Bacterial and chemical evidence of coastal water

2 pollution from the Tijuana River in sea spray aerosol

- 3 Matthew A. Pendergraft^{1*}, Pedro Beldá-Ferre², Daniel Petras^{1,3,4}, Clare K. Morris^{1,5}, Brock A.
- 4 Mitts⁵, Allegra T. Aron³, MacKenzie Bryant², Tara Schwartz², Gail Ackermann², Greg
- 5 Humphrey², Ethan Kaandorp⁶, Pieter C. Dorrestein^{2,3,7}, Rob Knight^{2,7,8,9}, Kimberly A.
- 6 $Prather^{1,5}*$
- 7 1. Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92037, USA
- 8 2. Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
- 9 3. Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Science,
- 10 University of California, San Diego, La Jolla, CA 92093, USA
- 4. CMFI Cluster of Excellence, Interfaculty Institute of Microbiology and Medicine, University of Tuebingen,
- 12 Tuebingen 72076, Germany
- 13 5. Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
- 14 6. independent researcher
- 15 7. Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA 92093, USA
- 8. Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
- 9. Department of Computer Sciences and Engineering, University of California, San Diego, La Jolla, CA 92093,
- 18 USA

19

20 Corresponding Authors

- *Kimberly A. Prather; kprather@ucsd.edu
- *Matthew A. Pendergraft; mpenderg@ucsd.edu

23 24 **Funding Sources** 25 Understanding and Protecting the Planet, University of California San Diego 26 German Research Foundation (DFG) with Grant PE 2600/1 to Daniel Petras 27 28 ORCIDs: 29 Kimberly A. Prather: 0000-0003-3048-9890 30 Matthew A. Pendergraft: 0000-0003-4415-7651 31 Daniel Petras: 0000-0002-6561-3022 32 Clare K. Morris: 0000-0002-4314-5387 33 Brock A. Mitts: 0000-0001-5936-8748 34 35 **KEYWORDS:** 36 water pollution, coastal, sea spray aerosol, pathogen, airborne exposure, 16S, mass spectrometry, 37 Imperial Beach, Tijuana, Tijuana River, Scripps Institution of Oceanography 38 39 SYNOPSIS: 40 Here we use 16S amplicon sequencing and tandem mass spectrometry to identify bacteria and 41 chemicals in the polluted Tijuana River flowing into coastal waters and transferring to the coastal 42 atmosphere in sea spray aerosol. 43 44

Abstract

Roughly half of the human population lives near the coast and coastal water pollution (CWP) is widespread. Coastal waters along Tijuana, Mexico and Imperial Beach, USA are frequently polluted by millions of gallons of untreated sewage and stormwater runoff. Entering coastal waters causes over 100 million global annual illnesses, but CWP has the potential to reach many more people on land via transfer in sea spray aerosol (SSA). Using 16S rRNA gene amplicon sequencing, we found sewage associated bacteria in the polluted Tijuana River flowing into coastal waters and returning to land in marine aerosol. Tentative chemical identification from non-targeted tandem mass spectrometry identified anthropogenic compounds as chemical indicators of aerosolized CWP, but they were ubiquitous and present at highest concentrations in continental aerosol. Bacteria were better tracers of airborne CWP, and 40 tracer bacteria comprised up to 76% of the bacteria community in Imperial Beach air. These findings confirm that CWP transfers in SSA and exposes many people along the coast. Climate change may exacerbate CWP with more extreme storms and our findings call for minimizing CWP and investigating the health effects of airborne exposure.

Introduction

Coastal water pollution (CWP) is an ever-growing global environmental problem and public health threat. Over one hundred thousand cases of illness and tens of thousands of deaths occur annually worldwide due to people entering contaminated waters or eating tainted seafood ¹. Swimming and surfing in polluted waters increases the incidence of multiple types of illness ^{2,3}. Untreated sewage and stormwater runoff are common causes of CWP. Oils, fuels, metals, plastics, drugs, insecticides, detergents, solvents, and fire retardants are common chemical

contaminants ^{4,5}. Escherichia coli (E. coli) and Enterococcus spp. are bacteria used as sewage indicators, whereas enteroviruses, human norovirus, hepatitis A virus, and SARS-CoV2 are actual pathogens found in sewage contaminated waters ^{6–8,69}. Pathogens in coastal waters pose an immediate health threat because illness can occur from a single exposure ^{1,6}. CWP at the Mexico-USA border between Tijuana (TJ), Mexico and Imperial Beach (IB), USA has persisted for decades and has been officially declared a state of emergency ^{7,9,11}. Whereas fecal and chemical pollution from stormwater runoff have been detected at various beaches in SD, there is persistent and severe CWP at IB and TJ ^{5,7,10,11}. Rains and inadequate infrastructure result in untreated sewage flowing into TJ-IB coastal waters. Hepatitis A virus and bacteria from TJ sewage have been detected in IB coastal waters 7,12. The Tijuana River (TJR) is a major pollution conduit that sends 100-million-gallon sewage spills into South IB coastal waters ^{12,13,72}. SARS-CoV-2 has been detected in TJR waters at concentrations matching those at wastewater treatment plants ⁶⁹. These problems caused IB beaches to be closed to water contact for 295 days in 2020 14. This problem will likely persist after implementation of planned infrastructure due to multiple sources and continued diversion of high flow stormwater and sewage directly to the ocean ¹³. Climate change is expected to cause more extreme precipitation events, which may further exacerbate the problem ¹⁵. CWP has the potential to transfer to the atmosphere in sea spray aerosol (SSA) and reach people on land through airborne transport ¹⁶. SSA is formed by breaking waves and bursting bubbles that eject microscopic seawater aerosol into the atmosphere, ranging in size from tens of nanometers to tens of microns 17. SSA contains diverse chemical compounds and microorganisms from the source waters, including bacteria (~1 µm diameter) and viruses (~0.1 μm diameter) ^{18,19}. Microbes and chemical compounds can become greatly enriched in SSA by

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

bubble scavenging and bursting through the ocean's surface microlayer ^{20–22}. Once in the atmosphere, SSA can travel hundreds of kilometers ¹⁷. Prior research used a tracer dye to demonstrate the transfer of CWP in SSA ¹⁶. Here we present evidence from non-targeted tandem mass spectrometry and 16S amplicon sequencing of CWP transferring to the atmosphere in SSA.

