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Abstract. Seismic tomography solves high-dimensional optimization problems in the imaging of
Earth's subsurface structures. In this paper, we propose using random batch methods to construct
the gradient used for iterations in seismic tomography. Specifically, we use the frozen Gaussian
approximation to compute seismic wave propagation and construct stochastic gradients by random
batch methods. This method inherits the spirit of stochastic gradient descent methods for solving
high-dimensional optimization problems. The proposed idea is general in the sense that it does not
rely on the use of frozen Gaussian approximation, and one can replace it with any other efficient
wave propagation solver, e.g., Gaussian beam methods and spectral element methods. We prove
the convergence of the random batch method in the mean-square sense and show the numerical
performance of the proposed method by two- and three-dimensional examples of wave-equation-
based travel-time inversion and full-waveform inversion, respectively. As a by-product, we also prove
the convergence of the accelerated full-waveform inversion using dynamic mini-batches and spectral
element methods.
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1. Introduction. Seismic tomography can provide crucial information via com-
puted images of Earth's subsurface structures at different scales and enhances our
understanding of tectonics, volcanism, and geodynamics [1, 33, 31, 45]. Wave-equation-
based seismic tomography iteratively solves nonlinear high-dimensional optimization
problems for velocity models by computing seismograms and sensitivity kernels in
complex models [39, 24, 23, 38]. Successful applications include imaging the velocity
models of the southern California crust [36, 37], the European upper mantle [46], the
North Atlantic region [32], and the Japan islands [34]. The performance of seismic
tomography is restricted by how accurately and efficiently one can compute synthetic
seismograms and sensitivity kernels [39], which are used to construct descent direc-
tions of velocity models for iterations. The computation of synthetic seismograms
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SEISMIC TOMOGRAPHY WITH RANDOM BATCH GRADIENT B315

could be extremely expensive for large-scale and high-frequency three-dimensional
(3D) simulations. Velocity models live in high-dimensional space, making it challeng-
ing to compute descent directions and find global minima; this is known as the curse
of dimensionality. Recent research works have sought to overcome this challenge, e.g.,
by using a randomized optimizer to search the global minima [22], and using the
Wasserstein metric to improve the convexity [30, 44].

Stochastic gradient descent (SGD), frequently used in training deep neural net-
works, has proved to be efficient in solving high-dimensional optimization problems.
Note that a common gradient descent needs to accurately compute gradients in high
dimensions at each iteration, which can be computationally prohibitive and leave the
gradients stuck in bad local minima, while SGD is better at overcoming these issues as
illustrated, for example, by the Adam method [21]. Motivated by the success of SGD,
we propose solving the high-dimensional optimization problem in seismic tomography
by constructing descent directions of velocity models using the random batch method
(RBM) recently proposed for computing dynamics of interacting particles [17].

To use RBM in seismic tomography, possible choices for computing synthetic
seismograms are numerical methods of particle type, e.g., generalized ray theory [13,
41], Kirchhoff migration [9, 20], Gaussian beam migration [15, 16, 27, 10, 8, 28], the
Gaussian beam method [29, 2], and frozen Gaussian approximation (FGA) [25, 5, 6,
11, 4]. One may also use direct numerical methods (e.g., the spectral element method)
to compute synthetic seismograms if the random batch is applied to source-receiver
pairs [40]. Here, for the sake of convenience we use FGA to compute wave equations.
FGA was originally used in quantum chemistry for the Schr\"odinger equation [12, 14],
with systematic justifications given in [18, 19, 35]. Then the formula was generalized
to linear hyperbolic systems [25, 26], with applications in seismic tomography [43, 22,
5, 6, 11]. FGA does not need to solve ray paths by shooting to reach the receivers,
and it can provide accurate solutions in the presence of caustics and multipathing,
with no requirement on tuning beam width parameters to achieve a good resolution
[3, 15, 7, 29, 25].

In this paper, we focus on seismic tomography based on acoustic wave propagation
(P wave). We shall study both wave-equation-based travel-time inversion (TTI) and
full-waveform inversion (FWI). Specifically, we compute the wave equations by FGA
and construct the sensitivity kernel by RBM, yielding the stochastic decent directions
for the velocity model. Then the convergent iterations in TTI and FWI will produce
the velocity model expected in seismic tomography. We analyze the convergence of
the proposed method in the mean-square sense and show the accuracy by a two-
dimensional (2D) Gaussian perturbation model, a 2D gradually changing background
model, a 2D three-layered model, and a 3D Gaussian perturbation model.

