n ¼

1

2
μ2jannj; bn0n0nn ¼

1

3
μ2nannnn; ðB31Þ

which allow us to rewrite any spin-2 exclusive B-type couplings in terms of A-type couplings. Using these in combination
with completeness, we find

annnn ¼
X
j

a2nnj;

bn0n0nn ¼
X
j

bn0n0jannj ¼ μ2n
X
j

a2nnj −
1

2

X
j

μ2ja
2
nnj;

cn0n0n0n0 ≡
X
j

b2n0n0j ¼ μ4n
X
j

a2nnj − μ2n
X
j

μ2ja
2
nnj þ

1

4

X
j

μ4ja
2
nnj;
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which imply various expressions for sums of the formP
j μ

2p
j a2nnj:

Xþ∞

j¼0

a2nnj ¼ annnn; ðB32Þ

Xþ∞

j¼0

μ2ja
2
nnj ¼

4

3
μ2nannnn; ðB33Þ

Xþ∞

j¼0

μ4ja
2
nnj ¼ 4cn0n0n0n0 þ

4

3
μ2nannnn: ðB34Þ

These relations allow us to quickly rewrite various sums
between B-type couplings, including

Xþ∞

j¼0

bn0n0jbj0n0n ¼
1

3
μ4nannnn − cn0n0n0n0 : ðB35Þ

As discussed in the main text, a combination of the GW
model sum rules ensuring cancellation of the Oðs3Þ and
Oðs2Þ contributions to the amplitude may be written as

Stabilized RS1∶
Xþ∞

j¼0

½5μ2n − μ2j �μ4ja2nnj ¼
16

3
μ6nannnn

þ 9
Xþ∞

i¼0

μ2ðiÞa
2
n0n0ðiÞ: ð23Þ

We can use our existing relations to rewrite this expres-
sion as

Xþ∞

j¼0

μ6ja
2
nnj ¼ 20μ2ncn0n0n0n0 þ

4

3
μ6nannnn þ 9

Xþ∞

i¼0

μ2ðiÞa
2
n0n0ðiÞ:

ðB36Þ

It is this variant we now seek to prove.
To begin, note that the B-to-A formulas relate the sumP
j μ

6
ja

2
nnj to the sum

P
j μ

2
jb

2
n0n0j like so:

Xþ∞

j¼0

μ6ja
2
nnj ¼ 16μ2jcn0n0n0n0 þ 4

Xþ∞

j¼0

μ2jb
2
n0n0j: ðB37Þ

Thus, if we determine a means of rewriting
P

j μ
2
jb

2
n0n0j in

terms of cn0n0n0n0 and annnn, then we will have a means of
doing the same for the desired sum.
We will arrive at the desired form by considering

two integrals of total derivatives, each of which vanishes
because ð∂φψnÞ vanishes at the orbifold fixed points
φ ∈ f0; πg.

Integral 1: To begin, consider the following trivial
integral:

1

π

Z þπ

−π
dφ∂φf½ð∂φψ jÞ − 6ð∂φAÞψ j�ε−6ð∂φψnÞ2g ¼ 0:

ðB38Þ
By evaluating the net derivative and using the spin-2 mode
differential equation to simplify second derivatives of
spin-2 wave functions,25 we attain

0 ¼ −12
�
1

π

Z þπ

−π
dφð∂φAÞ2ε−6ð∂φψnÞ2ψ j

�

þ 12ðkrcÞμ2nxð−4Þn0nj − 2μ2nbj0n0n

− 6

�
1

π

Z þπ

−π
dφð∂2φAÞε−6ð∂φψnÞ2ψ j

�
− μ2jbn0n0j:

ðB39Þ
We can then construct an instance of

P
j μ

2
jb

2
n0n0j within this

by multiplying it by bn0n0j and summing over j. This yields

0 ¼ −12
�
1

π

Z þπ

−π
dφð∂φAÞ2ε−8ð∂φψnÞ4

�

þ 12ðkrcÞμ2nxð−6Þn0n0n0n − 2μ2n
Xþ∞

j¼0

bn0n0jbj0n0n

− 6

�
1

π

Z þπ

−π
dφð∂2φAÞε−8ð∂φψnÞ4

�
−
Xþ∞

j¼0

μ2jb
2
n0n0j:

ðB40Þ

Integral 2: Next consider the following trivial integral:

1

π

Z þπ

−π
dφ∂φ

��
3

2
ð∂φAÞε−2ð∂φψnÞ − μ2nψn

�
ε−6ð∂φψnÞ3

�
¼ 0: ðB41Þ

Evaluating this derivative in the same way as we did with
the first integral, we find

0 ¼ 12

�
1

π

Z þπ

−π
dφð∂φAÞ2ε−8ð∂φψnÞ4

�

− 12ðkrcÞμ2nxð−6Þn0n0n0n − μ2ncn0n0n0n0 þ 3μ4nbn0n0nn

þ 3

2

�
1

π

Z þπ

−π
dφð∂2φAÞε−8ð∂φψnÞ4

�
: ðB42Þ

Combining: Summing Eqs. (B40) and (B42) and then
solving for

Pþ∞
j¼0 μ

2
jb

2
n0n0j immediately yields

25It is useful to repackage each ð∂φψÞ instead as εþ4ðDψÞ
where D≡ ε−4∂φ because then the spin-2 mode equation may be
utilized more directly in the form ∂φDψn ¼ −μ2nε−2ψn.
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Xþ∞

j¼0

μ2jb
2
n0n0j ¼ −μ2ncn0n0n0n0 þ 3μ4nbn0n0nn − 2μ2n

Xþ∞

j¼0

bn0n0jbj0n0n

−
9

2

�
1

π

Z þπ

−π
dφð∂2φAÞε−8ð∂φψnÞ4

�
: ðB43Þ

We already know how to rewrite bn0n0nn and
P

j bn0n0jbj0n0n
in terms of cn0n0n0n0 and annnn; namely, Eqs. (B31) and
(B35). Using these, Eq. (B43) becomes

Xþ∞

j¼0

μ2jb
2
n0n0j ¼ μ2ncn0n0n0n0 þ

1

3
μ6nannnn

−
9

2

�
1

π

Z þπ

−π
dφð∂2φAÞε−8ð∂φψnÞ4

�
: ðB44Þ

Finally, applying this result to Eq. (B37) gives us an
expression for the desired “μ6j” sum:

Xþ∞

j¼0

μ6ja
2
nnj ¼ 20μ2ncn0n0n0n0 þ

4

3
μ6nannnn

− 18

�
1

π

Z þπ

−π
dφð∂2φAÞε−8ð∂φψnÞ4

�
: ðB45Þ

Using the “μ4j” sum in Eq. (B34) we obtain the result
quoted in the text:

Xþ∞

j¼0

½5μ2n − μ2j �μ4ja2nnj

¼ 16

3
μ6nannnn þ 18

�
1

π

Z þπ

−π
dφð∂2φAÞε−8ð∂φψnÞ4

�
: ð25Þ

This is all that is required for the elastic case discussed in
the main text. The inelastic case covered in the next
subsubsection is logically similar, but involves longer
expressions and significantly more algebra.

b. Inelastic

Before beginning the derivation of the inelastic μ6j sum
rule, it is advantageous to define a well-organized poly-
nomial basis with which we can write our results succinctly.
In particular, because the sums we wish to simplify
(
P

j μ
2pakljamnj) and relevant quartic degrees of freedom

all have (at least) the symmetries of BðklÞðmnÞ, it is useful to
define a symmetrization operation that forms quantities
with symmetries identical to BðklÞðmnÞ:

hfklmni≡ f½fklmn þ ðk ↔ lÞ� þ ðm ↔ nÞg þ ðkl ↔ mnÞ
ðB46Þ

¼ fklmn þ flkmn þ fklnm þ flknm þ fmnkl þ fmnlk

þ fnmkl þ fnmlk: ðB47Þ

This allows us to quickly construct a finite basis for
polynomials of μ2 ∈ fμ2k; μ2l ; μ2m; μ2ng having the aforemen-
tioned symmetry structures. For a single power of μ2, there
is only one basis element:

αð1;1ÞðklÞðmnÞ ≡ hμ2ki ¼ 2  μ2 ≡ 2ðμ2k þ μ2l þ μ2m þ μ2nÞ: ðB48Þ

For two powers of μ2, there are three:

αð2;1ÞðklÞðmnÞ ≡ hμ4ki; αð2;2ÞðklÞðmnÞ ≡ hμ2l μ2ki; αð2;3ÞðklÞðmnÞ ≡ hμ2mμ2ki;
ðB49Þ

and for three powers of μ2, there are four:

αð3;1ÞðklÞðmnÞ ≡ hμ6ki; αð3;2ÞðklÞðmnÞ ≡ hμ2l μ4ki;
αð3;3ÞðklÞðmnÞ ≡ hμ2mμ4ki; αð3;4ÞðklÞðmnÞ ≡ hμ2mμ2l μ2ki: ðB50Þ

With these, we can generically construct any polynomial of
the squared masses (up to cubic degree) having the
aforementioned symmetry properties:

Mð1Þ
ðklÞðmnÞðc1Þ ¼ 2c1  μ2; ðB51Þ

Mð2Þ
ðklÞðmnÞðc1; c2; c3Þ ¼

X3
i¼1

ciα
ð2;iÞ
ðklÞðmnÞ; ðB52Þ

Mð3Þ
ðklÞðmnÞðc1; c2; c3; c4Þ ¼

X4
i¼1

ciα
ð3;iÞ
ðklÞðmnÞ: ðB53Þ

Note that these symbols are intentionally linear in their ci
arguments. In this language, Eq. (B30) may be rewritten as

X
j

μ4jakljamnj ¼ 4ck0l0m0n0 − 2  μ2BðklÞðmnÞ þ
1

6
Mð2Þ

ðklÞðmnÞð1; 1;−1Þaklmn: ðB54Þ

We now proceed to the
P

j μ
6
jakljamnj rule.

R. SEKHAR CHIVUKULA et al. PHYS. REV. D 107, 035015 (2023)

035015-26



As in the previous subsection, we begin our derivation by applying the B-to-A formulas to a sum of cubic B-type
couplings, and then apply existing sum rules:

X
j

μ2jbk0l0jbm0n0j ¼
1

4

X
j

μ6jakljamnj −  μ2ck0l0m0n0 −
1

12
 μ2ðμ2k þ μ2l − μ2m − μ2nÞ2aklmn

þ 1

2
½ð  μ2Þ2 − ðμ2k þ μ2l Þðμ2m þ μ2nÞ�BðklÞðmnÞ: ðB55Þ

On the RHS, only the desired sum
P

j μ
6
jakljamnj remains undetermined. However, unlike the previous subsection, we do

not yet have a simplification of the LHS of this expression. To find such a simplification, we concoct a vanishing
combination of two integrals [namely, ðI1ÞðklÞj and ðI2ÞkðlmnÞ of Eqs. (B56) and (B62)], each of which vanishes
independently because their integrands are total derivatives.
Integral 1: The first integral yields a vanishing combination of cubic quantities and is defined as

ðI1ÞðklÞj ≡ 1

π

Z þπ

−π
dφ ∂φ

��
1

2
ð∂φψ jÞ − 3ð∂φAÞψ j

�
ε−6ð∂φψkÞð∂φψ lÞ

�
ðB56Þ

¼ 1

π

Z þπ

−π
dφ ∂φ

�
1

2
εþ6DjDkDl − 3A0εþ2ψ jDkDl

�
; ðB57Þ

where Dx ≡Dψx ≡ ε−4ð∂φψxÞ. By explicitly applying the differentiation and using the wave function of the spin-2 modes
(∂φDx ¼ −μ2xε−2ψx), we attain

ðI1ÞðklÞj ≡ 1

π

Z þπ

−π
dφ

�
½−3A00 − 6ðA0Þ2�εþ2DkDlψ j −

1

2
εþ4½μ2kψkDl þ μ2lDkψ l�Dj

þ 3A0½μ2kψkDl þ μ2lDkψ l�ψ j −
1

2
εþ4DkDlμ

2
jψ j

�
: ðB58Þ

Next, to attain the desired index structure, we multiply by bm0n0j and sum over all j:

Xþ∞

j¼0

ðI1ÞðklÞjbm0n0j ¼
1

π

Z þπ

−π
dφf½−3A00 − 6ðA0Þ2�εþ8DkDlDmDng −

1

2

Xþ∞

j¼0

μ2jbk0l0jbm0n0j

−
1

2

Xþ∞

j¼0

½μ2kbkl0j0bm0n0j þ μ2l bk0lj0bm0n0j� þ
3

π

Z þπ

−π
dφfA0εþ6½μ2kψkDl þ μ2lDkψ l�DmDng: ðB59Þ

Because ðI1ÞðklÞj vanishes, this sum vanishes too, as does the following combination:

ðI1Þ≡Xþ∞

j¼0

ðI1ÞðklÞjbm0n0j þ bk0l0jðI1ÞðmnÞj ðB60Þ

¼ 1

π

Z þπ

−π
dφf½−6A00 − 12ðA0Þ2�εþ8DkDlDmDng −

Xþ∞

j¼0

μ2jbk0l0jbm0n0j

−
1

2

Xþ∞

j¼0

½μ2kbkl0j0bm0n0j þ μ2l bk0lj0bm0n0j þ μ2mbk0l0jbmn0j0 þ μ2nbk0l0jbm0nj0 �

þ 3

π

Z þπ

−π
dφfA0εþ6½ðμ2kψkÞDlDmDn þDkðμ2lψ lÞDmDn þDkDlðμ2mψmÞDn þDkDlDmðμ2nψnÞ�g: ðB61Þ

This completes our manipulations of the first integral quantity.
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Integral 2: The second integral directly yields a vanishing combination of quartic quantities and is defined as

ðI2ÞkðlmnÞ ¼
1

π

Z þπ

−π
dφ ∂φ

��
3

8
ð∂φAÞε−2ð∂φψkÞ − μ2kψk

�
ε−6ð∂φψ lÞð∂φψmÞð∂φψnÞ

�
ðB62Þ

¼ 1

π

Z þπ

−π
dφ ∂φ

�
3

8
A0εþ8DkDlDmDn − μ2kε

þ6ψkDlDmDn

�
: ðB63Þ

As the previous integral, we next carry out the differentiation while making use of the spin-2 mode wave function
(∂φDx ¼ −μ2xε−2ψx) as we go, and thereby attain

ðI2ÞkðlmnÞ ¼
1

π

Z þπ

−π
dφ

�
1

4

�
3

2
A00 þ 12ðA0Þ2 − μ2kε

þ2

�
εþ8DkDlDmDn

þ 1

4
εþ4ðμ2kψkÞ½ðμ2lψ lÞDmDn þDlðμ2mψmÞDn þDlDmðμ2nψnÞ�

−
3

8
A0εþ6½5ðμ2kψkÞDlDmDn þDkðμ2lψ lÞDmDn þDkDlðμ2mψmÞDn þDkDlDmðμ2nψnÞ�

�
: ðB64Þ

Next, we symmetrize over the indices, as to attain all unique combinations of indices:

ðI2Þ≡ ðI2ÞkðlmnÞ þ ðI2ÞlðkmnÞ þ ðI2ÞmðklnÞ þ ðI2ÞnðklmÞ ðB65Þ

¼ 1

π

Z þπ

−π
dφ

��
3

2
A00 þ 12ðA0Þ2�εþ8DkDlDmDn

�
−
1

4
 μ2ck0l0m0n0

þ 1

2
½μ2kμ2l bklm0n0 þ μ2kμ

2
mbkl0mn0 þ μ2kμ

2
nbkl0m0n þ μ2l μ

2
mbk0lmn0 þ μ2l μ

2
nbk0lm0n þ μ2mμ

2
nbk0l0mn�

−
3

π

Z þπ

−π
dφfA0εþ6½ðμ2kψkÞDlDmDn þDkðμ2lψ lÞDmDn þDkDlðμ2mψmÞDn þDkDlDmðμ2nψnÞ�g: ðB66Þ

Because ðI2ÞkðlmnÞ vanishes, ðI2Þ vanishes as well. This completes our manipulations of the second integral.
Combining: We finally add ðI1Þ from Eq. (B61) and ðI2Þ from Eq. (B66) to attain a new quantity that, of course, also

equals zero. Doing so, we attain

0 ¼ ðI1Þ þ ðI2Þ

¼ −
9

2π

Z þπ

−π
dφfA00εþ8DkDlDmDng −

1

4
 μ2ck0l0m0n0 −

Xþ∞

j¼0

μ2jbk0l0jbm0n0j

−
1

2

Xþ∞

j¼0

½μ2kbkl0j0bm0n0j þ μ2l bk0lj0bm0n0j þ μ2mbk0l0jbmn0j0 þ μ2nbk0l0jbm0nj0 �

þ 1

2
½μ2kμ2l bklm0n0 þ μ2kμ

2
mbkl0mn0 þ μ2kμ

2
nbkl0m0n þ μ2l μ

2
mbk0lmn0 þ μ2l μ

2
nbk0lm0n þ μ2mμ

2
nbk0l0mn�: ðB67Þ

The two integrals were intentionally weighted so as to
ensure all terms containing A0 exactly cancel between the
two expressions. The resulting expression possesses a
couple of important features.
First, Eq. (B67) contains the desired sumPþ∞
j¼0 μ

2
jbk0l0jbm0n0j, which we have already demonstrated

generates our ultimate target
Pþ∞

j¼0 μ
6
jakljamnj via the

B-to-A formulas, as made explicit in Eq. (B55).

Second, nearly all other terms in Eq. (B67) can be
expressed in terms of aklmn, the BðklÞðmnÞ and ck0l0m0n0 using
our existing relations. The only exceptional term is

−
9

2π

Z þπ

−π
dφA00εþ8DkDlDmDn; ðB68Þ

which (as we describe now) contains important information
about the radion and the tower of Goldberger-Wise scalars.
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In the unstabilized model, A00 is a sum of brane-
localized Dirac deltas (specifically, A00 ¼ ðkrcjφjÞ00 ¼
2krc½δðφÞ − δðφ − πÞ�) and thus—because Dx ¼ ε−4∂φψx

vanishes at the branes for each spin-2 state—Eq. (B68)
vanishes in the absence of a stabilization mechanism. This
contrasts the Goldberger-Wise-stabilized Randall-Sundrum
I model, where the equations of motion demand

ð∂2φAÞ ¼
1

12
ð∂φϕ0Þ2 þ

1

3
V1rcδðφÞ þ

1

3
V2rcδðφ − πÞ

ðB69Þ

such that Eq. (B68) yields a nonzero contribution directly
originating from the nonconstant profile of ϕ0 through the
bulk. That is, a nonzero contribution from Eq. (B68) to our
calculations directly reflects the stabilization of the radion.
We may use the equation of motion Eq. (B69) to simplify

Eq. (B68). In particular,

−
9

2π

Z þπ

−π
dφA00εþ8DkDlDmDn

¼ −
3

8π

Z þπ

−π
dφðϕ0

0Þ2εþ8DkDlDmDn ≡ −
3

8
xð−8Þϕ0

0
ϕ0
0
k0l0m0n0 :

ðB70Þ

To finish rewriting Eq. (B67), all that remains now is the
application of the B-to-A formulas, the sum relations,
Eq. (B55), and a lot of algebra. The next section presents
the results of this process and summarizes the other
inelastic sum relations we have derived. The section

thereafter reduces those results to the equivalent elastic
rules. Finally, the last section of these Supplemental
Material [28] reviews additional unproven rules necessary
to cancel any “bad” high-energy behavior from the tree-
level helicity-zero ðk; lÞ → ðm; nÞ matrix element in the
stabilized Randall-Sundrum model.

6. Summary of proven sum rules (inelastic)

All B-type couplings fbl0m0n; bk0l0mng can be eliminated
in favor of A-type couplings falmn; aklmng and new
BðklÞðmnÞ objects via the B-to-A formulas

bl0m0n ¼
1

2
½μ2l þ μ2m − μ2n�almn;

bk0l0mn ¼ BðklÞðmnÞ þ
1

6
½2ðμ2k þ μ2l Þ − ðμ2m þ μ2nÞ�aklmn;

ðB71Þ

where the BðklÞðmnÞ are constrained such that BðkmÞðlnÞþ
BðknÞðlmÞ þ BðklÞðmnÞ ¼ 0, and are symmetric in each indi-
vidual pair ðk; lÞ and ðm; nÞ as well as with respect to the
pair swap replacement ðk; lÞ ↔ ðm; nÞ. These sums are

X
j¼0

akljamnj ¼ aklmn; ðB72Þ

X
j¼0

μ2jakljamnj ¼ −2BðklÞðmnÞ þ
1

3
 μ2aklmn; ðB73Þ

X
j¼0

μ4jakljamnj ¼ 4ck0l0m0n0 − 2  μ2BðklÞðmnÞ þ
1

6
Mð2Þ

ðklÞðmnÞð1; 1;−1Þaklmn; ðB74Þ

X
j¼0

μ6jakljamnj ¼ 5  μ2ck0l0m0n0 þMð2Þ
ðkmÞðlnÞð1; 1; 1ÞBðkmÞðlnÞ þMð2Þ

ðknÞðlmÞð1; 1; 1ÞBðknÞðlmÞ

−Mð2Þ
ðklÞðmnÞð0; 1; 0ÞBðklÞðmnÞ þ

1

6
Mð3Þ

ðklÞðmnÞð1; 4;−4; 0Þaklmn −
3

2
xð−8Þϕ0

0
ϕ0
0
k0l0m0n0 ; ðB75Þ

where  μ2 ≡ μ2k þ μ2l þ μ2m þ μ2n and

ck0l0m0n0 ≡ 1

π

Z
dφε−6ð∂φψkÞð∂φψ lÞð∂φψmÞð∂φψnÞ; ðB76Þ

xð−8Þϕ0
0
ϕ0
0
k0l0m0n0 ≡

1

π

Z
dφε−8ð∂φϕ0Þ2ð∂φψkÞð∂φψ lÞð∂φψmÞð∂φψnÞ: ðB77Þ

The last two sum rules can be combined so as to cancel all factors of ck0l0m0n0 and thereby yield

X
j¼0

μ4j

	
μ2j −

5

4
 μ2


akljamnj ¼

1

4
Mð2Þ

ðklÞðmnÞð5; 1; 10ÞBðklÞðmnÞ þMð2Þ
ðkmÞðlnÞð1; 1; 1ÞBðkmÞðlnÞ þMð2Þ

ðknÞðlmÞð1; 1; 1ÞBðknÞðlmÞ

−
1

24
Mð3Þ

ðklÞðmnÞð1;−1; 16; 0Þaklmn −
3

2
xð−8Þϕ0

0
ϕ0
0
k0l0m0n0 : ðB78Þ
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These equations extend and generalize the sum rules
derived in [11].