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

91

92

93

94

Materials and Methods

Sampling. To investigate airborne transport of CWP, we sampled coastal water and aerosol in IB and at Scripps Institution of Oceanography (SIO) in five sampling rounds (SR) following rain events from January to May of 2019 (Figs. 1, S1). We chose IB for its frequent and severe water quality issues, and SIO served as a reference site. Coastal water quality at both IB and SIO can be impacted by stormwater runoff, so by comparing IB to SIO we investigate signs of CWP that are above common levels for the region ¹⁰. We collected coastal water daily from the West (seaward) ends of the IB and SIO piers (IBPw & SIOPw, SR 1-5, Fig. 1), into acid cleaned buckets and bottles. CWP is transported by ocean currents and is a challenge to sample ²³. We overcame this by directly sampling the TJR (TJRw in Fig. 1; SR 2-5), which was actively flowing into IB coastal waters throughout the study (Fig. S1) and is a major pathway of CWP in the area 12,69,72 . Coastal aerosol was sampled at one location each day in IB during SR 1-4 and at SIO for SR 5. Aerosol was sampled at two locations along the IB coast: from a second floor deck at the Dempsey Holder Safety Center (IBSCa, SR 1-2), at an elevation of 5 m above sea level (MASL) and 50 m from the shoreline; and at Border Field State Park (IBBFa, SR 3-4) at 20 MASL and 100 m from the shoreline (Fig. 1). Aerosol was sampled at SIO near the East (landward) end of the Ellen Browning Scripps Memorial Pier at SIO (SIOPa, Fig. 1). IBSCa, IBBFa, and SIOPa lie

3 km North, 2 km South, and 37 km North of the Tijuana River mouth, respectively (Fig.1). During typical onshore winds, all aerosol sampling sites were downwind of an active surfzone with abundant wave breaking, an important source of SSA ²⁴. We also observed whitecaps in the local coastal waters on multiple occasions and they were an additional source of local SSA. Aerosol (total suspended particles) was collected in triplicate onto 47 mm quartz fiber filters in filter holders (2500 QAT-UP & 2220, Pall Corporation, New York) at 30 liters per minute (lpm) for 22 hours. To minimize contamination, filters were combusted at 500°C for 2 hours prior to sampling and stored in combusted aluminum foil before deployment and after recovery. Laboratory blanks were combusted filters; field blanks were filters taken into the field, placed into filter holders, and then immediately removed. Across five rounds of sampling, we sampled coastal waters on 26 days and coastal aerosol for 21 one-day periods. Non-targeted chemical and microbial analyses. Aerosol and water samples were analyzed using liquid chromatography high-resolution tandem mass spectrometry (LC-MS/MS) to identify chemical species and 16S rRNA gene amplicon sequencing (16S) to identify bacteria taxa. Detailed methods are provided in the Supporting Information. LC-MS/MS was acquired as described before ^{5,25}. To apply the method to aerosol samples, one 47 mm aerosol filter was extracted with 0.5 mL of methanol followed by 2 mL of ultrapure water and sonication. Filter extracts and seawater samples were desalted via solid phase extraction (SPE), followed by chromatographic separation with a C18 reversed phase column, then two technical replicates were analyzed with a Q-Exactive quadrupole orbitrap mass spectrometer (Thermo Fisher Scientific, Bremen, Germany) in top5 data dependent acquisition mode. For 16S, ¼ of an aerosol filter or 400 µL of a water sample was extracted and sequenced using the KatharoSeq method for low biomass samples ²⁶.

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

Data analysis. The 16S data were processed through the QIIME 2 workflow using Qiita ^{27,28}. Processing with Deblur resulted in the identification of 7627 amplicon sequencing variants (ASVs) that were annotated using GreenGenes ^{29,30}. For simplicity we refer to the ASVs as bacteria. The LC-MS/MS data were processed using MZMine2 and the Global Natural Products Social Molecular Networking (GNPS) ion identity networking workflow, producing 16822 chemical features ³¹. 2028 Level 2 compound annotations were determined from matches to mass spectral libraries, yielding an annotation rate of 0.12 32,33. Mass spectra were matched against the GNPS and NIS17 libraries using a minimum cosine score of 0.7 to define spectral similarity. Precursor and Fragment Ion Mass Tolerances were set to 0.01 Da, Minimum Matched Fragment Ions was set to 4, and Minimum Cluster Size was set to 1 (MS Cluster off). The maximum mass difference was set to 100 Da for Analog Search. The Level 2 annotations provide tentative compound identifications, but definite confirmation requires chemical standards. SourceTracker2 (ST2) was employed to identify potential contributions to the aerosol from the sampled waters ³⁴. ST2 is a Bayesian statistical method that assigns sources to sinks on a featureby-feature basis. ST2 was run with the aerosol samples as sinks and the water samples as sources. In order to assess if it was possible that the air masses we sampled contained SSA from the local waters, a local particle origin for each sampling period was derived from local winds and a particle dispersion model. We used FLEXPART version 9.0, a Lagrangian particle dispersion model that simulates the release of particles into the atmosphere and uses gridded wind speeds and directions to estimate transport forwards or backwards in time ^{35,36}. Input data were the National Centers for Environmental Protection (NCEP) Climate Forecast System Version 2 (CFSv2) 6-hourly products. Data were accessed from the Research Data Archive (RDA) at the

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

National Center for Atmospheric Research (NCAR) (https://rda.ucar.edu/datasets/ds094.0/?hash=access). The parameters selected were the FLEXPART Model Input: 1-hour to 6-hour Forecasts including wind speeds, temperature, planetary boundary layer height, pressure, pressure reduced to MSL, and relative humidity, on a 0.5° x 0.5° grid. We ran FLEXPART in back trajectory mode starting at the end of each aerosol sampling period and running back to 24 hr before the start of the sampling period, for a total of 46 hr, sufficient to evaluate whether the sampled air mass traveled over local waters or passed over land (Fig. S2). For each sampling period, 500 simulated particles were released from the sampling site at an elevation of 5 m and transported backwards in time and space. Local particle origins (and aerosol samples) were classified as coming from the sea (IBa-sea; n=5) or from the land (IBa-land; n=5) when winds and back trajectories agreed on either; otherwise, mixed (IBamixed; n=7) was assigned (Fig. S2). A potential downside of sampling IBa from two locations on separate days is that atmospheric conditions were not identical: IBSCa sampling periods were 1 sea, 1 mixed, and 4 land; IBBFa periods were 4 sea, 6 mixed, and 1 land. Therefore, we do not compare the two IBa locations. Instead, we group the IBa data according to local particle origin and we target IBa-sea samples for signs of CWP in SSA. We assume the sampled aerosol includes SSA and non-SSA during sea and mixed periods, and we refer to the sea particle populations as coastal aerosol coming from the direction of the ocean. Land periods from both IBa locations characterize continental aerosol of the region and are used for comparison. Aerosol sampling at SIO (SIOPa) had 3 sea periods and one mixed (Fig. S2), and are used to compare against the IBa-sea and IBa-mixed samples. **Identifying potential tracers of airborne CWP.** The ST2 outputs and relative abundances were used to identify potential tracers of TJRw in the sampled aerosol. Features from LC-MS/MS

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

(chemicals) and 16S (bacteria) were ranked from IBa-sea samples, which are most likely to contain the largest SSA:non-SSA ratio. Features were not selected from IBPw because they would not necessarily be pollution associated. In the ST2 source apportionments, for each feature in each IBa-sea sample, the SIOPw contribution was subtracted from the TJRw contribution, to prioritize features abundant in TJRw but not in SIOPw. These differences were then summed across the five IBa-sea samples to provide an initial ranking. Then we removed features that did not meet the following criteria based on estimated, relative abundance, using MS1 peak areas for LC-MS/MS and read counts for 16S: a) TJRw > SIOPw; b) IBa-sea > SIOPa; and c) IBa-sea > blank. Criterion (a) was a check on the subtraction done in the ST2 tracer ranking to identify features associated with the TJRw; (b) removed features more abundant at our reference location; and (c) excluded sample contaminants. Mean values were used due to the small number of samples in each of these subsets. In the 16S data, criteria (a), (b), and (c) did not remove any of the top 40 bacteria from the initial ST2 ranking. This analysis was carried out using MATLAB version 9.10.0.1602886 (R2021a) ³⁷.