The rest of the paper is organized as follows. In section 2, we introduce the model
setup and the formulation of seismic tomography. In section 3, we systematically
describe the construction of stochastic gradients by FGA and RBM, and then prove
the convergence to the deterministic gradient descent in the mean-square sense. In
addition, we generalize the idea of and provide convergence analysis for the accelerated
FWI method [40], which performs the random batch on source-receiver pairs. We
present its numerical performance with several examples in section 4, and we make
conclusive remarks in section 5.

2. Seismic tomography. In this section, we introduce the formulation of seis-
mic tomography, where the propagation of seismic waves is modeled by the acoustic
wave equations (wave),
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B316 YIXIAO HU, LIHUI CHAI, ZHONGYI HUANG, AND XU YANG

\rho (x)\partial 2
t u - \Delta xu= s(t, x), x\in \BbbR 3, t > 0,

u(t= 0, x) = 0, \partial tu(t= 0, x) = 0.
(1)

Here \rho (x) is the reference media density at location x \in \BbbR 
3, from which one can

get the P-wave velocity c = 1/
\surd 
\rho , \Delta x is the Laplace operator in x, and s(t, x) is

the source term. When an earthquake is modeled by a point source, one can choose
s(t, x) = f(t)\delta d(x  - xs), with f(t) as the source time function at xs with compact
support on [0,\infty ), and \delta d as the Dirac delta function. Note that the formulation here
can be easily generalized to elastic wave propagation as in, e.g., [39, 11], and we focus
on seismic tomography using the P-wave for the sake of simplicity.

Seismic tomography aims to solve an inverse problem which minimizes the misfit
functional

(2) J(\rho ) :=
1

2

\int T

0

dt

\int 

\Omega 

dxw(x) (\scrA [uobs(t, x)] - \scrA [u(t, x;\rho )])2 ,

where [0, T ] is a fixed time window, \Omega is the region of interest, w(x) represents the
distribution of receivers (e.g., in a finite-receiver setup, w(x) = 1

N\mathrm{R}

\sum N\mathrm{R}

r=1
\delta d(x - xr),

where NR is the number of receivers and xr is the location of the rth receiver sta-
tion), uobs(t, x) is the observed signal, and u(t, x) is the synthetic signal satisfying the
forward propagating wave equation (1). We use \scrA to denote an observation opera-
tor to extract useful information from the signals, e.g., in the FWI, \scrA [u] = u means
that all the information contained in a signal u is used; in the TTI, \scrA [u] is the time
spent by a signal u generated from a earthquake location xs propagated to a seismic
receiver xr.

In order to solve the minimization problem, one needs to compute the Fr\'echet
derivative of the misfit functional \delta J/\delta \rho . Without loss of generality, we take FWI as
an example and compute (cf. [6])

\delta J = - 
\int T

0

dt

\int 

\Omega 

dxw(x) (uobs(t, x) - u(t, x)) \delta u(t, x)

=

\int T

0

dt

\int 

\Omega 

dx

\int t

0

d\tau 

\int 

\Omega 

dyw(x) [uobs  - u](t, x)G(t, x; \tau , y)\partial 2
t u(\tau , y) \delta \rho (y)

=

\int 

\Omega 

dx

\int 

\Omega 

dy

\int T

0

d\tau 

\int T - \tau 

0

dtw(x) [uobs  - u](T  - t, x)G(T  - t, x; \tau , y)\partial 2
t u(\tau , y) \delta \rho (y)

=

\int 

\Omega 

dy

\int T

0

d\tau 

\int T - \tau 

0

dt

\int 

\Omega 

dxw(x) [uobs  - u](T  - t, x)G(T  - \tau , y; t, x)\partial 2
t u(\tau , y) \delta \rho (y)