7. Summary of proven sum rules (elastic)

Oftentimes, we are particularly interested in the elastic
massive spin-2 KK mode scattering process, wherein k ¼
l ¼ m ¼ nð≠ 0Þ and the relations of the previous subsec-
tions simplify. Consider, for example, the B’s constraint in
this context:

BðkmÞðlnÞ þ BðknÞðlmÞ þ BðklÞðmnÞ ¼ 0 ⟶
elastic

BðnnÞðnnÞ ¼ 0

ðB79Þ

such that all of the B’s become identical and vanish. The
relevant B-to-A formulas become

bn0n0j ¼
1

2
½2μ2n − μ2j �annj; bj0n0n ¼

1

2
μ2jannj;

bn0n0nn ¼
1

3
μ2nannnn; ðB80Þ

whereas the sum rules reduce toX
j

a2nnj ¼ annnn; ðB81Þ

X
j

μ2ja
2
nnj ¼

4

3
μ2nannnn; ðB82Þ

X
j

μ4ja
2
nnj ¼ 4cn0n0n0n0 þ

4

3
μ4nannnn; ðB83Þ

X
j

μ6ja
2
nnj ¼ 20μ2ncn0n0n0n0 þ

4

3
μ6nannnn −

3

2
xð−8Þϕ0

0
ϕ0
0
n0n0n0n0 ;

ðB84Þ

with the last two expressions combining to yield

X
j

½μ2j − 5μ2n�μ4ja2nnj ¼ −
16

3
μ6nannnn −

3

2
xð−8Þϕ0

0
ϕ0
0
n0n0n0n0 :

ðB85Þ

8. Unproven rules

The aforementioned rules are insufficient on their own
for ensuring cancellations of the ðk; lÞ → ðm; nÞ matrix
element [which naively contains Oðs5Þ terms] down to
OðsÞ growth. This is true in both the fully elastic
(k ¼ l ¼ m ¼ n) and more general cases.

In the fully elastic case, only one additional rule is
required:

3

�
9
Xþ∞

i¼0

a2n0n0ðiÞ − μ2nμ
2
na2nn0

�
¼ 15cn0n0n0n0 þ 2μ4nannnn:

ðB86Þ

The inelastic case provides a generalization of this rule, as
well as two additional rules we have yet to prove analyti-
cally. These analytic rules have been attained by calculating
the full ðk; lÞ → ðm; nÞ matrix element (a nontrivial task),
asymptotically series expanding that matrix element in s
down to Oðs3=2Þ (also nontrivial; note odd powers of s
automatically vanish for this particular process), applying
the sum rules we previously derived, and demanding
coefficients of any sσ for σ > 1 vanish.

Having done so, we find cancellations of “bad” high-
energy behavior additionally require

6BðklÞðmnÞ ¼ ðμ2k − μ2mÞðμ2l − μ2nÞ
X
j>0

akmjalnj
μ2j

þ ðμ2k − μ2nÞðμ2l − μ2mÞ
X
j>0

aknjalmj

μ2j
ðB87Þ

to cancelOðs4Þ growth and, noting the KK indices ðk; l; mÞ
are cycled through from term to term,

0 ¼ ðμ2k − μ2l Þðμ2m − μ2nÞ
X
j>0

akljamnj

μ2j

þ ðμ2l − μ2mÞðμ2k − μ2nÞ
X
j>0

almjaknj
μ2j

þ ðμ2m − μ2kÞðμ2l − μ2nÞ
X
j>0

amkjalnj
μ2j

ðB88Þ

to cancel Oðs3Þ growth.
To simplify writing expressions such as those above,

define

Lkl;mn ¼ ðμ2k − μ2l Þðμ2m − μ2nÞ
X
j>0

akljamnj

μ2j
: ðB89Þ

Lkl;mn is antisymmetric under k ↔ l and m ↔ n, and is
symmetric under kl ↔ mn. The previously listed new sum
rules can thus be written succinctly as

6BðklÞðmnÞ ¼ Lkm;ln þ Lkn;lm; ðB90Þ

0 ¼ Lkl;mn þ Llm;kn þ Lmk;ln: ðB91Þ

This latter sum rule is mathematically distinct from the
defining constraint of BðklÞðmnÞ (i.e., that the sum of all
unique B vanishes). Note that Lnn;nn ¼ 0, thus explaining
the absence of these relations when deriving our elastic
sum rules.
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Last, the Oðs3Þ cancellations also necessitate the following generalization of the elastic radion rule [Eq. (B86)]:

12

�
9
Xþ∞

i¼0

ak0l0ðiÞam0n0ðiÞ − μ2kμ
2
makl0amn0

�
¼ 60ck0l0m0n0 þ

1

2
Mð2Þ

ðklÞðmnÞð4;−8; 5Þaklmn

− 3ðμ2k − μ2l Þ2ðμ2m − μ2nÞ2
X
j>0

akljamnj

μ4j
þ 2  μ2½Lkm;ln þ Lkn;lm�

− 3½ðμ2k þ μ2l Þðμ2m − μ2nÞ2 þ ðμ2k − μ2l Þ2ðμ2m þ μ2nÞ�
X
j>0

akljamnj

μ2j
; ðB92Þ

whereMð2Þ
ðnnÞðnnÞð4;−8; 5Þ ¼ 8μ4n. In the unstabilized inelas-

tic calculation, an identical rule is attained, but with the sumP
i aðiÞk0l0aðiÞm0n0 replaced simply by að0Þk0l0að0Þm0n0. This

completes the rules necessary to ensure cancellations down
to OðsÞ for 2-to-2 spin-2 mode scattering in the stabilized
Randall-Sundrum model.

APPENDIX C: EIGENVALUES AND
EIGENFUNCTIONS OF SPIN-2

AND SPIN-0 MODES

The solutions to the SL problem for the spin-0 and
the spin-2 parts of the stabilized RS model determine the
eigenvalues and eigenfunctions. Here we outline two
related methods of computing the eigenvalues and eigen-
functions for both the spin-0 and the spin-2 SL problem
in perturbation theory. In the following we introduced
the standard Rayleigh-Schrödinger perturbation theory in
the context of a SL problem. Here, the perturbed wave
functions are expressed as an infinite series in unperturbed
wave functions. On the other hand, being able to have
closed form expressions for the perturbed wave functions is
extremely useful, especially for the numerical part of our
analysis. This leads us to solving the perturbed SL problem
directly, by solving an inhomogeneous differential equa-
tion. In the end the normalized wave functions derived in
either of these methods are identical, and calculating the
wave function using these two methods serves as a cross-
check of our results.

1. Perturbation theory and a general
Sturm-Liouville problem

Here we discuss the application of Rayleigh-Schrödinger
perturbation theory to a general Sturm-Liouville problem,
including one in which the weight function is also per-
turbed. We compute the first-order shifts to the eigenvalues
and eigenfunctions, and we demonstrate that completeness
holds to the appropriate order. In Sec. C 1 a we show how
the perturbed eigenfunctions can be calculated as a linear
combination of unperturbed eigenfunctions. In practice
performing an infinite sum of wave functions to determine
the perturbed wave function is not computationally effi-
cient, so in Sec. C 1 b we outline an equivalent method of
determining the perturbed wave functions as closed form

expressions and show how it is related to Rayleigh-
Schrödinger perturbation theory.

a. Mass corrections

Consider a generic SL problem for the Kaluza-Klein
modes, which is of the form

L̃ψn ¼ −λnρ̃ψn; ðC1Þ

where L̃ is the SL operator (given appropriate boundary
conditions) acting on eigenfunctions ψn with eigenvalues
λ̃n and a weight factor ρ̃. The solutions to the SL problem
are orthogonal with respect to the weight factor ρ̃

1

π

Z
π

−π
dφ ρ̃ðφÞψkðφÞψ lðφÞ ¼ δk;l: ðC2Þ

These solutions then satisfy the completeness relation26X
l

ρ̃ðφÞψlðφÞψlðφ0Þ ¼ πδðφ − φ0Þ: ðC3Þ

Depending on the nature of the SL problem, the boundary
conditions can be Dirichlet or Neumann as pointed out in
the main body of the paper. For the rest of this appendix, we
will drop the argument φ in wave functions and weight
factors for simplicity.
In perturbation theory, the SL operator and weight

function can be expanded as L̃¼LþδL and ρ̃¼ ρþ δρ,

while we expand the eigenvalue λ̃n ¼ λð0Þn þ λð1Þn þ
λð2Þn þ � � �. Here bothL and δL are of Sturm-Liouville form:

L ¼ d
dφ

�
p

d
dφ

�
þ q; ðC4Þ

δL ¼ d
dφ

�
δp

d
dφ

�
þ δq: ðC5Þ

In our problems, the perturbations δp, δq, and δρ come
from expanding Eqs. (45) and (52), respectively, in powers

26The symmetry of the δ-function implies that the argument of
ρ in the sum could be either φ or φ0.
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of ϵ.27 We then expand the eigenfunction in perturbation
theory as

ψn ¼ ψ ð0Þ
n þ ψ ð1Þ

n þ ψ ð2Þ
n þ � � � : ðC6Þ

As usual in perturbation theory, we expand the first-order
perturbed wave function as a sum of unperturbed wave
functions,

ψ ð1Þ
n ¼

X∞
m¼0

Cnmψ
ð0Þ
m : ðC7Þ

The coefficients Cnm can be determined using perturbation
theory, as will be described later. Here, as usual in
Rayleigh-Schrödinger perturbation theory, we assume that

ψ ð1Þ
n is chosen to be orthogonal to ψ ð0Þ

n .

