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Abstract

In offline multi-agent reinforcement learning (MARL),
agents estimate policies from a given dataset. We study
reward-poisoning attacks in this setting where an exogenous
attacker modifies the rewards in the dataset before the agents
see the dataset. The attacker wants to guide each agent into a
nefarious target policy while minimizing the Lp norm of the
reward modification. Unlike attacks on single-agent RL, we
show that the attacker can install the target policy as a Markov
Perfect Dominant Strategy Equilibrium (MPDSE), which ra-
tional agents are guaranteed to follow. This attack can be
significantly cheaper than separate single-agent attacks. We
show that the attack works on various MARL agents includ-
ing uncertainty-aware learners, and we exhibit linear pro-
grams to efficiently solve the attack problem. We also study
the relationship between the structure of the datasets and the
minimal attack cost. Our work paves the way for studying
defense in offline MARL.

Introduction
Multi-agent reinforcement learning (MARL) has achieved
tremendous empirical success across a variety of tasks
such as autonomous driving, cooperative robotics, economic
policy-making, and video games. In MARL, several agents
interact with each other and the underlying environment,
and each of them aims to optimize their individual long-
term reward (Zhang, Yang, and Başar 2021). Such prob-
lems are often formulated under the framework of Markov
Games (Shapley 1953), which generalizes the Markov Deci-
sion Process model from single-agent RL. In offline MARL,
the agents aim to learn a good policy by exploiting a pre-
collected dataset without further interactions with the envi-
ronment or other agents (Pan et al. 2022; Jiang and Lu 2021;
Cui and Du 2022; Zhong et al. 2022). The optimal solution
in MARL typically involves equilibria concepts.

While the above empirical success is encouraging, MARL
algorithms are susceptible to data poisoning attacks: the
agents can reach the wrong equilibria if an exogenous at-
tacker manipulates the feedback to agents. For example,
a third-party attacker may want to interfere with traffic to
cause autonomous vehicles to behave abnormally; teach
robots an incorrect procedure so that they fail at certain
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tasks; misinform economic agents about the state of the
economy and guide them to make irrational investments or
saving decisions; or cause the non-player characters in a
video game to behave improperly to benefit certain human
players. In this paper, we study the security threat posed
by reward-poisoning attacks on offline MARL. Here, the at-
tacker wants the agents to learn a target policy π† of the at-
tacker’s choosing (π† does not need to be an equilibrium in
the original Markov Game). Meanwhile, the attacker wants
to minimize the amount of dataset manipulation to avoid de-
tection and accruing high cost. This paper studies optimal
offline MARL reward-poisoning attacks. Our work serves as
a first step toward eventual defense against reward-poisoning
attacks.

Our Contributions
We introduce reward-poisoning attacks in offline MARL.
We show that any attack that reduces to attacking single-
agent RL separately must be suboptimal. Consequently, new
innovations are necessary to attack effectively. We present a
reward-poisoning framework that guarantees the target pol-
icy π† becomes a Markov Perfect Dominant Strategy Equi-
librium (MPDSE) for the underlying Markov Game. Since
any rational agent will follow an MPDSE if it exists, this en-
sures the agents adopt the target policy π†. We also show the
attack can be efficiently constructed using a linear program.

The attack framework has several important features.
First, it is effective against a large class of offline MARL
learners rather than a specific learning algorithm. Second,
the framework allows partially decentralized agents who
can only access their own individual rewards rather than
the joint reward vectors of all agents. Lastly, the framework
only makes the minimal assumption on the rationality of the
learners that they will not take dominated actions.

We also give interpretable bounds on the minimal cost to
poison an arbitrary dataset. These bounds relate the mini-
mal attack cost to the structure of the underlying Markov
Game. Using these bounds, we derive classes of games that
are especially cheap or expensive for the attacker to poison.
These results show which games may be more susceptible
to an attacker, while also giving insight to the structure of
multi-agent attacks.

In the right hands, our framework could be used by a
benevolent entity to coordinate agents in a way that im-
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proves social welfare. However, a malicious attacker could
exploit the framework to harm learners and only benefit
themselves. Consequently, our work paves the way for fu-
ture study of MARL defense algorithms.

Related Work
Online Reward-Poisoning: Reward poisoning problem
has been studied in various settings, including online single-
agent reinforcement learners (Banihashem et al. 2022;
Huang and Zhu 2019; Liu and Lai 2021; Rakhsha et al.
2021a,b, 2020; Sun, Huo, and Huang 2020; Zhang et al.
2020), as well as online bandits (Bogunovic et al. 2021;
Garcelon et al. 2020; Guan et al. 2020; Jun et al. 2018;
Liu and Shroff 2019; Lu, Wang, and Zhang 2021; Ma et al.
2018; Yang et al. 2021; Zuo 2020). Online reward poisoning
for multiple learners is recently studied as a game redesign
problem in (Ma, Wu, and Zhu 2021).