=

\int 

dy

\int T

0

d\tau \delta \rho (y)u\dagger (T  - \tau , y)\partial 2
t u(\tau , y) ,

where the Green's function G=G(t, x; \tau , y) solves

\rho (x)\partial 2
tG - \Delta xG= \delta d(t - \tau ,x - y),

and u\dagger solves the adjoint wave equations

\rho (x)\partial 2
t u

\dagger  - \Delta xu
\dagger = s\dagger (t, x), x\in \BbbR 3, t > 0,

u\dagger (t= 0, x) = 0, \partial tu
\dagger (t= 0, x) = 0,

(3)

with the adjoint source function

(4) s\dagger (t, x) =w(x) [uobs  - u](T  - t, x).
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SEISMIC TOMOGRAPHY WITH RANDOM BATCH GRADIENT B317

Define the sensitivity kernel

(5)

K(x;\rho ) :=

\int T

0

dt \rho (x)u\dagger (T  - t, x)\partial 2
t u(t, x) =

\int T

0

dt \rho (x)\partial tu
\dagger (T  - t, x)\partial tu(t, x);

then one gets

(6) \delta J =

\int 

\Omega 

dxK(x;\rho ) \delta log\rho (x).

Remark 2.1. The above computation can also be performed by wave-equation-
based TTI, yielding a similar formulations except that the adjoint source function
becomes (cf. [6])

s\dagger (t, x) =w(x)g(t)\partial tu(t, x),

where g(t) is a window function supported in [0, T ].

After computing the sensitivity kernel (5) and the Fr\'echet derivative of the misfit
functional (6), one can apply optimization methods to find the minimizer of (2),
producing the desired velocity model by the relation c = 1/

\surd 
\rho . Classical methods

include, but are not limited to, the gradient descent, conjugate gradient, Newtonian,
and quasi-Newtonian methods. In this paper, we choose the gradient descent method
for its simplicity, bringing convenience to the derivation and proofs. We remark that
the idea of reconstructing the gradient using RBM can be used in essentially the same
way as in other kinds of gradient-based optimization methods, at least for the purpose
of numerical computing.

The gradient descent method can be formulated by

(7)
dX

ds
= - \nabla XJ,

where X := log\rho and \nabla XJ :=K(x;\rho ).
Given \rho > \rho 0 > 0, the map \rho \rightarrow X is one-to-one. Therefore, we shall use X, Y, \~X

to denote density (or velocity) models throughout this paper. Note that X is a
function of spatial variable x \in \BbbR 

3 and the iteration index s \in \BbbR 
+. Let us define

| X(s)| q :=
\int 

\Omega 
| X(x, s)| qdx and \| X(s)\| := (\BbbE | X(s)| 2)1/2. For the remainder of the

paper, we shall not write the dependence of X on the spatial variable x explicitly
but use X = X(s) to put more focus on the iteration procedure. We also write
K(X) =K(x;\rho ).

To make the inverse problem well-posed, a regularization term is added to the
misfit functional (2), and the above gradient flow is modified by

(8)
dX

ds
= - K(X) - \nabla XV (X),

where V is a given regularization potential that does not rely on solving the wave
equations, and we assume that V is strongly convex in X so that V (X) - r

2
X2 is convex

for some r > 0, and \nabla XV, \nabla 2
XV have polynomial growth. We remark here that the

assumptions on V are only for technical use in order to prove the convergence in the
following section. In practice, these assumptions may be removed. In section 4 it will
be seen that all of the numerical examples simply take V \equiv 0, and we can still get
numerical convergence results.
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B318 YIXIAO HU, LIHUI CHAI, ZHONGYI HUANG, AND XU YANG

3. Frozen Gaussian approximation and random batch method. In this
section, we systematically introduce the construction of the stochastic gradient by
FGA and RBM. We first describe how to use FGA to construct the gradient, and
then we use RBM to construct the stochastic gradient.

3.1. FGA-based gradient construction. The sensitivity kernel K defined in
(5) is a cross-correlation of the forward and adjoint wavefields. For convenience of
latter discussion, we write K = K(X) to indicate dependence on the velocity model
(noting that both u and u\dagger depend on X since they are synthetic solutions of (1)
and (3)).