To the lowest order, the SL equation reads

Lψ ð0Þ
n ¼ −λð0Þn ρψ ð0Þ

n ; ðC8Þ

where λð0Þn is the lowest order (unperturbed) eigenvalue.

Additionally, ψ ð0Þ
n is the lowest order eigenfunction.

Expanding the SL equation to first order, and using
the fact the lowest order SL problem satisfies Eq. (C8), we
obtain, to first order,

Lψ ð1Þ
n þ δLψ ð0Þ

n ¼ −ðλð0Þn δρψ ð0Þ
n þ λð1Þn ρψ ð0Þ

n þ λð0Þn ρψ ð1Þ
n Þ:
ðC9Þ

Multiplying the first-order perturbed equation by ψ0
n and

integrating,

Z
dφψ ð1Þ

n Lψ ð0Þ
n þ

Z
dφδLðψ0

nÞ2 ¼ −
Z

dφðλð0Þn δρðψ ð0Þ
n Þ2 þ λð1Þn ρðψ ð0Þ

n Þ2 þ λð0Þn ρψ ð1Þ
n ψ ð0Þ

n Þ: ðC10Þ

In the first term in the equation above, we have used the fact that the operator L is self-adjoint. Using Eq. (C8) and
rearranging, we obtain

λð1Þn ¼ −
1

π

	Z
π

−π
dφ δρðψ ð0Þ

n Þ2 þ
Z

π

−π
dφψ ð0Þ

n δLψ ð0Þ
n



: ðC11Þ

Since δL ¼ d
dx ½δp� þ δq, we can integrate the above equation by parts to obtain

λð1Þn ¼ −
1

π

�
−
Z

π

−π
dφ δp

	
dψ ð0Þ

n

dφ


2

þ
Z

π

−π
dφ δqðψ ð0Þ

n Þ2 þ
Z

π

−π
dφ δρðψ ð0Þ

n Þ2
�
: ðC12Þ

Now that we have the perturbed eigenvalue, we can proceed to calculate the perturbed eigenfunctions. We describe two
methods to do this. The first one involves directly solving the nonhomogenous differential equation in Eq. (C9). The second
one makes use of standard Rayleigh-Schrödinger perturbation theory. In the end, both methods lead to the same
eigenfunctions, and the use of these two methods serves as a cross-check of our results.

b. Solving the inhomogeneous differential equation using variation of parameters

In this first method, one simply solves the nonhomogeneous differential equation that is derived by substituting into
Eq. (C9) the unperturbed eigenvalue and eigenfunction

�
d
dφ

	
p

d
dφ



þ q − λð0Þn ρ

�
ψ ð1Þ
n ¼

�
−

d
dφ

	
δp

d
dφ



− δqþ λð0Þn δρþ λð1Þn ρ

�
ψ ð0Þ
n : ðC13Þ

To solve this equation for the spin-2 KKmodes, we have used the method of variation of parameters. Using the solution ψ ð1Þ
n

found using this method, the wave function ψ ð0Þ
n þ ψ ð1Þ

n must then be normalized with respect to ρþ δρ as follows:

ψ̃ ðnormalizedÞ
n ¼ ψ ð0Þ

n þ
�
ψ ð1Þ
n −

ψ ð0Þ
n

π

Z
dφ0

�
ρψ ð0Þ

n ψ ð1Þ
n þ 1

2
δρðψ ð0Þ

n Þ2
��

: ðC14Þ

27Note that the spin-2 system in Eq. (45) yields a perturbation expansion in ϵ2, whereas that for the spin-0 system in Eq. (52) gives an
expansion in powers of ϵ.
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In the following we describe how to determine the same wave function using the Rayleigh-Schrödinger perturbation theory.
We reiterate that the wave functions determined in either method are identical and that the advantage of determining the
wave function in this way is that we get closed form solutions for the perturbed wave functions and masses.

c. Wave functions in Rayleigh-Schrödinger perturbation theory

The perturbed wave function is determined as a sum over the unperturbed wave function as shown in Eq. (C7). To

determine the coefficients Cnm, we multiply the perturbed SL equation (C9) by ψ ð0Þ
m (m ≠ n) and integrate

−λð0Þm πCnm þ
Z

π

−π
dφψ ð0Þ

m ðδLψ ð0Þ
m Þ ¼ −

	
λð0Þn

Z
π

−π
dφψ ð0Þ

m δρ ψ ð0Þ
n þ λð0Þn πCnm



; ðC15Þ

leading to

Cnm ¼ −
1

π

ðλð0Þn
R
π
−π dφψ ð0Þ

m δρ ψ ð0Þ
n þ R

π
−π dφψ ð0Þ

m ðδLψ ð0Þ
m ÞÞ

λð0Þn − λð0Þm

: ðC16Þ

Using the definition of δL and integrating by parts, we get

Cnm ¼ −
1

π

�− R
π
−π dφδp

dψ ð0Þ
n

dφ
dψ ð0Þ

m
dφ þ R

π
−π dφδqψ

ð0Þ
n ψ ð0Þ

m þ λð0Þn
R
π
−π dφδρψ

ð0Þ
n ψ ð0Þ

m

λð0Þn − λð0Þm

�
: ðC17Þ

In Rayleigh-Schrödinger perturbation theory, we usually
assume that the first-order perturbed solutions are orthogo-
nal to the lowest order solution so that Cnn ¼ 0. However,
in the presence of a perturbation to the weight function, that
is no longer the case. Here, to obtain the coefficient Cnn, we
use the normalization condition

Z
π

−π
dφρ̃ψ̃2

n ¼
Z

π

−π
dφðρþ δρÞ

	
ψ ð0Þ
n þ

X
m
Cnmψ

ð0Þ
m



2

¼ π;

ðC18Þ

which, to first order, implies

Cnn ¼ −
1

2π

Z
π

−π
dφδρðψ ð0Þ

n Þ2: ðC19Þ

We have checked, numerically, that the wave functions
derived using Eqs. (C7) and (C17) are identical to the ones
derived using Eqs. (C13) and (C14).