Results and Discussion

Sample types differ in chemical and bacterial compositions. For an initial evaluation of compositional similarities and differences across the sample types, we applied Robust Aitchinson principal component analysis (RPCA) to their chemical compositions and bacteria communities (Fig. 2A&B). Samples that are closer together in RPCA space have more similar compositions than samples further apart ³⁸. In both LC-MS/MS (Fig. 2A) and 16S (Fig. 2B) RPCA spaces, points plot along PC2 according to broad sample type: water or aerosol. IBPw groups with SIOPw and separates out from TJRw (Fig. 2 A & B), indicating that after entering IB coastal

waters, TJRw did not travel North to substantially impact IBPw. PC1 appears to separate out samples according to chemical composition (Fig. 2A) or bacteria community (Fig. 2B), and IBa plots closer to TJRw, whereas SIOPa plots closer to ocean water. IBa and TJRw have significant compositional similarities. The ST2 analysis indicates significant overlap in the chemical species and bacteria communities found in TJRw and IBa. Figure 2C and 2D show the fractional contribution of each source to each aerosol sample ST2 calculated from the chemical and bacterial compositions. According to ST2, up to 45% of the chemical composition (Fig. 2C) and 82% of the bacteria community (Fig. 2D) found in IBa came from TJRw, with much smaller TJRw values for SIOPa. Bacteria are effective tracers of airborne CWP. Evaluation of the top 40 bacteria identified by our tracer selection criteria supports that most are effective tracers of airborne CWP. Although amplicon sequencing is not appropriate for absolute quantitation, we used 16S read counts to estimate and compare the relative abundance of each tracer bacterium across the different sample types, with a focus on local particle origin (Fig. 3). In each feature we look for a tracer pattern: TJRw > SIOPw, and IBa-sea > IBa-land, SIOPw, and the blanks (Figs. 3 & 4). Although in a few cases IBa-sea < IBa-land (# 27) or IBa-sea ≈ IBa-land (#s 10, 15, 17), in general these 40 bacteria show strongest associations with TJRw and IBa-sea and we consider them tracers of the polluted TJRw in IBa (Fig. 3). We present these data as direct observation of bacteria in the polluted TJR flowing into coastal waters, transferring to the atmosphere in SSA, and returning in onshore winds. Tracer bacteria taxonomies link them to sewage. Although mere library matches to the GreenGenes database, the taxonomic identities of the tracer bacteria link 26 of them to sewage (Table S1) ²⁹. These taxa include bacteria attributed specifically to Tijuana sewage and sewage

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

foam, and taxa containing pathogenic and antimicrobial resistant members (Table S1 and references within). The genus Arcobacter appears eight times in the list and contains members that are pathogens, resistant to antimicrobials, and/or commonly found in sewage and sewage contaminated waters ^{41–43}. Acinetobacter spp. are found in hospital infections and sewage, and are increasingly resistant to antibiotics 44,45. Fifteen of the 40 tracer bacteria are nonfermenting gram-negative bacilli (NFGNB), a group of bacteria that contains many pathogens 46. The Bacteroides genus contains the most common gene marker for human fecal pollution, HF183 ^{47,48}. Acinetobacter spp. and Alkanindiges spp. combined appear seven times in the list and are dominant in biofoam at wastewater treatment plants ⁴⁹. Their hydrophobic cell surfaces may cause their enrichment in foam and preferential aerosolization, as previously observed for *Actinobacteria* in SSA ^{50,51}. Tracer bacteria independently linked to TJR and TJ sewage. The bacteria communities of the TJR and a sewage outfall South of Tijuana were characterized with 16S amplicon sequencing the same year we sampled ¹². The most abundant taxa were *Acidovorax*, *Bacteroides*, Cloacibacterium, Comamonas, Macellibacteroides, and the potentially pathogenic genera Acinetobacter, Aeromonas, and Arcobacter. Nineteen of our 40 tracer bacteria match these taxa via their GreenGenes assignments (Table S1), further supporting that these bacteria are effective tracers of TJ sewage aerosolized in SSA. Chemical links between CWP and IB aerosol in onshore winds. Applying the same feature ranking criteria to the LC-MS/MS data identified chemical links between CWP and IB aerosol in onshore winds. As done for the tracer bacteria, we evaluated the selected LC-MS/MS features by comparing relative abundance, from MS1 peak areas, for each feature across the different sample types, and looking for compounds that meet our tracer criteria: TJRw > SIOPw and IBa-sea >

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

IBa-land, SIOPa, and blanks (Fig. 4). We report the top 40 chemical species with annotations (Level 2), excluding likely misannotations (n=2), compounds that did not return clear search results (n=8), and polyethylene glycols, because they are common sample contaminants (Table S2). Although some compounds show a weak tracer signal (#s 2, 8, 12, 17), most compounds show IBa-sea ≈ SIOPa and IBa-sea < IBa-land (Fig. 4). This implies these compounds in IBa have marine and continental sources and, therefore, we do not consider them explicit tracers of TJRw pollution in SSA. But they are chemical links shared between CWP and coastal aerosol in onshore winds, and we use them to provide chemical information on the same aerosol populations that contained our tracer bacteria. Anthropogenic compounds dominate chemical links. Tentative Level 2 annotations for most of the selected chemical links are anthropogenic compounds, indicating a polluted aerosol population (Table S2). Industrial chemicals are common in the list, including flame retardants, paints, solvents, plasticizers, cleaning products, and personal care products, as well as known irritants and common environmental pollutants. These compounds may have reached the TJR by direct discharge from industrial facilities or from urban-industrial stormwater runoff. Other chemical species are human associated and indicative of sewage, such as caffeine and vitamin K2. Monopalmitolein (9c), lumichrome, and 5(Z),8(Z),11(Z)-eicosatrienoic acid methyl ester are marine associated, indicative of SSA. We annotated 160 drugs, 21 drug metabolites, 179 food compounds, 15 food additives, 36 biocides, 487 natural products, and 6 compounds from personal care products in our LC-MS/MS dataset as Level 2 IDs (n=497; list provided at https://doi.org/10.6075/J07944V3) and tested them as tracers (Fig. S6) ³². Aerosols from the land appear to be the dominant source for all of them, and drugs have previously been detected in urban aerosol 53,54.

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

Evaluating bacteria vs. chemicals as tracers. This study found bacteria to be more effective than chemicals at identifying signs of TJRw aerosolizing in SSA. The chemical and bacterial ST2 source apportionments significantly differed (Fig. 2 C, D), likely because bacteria are only found in larger aerosols, whereas chemical compounds are present in all aerosols 39,40. Larger aerosols have shorter residence times in the atmosphere, so the airborne bacteria community is strongly influenced by local sources. In our tracer evaluations the chemicals are more ubiquitous across the sample types compared to the bacteria (Figs. 3 & 4). IBa-land samples yielded much more total LC-MS/MS signal than IBa-sea and IBa-mixed samples (Fig. S3A), limiting the utility of chemicals as tracers of TJRw in IBa. Greater molecular diversity and abundance in polluted/continental aerosol vs. non-polluted/marine aerosol has been previously observed ⁵². Normalization of microbiome and mass spectrometry data is often used to correct for variations in total signal strength across samples 70,71. Here, normalizing to total 16S read counts or LC-MS/MS peak area per sample (Figs. S4 & S5) yielded more tracer signatures in the LC-MS/MS data, but we feel usage of non-normalized data is more appropriate for this study in order to include differences in the contributions of marine vs. continental aerosol to IBa (Fig. S3). In comparison, 16S read counts were similar across the IBa samples (Fig. S3 B), and cell counts, a better measure of bacteria amount, were higher in IBa-sea and IBa-mixed vs. IBa-land (Fig. S7), suggesting bacteria are particularly useful as tracers of SSA. Our results in context. Our findings are in agreement with the ability of SSA to transfer diverse chemical compounds and microorganisms from the ocean to the atmosphere, including naturally occurring toxins, like brevetoxin from red tides, and artificial toxins, like perfluoroalkyl acids ^{19,55-58}. Aerosolization of sewage by aeration and bubble bursting has been observed at wastewater treatment plants (WWTPs), open wastewater canals, spray irrigation, and the aeration