FGA approximates the wavefields by (cf. [5])

(9) u(t, x;X) =
1

N

N
\sum 

j=1

Gj(t, x;X) and u\dagger (t, x;X) =
1

N

N
\sum 

j=1

G\dagger 
j(t, x;X),

where Gj and G\dagger 
j are Gaussian functions in the form of, e.g.,

A exp

\biggl( 

i

\varepsilon 
P \cdot (x - Q) - 1

2\varepsilon 
| x - Q| 2

\biggr) 

,

where A, Q, and P are functions of (t, q, p) determined by a set of ordinary differential
equations (ODEs),

(10)

\left\{ 

 

 

 

 

 

 

 

 

 

 

 

 

dQ

dt
= \partial PH, Q(0, q, p) = q,

dP

dt
= - \partial QH, P (0, q, p) = p,

dA

dt
=A

\partial PH \cdot \partial QH
H

+
A

2
Tr

\biggl( 

Z - 1 dZ

dt

\biggr) 

, A(0, q, p) =A0(q, p),

with H(Q,P ) =\pm c(Q)| P | and the shorthand notation \partial z = \partial q  - i\partial p and Z = \partial z(Q+
iP ); see more details in [5, 6, 11]. In (9) we assume the same beam number N for
both forward and adjoint simulations, and N does not change during the iteration
procedure (8). For convenience of notation and latter discussion, we introduce

(11) \.Gj(t, x;X) := \partial tGj(t, x;X), and \.G\dagger 
j(t, x;X) := \rho (x)\partial tG

\dagger 
j(t, x;X).

Then we approximate the kernel

(12) K(X) =

T/\tau 
\sum 

k=1

\tau u\dagger 
k uk

where uk = \partial tu(tk, x) and u\dagger 
k = \rho (x)\partial tu

\dagger (T  - tk, x), tk = k\tau , k = 1,2, . . . , T/\tau . The
velocity model follows

(13)
dX

ds
= - \nabla XV (X) - K(X)

at each iteration step s\in [sm - 1, sm).

3.2. Stochastic gradient by random batch method. At each iteration step
sm = mh and each time tk = k\tau , we randomly choose index sets \frakB m,k, \frakB 

\dagger 
m,k \subset 

\{ 1,2, . . . ,N\} such that, first, the number of indices | \frakB m,k| = | \frakB \dagger 
m,k| = p\ll N ; second,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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all\frakB m,k, \frakB 
\dagger 
m,k form= 0,1,2, . . . and k= 1,2, . . . , T/\tau are independent and identically

distributed, and the probability \BbbP (j \in \frakB m,k) = \BbbP (j \in \frakB \dagger 
m,k) = p/N for 1\leq j \leq N . We

call such \frakB m,k and \frakB 
\dagger 
m,k random batches.

We first approximate the wavefields by RBM

\~u(t, x;X) =
1

p

\sum 

j\in \frakB m,k

Gj(t, x;X) and \~u\dagger (t, x;X) =
1

p

\sum 

j\in \frakB 
\dagger 

m,k

G\dagger 
j(t, x;X).(14)

Then we define the stochastic gradient as

(15) \~K(X) =

T/\tau 
\sum 

k=1

\tau \~u\dagger 
k \~uk,

where \~uk = \partial t\~u(tk, x) and \~u\dagger 
k = \rho (x)\partial t\~u

\dagger (T  - tk, x).
We call \~K(X) the random batch kernel and update the velocity model by

(16)
dX

ds
= - \nabla XV (X) - \~K(X)

for each iteration step s\in [sm - 1, sm).

Remark 3.1. The main idea here is to use random batch summation to construct
randomized wavefields and the corresponding sensitivity kernels. It does not rely on
using FGA, and one can replace it by any other efficient wave propagation solver, e.g.,
Gaussian beam method or spectral element method.

Remark 3.2. As discussed in [5], the ODEs (10) can, embarrassingly, be parallelly
computed, but the parallelization for computing the summation (9) is less efficient and
technically involved. Therefore, the random batch summation (14) can significantly
reduce the workload of reconstructing wavefields and further improve the efficiency of
the FGA computation.

Remark 3.3. To get a well-resolved wavefield, the number of beams N is typically
on the order of \varepsilon  - d/2, where \varepsilon is proportional to the wavelength, and d = 2,3 is the
dimensionality of the space; thus N is usually a large number when performing a
high-frequency simulation where \varepsilon \ll 1. Recently, a random sampling method [42]
was developed for the Schr\"odinger equation which can reduce the number of beams
significantly by choosing beams via a preliminary distribution. This sampling idea
is restricted to Gaussian or WKB initial data for which one can determine whether
a beam is more or less ``important."" However, for wave equations with Dirac delta
sources, the beams are almost uniformly distributed, and thus it is not yet clear how
to find a good sampling strategy.