Offline Reward Poisoning: Ma et al. (2019); Rakhsha
et al. (2020, 2021a); Rangi et al. (2022b); Zhang and Parkes
(2008); Zhang, Parkes, and Chen (2009) focus on adversarial
attack on offline single-agent reinforcement learners. Gleave
et al. (2019); Guo et al. (2021) study the poisoning attack
on multi-agent reinforcement learners, assuming that the at-
tacker controls one of the learners. Our model instead as-
sumes that the attacker is not one of the learners, and the
attacker wants to and is able to poison the rewards of all
learners at the same time. Our model pertains to many appli-
cations such as autonomous driving, robotics, traffic control,
and economic analysis, in which there is a central controller
whose interests are not aligned with any of the agents and
can modify the rewards and therefore manipulate all agents
at the same time.

Constrained Mechanism Design: Our paper is also re-
lated to the mechanism design literature, in particular, the
K-implementation problem in (Monderer and Tennenholtz
2004; Anderson, Shoham, and Altman 2010). Our model
differs mainly in that the attacker, unlike a mechanism de-
signer, does not alter the game/environment directly, but in-
stead modifies the training data, from which the learners in-
fer the underlying game and compute their policy accord-
ingly. In practical applications, rewards are often stochastic
due to imprecise measurement and state observation, hence
the mechanism design approach is not directly applicable to
MARL reward poisoning. Conversely, constrained mecha-
nism design can be viewed as a special case when the re-
wards are deterministic and the training data has uniform
coverage of all period-state-action tuples.

Defense against Attacks on Reinforcement Learning:
There is also recent work on defending against reward poi-
soning or adversarial attacks on reinforcement learning; ex-
amples include (Banihashem, Singla, and Radanovic 2021;
Lykouris et al. 2021; Rangi et al. 2022a; Wei, Dann, and
Zimmert 2022; Wu et al. 2022; Zhang et al. 2021a,b). These
work focus on the single-agent setting where attackers have
limited ability to modify the training data. We are not aware
of defenses against reward poisoning in our offline multi-
agent setting. Given the numerous real-world applications of

offline MARL, we believe it is important to study the multi-
agent version of the problem.

Preliminaries
Markov Games. A finite-horizon general-sum n-player
Markov Game is given by a tuple G = (S,A, P,R,H, µ)
(Littman 1994). Here S is the finite state space, and A =
A1 × · · · × An is the finite joint action space. We use a =
(a1, . . . , an) ∈ A to represent a joint action of the n learn-
ers; we sometimes write a = (ai, a−i) to emphasize that
learner i takes action ai and the other n−1 learners take joint
action a−i. For each period h ∈ [H], Ph : S × A → ∆(S)
is the transition function, where ∆(S) denotes the probabil-
ity simplex on S , and Ph(s

′|s,a) is the probability that the
state is s′ in period h + 1 given the state is s and the joint
action is a in period h. Rh : S × A → Rn is the mean
reward function for the n players, where Ri,h(s,a) denotes
the scalar mean reward for player i in state s and period h
when the joint action a is taken. The initial state distribution
is µ.

Policies and value functions. We use π to denote a de-
terministic Markovian policy for the n players, where πh :
S → A is the policy in period h and πh(s) specifies the joint
action in state s and period h. We write πh = (πi,h, π−i,h),
where πi,h(s) is the action taken by learner i and π−i,h(s)
is the joint action taken by learners other than i in state s
period h. The value of a policy π represents the expected
cumulative rewards of the game assuming learners take ac-
tions according to π. Formally, the Q value of learner i in
state s in period h under a joint action a is given recursively
by

Qπ
i,H (s,a) = Ri,H (s,a) ,

Qπ
i,h (s,a) = Ri,h (s,a) +

∑
s′∈S

Ph (s
′|s,a)V π

i,h+1 (s
′) .

The value of learner i in state s in period h under policy π is
given by V π

i,h (s) = Qπ
i,h (s,πh (s)), and we use V π

h(s) ∈
Rn to denote the vector of values for all learners in state s in
period h under policy π.