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

of polluted waters, but not by SSA ⁵⁹⁻⁶⁵. Direct aerosolization from the TJR may occur, but it is likely to be a much smaller source than SSA from the surf zone, a significant aerosol source, and from whitecaps in local waters ²⁴. TJR aerosol would have been downwind during IBa-sea samples but could have been a minor contribution to IBa-mixed and IBa-land samples. The sequencing of Central California coastal aerosol and SSA isolated in the laboratory identified taxa that contain pathogenic strains, but of unknown origin 51,66. We build on this work by linking bacteria and compounds in coastal aerosol to a major CWP source. Significant contributions of airborne bacteria. To investigate the magnitude of CWP's contribution to coastal aerosol, we examined the individual and combined fractional abundance of our 40 selected bacteria in the aerosol samples (Fig. 5). Like Figure 3, the tracer bacteria are most abundant in IBa-sea and IBa-mixed samples, most of which were collected at IBBFa. These bacteria are highest in IBa-mixed periods possibly because they encountered the most ideal conditions for transfer of CWP in SSA and collection, despite mixed winds: the highest bacterial pollution levels in the upwind waters and greatest SSA production. IBBFa shows higher levels than IBSCa, suggesting IBBFa was better located, possibly due to Northwest winds and IBBFa lying South of the TJR mouth (Figs. 1, S1, S2). Together these 40 bacteria comprise 41% on average, and up to 76% of the 16S reads in the 12 total IBa-sea and IBa-mixed samples (Fig. 5B). This demonstrates that a significant fraction of the airborne bacteria breathed by coastal communities can come from CWP, and this should be considered for public health along coastlines. Implications. This study presents evidence of CWP transferring to the atmosphere in SSA and calls attention to potential public health impacts that need to be further explored. The multiple

environmental conditions that transport pollution through this exposure pathway are under

298

299

300

301

302

303

304

305

306

307

308

309

310

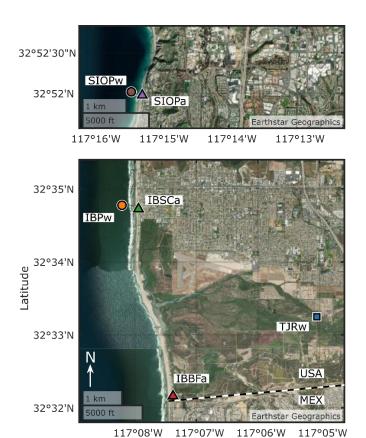
311

312

313

314

315

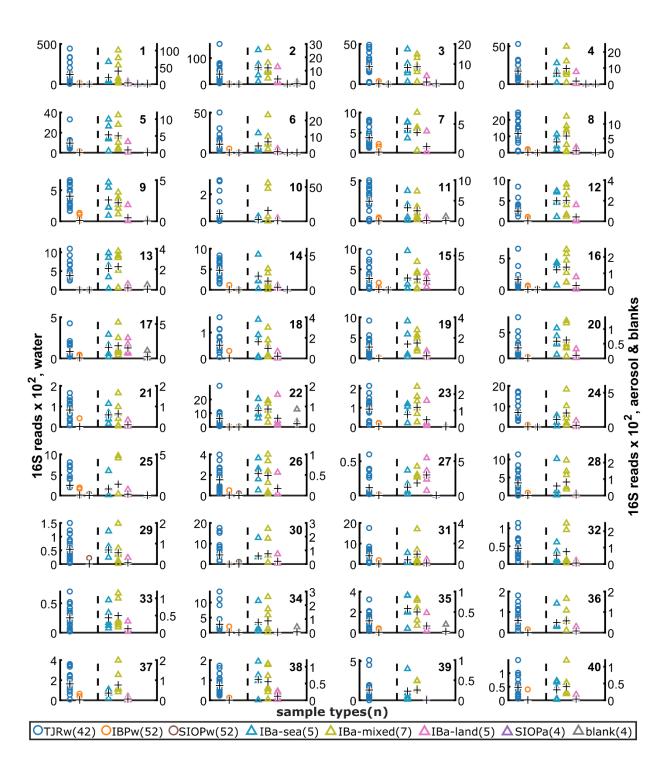

316

317

318

319

investigation ^{67,68}. Future studies will focus on more comprehensive sampling and target specific chemicals and pathogens. This environmental and public health problem is expected to grow as our changing climate brings more extreme precipitation and CWP events ¹⁵. This work provides further justification for improving and monitoring coastal water and air quality along the Tijuana-San Diego coastline and other populated coastlines worldwide. **FIGURES**



Longitude

Figure 1. Site map & sampling locations. Displayed are the locations of aerosol and water sampling at Imperial Beach, CA, USA (bottom) and 35 km away at Scripps Institution of Oceanography (SIO) in La Jolla, CA, USA (top). Marker formatting is consistent in all figures. The dashed line denotes the Mexico-USA border. Sites of water sampling are denoted with a "w" and sites of aerosol sampling are denoted with an "a". Produced using MATLAB version 9.10.0.1602886 (R2021a) ³⁷. Map imagery reprinted with permission from Earthstar Geographics. Copyright 2022 Earthstar Geographics / Terracolor.

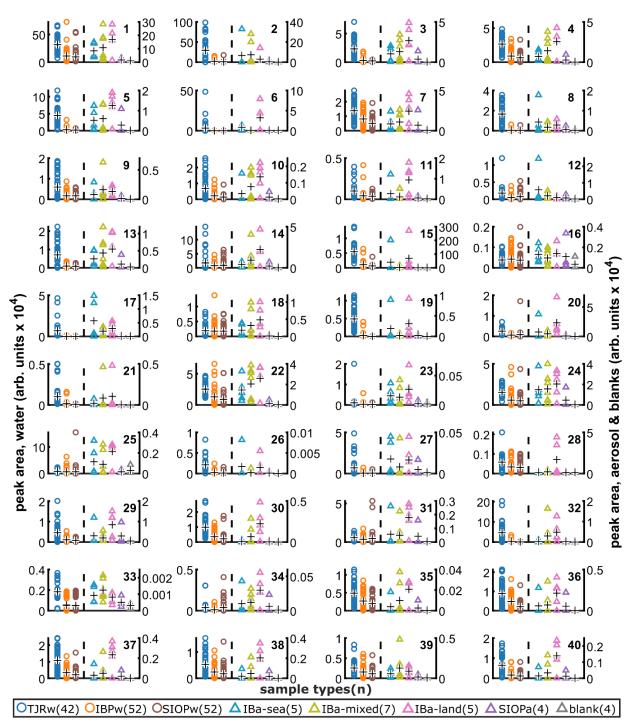
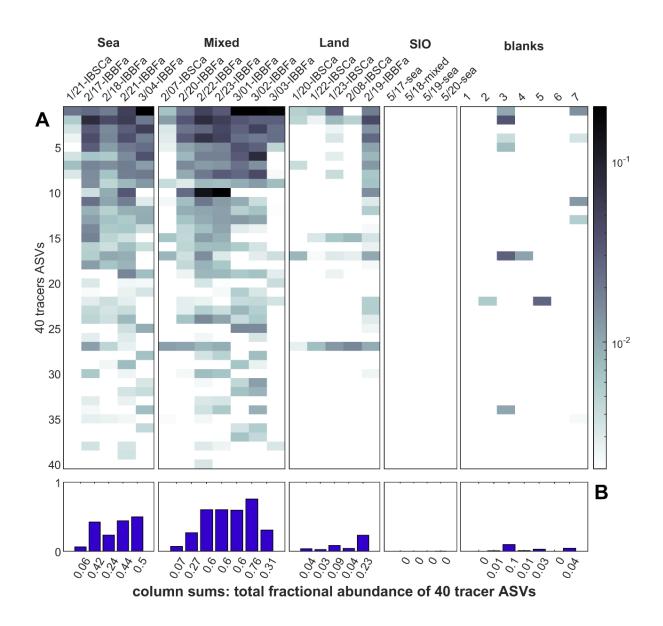