As in Algorithm 1, we present a brief pseudocode for implementation of the pro-
cedure of the proposed stochastic gradient descent by random batch method. We
remark that if, in lines 16 and 22, we set both \frakB m,k and \frakB 

\dagger 
m,k as the whole in-

dex set \{ 1,2, . . . ,N\} , then the algorithm will recover the classical gradient descent
method.

3.3. Preliminary results. In this subsection, we prove a few lemmas as prepa-
ration for proving the convergence theorem in the next subsection.

First, let us state the Lipschitz continuity properties of K and \~K.

Proposition 3.1. The kernels defined in (12) and (15) are Lipschitz continuous
in X.
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Algorithm 1. Stochastic gradient descent by random batch method.

1: procedure Main loop

2: X=X0, m= 0
3: Compute J(X)
4: while m<M\ast do  \triangleleft M\ast is a given number indicating the maximum

iteration steps

5: \~K \leftarrow Random Batch Kernel  \triangleleft Compute the gradient by
random batch method

6: X \leftarrow X - \alpha ( \~K +\nabla XV ), m \leftarrow m+ 1
7: Compute J(X)
8: if (J(X)< J\ast ) exit  \triangleleft If the misfit smaller is than a given threshold J\ast ,

exit iteration loop
9: end while

10: end procedure

11: procedure Random Batch Kernel(m)
12: Given discrete source and receiver locations xs and xr

13: Initialize Gj(t, x;X) at t= 0 for all j = 1, . . . ,N
14: for k= 1 : T/\tau do  \triangleleft TIME EVOLUTION FOR FORWARD SIMULATION
15: Gj(t, x;X) \leftarrow Gj(t+ \tau ) for all j = 1, . . . ,N  \triangleleft Evolve FGA ODEs for one

time step
16: Generate independent random batch \frakB m,k

17: Compute \~u(t, x;X) by(14); Compute u(t, xr;X) by (9)
18: end for

19: Initialize G\dagger 
j(t, x;X) at t= 0 for all j = 1, . . . ,N

20: for k= 1 : T/\tau do  \triangleleft TIME EVOLUTION FOR ADJOINT SIMULATION

21: G\dagger 
j(t, x;X) \leftarrow G\dagger 

j(t+ \tau ) for all j = 1, . . . ,N  \triangleleft Evolve FGA ODEs for one
time step

22: Generate independent random batch \frakB 
\dagger 
m,k

23: Compute \~u\dagger (t, x;X) by equation (14)
24: end for

25: Compute \~K by equation (15)

26: end procedure return \~K and u(\cdot , xr;X)

Proof. As defined in equations (9)--(12), the kernel K can be seen as a summation
of \.Gj

\.G\dagger 
l 's. Each Gj or G\dagger 

l is a Gaussian function whose parameters are given by a
set of ODEs (10). By the smooth dependence on the initial condition and parameters
for solution of ODEs, one can deduce that \.Gj and \.G\dagger 

l are smooth in X, and thus K
is Lipschitz continuous in X. Similarly, \~K is Lipschitz continuous in X.

Note that equation (16) can be rewritten as

(17)
dX

ds
= - \nabla XV (X) - K(X(s)) - \chi m(X(s)),

where

(18) \chi m(X) := \~K(X) - K(X).

Thus to analyze the convergence of the RBM, the key is a precise estimate on \chi m, for
which we have the following lemma.
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Lemma 3.1. Let Y be a velocity model, fixed and determined, and let K(Y) and
\~K(Y) be defined as in (12) and (15), respectively. Then

\BbbE [\chi m(Y)] = 0,(19)

\BbbE [\chi 2
m(Y)] =

\biggl( 

1

p
 - 1

N

\biggr) 

\tau \Lambda ,(20)

where

(21) \Lambda =
\tau 

N  - 1

T/\tau 
\sum 

k=1

N
\sum 

j=1

\left[ 

 

\Biggl( 

\.Gj  - 
1

N

N
\sum 

l=1

\.Gl

\Biggr) 2

\BbbE (\~u\dagger 
k)

2 + u2
k

\Biggl( 

\.G\dagger 
j  - 

1

N

N
\sum 

l=1

\.G\dagger 
l

\Biggr) 2
\right] 

 .