Offline MARL. In offline MARL, the learners are given a
fixed batch dataset D that records historical plays of n agents
under some behavior policies, and no further sampling is al-
lowed. We assume that D =

{(
s
(k)
h ,a

(k)
h , r

0,(k)
h

)H
h=1

}K

k=1
contains K episodes of length H . The data tuple in period
h of episode k consists of the state s

(k)
h ∈ S , the joint ac-

tion profile a(k)
h ∈ A, and reward vector r0,(k)h ∈ Rn, where

the superscript 0 denotes the original rewards before any at-
tack. The next state s

(k)
h+1 can be found in the next tuple.

Given the shared data D, each learner independently con-
structs a policy πi to maximize their own cumulative re-
ward. They then behave according to the resulting joint pol-
icy π = (π1, . . . , πn) in future deployment. Note that in a
multi-agent setting, the learners’ optimal solution concept
is typically an approximate Nash equilibrium or Dominant
Strategy Equilibrium (Cui and Du 2022; Zhong et al. 2022).
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An agent’s access to D may be limited, for example, due
to privacy reasons. There are multiple levels of accessibil-
ity. In the first level, the agents can only access data that
directly involves itself: instead of the tuple (sh,ah, rh),
agent i would only be able to see (sh, ai,h, ri,h). In the sec-
ond level, agent i can see the joint action but only its own
reward: (sh,ah, ri,h). In the third level, agent i can see the
whole (sh,ah, rh). We focus on the second level in this pa-
per.

Let Nh (s,a) =
∑K

k=1 1{s(k)
h =s,a

(k)
h =a} be the total num-

ber of episodes containing (s,a, ·) in period h. We consider
a dataset D that satisfies the following coverage assumption.

Assumption 1. (Full Coverage) For each (s,a) and h,
Nh (s,a) > 0.

While this assumption might appear strong, we later show
that it is necessary to effectively poison the dataset.

Attack Model
We assume that the attacker has access to the original dataset
D. The attacker has a pre-specified target policy π† and at-
tempts to poison the rewards in D with the goal of forc-
ing the learners to learn π† from the poisoned dataset. The
attacker also desires that the attack has a minimal cost.
We let C(r0, r†) denote the cost of a specific poisoning,
where r0 =

{(
r
0,(k)
h

)H
h=1

}K

k=1
are the original rewards and

r† =
{(

r
†,(k)
h

)H
h=1

}K

k=1
are the poisoned rewards. We focus

on the L1-norm cost C(r0, r†) = ∥r0 − r†∥1.

Rationality. For generality, the attacker makes minimal
assumptions about the learners’ rationality. Namely, the at-
tacker only assumes that the learners never take dominated
actions (Monderer and Tennenholtz 2004). For technical rea-
sons, we strengthen this assumption slightly by introducing
an arbitrarily small margin ι > 0 (e.g. representing the learn-
ers’ numerical resolution).

Definition 1. A ι-strict Markov perfect dominant strategy
equilibrium (ι-MPDSE) of a Markov Game G is a policy π
satisfying that for all learners i ∈ [n], periods h ∈ [H], and
states s ∈ S ,

∀ ai ∈ Ai, ai ̸= πi,h(s), a−i ∈ A−i :

Qπ
i,h (s, (πi,h(s), a−i)) ≥ Qπ

i,h (s, (ai, a−i)) + ι.

Note that a strict MPDSE, if exists, must be unique.

Assumption 2. (Rationality) The learners will play an ι-
MPDSE should one exist.

Uncertainty-aware attack. State-of-the-art MARL algo-
rithms are typically uncertainty-aware (Cui and Du 2022;
Zhong et al. 2022), meaning that learners are cognizant of
the model uncertainty due to finite, random data and will
calibrate their learning procedure accordingly. The attacker
accounts for such uncertainty-aware learners but does not
know the learners’ specific algorithm or internal parameters.
It only assumes that the policies computed by the learn-
ers are solutions to some game that is plausible given the
dataset. Accordingly, the attacker aims to poison the dataset

in such a way that the target policy is an ι-MPDSE for every
game that is plausible for the poisoned dataset.