Figure 2. Robust Principal Component Analysis (RPCA) and and aerosol source apportionment from bacteria community and chemical composition. Panels (A) and (B) show RPCA (Aitchison distances) of non-targeted mass spectrometry (A) and 16S data (B). Panels (C) and (D) present ST2 results – the fractional contributions of different sources to each aerosol sample – for non-targeted mass spectrometry (C) and 16S data (D). Each bar represents one aerosol sample and is comprised of the fractional contribution of molecules (C) or bacteria (D) from TJRw (blue), IBPw (orange), SIOPw (brown), and Unknown (gray) as determined by ST2. Bars align vertically between (C) and (D) and are for the same aerosol sample.


Figure 3. Relative abundance across sample types for the 40 potential tracer bacteria of the polluted Tijuana River in IB aerosol. Each subplot represents a single bacterium (ASV). Each

point is the read count of the bacterium in one sample. Sample types (and # of samples) are provided in the legend. Water samples plot on the left axes; aerosol samples and blanks plot on the right axes. Each black "+" denotes the sample type mean. For each bacterium/subplot, we look for the following tracer pattern: [TJRw] > [SIOPw] and [IBa-sea] > [IBa-land, SIOPa, and blanks]. Most bacteria here show a tracer pattern.

Figure 4. Relative abundance across sample types for the 40 chemical links between the polluted Tijuana River and IB aerosol. Each subplot represents a single compound Each point is the MS1 peak area of the compound in a sample. Sample types (and # of samples) are provided in the

legend. Each black "+" denotes the sample type mean. Water samples plot on the left axes; aerosol samples and blanks plot on the right axes. Most compounds lack a tracer pattern of [TJRw] > [SIOPw] and [IBa-sea] > [IBa-land, SIOPa, & blanks] due to high IBa-land relative abundance. This implies they have multiple sources so we do not consider them as tracers but as chemical links between TJRW and IBa.

Figure 5. Individual and combined fractional abundance of the 40 tracer bacteria grouped by local particle origin. (A) is a heatmap of individual fractional abundances, with bacteria (ASVs) in rows and samples as columns. Fractional abundance was calculated by dividing the read count for each ASV in each sample by the total reads for that sample. (B) presents the sums of columns in (A), giving the combined fractional contribution of the 40 bacteria to the entire sample.

for TOC:

392 *The graphic is entirely original, unpublished artwork created by author Ethan Kaandorp.

caption: At the South end of Imperial Beach, the polluted Tijuana River merges with coastal waters at the Tijuana River Estuary, while the hills of Tijuana sit in the distance.

403	
404	ASSOCIATED CONTENT
405	
406	Author Contributions
407	The manuscript was written through contributions of all authors. All authors have given approval
408	to the final version of the manuscript.
409	Notes
410	(none)
411	ACKNOWLEDGMENT
412	This project was supported by the Understanding and Protecting the Planet (UPP) initiative from
413	the University of California San Diego and by the German Research Foundation (DFG) with
414	Grant PE 2600/1 to DP. We thank for accommodating our research: the city of Imperial Beach
415	and IB lifeguards, including Robert Stabenow, Jason Lindquist, Art Ayala, Trevor Spence, Adam
416	Wraight, Jesus Gonzalez; the Tijuana River National Estuary Research Reserve and CA State
417	Parks, including Chris Peregrin, Jeff Crooks, Justin McCullough, Cara Stafford; CA Border
418	Patrol Agents Amber Craig, Clinton Cox, and Paul Sheehan; UCSD-SIO: Monica Castrejón,
419	Christian McDonald. We thank for research assistance: Kathryn Mayer, Gavin Cornwell, James
420	Garrafa-Luna; TSRI: Brian Seegers, Alan Saluk. We thank three anonymous reviewers for their
421	feedback. We acknowledge that the site of this study and UC San Diego lie in the stolen territory
422	of the Kumeyaay people.
423	
424	Supporting Information Available

- The file Pender IB19 SI rev2 contains the following Supporting Information:
- 426 Figures S1-S7
- 427 Tables S1-S2
- 428 Data Availability
- 429 Supplemental Methods
- 430 References for the Supporting Information
- This material is available free of charge via the Internet at http://pubs.acs.org.

- 434 REFERENCES
- 1. Shuval, H. Estimating the global burden of thalassogenic diseases: human infectious
- diseases caused by wastewater pollution of the marine environment. J. Water Health 2003, 1,
- 437 53–64.
- 438 2. Arnold, B. F.; Schiff, K. C.; Ercumen, A.; Benjamin-Chung, J.; Steele, J. A.; Griffith, J.
- 439 F.; Steinberg, S. J.; Smith, P.; McGee, C. D.; Wilson, R.; Nelsen, C.; Weisberg, S. B.; Colford, J.
- 440 M.; Jr. Acute Illness Among Surfers After Exposure to Seawater in Dry- and Wet-Weather
- 441 Conditions. Am. J. Epidemiol. **2017**, 186, 866–875.
- Haile, R. W.; Witte, J. S.; Gold, M.; Cressey, R.; McGee, C.; Millikan, R. C.; Glasser, A.;
- Harawa, N.; Ervin, C.; Harmon, P.; Harper, J.; Dermand, J.; Alamillo, J.; Barrett, K.; Nides, M.;
- Wang, G. The health effects of swimming in ocean water contaminated by storm drain runoff.
- 445 *Epidemiology* **1999**, 10, 355–363.
- 4. Kolpin, D. W.; Furlong, E. T.; Meyer, M. T.; Thurman, E. M.; Zaugg, S. D.; Barber, L.
- B.; Buxton, H. T. Pharmaceuticals, hormones, and other organic wastewater contaminants in