2. Wave function and masses of KK modes
in the DFGK model

Here we present the wave functions and mass corrections
for the spin-2 as well as the scalar sector for the DFGK
model in the stiff-wall limit. These expressions are derived
by solving the differential equations described in Sec. C
and specifically using Eqs. (C12) and (C13). The expres-
sions presented here are relevant for the large krc limit. The
general expressions, valid for all krc, are quite cumbersome
and are provided in supplementary Mathematica files on
GitHub [28].

a. Spin-2 mass and wave function corrections

To verify sum rules to order ϵ2 we need the spin-2 wave
function and masses to order ϵ2. We start by expanding the
spin-2 Sturm-Liouville equation in (7) up to order ϵ2. We
also expand the wave function and masses, as described
earlier, to order ϵ2

ψn ¼ ψ ð0Þ
n þ ψ ð2Þ

n þ � � � ; ðC20Þ

μ2n ¼ ðμð0Þn Þ2 þ δμ2n þ � � � : ðC21Þ

We have dropped the ψ ð1Þ
n term since the corrections to the

spin-2 Sturm-Liouville problem start at order ϵ2 as can be
seen from its expanded form below

0 ¼ ½∂2φ − 4k̃rc∂φ þ ðμð0Þn Þ2e2k̃rcφ�ψ ð0Þ
n

þ ϵ2f½−8φ∂φ þ e2k̃rcφðδμ2n þ 2φ2ðμð0Þn Þ2Þ�ψ ð0Þ
n

þ ½∂2φ − 4k̃rc∂φ þ e2k̃rcφðμð0Þn Þ2�ψ ð2Þ
n g þOðϵ3Þ: ðC22Þ

Here we see that the leading term for ψ ð0Þ
n is the usual one

that we encounter in the unstabilized limit. Solutions to the
leading order differential equation are well known and can
be found in Ref. [11]. We reproduce some of these results

here later. After solving for ψ ð0Þ
n , we then proceed to solve

the above differential equation at order ϵ2.

b. The massless graviton to order ϵ2

The massless graviton is the easiest, since it does not
acquire a mass, and its wave function is derived by setting
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μð0Þ0 ¼ δμ0 ¼ 0. The wave function is a constant, and any ϵ
dependence comes from the normalization condition (8).
The normalized wave function for the massless graviton to
order ϵ2 is of the form

ψ0 ¼
�
1

π

Z
dφe−2A

�
−1=2

¼ eπk̃rc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πk̃rc

e2πk̃rc − 1

s

þ ϵ2
ffiffiffi
π

p
eπk̃rc ½−2π2k̃2r2c − 2πk̃rc þ e2πk̃rc − 1�

8r3=2c ½k̃ðe2πk̃rc − 1Þ�3=2
þOðϵ3Þ: ðC23Þ

c. Massive spin-2 modes to order ϵ2

Before we present results on the perturbed wave functions
and masses of the massive spin-2 modes, we remind the
reader about the unperturbedwave functions andmasses that
are identical to the unstabilized case. Since the full expres-
sions can be quite lengthy, we present only results that are
valid in the large k̃rc limit and provide the full expressions in
supplementaryMathematica files on GitHub [28]. Thewave
function for the massive spin-2modes to order ϵ0 is the same
as those derived in the unstabilized RSmodel and in the large
k̃rc limit is of the form

ψ ð0Þ
n ¼ e2φk̃rc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πrck̃

e2k̃rcπJ2ðj1;nÞ2 − J2ðe−πk̃rcj1;nÞ2

s

× J2ðek̃ðφrc−πrcÞj1;nÞ: ðC24Þ

Here Ji are Bessel-J functions. The masses of the spin-2
modes are determined by solving a transcendental equation
that is derived from the Neummann boundary condition
satisfied by the spin-2 modes:

J1

	
eπk̃rcμn
k̃rc



Y1

	
μn
k̃rc



− J1

	
μn
k̃rc



Y1

	
eπk̃rcμn
k̃rc



¼ 0:

ðC25Þ

In the large krc limit, the solution to the transcendental
equation reduces to a simple form:

mn ¼
μð0Þn

rc
¼ k̃e−πk̃rcj1;n: ðC26Þ

Here j1;n are the roots of J1.
Substituting the above form of the leading order spin-2

wave function and masses into Eq. (C22), we end up with a
nonhomogeneous differential equation which can be solved
using the method of variation of parameters. Alternately, the
samedifferential equation can also be derived fromEq. (C13)
and in the large k̃rc limit is of the form given below:

½∂2φ − 4k̃rc∂φ þ ðμð0Þn Þ2e2k̃rcφ�ψ ð2Þ
n ¼ 2c1e3φk̃rc

�
8μð0Þn φJ1

	
ek̃rcφμð0Þn

k̃rc



− ek̃rcφðδμ2n þ 2ðμð0Þn Þ2φ2ÞJ2

	
ek̃rcφμð0Þn

k̃rc


�
: ðC27Þ

Here c1 corresponds to the normalization of the leading order wave function ψ ð0Þ
n . Below we write down the perturbation of

the spin-2 wave function ψ ð2Þ
n . The resulting expressions at order ϵ2 are quite lengthy and are also provided in

supplementary Mathematica files on GitHub [28]:

ψ ð2Þ
n ¼ c1Y2ðzÞ

384μ4n
ϵ2
�
μ2nπz63F4

	
3

2
; 2; 2; 1; 3; 3; 4;−z2



½1 − 4 logðβzÞ�

þ 2πz62F3

	
3

2
; 2; 1; 3; 4;−z2



½2 logðβzÞ − 1�

þ 384πz2
�	

1F2

	
1

2
; 1; 1;−z2



− 21F2

	
1

2
; 1; 2;−z2




logðβzÞ þ logðβÞ

�

þ πz64F5

	
3

2
; 2; 2; 2; 1; 3; 3; 3; 4;−z2




þ 192
ffiffiffi
π

p
z2
�
G2;1

2;4

	
z2
���� 1

2
; 1

0; 0; 0; 0



− 2G2;1

2;4

	
z2
���� 1

2
; 1

0; 0;−1; 0


�

− 48πμ2nz4J2ðzÞ2½4β2δμ2n þ ð2½logðβzÞ − 1� logðβzÞ þ 1Þ�

þ 48πβ2z4J1ðzÞJ3ðzÞ½4β2δμ2n þ ð2½logðβzÞ − 1� logðβzÞ þ 1Þ�
�
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þ z2J2ðzÞ
8μ2n

�
2

ffiffiffi
π

p
G2;2

3;5

	
z;
1

2

���� 1; 3
2
; 1
2

1; 3;−1; 0; 1
2



½2β2δμ2n þ log2ðβzÞ�

þ 2μ2n
ffiffiffi
π

p �
4G3;1

3;5

	
z;
1

2

����
1
2
;− 1

2
; 1

0; 0; 2;−1;− 1
2



−G2;3

4;6

	
z;
1

2

���� 1; 1; 3
2
; 1
2

1; 3;−1; 0; 0; 1
2


�
logðβzÞ

þ μ2n
ffiffiffi
π

p �
4G4;1

4;6

	
z;
1

2

����
1
2
;− 1

2
; 1; 1

0; 0; 0; 2;−1;− 1
2



þG2;4

5;7

	
z;
1

2

���� 1; 1; 1; 3
2
; 1
2

1; 3;−1; 0; 0; 0; 1
2


�

þ 8μ2n logðzÞ½2 logðβÞ þ logðzÞ�
�
þ β2z2½c3J2ðzÞ þ c4Y2ðzÞ�: ðC28Þ

Here β≡ k̃rc=μn, z≡ ðμn=k̃rcÞek̃rcφ, Gk;l
i;j are Meijer-G functions [37], iFj are hypergeometric functions, c1 is a

normalization constant given in Eq. (C19), and c3 and c4 are constants that are determined from the Neummann
boundary condition that the wave function must satisfy. Additionally, we provide these expressions as well as those valid
also for arbitrary values of k̃rc in supplementary Mathematica files on GitHub [28].
Corrections to the mass to order ϵ2 are calculated using Eq. (C12). The large krc limit is given in terms of Bessel

functions and hypergeometric functions as follows:

δμ2n ¼ −
c21ϵ

2

48k̃

�
ðj1;nÞ2

�
16J0ðj1;nÞ2ð6πk̃rc − 1Þ − 48J2ðj1;nÞ2ð2πk̃rcðπk̃rc − 1Þ þ 1Þ

þ 963F4

	
1; 1;

3

2
; 2; 2; 2; 2;−ðj1;nÞ2



− 963F4

	
1; 1;