To formally define the set of plausible Markov Games for
a given dataset D, we first need a few definitions.
Definition 2. (Confidence Game Set) The confidence set on
the transition function Ph (s,a) has the form:

CIPh (s,a) :=
{
Ph (s,a) ∈ ∆(A) :

∥Ph (s,a)− P̂h (s,a) ∥1 ≤ ρPh (s,a)
}

where
P̂h(s

′|s,a) :=
1

Nh(s,a)

∑K
k=1 1{s(k)

h+1=s′,s
(k)
h =s,a

(k)
h =a}

is the maximum likelihood estimate (MLE) of the true tran-
sition probability. Similarly, the confidence set on the reward
function Ri,h (s,a) has the form:

CIRi,h (s,a) :=
{
Ri,h (s,a) ∈ [−b, b] :

|Ri,h (s,a)− R̂i,h (s,a) | ≤ ρRh (s,a)
}
,

where
R̂i,h(s,a) :=

1

Nh(s,a)

∑K
k=1 r

0,(k)
i,h 1{s(k)

h =s,a
(k)
h =a} is

the MLE of the reward. Then, the set of all plausible Markov
Games consistent with D, denoted by CIG, is defined to be:

CIG :=
{
G = (S,A, P,R,H, µ) : Ph (s,a) ∈ CIPh (s,a) ,

Ri,h (s,a) ∈ CIRi,h (s,a) , ∀ i, h, s,a
}
.

Note that both the attacker and the learners know that all
of the rewards are bounded within [−b, b] (we allow b = ∞).
The values of ρPh (s,a) and ρRh (s,a) are typically given
by concentration inequalities. One standard choice takes the
Hoeffding-type form ρPh (s,a) ∝ 1/

√
max{Nh(s, a), 1},

and ρRh (s,a) ∝ 1/
√

max{Nh(s, a), 1}, where we recall
that Nh(s, a) is the visitation count of the state-action pair
(s, a) (Xie et al. 2020; Cui and Du 2022; Zhong et al. 2022).
We remark that with proper choice of ρPh and ρRh , CIG con-
tains the game constructed by optimistic MARL algorithms
with upper confidence bounds (Xie et al. 2020), as well as
that by pessimistic algorithms with lower confidence bounds
(Cui and Du 2022; Zhong et al. 2022). See the appendix for
details.

With the above definition, we consider an attacker that at-
tempts to modify the original dataset D into D† so that π† is
an ι-MPDSE for every plausible game in CIG induced by the
poisoned D†. This would guarantee the learners adopt π†.

The full coverage Assumption 1 is necessary for the above
attack goal, as shown in the following proposition. We defer
the proof to the appendix.
Proposition 1. If Nh (s,a) = 0 for some (h, s,a), then
there exist MARL learners for which the attacker’s problem
is infeasible.

Poisoning Framework
In this section, we first argue that naively applying single-
agent poisoning attacks separately to each agent results in
suboptimal attack cost. We then present a new optimal poi-
soning framework that accounts for multiple agents and
thereby allows for efficiently solving the attack problem.
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A1 \ A2 1 2
1 (3, 3) (1, 2)
2 (2, 1) (0, 0)

Table 1: Single-agent attack reduction example

Ai r
1 {3, 1}
2 {2, 0}

Table 2: Single-agent attack reduction

Suboptimality of single-agent attack reduction. As a
first attempt, the attacker could try to use existing single-
agent RL reward poisoning methods. However, this ap-
proach is doomed to be suboptimal. Consider the game in
Table 1 with n = 2 learners, one period, and one state.

Suppose that the original dataset D has full coverage. For
simplicity, we assume that each (s,a) pair appears suffi-
ciently many times so that ρR is small. In this case, the tar-
get policy π† = (1, 1) is already an MPDSE, so no reward
modification is needed. However, if we use a single-agent
approach, each learner i will observe the dataset in Table 2.
In this case, to learner i it is not immediately clear which
of the two actions is strictly better, for example, when 1, 2
appears relatively more often than 3, 0. To ensure that both
players take action 1, the attacker needs to modify at least
one of the rewards for each player, thus incurring a nonzero
(and thus suboptimal) attack cost.

The example above shows that a new approach is needed
to construct an optimal poisoning framework tailored to the
multi-agent setting. Below we develop such a framework,
first for the simple Bandit Game setting, which is then gen-
eralized to Markov Games.

Bandit Game Setting

As a stepping stone, we start with a subclass of Markov
Games with |S| = 1 and H = 1, which are sometimes
called bandit games. A bandit game consists of a single-
stage normal-form game. For now, we also pretend that the
learners simply use the data to compute an MLE point esti-
mate Ĝ of the game and then solve the estimated game Ĝ.
This is unrealistic, but it highlights the attacker’s strategy to
enforce that π† is an ι-strict DSE in Ĝ.

Suppose the original dataset is D =
{
(a(k), r0,(k))

}K

k=1
(recall we no longer have state or period). Also, let N(a) :=∑K

k=1 1{a(k)=a} be the action counts. The attacker’s prob-
lem can be formulated as a convex optimization problem
given in (1).

min
r†

C
(
r0, r†

)
s.t. R†(a) :=

1

N(a)

K∑
k=1

r†,(k)1{a(k)=a}, ∀a;

R†
i

(
π†
i , a−i

)
≥ R†

i (ai, a−i) + ι, ∀ i, a−i, ai ̸= π†
i ;

r†,(k) ∈ [−b, b]
n
, ∀ k.