- 448 U.S. streams, 1999-2000: a national reconnaissance. Environ. Sci. Technol. 2002, 36, 1202–
- 449 1211.
- 450 5. Petras, D.; Minich, J. J.; Cancelada, L. B.; Torres, R. R.; Kunselman, E. K.; Wang, M.;
- White, M. E.; Allen, E. E.; Prather, K. A.; Aluwihare, L. I.; Dorrestein, P. C. Non-targeted
- 452 tandem mass spectrometry enables the visualization of organic matter chemotype shifts in coastal
- 453 seawater. *Chemosphere* **2021**, 271, 129450.
- 6. Griffin, D. W.; Donaldson, K. A.; Paul, J. H.; Rose, J. B. Pathogenic Human Viruses in
- 455 Coastal Waters. *Clinical Microbiology Reviews* **2003**, 16, 129–143.
- 456 7. Gersberg, R. M.; Rose, M. A.; Robles-Sikisaka, R.; Dhar, A. K. Quantitative detection of
- 457 hepatitis a virus and enteroviruses near the United States-Mexico border and correlation with
- levels of fecal indicator bacteria. *Appl. Environ. Microbiol.* **2006**, 72, 7438–7444.
- 8. Boehm, A. B.; Yamahara, K. M.; Love, D. C.; Peterson, B. M.; McNeill, K.; Nelson, K.
- 460 L. Covariation and Photoinactivation of Traditional and Novel Indicator Organisms and Human
- Viruses at a Sewage-Impacted Marine Beach. *Environ. Sci. Technol.* **2009**, 43, 8046–8052.
- 9. Council Resolution R-2022-79. Council of the City of San Diego. **2021**. available at:
- https://sandiego.hylandcloud.com/211agendaonlinecouncil/Documents/ViewDocument/R-2022-
- 464 79 Sep TJ Emergency?meetingId=4550&documentType=Minutes&itemId=201741&publishId
- 465 =520641&isSection=false. Date of access: 2021 October 8
- 10. Steele, J. A.; Blackwood, A. D.; Griffith, J. F.; Noble, R. T.; Schiff, K. C. Quantification
- of pathogens and markers of fecal contamination during storm events along popular surfing
- beaches in San Diego, California. *Water Res.* **2018**, 136, 137–149.

- 11. Orozco-Borbón, M. V.; Rico-Mora, R.; Weisberg, S. B.; Noble, R. T.; Dorsey, J. H.;
- 470 Leecaster, M. K.; McGee, C. D. Bacteriological water quality along the Tijuana–Ensenada, Baja
- 471 California, México shoreline. *Marine Pollution Bulletin* **2006**, 52, 1190–1196.
- 12. Zimmer-Faust, A. G.; Steele, J. A.; Xiong, X.; Staley, C.; Griffith, M.; Sadowsky, M. J.;
- Diaz, M.; Griffith, J. F. A Combined Digital PCR and Next Generation DNA-Sequencing Based
- 474 Approach for Tracking Nearshore Pollutant Dynamics Along the Southwest United
- 475 States/Mexico Border. Front. Microbiol. 2021, 12, 674214.
- 13. Feddersen, F.; Boehm, A. B.; Giddings, S. N.; Wu, X.; Liden, D. Modeling Untreated
- Wastewater Evolution and Swimmer Illness for Four Wastewater Infrastructure Scenarios in the
- 478 San Diego-Tijuana (US/MX) Border Region. *Geohealth* **2021**, 5, e2021GH000490.
- 14. Smith, J. E.; Fry, W. "Tijuana sewage pounded South Bay beaches last year. EPA says
- help is on the way". San Diego Union-Tribune **2021**.
- 481 15. Curriero, F. C.; Patz, J. A.; Rose, J. B.; Lele, S. The Association Between Extreme
- 482 Precipitation and Waterborne Disease Outbreaks in the United States, 1948–1994. American
- 483 *Journal of Public Health* 91 **2001**, 1194–1199.
- 484 16. Pendergraft, M. A.; Grimes, D. J.; Giddings, S. N.; Feddersen, F.; Beall, C. M.; Lee, C.;
- Santander, M. V.; Prather, K. A. Airborne transmission pathway for coastal water pollution.
- 486 *PeerJ* **2021**, 9, e11358.
- 487 17. Lewis, E. R.; Schwartz, S. E. Sea Salt Aerosol Production: Mechanisms, Methods,
- 488 Measurements, and Models; American Geophysical Union: New York, USA, 2004.

- 18. Baylor, E. R.; Baylor, M. B.; Blanchard, D. C.; Syzdek, L. D.; Appel, C. Virus transfer
- 490 from surf to wind. *Science* **1977**, 198, 575–580.
- 491 19. Quinn, P. K.; Collins, D. B.; Grassian, V. H.; Prather, K. A.; Bates, T. S. Chemistry and
- related properties of freshly emitted sea spray aerosol. *Chem. Rev.* **2015**, 115, 4383–4399.
- 493 20. Blanchard, D. C.; Syzdek, L. Mechanism for the water-to-air transfer and concentration
- 494 of bacteria. *Science* **1970**, 170, 626–628.
- 495 21. Aller, J. Y.; Kuznetsova, M. R.; Jahns, C. J.; Kemp, P. F. The sea surface microlayer as a
- 496 source of viral and bacterial enrichment in marine aerosols. *Journal of Aerosol Science* **2005**, 36,
- 497 801–812.
- 498 22. Wurl, O.; Wurl, E.; Miller, L.; Johnson, K.; Vagle, S. Formation and global distribution
- 499 of sea-surface microlayers. *Biogeosciences* **2011**, 8, 121–135.
- 500 23. Wu, X.; Feddersen, F.; Giddings, S. N. Diagnosing surfzone impacts on inner-shelf flow
- spatial variability using realistic model experiments with and without surface gravity waves.
- *Journal of Physical Oceanography* **2021**. doi:10.1175/jpo-d-20-0324.1.
- 503 24. van Eijk, A. M. J.; Kusmierczyk-Michulec, J. T.; Francius, M. J.; Tedeschi, G.; Piazzola,
- J.; Merritt, D. L.; Fontana, J. D. Sea-spray aerosol particles generated in the surf zone. J.
- 505 Geophys. Res. **2011**, 116.
- 506 25. Cancelada, L.; Torres, R. R.; Luna, J. G.; Dorrestein, P. C.; Aluwihare, L. I.; Prather, K.
- 507 A.; Petras, D. Assessment of styrene-divinylbenzene polymer (PPL) solid-phase extraction and

- 508 non-targeted tandem mass spectrometry for the analysis of xenobiotics in seawater. *Limnology*
- *and Oceanography: Methods* **2022**, 20 89–101.
- 510 26. Minich, J. J.; Zhu, Q.; Janssen, S.; Hendrickson, R.; Amir, A.; Vetter, R.; Hyde, J.; Doty,
- M. M.; Stillwell, K.; Benardini, J.; Kim, J. H.; Allen, E. E.; Venkateswaran, K.; Knight, R.
- 512 KatharoSeq Enables High-Throughput Microbiome Analysis from Low-Biomass Samples.
- 513 *mSystems* **2018**, 3.
- 514 27. Bolyen, E.; Rideout, J. R.; Dillon, M. R.; Bokulich, N. A.; Abnet, C. C.; Al-Ghalith, G.
- A.; Alexander, H.; Alm, E. J.; Arumugam, M.; Asnicar, F.; Bai, Y.; Bisanz, J. E.; Bittinger, K.;
- Brejnrod, A.; Brislawn, C. J.; Brown, C. T.; Callahan, B. J.; Caraballo-Rodríguez, A. M.; Chase,
- 517 J.; ... Caporaso, J. G. Reproducible, interactive, scalable and extensible microbiome data science
- 518 using QIIME 2. Nat. Biotechnol. **2019**, 37, 852–857.
- 519 28. Gonzalez, A.; Navas-Molina, J. A.; Kosciolek, T.; McDonald, D.; Vázquez-Baeza, Y.;
- Ackermann, G.; DeReus, J.; Janssen, S.; Swafford, A. D.; Orchanian, S. B.; Sanders, J. G.;
- 521 Shorenstein, J.; Holste, H.; Petrus, S.; Robbins-Pianka, A.; Brislawn, C. J.; Wang, M.; Rideout,
- J. R.; Bolyen, E.; ... Knight, R. Qiita: rapid, web-enabled microbiome meta-analysis. *Nat.*
- 523 *Methods* **2018**, 15, 796–798.
- 524 29. McDonald, D.; Price, M. N.; Goodrich, J.; Nawrocki, E. P.; DeSantis, T. Z.; Probst, A.;
- Andersen, G. L.; Knight, R.; Hugenholtz, P. An improved Greengenes taxonomy with explicit
- ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J. 2012, 6, 610–
- 527 618.