3

2
; 2; 2; 2; 3;−ðj1;nÞ2




þ ðj1;nÞ24F5

	
3

2
; 2; 2; 2; 1; 3; 3; 3; 4;−ðj1;nÞ2


�
− 32ð3J0ðj1;nÞ2 − 3Þ

�
: ðC29Þ

3. Spin-0 mass and wave functions in the DFGK model

To verify the sum rules to order ϵ2 we need the radion mass squared and wave function corrections to order ϵ2. On the
other hand, due to the normalization condition in Eq. (15) in the stiff-wall limit, the GW scalar wave functions do not have a
ϵ0 piece, but instead start at order ϵ. Therefore, it is only necessary to calculate their masses and wave functions to leading
order in ϵ. To determine the wave functions to the required order in ϵ, we start with the Sturm-Liouville problem for the
scalar modes defined in Eq. (12), and we perform an expansion of the same up to order ϵ2 as follows:

½∂2φ þ 2k̃rc∂φ þ ðμð0ÞðnÞÞ
2e2k̃rcφ�γð0Þn þ ϵ

�
4

ffiffiffi
6

p

ϕ1

∂φ

�
γð0Þn

þ ϵ2f½4φ∂φ − 4þ e2k̃rcφðδμ2ðnÞ þ 2φ2ðμð0ÞðnÞÞ
2Þ�γð0Þn þ ½∂2φ þ 2k̃rc∂φ þ e2k̃rcφðμð0ÞðnÞÞ

2�γð2Þn g ¼ 0: ðC30Þ

a. Radion wave function and mass to order ϵ2

We expand the wave function and mass in perturbation
theory as described earlier. For the massless radion we start
with the ansatz

γn ¼ γð0Þn þ γð2Þn þ � � � ;
μ2ðnÞ ¼ ðμð0ÞðnÞÞ

2 þ δμ2ðnÞ þ � � � : ðC31Þ

Note the absence of the order ϵ term in the expansion above
although there is an explicit order ϵ term in the differential
equation. It is easy to see that up to order ϵ, the radion wave

function is constant and only acquires nontrivial depend-
ence at order ϵ2. We can substitute the above expansion into

Eq. (C30) and solving for γð0Þn , γð2Þn , ðμð0ÞðnÞÞ2, and δμ2ðnÞ order
by order. This amounts to determining the unperturbed
wave function and using Eq. (C13) to determine the
perturbed wave function by solving the resulting nonho-
mogeneous differential equation

½∂2φ þ 2k̃rc∂φ þ ðδμ2ð0Þe2k̃rcφ − 4Þ�γð0Þ0 ¼ 0: ðC32Þ
We find the normalized radion mass and wave function to
order ϵ2 to be
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μð0Þ ¼ 2ϵ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

1þ e2πkrc

r
; ðC33Þ

γ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πk̃rc

e2πk̃rc − 1

s
þ ϵ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πðe2πk̃rc − 1Þ

q
6ðk̃rcÞ3=2ðe4πk̃rc − 1Þ2 ½−5þ 6e2φk̃rc þ 3e2πk̃rc − 6eð2φþ4πÞk̃rc − 6k̃rcðe2πk̃rc þ 1Þ2

× ðe2πk̃rcðπ2k̃rc − 2φþ πÞ þ 2φÞ þ 5e6πk̃rc − 6e2ðπ−φÞk̃rc þ 6e2ð3π−φÞk̃rc − 3e4πk̃rc � þOðϵ3Þ: ðC34Þ

Note that the expression is valid for arbitrary values of k̃rc. It is possible to simplify this expression further in the large k̃rc
limit to

γ0jk̃rc≫1 ¼ γð0Þ0

�
1þ ϵ2

4k̃2r2c

	
−k̃rcðπ2k̃rc − 2φþ πÞ þ e−2φk̃rc − e2ðφ−πÞk̃rc þ 5

6


�
þOðϵ3Þ: ðC35Þ

In the large k̃rc limit, the wave function for the unstabilized

radion is γð0Þ0 ¼ e−πk̃rc
ffiffiffiffiffiffiffiffiffi
πk̃rc

p
.

b. GW-scalar mass and wave function
to leading order

As remarked upon earlier, to verify the sum rules to order
ϵ2, we need the GW-scalar wave function to order ϵ, which,
due to the normalization condition in Eq. (15), is in fact the
leading order for the massive GW scalars. Hence we only
need to solve the leading term in Eq. (C30). The normalized
GW-scalar wave function to order ϵ is

γi ¼
2ϵ

μðiÞ
e−k̃rcφ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k̃rcπ

e2πk̃rcJ1ðe
πk̃rcμðiÞ
k̃rc

Þ2 − J1ðμðiÞk̃rc
Þ2

vuut J1

	
ek̃rcφμðiÞ
k̃rc



:

ðC36Þ

Looking at the normalization condition of Eq. (15), we see
that there is no ϵ0 piece. Here we have used the large krc
limit and omitted Bessel-Y functions. The masses of GW
scalars are determined by solutions of the following
transcendental equation:

J2

	
ek̃rcπμðiÞ
k̃rc



Y2

	
μðiÞ
k̃rc



− J2

	
μðiÞ
k̃rc



Y2

	
eπk̃rcμðiÞ
k̃rc



¼ 0:

ðC37Þ

In the large krc limit, this reduces to the simple form

mðiÞ ¼
μðiÞ
rc

¼ k̃e−πk̃rcj2;i; ðC38Þ

where j2;i are roots of J2.

[1] T. Kaluza, Zum Unitätsproblem der physik, Int. J. Mod.
Phys. D 27, 1870001 (2018); Sitzungsber. Preuss. Akad.
Wiss. Berlin (Math. Phys.) 1921, 966 (1921).

[2] O. Klein, Quantum theory and five-dimensional theory
of relativity. (In German and English), Z. Phys. 37, 895
(1926).

[3] L. Randall and R. Sundrum, A Large Mass Hierarchy
from a Small Extra Dimension, Phys. Rev. Lett. 83, 3370
(1999).

[4] L. Randall and R. Sundrum, An Alternative to Compacti-
fication, Phys. Rev. Lett. 83, 4690 (1999).

[5] M. Fierz and W. Pauli, On relativistic wave equations for
particles of arbitrary spin in an electromagnetic field,
Proc. R. Soc. A 173, 211 (1939).

[6] N. Arkani-Hamed, H. Georgi, and M. D. Schwartz,
Effective field theory for massive gravitons and

gravity in theory space, Ann. Phys. (Amsterdam) 305, 96
(2003).

[7] K. Hinterbichler, Theoretical aspects of massive gravity,
Rev. Mod. Phys. 84, 671 (2012).

[8] C. de Rham, Massive gravity, Living Rev. Relativity 17, 7
(2014).

[9] R. Sekhar Chivukula, D. Foren, K. A. Mohan, D. Sengupta,
and E. H. Simmons, Scattering amplitudes of massive spin-2
Kaluza-Klein states grow only as OðsÞ, Phys. Rev. D 101,
055013 (2020).

[10] R. Sekhar Chivukula, D. Foren, K. A. Mohan, D. Sengupta,
and E. H. Simmons, Sum rules for massive spin-2 Kaluza-
Klein elastic scattering amplitudes, Phys. Rev. D 100,
115033 (2019).

[11] R. S. Chivukula, D. Foren, K. A. Mohan, D. Sengupta,
and E. H. Simmons, Massive spin-2 scattering amplitudes

R. SEKHAR CHIVUKULA et al. PHYS. REV. D 107, 035015 (2023)

035015-36

https://doi.org/10.1142/S0218271818700017
https://doi.org/10.1142/S0218271818700017
https://doi.org/10.1142/S0218271818700017
https://doi.org/10.1142/S0218271818700017
https://doi.org/10.1007/BF01397481
https://doi.org/10.1007/BF01397481
https://doi.org/10.1103/PhysRevLett.83.3370
https://doi.org/10.1103/PhysRevLett.83.3370
https://doi.org/10.1103/PhysRevLett.83.4690
https://doi.org/10.1098/rspa.1939.0140
https://doi.org/10.1016/S0003-4916(03)00068-X
https://doi.org/10.1016/S0003-4916(03)00068-X
https://doi.org/10.1103/RevModPhys.84.671
https://doi.org/10.12942/lrr-2014-7
https://doi.org/10.12942/lrr-2014-7
https://doi.org/10.1103/PhysRevD.101.055013
https://doi.org/10.1103/PhysRevD.101.055013
https://doi.org/10.1103/PhysRevD.100.115033
https://doi.org/10.1103/PhysRevD.100.115033


in extra-dimensional theories, Phys. Rev. D 101, 075013
(2020).