Proof. The expectation (19) is straightforward, and we only prove the variance
equality (20). Noting that \~uk, \~u

\dagger 
j for k, j = 1, . . . , T/\tau are independent, we then have

\BbbE \chi 2
m = \tau 2

T/\tau 
\sum 

k=1

\BbbE 

\Bigl[ 

(uku
\dagger 
k  - \~uk\~u

\dagger 
k)

2
\Bigr] 

= \tau 2
T/\tau 
\sum 

k=1

\Bigl( 

\BbbE (\~uk)
2
\BbbE (\~u\dagger 

k)
2  - u2

k(u
\dagger 
k)

2
\Bigr) 

= \tau 2
T/\tau 
\sum 

k=1

\Bigl( 

\bigl( 

\BbbE (\~uk)
2 - u2

k

\bigr) 

\BbbE (\~u\dagger 
k)

2+u2
k

\Bigl( 

\BbbE (\~u\dagger 
k)

2 - (u\dagger 
k)

2
\Bigr) \Bigr) 

,

(22)

where uk, \~uk, u
\dagger 
k, and \~u\dagger 

k take the form of

uk =
1

N

N
\sum 

j=1

\.Gj , \~uk =
1

p

\sum 

j\in \frakB m,k

\.Gj , u\dagger 
k =

1

N

N
\sum 

j=1

\.G\dagger 
j , \~u\dagger 

k =
1

p

\sum 

j\in \frakB 
\dagger 

m,k

\.G\dagger 
j .

Then one can compute

\BbbE (\~uk)
2 =

1

p2

N
\sum 

j=1

\.G2
j \BbbP (j \in \frakB m,k) +

1

p2

\sum 

j,l:j \not =l

\.Gj
\.Gl \BbbP (j \in \frakB m,k and l \in \frakB m,k)

=
1

pN

N
\sum 

j=1

\.G2
j +

p - 1

pN(N  - 1)

\sum 

j,l:j \not =l

\.Gj
\.Gl,

and thus

\BbbE (\~uk)
2  - u2

k =

\biggl( 

1

pN
 - 1

N2

\biggr) N
\sum 

j=1

\.G2
j +

\biggl( 

p - 1

pN(N  - 1)
 - 1

N2

\biggr) 

\sum 

j,l:j \not =l

\.Gj
\.Gl

=

\biggl( 

1

p
 - 1

N

\biggr) 

\left( 

 

1

N

N
\sum 

j=1

\.G2
j  - 

1

N(N  - 1)

\sum 

j,l:j \not =l

\.Gj
\.Gl

\right) 

 

=

\biggl( 

1

p
 - 1

N

\biggr) 

1

N  - 1

N
\sum 

j=1

\Biggl( 

\.Gj  - 
1

N

N
\sum 

l=1

\.Gl

\Biggr) 2

.

The \BbbE (\~u\dagger 
k)

2  - (u\dagger 
k)

2 can be compute in an analogous way, and then we can
obtain (20).

Let X(s) be a solution to (13) and \~X(s) be solution to (16). Define Z(s) :=
\~X(s) - X(s), and let \scrF m - 1 be a \sigma -algebra generated by the random batch construction
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for s\leq sm - 1. The following lemmas are devoted to the stability and truncation error
analysis of the random batch method.

Lemma 3.2. One can have the following estimate for X and \~X:

(23) sup
t>0

\Bigl( 

| X| q +\BbbE | \~X| q
\Bigr) 

\leq Cq.

Proof.

d| X| q
ds

= | X| q - 2X \cdot dX
ds

= - | X| q - 2X \cdot (\nabla XV (X) +K(X))

X \cdot \nabla XV (X) = (X - 0) \cdot (\nabla XV (X) - \nabla XV (0)) +X \cdot \nabla XV (0)

= (X - 0)2 :\nabla 2
XV (X\ast ) +X \cdot \nabla XV (0),

d| X| q
ds
\leq  - qr| X| q + \| K\| \infty | X| q - 1 \leq  - qr| X| q + \| K\| \infty 

\biggl( 

q - 1

q
\nu | X| q + 1

q\nu q - 1

\biggr) 

.