- 30. Amir, A.; McDonald, D.; Navas-Molina, J. A.; Kopylova, E.; Morton, J. T.; Zech Xu, Z.;
- Kightley, E. P.; Thompson, L. R.; Hyde, E. R.; Gonzalez, A.; Knight, R. Deblur Rapidly
- Resolves Single-Nucleotide Community Sequence Patterns. *mSystems* **2017**, 2.
- 31. Schmid, R.; Petras, D.; Nothias, L.-F.; Wang, M.; Aron, A. T.; Jagels, A.; Tsugawa, H.;
- Rainer, J.; Garcia-Aloy, M.; Dührkop, K.; Korf, A.; Pluskal, T.; Kameník, Z.; Jarmusch, A. K.;
- 533 Caraballo-Rodríguez, A. M.; Weldon, K. C.; Nothias-Esposito, M.; Aksenov, A. A.;
- Bauermeister, A.; ... Dorrestein, P. C. Ion identity molecular networking for mass spectrometry-
- based metabolomics in the GNPS environment. *Nat. Commun.* **2021**, 12, 3832.
- 32. Sumner, L. W.; Amberg, A.; Barrett, D.; Beale, M. H.; Beger, R.; Daykin, C. A.; Fan, T.
- W.-M.; Fiehn, O.; Goodacre, R.; Griffin, J. L.; Hankemeier, T.; Hardy, N.; Harnly, J.; Higashi,
- R.; Kopka, J.; Lane, A. N.; Lindon, J. C.; Marriott, P.; Nicholls, A. W.; ... Viant, M. R..
- 539 Proposed minimum reporting standards for chemical analysis Chemical Analysis Working Group
- 540 (CAWG) Metabolomics Standards Initiative (MSI). *Metabolomics* **2007**, 3, 211–221.
- 33. Schymanski, E. L.; Jeon, J.; Gulde, R.; Fenner, K.; Ruff, M.; Singer, H. P.; & Hollender,
- J. Identifying small molecules via high resolution mass spectrometry: communicating
- 543 confidence. *Environ. Sci. Technol.* **2014**, 48, 2097–2098.
- 34. Knights, D.; Kuczynski, J.; Charlson, E. S.; Zaneveld, J.; Mozer, M. C.; Collman, R. G.;
- Bushman, F. D.; Knight, R.; Kelley, S. T. Bayesian community-wide culture-independent
- microbial source tracking. *Nat. Methods* **2011**, 8, 761–763.
- 547 35. Stohl, A. A backward modeling study of intercontinental pollution transport using aircraft
- measurements. J. Geophys. Res. 2003, 108.

- 36. Stohl, A.; Hittenberger, M.; Wotawa, G. Validation of the lagrangian particle dispersion
- model FLEXPART against large-scale tracer experiment data. Atmospheric Environment 1998,
- 551 32, 4245–4264.
- 37. MATLAB. 9.10.0.1602886 (R2021a). The MathWorks Inc: Natick, USA, **2021**.
- 38. Martino, C.; Morton, J. T.; Marotz, C. A.; Thompson, L. R.; Tripathi, A.; Knight, R.;
- Zengler, K. A Novel Sparse Compositional Technique Reveals Microbial Perturbations.
- 555 *mSystems* **2019**, 4.
- 39. Santander, M. V.; Mitts, B. A.; Pendergraft, M. A.; Dinasquet, J.; Lee, C.; Moore, A. N.;
- Cancelada, L. B.; Kimble, K. A.; Malfatti, F.; Prather, K. A. Tandem Fluorescence
- Measurements of Organic Matter and Bacteria Released in Sea Spray Aerosols. *Environ. Sci.*
- 559 *Technol.* **2021**, 55, 5171–5179.
- 560 40. Shaffer, B. T.; Lighthart, B. Survey of Culturable Airborne Bacteria at Four Diverse
- Locations in Oregon: Urban, Rural, Forest, and Coastal. *Microb. Ecol.* **1997**, 34, 167–177.
- 41. Ho, H. T. K.; Lipman, L. J. A.; Gaastra, W. Arcobacter, what is known and unknown
- about a potential foodborne zoonotic agent! *Vet. Microbiol.* **2006**, 115, 1–13.
- 564 42. Fera, M. T.; Maugeri, T. L.; Gugliandolo, C.; Beninati, C.; Giannone, M.; La Camera, E.;
- Carbone, M. Detection of Arcobacter spp. in the coastal environment of the Mediterranean Sea.
- 566 Appl. Environ. Microbiol. **2004**, 70, 1271–1276.

- 43. Collado, L.; Inza, I.; Guarro, J.; Figueras, M. J. Presence of Arcobacter spp. in
- environmental waters correlates with high levels of fecal pollution. *Environ. Microbiol.* **2008**,
- 569 10, 1635–1640.
- 570 44. Zhang, Y.; Marrs, C. F.; Simon, C.; Xi, C. Wastewater treatment contributes to selective
- increase of antibiotic resistance among Acinetobacter spp. Sci. Total Environ. 2009, 407, 3702–
- 572 3706.
- 573 45. Dijkshoorn, L.; Nemec, A.; Seifert, H. An increasing threat in hospitals: multidrug-
- resistant Acinetobacter baumannii. *Nat. Rev. Microbiol.* **2007**, 5, 939–951.
- 575 46. Wisplinghoff, H. Pseudomonas spp.; Acinetobacter spp. and Miscellaneous Gram-
- Negative Bacilli. In *Infectious Diseases*. Cohen, J.; Powderly, W. G.; Opal, S. M. Elsevier. **2017**,
- 577 1579–1599.
- 578 47. Bernhard, A. E.; Field, K. G. A PCR assay to discriminate human and ruminant feces on
- 579 the basis of host differences in Bacteroides-Prevotella genes encoding 16S rRNA. Appl. Environ.
- 580 *Microbiol.* **2000**, 66, 4571–4574.
- 48. Ahmed, W.; Hughes, B.; Harwood, V. Current Status of Marker Genes of Bacteroides
- and Related Taxa for Identifying Sewage Pollution in Environmental Waters. *Water* **2016**, 8,
- 583 231.
- 584 49. Klein, A. N.; Frigon, D.; Raskin, L. Populations related to Alkanindiges, a novel genus
- containing obligate alkane degraders, are implicated in biological foaming in activated sludge
- 586 systems. *Environ. Microbiol.* **2007**, 9, 1898–1912.