(1)
The first constraint in (1) models the learners’ MLE Ĝ

after poisoning. The second constraint enforces that π† is an
ι-strict DSE of Ĝ by definition. We observe that:
1. The problem is feasible if ι ≤ 2b, since the attacker can

always set, for each agent, the reward to be b for the target
action and −b for all other actions;

2. If the cost function C(·, ·) is the L1-norm, the prob-
lem is a linear program (LP) with nK variables and
(A − 1)An−1 + 2nK inequality constraints (assuming
each learner has |Ai| = A actions);

3. After the attack, learner i only needs to see its own re-
wards to be convinced that π†

i is a dominant strategy;
learner i does not need to observe other learners’ rewards.

This simple formulation serves as an asymptotic approxi-
mation to the attack problem for confidence-bound-based
learners. In particular, when N(a) is large for all a, the con-
fidence intervals on P and R are usually small.

With the above idea in place, we can consider more re-
alistic learners that are uncertainty-aware. For these learn-
ers, the attacker attempts to enforce an ι separation between
the lower bound of the target action’s reward and the upper
bounds of all other actions’ rewards (similar to arm elimi-
nation in bandits). With such separation, all plausible games
in CIG would have the target action profile as the dominant
strategy equilibrium. This approach can be formulated as a
slightly more complex optimization problem (2), where the
second and third constraints enforce the desired ι separation.
The formulation (2) can be solved using standard optimiza-
tion solvers, hence the optimal attack can be computed effi-
ciently.

min
r†

C(r0, r†)

s.t. R†(a) :=
1

N(a)

K∑
k=1

r†,(k)1{a(k)=a}, ∀ a;

CIR
†

i (a) :=
{
Ri(a) ∈ [−b, b] :

∣∣Ri(a)−R†
i (a)

∣∣
≤ ρR(a)

}
, ∀ i,a;

min
Ri∈CIR†

i (π†
i ,a−i)

Ri ≥ max
Ri∈CIR†

i (ai,a−i)

Ri + ι,

∀ i, a−i, ai ̸= π†
i ;

r†,(k) ∈ [−b, b]
n
, ∀ k.

(2)

We next consider whether this formulation has a feasi-
ble solution. Below we characterize the feasibility of the at-
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tack in terms of the margin parameter ι and the confidence
bounds.
Proposition 2. The attacker’s problem (2) is feasible if ι ≤
2b− 2ρR (a) , ∀ a ∈ A.

Proposition 2 is a special case of the general Theorem 5
with H = |S| = 1. We note that the condition in Propo-
sition 2 has an equivalent form that relates to the structure
of the dataset. We later present this form for a more general
case.

When an L1-norm cost function is used, we show in the
appendix that the formulation (2) can also be efficiently
solved.
Proposition 3. With L1-norm cost function C (·, ·), the
problem (2) can be formulated as a linear program.

Markov Game Setting
We now generalize the ideas from the bandit setting to derive
a poisoning framework for arbitrary Markov Games. With
multiple states and periods, there are two main complica-
tions:
1. In each period h, the learners’ decision depends on Qh,

which involves both the immediate reward Rh and the
future return Qh+1;

2. The uncertainty in Qh amplifies as it propagates back-
ward in h.

Accordingly, the attacker needs to design the poisoning at-
tack recursively.

Our main technical innovation is an attack formulation
based on Q confidence-bound backward induction. The at-
tacker maintains confidence upper and lower bounds on the
learners’ Q function, Q, and Q, with backward induction.
To ensure π† becomes an ι-MPDSE, the attacker again at-
tempts to ι-separate the lower bound of the target action and
the upper bound of all other actions, at all states and periods.