Thus | X| q \leq Cq. Similarly, \BbbE | \~X| q \leq Cq.

Lemma 3.3. For s\in [sm - 1, s), it holds that

(24)
\bigm\| 

\bigm\| 

\bigm\| 

\~X(s) - \~X(sm - 1)
\bigm\| 

\bigm\| 

\bigm\| \leq Ch.

Proof. Direct computation shows that

d

ds

\bigm\| 

\bigm\| 

\bigm\| 

\~X(s) - \~X(sm - 1)
\bigm\| 

\bigm\| 

\bigm\| 

2

= - 2\BbbE 
\Bigl[ \Bigl( 

\~X(s) - \~X(sm - 1)
\Bigr) \Bigl( 

\nabla XV
\Bigl( 

\~X(s)
\Bigr) 

+ \~K
\Bigl( 

\~X(s)
\Bigr) \Bigr) \Bigr] 

;

then by H\"older's inequality, one has

d

ds

\bigm\| 

\bigm\| 

\bigm\| 

\~X(s) - \~X(sm - 1)
\bigm\| 

\bigm\| 

\bigm\| 

2

\leq C
\bigm\| 

\bigm\| 

\bigm\| 

\~X(s) - \~X(sm - 1)
\bigm\| 

\bigm\| 

\bigm\| 

\Bigl( \bigm\| 

\bigm\| 

\bigm\| \nabla XV
\Bigl( 

\~X(s)
\Bigr) \bigm\| 

\bigm\| 

\bigm\| +
\bigm\| 

\bigm\| 

\bigm\| 

\~K
\Bigl( 

\~X(s)
\Bigr) \bigm\| 

\bigm\| 

\bigm\| 

\Bigr) 

.

Note that \nabla XV \leq C(1 + | X| q) for some q, and thus \| \nabla XV \| is bounded, and \~K is a
cross-correlation of two wavefields constructed from Gaussians, where the Gaussians
are determined by a set of ODEs depending on the velocity model \~X smoothly, so
Gaussians are bounded and so is \| \~K\| . Thus

d

ds

\bigm\| 

\bigm\| 

\bigm\| 

\~X(s) - \~X(sm - 1)
\bigm\| 

\bigm\| 

\bigm\| 

2

\leq C
\bigm\| 

\bigm\| 

\bigm\| 

\~X(s) - \~X(sm - 1)
\bigm\| 

\bigm\| 

\bigm\| ,

and then the estimate (24) follows.

Lemma 3.4. For s\in [sm - 1, s),

(25) \| Z(s) - Z(sm - 1)\| \leq Ch

and

(26) \BbbE | (Z(s) - Z(sm - 1)) \chi m (X(s))| \leq Ch
\bigl[ \bigl( 

\| Z(s)\| + \| Z(s)\| 2
\bigr) 

+ h
\bigr] 

+
h\tau 

p
\| \Lambda \| \infty .
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Proof.

dZ

ds
= - \nabla XV (\~X) +\nabla XV (X) - \~K(\~X) +K(X);

thus

1

2

dZ2

ds
\leq  - (r - L)Z2,

which implies that, for s\in [sm - 1, sm), one has

| Z(s)| \leq | Z(sm - 1)| +Ch and \| Z(s) - Z(sm - 1)\| \leq Ch

 - dZ

ds
=\nabla XV (\~X) - \nabla XV (X) + \~K(\~X) - \~K(X) + \chi m(X).

Since
\bigm| 

\bigm| 

\bigm| \nabla XV (\~X) - \nabla XV (X)
\bigm| 

\bigm| 

\bigm| \leq 
\bigm| 

\bigm| 

\bigm| (\~X - X) \cdot \nabla 2
XV (X\ast )

\bigm| 

\bigm| 

\bigm| ,

we have

\BbbE 

\bigm| 

\bigm| 

\bigm| 

\Bigl( 

\nabla XV (\~X(s\prime )) - \nabla XV (X(s\prime ))
\Bigr) 

\chi m(X(s))
\bigm| 

\bigm| 

\bigm| 

\leq \| \chi m(X(s))\| \infty 
\bigm\| 

\bigm\| 

\bigm\| (\~X(s\prime ) - X(s\prime ))
\bigm\| 

\bigm\| 

\bigm\| 

\biggl( 

\BbbE 

\Bigl[ 

| \~X(s\prime )| q1 + | X(s\prime )| q1
\Bigr] 2
\biggr) 1/2

\leq C\| Z(s\prime )\| .