- 587 50. Weber, M. E.; Blanchard, D. C.; Syzdek, L. D. The mechanism of scavenging of
- waterborne bacteria by a rising bubble. *Limnology and Oceanography* **1983**, 28, 101–105.
- 589 51. Michaud, J. M.; Thompson, L. R.; Kaul, D.; Espinoza, J. L.; Richter, R. A.; Xu, Z. Z.;
- Lee, C.; Pham, K. M.; Beall, C. M.; Malfatti, F.; Azam, F.; Knight, R.; Burkart, M. D.; Dupont,
- 591 C. L.; Prather, K. A. Taxon-specific aerosolization of bacteria and viruses in an experimental
- ocean-atmosphere mesocosm. *Nat. Commun.* **2018**, 9, 2017.
- 593 52. Papazian, S.; D'Agostino, L. A.; Sadiktsis, I.; Froment, J.; Bonnefille, B.; Sdougkou, K.;
- Xie, H.; Athanassiadis, I.; Budhavant, K.; Dasari, S.; Andersson, A.; Gustafsson, Ö.; Martin, J.
- W. Nontarget mass spectrometry and in silico molecular characterization of air pollution from
- the Indian subcontinent. Communications Earth & Environment 2022, 3.
- 597 53. Postigo, C.; Lopez de Alda, M. J.; Viana, M.; Querol, X.; Alastuey, A.; Artiñano, B.; &
- Barceló, D. Determination of drugs of abuse in airborne particles by pressurized liquid extraction
- and liquid chromatography-electrospray-tandem mass spectrometry. Anal. Chem. 2009, 81,
- 600 4382–4388.
- 601 54. Cecinato, A.; Balducci, C.; Nervegna, G. Occurrence of cocaine in the air of the World's
- cities. An emerging problem? A new tool to investigate the social incidence of drugs? Sci. Total
- 603 Environ. **2009**, 407, 1683–1690.
- 55. Johansson, J. H.; Salter, M. E.; Acosta Navarro, J. C.; Leck, C.; Nilsson, E. D.; Cousins,
- I. T. Global transport of perfluoroalkyl acids via sea spray aerosol. Environ. Sci. Process.
- 606 *Impacts* **2019**, 21, 635–649.

- 56. Pierce, R. H.; Henry, M. S.; Blum, P. C.; Lyons, J.; Cheng, Y. S.; Yazzie, D.; Zhou, Y.
- Brevetoxin concentrations in marine aerosol: human exposure levels during a Karenia brevis
- 609 harmful algal bloom. Bull. Environ. Contam. Toxicol. 2003, 70, 161–165.
- 57. Backer, L. C.; Kirkpatrick, B.; Fleming, L. E.; Cheng, Y. S.; Pierce, R.; Bean, J. A.;
- Clark, R.; Johnson, D.; Wanner, A.; Tamer, R.; Zhou, Y.; Baden, D. G. Occupational exposure to
- aerosolized brevetoxins during Florida red tide events: effects on a healthy worker population.
- 613 Environ. Health Perspect. **2005**, 113, 644–649.
- 58. Patterson, J. P.; Collins, D. B.; Michaud, J. M.; Axson, J. L.; Sultana, C. M.; Moser, T.;
- Dommer, A. C.; Conner, J.; Grassian, V. H.; Stokes, M. D.; Deane, G. B.; Evans, J. E.; Burkart,
- M. D.; Prather, K. A.; Gianneschi, N. C. Sea Spray Aerosol Structure and Composition Using
- 617 Cryogenic Transmission Electron Microscopy. ACS Cent. Sci. 2016, 2, 40–47.
- 59. Fannin, K. F.; Gannon, J. J.; Cochran, K. W.; Spendlove, J. C. Field studies on
- 619 coliphages and coliforms as indicators of airborne animal viral contamination from wastewater
- treatment facilities. Water Research 1977, 11, 181–188.
- 621 60. Carducci, A.; Arrighi, S.; Ruschi, A. Detection of coliphages and enteroviruses in sewage
- and aerosol from an activated sludge wastewater treatment plant. Lett. Appl. Microbiol. 1995, 21,
- 623 207–209.
- 624 61. Malakootian, M.; Radhakrishna, N.; Mazandarany, M. P.; Hossaini, H. Bacterial-aerosol
- emission from wastewater treatment plant. *Desalination Water Treat.* **2013**, 51, 4478–4488.

- 626 62. Brisebois, E.; Veillette, M.; Dion-Dupont, V.; Lavoie, J.; Corbeil, J.; Culley, A.;
- Duchaine, C. Human viral pathogens are pervasive in wastewater treatment center aerosols.
- 628 Journal of Environmental Sciences 2018, 67, 45–53.
- 63. Ginn, O.; Rocha-Melogno, L.; Bivins, A.; Lowry, S.; Cardelino, M.; Nichols, D.;
- Tripathi, S. N.; Soria, F.; Andrade, M.; Bergin, M.; Deshusses, M. A.; Brown, J. Detection and
- Ouantification of Enteric Pathogens in Aerosols Near Open Wastewater Canals in Cities with
- 632 Poor Sanitation. *Environ. Sci. Technol.* **2021**, 55, 14758–14771.
- 633 64. Teltsch, B.; Katzenelson, E. Airborne enteric bacteria and viruses from spray irrigation
- 634 with wastewater. *Appl. Environ. Microbiol.* **1978**, 35, 290–296.
- 635 65. Dueker, M. E.; O'Mullan, G. D. Aeration remediation of a polluted waterway increases
- 636 near-surface coarse and culturable microbial aerosols. Sci. Total Environ. 2014, 478, 184–189.
- 637 66. Graham, K. E.; Prussin, A. J.; 2nd, Marr, L. C.; Sassoubre, L. M.; Boehm, A. B.
- 638 Microbial community structure of sea spray aerosols at three California beaches. FEMS
- 639 *Microbiol. Ecol.* **2018**, 94.
- 640 67. Grimes, D. J.; Feddersen, F.; Kumar, N. Tracer Exchange Across the Stratified
- 641 Inner-Shelf Driven by Transient Rip-Currents and Diurnal Surface Heat Fluxes. *Geophysical*
- 642 *Research Letters* **2020**, 47.
- 68. Rodriguez, A. R.; Giddings, S. N.; Kumar, N. Impacts of Nearshore Wave-Current
- 644 Interaction on Transport and Mixing of Small-Scale Buoyant Plumes. Geophysical Research
- 645 *Letters* **2018**, 45, 8379–8389.

- 646 69. Rocha, A. Y.; Verbyla, M. E.; Sant, K. E.; Mladenov, N. Detection, Quantification, and
- 647 Simplified Wastewater Surveillance Model of SARS-CoV-2 RNA in the Tijuana River. ACS
- 648 EST Water **2022**. DOI: 10.1021/acsestwater.2c00062
- 70. Weiss, S.; Xu, Z.Z.; Peddada, S.; Amir, A.; Bittinger, K.; Gonzalez, A.; Lozupone, C.;
- Zaneveld, J. R.; Vázquez-Baeza, Y.; Birmingham, A.; Hyde, E. R.; Knight, R. Normalization
- and microbial differential abundance strategies depend upon data characteristics. *Microbiome*
- 652 **2017**, 5, 27.
- 71. Wulff, J.; Mitchell, M. A Comparison of Various Normalization Methods for LC/MS
- 654 Metabolomics Data. Adv. Biosci. Biotechnol. 2018, 9 (8), 339-351.
- 72. Hernandez, D. "143 million gallons of sewage spill into Tijuana River". San Diego Union-
- 656 Tribune **2017**.