[12] D. Foren, Scattering amplitudes in theories of compactified
gravity, Ph.D. thesis, Michigan State University, 2020.

[13] J. Bonifacio and K. Hinterbichler, Unitarization from
geometry, J. High Energy Phys. 12 (2019) 165.

[14] Y.-F. Hang and H.-J. He, Structure of Kaluza-Klein gra-
viton scattering amplitudes from the gravitational equiva-
lence theorem and double copy, Phys. Rev. D 105, 084005
(2022).

[15] R. Hofmann, P. Kanti, and M. Pospelov, (De)stabilization of
an extra dimension due to a Casimir force, Phys. Rev. D 63,
124020 (2001).

[16] R. S. Chivukula, D. Foren, K. A. Mohan, D. Sengupta, and
E. H. Simmons, Spin-2 Kaluza-Klein mode scattering in
models with a massive radion, Phys. Rev. D 103, 095024
(2021).

[17] W. D. Goldberger and M. B. Wise, Modulus Stabilization
with Bulk Fields, Phys. Rev. Lett. 83, 4922 (1999).

[18] W. D. Goldberger and M. B. Wise, Phenomenology of a
stabilized modulus, Phys. Lett. B 475, 275 (2000).

[19] H. M. Lee, M. Park, and V. Sanz, Gravity-mediated (or
Composite) dark matter, Eur. Phys. J. C 74, 2715 (2014).

[20] M. Garny, M. Sandora, and M. S. Sloth, Planckian Interact-
ing Massive Particles as Dark Matter, Phys. Rev. Lett. 116,
101302 (2016).

[21] M. G. Folgado, A. Donini, and N. Rius, Gravity-mediated
scalar dark matter in warped extra-dimensions, J. High
Energy Phys. 01 (2020) 161; Erratum, J. High Energy Phys.
02 (2022) 129.

[22] A. de Giorgi and S. Vogl, Dark matter interacting via a
massive spin-2 mediator in warped extra-dimensions,
J. High Energy Phys. 11 (2021) 036.

[23] C. Csaki, M. L. Graesser, and G. D. Kribs, Radion dynamics
and electroweak physics, Phys. Rev. D 63, 065002 (2001).

[24] L. Kofman, J. Martin, and M. Peloso, Exact identification
of the radion and its coupling to the observable sector, Phys.
Rev. D 70, 085015 (2004).

[25] E. E. Boos, Y. S. Mikhailov, M. N. Smolyakov, and
I. P. Volobuev, Physical degrees of freedom in stabilized
brane world models, Mod. Phys. Lett. A 21, 1431
(2006).

[26] E. E. Boos, V. E. Bunichev, I. P. Volobuev, and M. N.
Smolyakov, Geometry, physics, and phenomenology of the
Randall-Sundrum model, Phys. Part. Nucl. 43, 42 (2012).

[27] W. R. Inc., Mathematica, Version 13.0.0, [Champaign, IL],
https://www.wolfram.com/mathematica (2021).

[28] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevD.107.035015 for GitHub
link to Mathematica [27] files giving expressions for all
spin-2 and spin-0 perturbative wave functions.

[29] J. W. York, Jr., Role of Conformal Three Geometry in the
Dynamics of Gravitation, Phys. Rev. Lett. 28, 1082 (1972).

[30] G.W. Gibbons and S.W. Hawking, Action integrals and
partition functions in quantum gravity, Phys. Rev. D 15,
2752 (1977).

[31] E. Dyer and K. Hinterbichler, Boundary terms, variational
principles and higher derivative modified gravity, Phys. Rev.
D 79, 024028 (2009).

[32] C. Charmousis, R. Gregory, and V. A. Rubakov, Wave
function of the radion in a brane world, Phys. Rev. D 62,
067505 (2000).

[33] C. T. Fulton, Two-point boundary value problems with
eigenvalue parameter contained in the boundary conditions,
Proc. R. Soc. Edinb., Sect. A 77, 293 (1977).

[34] P. Binding, P. J. Browne, and K. Seddighi, Sturm–Liouville
problems with eigenparameter dependent boundary condi-
tions, Proc. Edinb. Math. Soc. 37, 57 (1994).

[35] R. S. Chivukula, E. H. Simmons, and X. Wang, Supersym-
metry and sum rules in the Goldberger-Wise model, Phys.
Rev. D 106, 035026 (2022).

[36] O. DeWolfe, D. Z. Freedman, S. S. Gubser, and A. Karch,
Modeling the fifth-dimension with scalars and gravity,
Phys. Rev. D 62, 046008 (2000).

[37] I. Gradshteyn and I. Ryzhik, Table of Integrals, Series, and
Products (Elsevier Science, New York, 2014).

SPIN-2 KALUZA-KLEIN SCATTERING IN A STABILIZED … PHYS. REV. D 107, 035015 (2023)

035015-37

https://doi.org/10.1103/PhysRevD.101.075013
https://doi.org/10.1103/PhysRevD.101.075013
https://doi.org/10.1007/JHEP12(2019)165
https://doi.org/10.1103/PhysRevD.105.084005
https://doi.org/10.1103/PhysRevD.105.084005
https://doi.org/10.1103/PhysRevD.63.124020
https://doi.org/10.1103/PhysRevD.63.124020
https://doi.org/10.1103/PhysRevD.103.095024
https://doi.org/10.1103/PhysRevD.103.095024
https://doi.org/10.1103/PhysRevLett.83.4922
https://doi.org/10.1016/S0370-2693(00)00099-X
https://doi.org/10.1140/epjc/s10052-014-2715-8
https://doi.org/10.1103/PhysRevLett.116.101302
https://doi.org/10.1103/PhysRevLett.116.101302
https://doi.org/10.1007/JHEP01(2020)161
https://doi.org/10.1007/JHEP01(2020)161
https://doi.org/10.1007/JHEP02(2022)129
https://doi.org/10.1007/JHEP02(2022)129
https://doi.org/10.1007/JHEP11(2021)036
https://doi.org/10.1103/PhysRevD.63.065002
https://doi.org/10.1103/PhysRevD.70.085015
https://doi.org/10.1103/PhysRevD.70.085015
https://doi.org/10.1142/S0217732306020792
https://doi.org/10.1142/S0217732306020792
https://doi.org/10.1134/S1063779612010017
https://www.wolfram.com/mathematica
https://www.wolfram.com/mathematica
https://www.wolfram.com/mathematica
http://link.aps.org/supplemental/10.1103/PhysRevD.107.035015
http://link.aps.org/supplemental/10.1103/PhysRevD.107.035015
http://link.aps.org/supplemental/10.1103/PhysRevD.107.035015
http://link.aps.org/supplemental/10.1103/PhysRevD.107.035015
http://link.aps.org/supplemental/10.1103/PhysRevD.107.035015
http://link.aps.org/supplemental/10.1103/PhysRevD.107.035015
http://link.aps.org/supplemental/10.1103/PhysRevD.107.035015
https://doi.org/10.1103/PhysRevLett.28.1082
https://doi.org/10.1103/PhysRevD.15.2752
https://doi.org/10.1103/PhysRevD.15.2752
https://doi.org/10.1103/PhysRevD.79.024028
https://doi.org/10.1103/PhysRevD.79.024028
https://doi.org/10.1103/PhysRevD.62.067505
https://doi.org/10.1103/PhysRevD.62.067505
https://doi.org/10.1017/S030821050002521X
https://doi.org/10.1017/S0013091500018691
https://doi.org/10.1103/PhysRevD.106.035026
https://doi.org/10.1103/PhysRevD.106.035026
https://doi.org/10.1103/PhysRevD.62.046008