Recall Definition 2: given the training dataset D, one can
compute the MLEs Rh and corresponding confidence sets
CIRi,h for the reward. The attacker aims to poison D into
D† so that the MLEs and confidence sets become R†

h and
CIR

†

i,h, under which π† is the unique ι-MPDSE for all plau-
sible games in the corresponding confidence game set. The
attacker finds the minimum cost way of doing so by solv-
ing a Q confidence-bound backward induction optimization
problem, given in (3)–(7).

min
r†

C
(
r0, r†

)
(3)

s.t. R†
i,h (s,a) :=

1

Nh (s,a)

K∑
k=1

r
†,(k)
i,h 1{

s
(k)
h =s,a

(k)
h =a

},
∀ h, s, i,a

CIR
†

i,h (s,a) :=
{
Ri,h (s,a) ∈ [−b, b]

:
∣∣Ri,h (s,a)−R†

i,h (s,a)
∣∣ ≤ ρRh (s,a)

}
,

∀ h, s, i,a

Q
i,H

(s,a) := min
Ri,H∈CIR†

i,H(s,a)

Ri,H , ∀ s, i,a

Q
i,h

(s,a) := min
Ri,h∈CIR†

i,h(s,a)

Ri,h

+ min
Ph∈CIPh (s,a)

∑
s′∈S

Ph (s
′)Q

i,h+1

(
s′,π†

h+1 (s
′)
)
,

∀ h < H, s, i,a (4)

Qi,H (s,a) := max
Ri,H∈CIR†

i,H(s,a)

Ri,H , ∀ s, i,a

Qi,h (s,a) := max
Ri,h∈CIR†

i,h(s,a)

Ri,h

+ max
Ph∈CIPh (s,a)

∑
s′∈S

Ph (s
′)Qi,h+1

(
s′,π†

h+1 (s
′)
)
,

∀ h < H, s, i,a (5)

Q
i,h

(
s,
(
π†
i,h(s), a−i

))
≥ Qi,h (s, (ai, a−i)) + ι,

∀ h, s, i, a−i, ai ̸= π†
i,h (s) (6)

r
†,(k)
h ∈ [−b, b]

n
, ∀ h, k. (7)

The backward induction steps (4) and (5) ensure that Q
and Q are valid lower and upper bounds for the Q function
for all plausible Markov Games in CIG, for all periods. The
margin constraints (6) enforce an ι-separation between the
target action and other actions at all states and periods. We
emphasize that the agents need not consider Q at all in their
learning algorithm; Q only appears in the optimization due
to its presence in the definition of MPDSE.

Again, pairing an efficient optimization solver with the
above formulation gives an efficient algorithm for construct-
ing the poisoning. We now answer the important questions
of whether this formulation admits a feasible solution and
whether these solutions yield successful attacks. The lemma
below provides a positive answer to the second question.

Lemma 4. If the attack formulation (3)–(7) is feasible, π†

is the unique ι-MPDSE of every Markov Game G ∈ CIG.

Moreover, the attack formulation admits feasible solu-
tions under mild conditions on the dataset.

Theorem 5. The attacker formulation (3)–(7) is feasible if
the following condition holds:

ι ≤ 2b− (H + 1) ρRh (s,a) , ∀ h ∈ [H] , s ∈ S,a ∈ A.

We remark that the learners know the upper bound b and
may use it to exclude implausible games. The accumulation
of confidence intervals over the H periods results in the extra
factor (H + 1) on ρRh . Theorem 5 implies that the problem
is feasible so long as the dataset is sufficiently populated;
that is, each (s, a) pair should appear frequently enough to
have a small confidence interval half-width ρRh . The follow-
ing corollary provides a precise condition on the visit ac-
counts that guarantees feasibility.

Corollary 6. Given a confidence probability δ and the con-
fidence interval half-width ρRh (s,a) = f( 1

Nh(s,a)
) for some
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strictly increasing function f , the condition in Theorem 5
holds if

Nh(s,a) ≥
(
f−1

( 2b− ι

H + 1

))−1

.

In particular, for the natural choice of Hoeffding-type

ρRh (s,a) = 2b

√
log ((H |S| |A|) /δ)
max {Nh (s,a) , 1}

, it suffices that,

Nh(s,a) ≥
4b2 (H + 1)

2
log ((H |S| |A|) /δ)

(2b− ι)
2 .

Despite the inner min and max in the problem (3)–(7), the
problem can be formulated as an LP, thanks to LP duality.
Theorem 7. With L1-norm cost function C(·, ·), prob-
lem (3)–(7) can be formulated as an LP.
The proofs of the above results can be found in the appendix.

Cost Analysis
Now that we know how the attacker can poison the dataset in
the multi-agent setting, we can study the structure of attacks.
The structure is most easily seen by analyzing the minimal
attack cost. To this end, we give general bounds that relate
the minimal attack cost to the structure of the underlying
Markov Game. The attack cost upper bounds show which
games are particularly susceptible to poison, and the attack
cost lower bounds demonstrate that some games are expen-
sive to poison.

Overview of results: Specifically, we shall present two
types of upper/lower bounds on the attack cost: (i) univer-
sal bounds that hold for all attack problem instances simul-
taneously; (ii) instance-dependent bounds that are stated in
terms of certain properties of the instance. We also discuss
problem instances under which these two types of bounds
are tight and coincide with each other.

We note that all bounds presented here are with respect
to the L1-cost, but many of them generalize to other cost
functions, especially the L∞-cost. The proofs of the results
presented in this section are provided in the appendix.

Setup: Let I = (D,π†, ρR, ρP , ι) denote an instance
of the attack problem, and Ĝ denote the corresponding
MLE of the Markov Game derived from D. We denote by
Ih = (Dh,π

†
h, ρ

R
h , ρ

P
h , ι) the restriction of the instance to

period h. In particular, R̂h(s) derived from Dh is exactly
the normal-form game at state s and period h of Ĝ. We
define C∗(I) to be the optimal L1-poisoning cost for the
instance I; that is, C∗(I) is the optimal value of the opti-
mization problem (3)–(7) evaluated on I . We say the attack
instance I is feasible if this optimization problem is feasi-
ble. If I is infeasible, we define C∗(I) = ∞. WLOG, we
assume that |A1| = · · · = |An| = A. In addition, we define
the minimum visit count for each period h in D as Nh :=
mins∈S mina∈A Nh (s,a), and the minimum over all peri-
ods as N := minh∈H Nh. We similarly define the maxi-
mum visit counts as Nh = maxs∈S maxa∈A Nh (s,a) and
N = maxh Nh. Lastly, we define ρ = minh,s,a ρRh (s,a)

and ρ = maxh,s,a ρRh (s,a), the minimum and maximum
confidence half-width.

A1/A2 1 2 ... |A2|
1 −b,−b −b, b ... −b, b
2 b,−b b, b ... b, b
... ... ... ... ...
|A1| b,−b b, b ... b, b

Table 3: MLE R̂h(s, ·) before attack

A1/A2 1 . . . 2, ..., |A2|
1 b, b . . . b, b−2ρ−ι
...

...
...

...
2, ..., |A1| b−2ρ−ι, b . . . b−2ρ−ι, b−2ρ−ι

Table 4: MLE R̂h(s, ·) after attack

Universal Cost Bounds
With the above definitions, we present universal attack cost
bounds that hold simultaneously for all attack instances.
Theorem 8. For any feasible attack instance I , we have
that,

0 ≤ C∗(I) ≤ NH|S|nAn2b.

As these upper and lower bounds hold for all instances, they
are typically loose. However, they are nearly tight. If π† is
already an ι-MPDSE for all plausible games, then no change
to the rewards is needed and the attack cost is 0, hence the
lower bound is tight for such instances. We can also con-
struct a high-cost instance to show the near-tightness of the
upper bound.

Specifically, consider the dataset for a bandit game, D ={
(a(k), r0,(k))

}K

k=1
, where A = An and each action ap-

pears exactly N times, i.e., N = N = N and K = NAn.
The target policy is π† = (1, . . . , 1). The dataset is con-
structed so that r0,(k)i = −b if a(k)

i = π†
i,h (s) and r

0,(k)
i =

b otherwise. These rewards are essentially the extreme op-
posite of what the attacker needs to ensure π† is an ι-DSE.
Note, the dataset induces the MLE of the game shown in
Table 3 for the special case with n = 2 players.

For simplicity, suppose that the same confidence half-
width ρR (a) = ρ < b is used for all a. Let ι ∈ (0, b)
be arbitrary. For this instance, to install π† as the ι-DSE, the
attacker can flip all rewards in a way that is illustrated in
Table 4, inducing a cost as the upper bound in Theorem 8.
The situation is the same for n ≥ 2 learners. Our instance-
dependent lower bound, presented later in Theorem 12, im-
plies that any attack on this instance must have cost at least
NnAn−1(2b+2ρ+ι). This lower bound matches the refined
upper bound in the proof of Theorem 9, implying the refined
bounds are tight for this instance. Noticing that the universal
bound in Theorem 8 only differs by an O(A)-factor implies
it is nearly tight.

Instance-Dependent Cost Bounds
Next, we derive general bounds on the attack cost that de-
pends on the structure of the underlying instance. Our strat-
egy is to reduce the problem of bounding Markov Game

10431



costs to the easier problem of bounding Bandit Game costs.
We begin by showing that the cost of poisoning a Markov
Game dataset can be bounded in terms of the cost of poi-
soning the datasets corresponding to its individual period
games.
Theorem 9. For any feasible attack instance I , we have that
C∗(IH) ≤ C∗(I) and,

C∗(I) ≤
H∑

h=1

C∗(Ih) + 2bnH|S|N +H2ρ|S|nAnN

Here we see the effect of the learner’s uncertainty. If ρR

is small, then poisoning costs slightly more than poisoning
each bandit instance independently. This is desirable since it
allows the attacker to solve the much easier bandit instances
instead of the full problem.

The lower bound is valid for all Markov Games, but it
is weak in that it only uses the last period cost. However,
this is the most general lower bound one can obtain without
additional assumptions on the structure of the game. If we
assume additional structure on the dataset, then the above
lower bound can be extended beyond the last period, forcing
a higher attack cost.
Lemma 10. Let I be any feasible attack instance containing
at least one uniform transition in CIPh for each period h, i.e.,
there is some P̂h(s

′ | s,a) ∈ CIPh with P̂h(s
′ | s,a) =

1/|S|, ∀h, s′, s,a. Then, we have that

C∗(I) ≥
H∑

h=1

C∗(Ih).

In words, for these instances the optimal cost for poisoning
is not too far off from the optimal cost of poisoning each
period game independently. We note this is where the effects
of ρP show themselves. If the dataset is highly uncertain on
the transitions, it becomes likely that a uniform transition
exists in CIP . Thus, a higher ρP leads to a higher cost and
effectively devolves the set of plausible games into a series
of independent games.

Now that we have the above relationships, we can focus
on bounding the attack cost for bandit games. To be precise,
we bound the cost of poisoning a period game instance Ih.
To this end, we define ι-dominance gaps.
Definition 3. (Dominance Gaps) For every h ∈ [H] , s ∈
S, i ∈ [n] and a−i ∈ A−i, the ι-dominance gap,
dιi,h(s, a−i), is defined as

dιi,h (s, a−i) :=[
max

ai ̸=π†
i,h(s)

[
R̂i,h

(
s, (ai, a−i)

)
+ ρRh

(
s, (ai, a−i)

)]
− R̂i,h

(
s,
(
π†
i,h(s), a−i

))
+ ρRh

(
s,
(
π†
i,h(s), a−i

))
+ ι

]
+

where R̂ is the MLE w.r.t. the original dataset D.
The dominance gaps measure the minimum amount by
which the attacker would have to increase the reward for
learner i while others are playing a−i, so that the action

π†
i,h (s) becomes ι-dominant for learner i. We then consol-

idate all the dominance gaps for period h into the variable
∆h(ι),

∆h(ι) :=
∑
s∈S

n∑
i=1

∑
a−i

(
dιi,h(s, a−i) + διi,h(s, a−i)

)
Where διi,h(s, a−i) is a minor overflow term defined in the
appendix. With all this machinery set up, we can give precise
bounds on the minimal cost needed to attack a single-period
game.
Lemma 11. The optimal attack cost for Ih satisfies

Nh∆h(ι) ≤ C∗(Ih) ≤ Nh∆h(ι).

Combining these bounds with Theorem 9 gives complete at-
tack cost bounds for general Markov game instances.

The lower bounds in both Lemma 10 and Lemma 11 ex-
pose an exponential dependency on n, the number of play-
ers, for some datasets D. These instances essentially require
the attacker to modify R̂i,h(s,a) for every a ∈ A. A con-
crete instance can be constructed by taking the high-cost
dataset derived as the tight example before and extending
it into a general Markov Game. We simply do this by giving
the game several identical states and uniform transitions. In
terms of the dataset, each episode consists of independent
plays of the same normal-form game, possibly with a dif-
ferent state observed. For this dataset the ι-dominance gap
can be shown to be dιi,h (s, a−i) = 2b + 2ρ + ι. A direct
application of Lemma 10 gives the following explicit lower
bound.
Theorem 12. There exists a feasible attack instance I for
which it holds that

C∗(I) ≥ NH |S|nAn−1 (2b+ 2ρ+ ι) .

Recall the attacker wants to assume little about the learn-
ers and therefore chooses to install an ι-MPDSE (instead of
making stronger assumptions on the learners and installing a
Nash equilibrium or a non-Markov perfect equilibrium). On
some datasets D, the exponential poisoning cost is the price
the attacker pays for this flexibility.

Conclusion
We studied a security threat to offline MARL where an at-
tacker can force learners into executing an arbitrary Domi-
nant Strategy Equilibrium by minimally poisoning historical
data. We showed that the attack problem can be formulated
as a linear program, and provided an analysis on the attack
feasibility and cost. This paper thus helps to raise awareness
of the trustworthiness of multi-agent learning. We encourage
the community to study defense against such attacks, e.g. via
robust statistics and reinforcement learning.
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