Therefore

\BbbE | (Z(s) - Z(sm - 1)) \chi m (X(s))| 

\leq 
\int s

sm - 1

ds\prime 
\biggl\{ 

C \| Z(s\prime )\| +\BbbE | \chi m (X(s\prime )) \chi m (X(s))| 

+\BbbE 

\bigm| 

\bigm| 

\bigm| 

\Bigl( 

\~K(\~X(s\prime )) - \~K(X(s\prime ))
\Bigr) 

\chi m (X(s))
\bigm| 

\bigm| 

\bigm| 

\biggr\} 

\leq 
\int s

sm - 1

ds\prime 
\biggl\{ 

C \| Z(s\prime )\| +\BbbE 

\Bigl[ 

\chi m (X(s))
2
\Bigr] 

+
1

2
\BbbE 

\Bigl[ 

\chi m (X(s\prime ))
2
\Bigr] 

+
1

2
\BbbE 

\biggl[ 

\Bigl( 

\~K(\~X(s\prime )) - \~K(X(s\prime ))
\Bigr) 2
\biggr] \biggr\} 

.

The second and third terms are controlled by Lemma 3.1 since X is independent of
the random batch, and thus

\BbbE 

\Bigl[ 

\chi m (X(s))
2
+ \chi m (X(s))

2
\Bigr] 

\leq C

\biggl( 

1

p
 - 1

N

\biggr) 

\tau \| \Lambda \| \infty .

The fourth term is controlled by using the Lipschitz continuity of \~K as follows:

\BbbE 

\biggl[ 

\Bigl( 

\~K(\~X) - \~K(X)
\Bigr) 2
\biggr] 

\leq L2
\BbbE 

\biggl[ 

\Bigl( 

\~X - X
\Bigr) 2
\biggr] 

=L2\| Z\| 2.

Then

\BbbE | (Z(s) - Z(sm - 1)) \chi m (X(s))| \leq C
\bigl[ \bigl( 

\| Z(s)\| + \| Z(s)\| 2
\bigr) 

h+ h2
\bigr] 

+

\biggl( 

1

p
 - 1

N

\biggr) 

h\tau \| \Lambda \| \infty .
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3.4. Main theorem. In this subsection, we present the main convergence the-
orem. As in Remark 3.1, the main idea of the proposed method is to use RBM for
the construction of randomized wavefields and the corresponding sensitivity kernels,
and one can replace FGA by any other efficient wave propagation solvers. Therefore,
we shall only focus on the convergence of RBM to the deterministic gradient decent
method, assuming that the chosen wave propagation solvers can provide convergent
numerical results. We refer the reader to [26, 4] for the convergent results of the FGA
solvers.

Theorem 3.1. As the iteration step h goes to zero, \~X converges to X in the
mean-square sense. More precisely, we have the following estimate:

(27) sup
s\geq 0

\| Z(s)\| \leq C

\sqrt{} 

h\tau 

p
+Ch2.

Proof.

1

2

d

ds
\BbbE Z2 = - \BbbE 

\Bigl[ 

Z(s)
\Bigl( 

\nabla XV (\~X(s)) - \nabla XV (X(s)) +K(\~X(s)) - K (X(s))
\Bigr) \Bigr] 

 - \BbbE 

\Bigl[ 

Z(s)\chi m

\Bigl( 

\~X(s)
\Bigr) \Bigr] 

\leq  - (r - L)\BbbE Z2  - \BbbE 

\Bigl[ 

Z(s)\chi m

\Bigl( 

\~X(s)
\Bigr) \Bigr] 

.

Let

R(s) :=\BbbE 

\Bigl[ 

Z(s)\chi m

\Bigl( 

\~X(s)
\Bigr) \Bigr] 

,

R(s) = \BbbE 

\Bigl[ 

Z(sm - 1)\chi m

\Bigl( 

\~X(sm - 1)
\Bigr) \Bigr] 

+\BbbE 

\Bigl[ 

Z(sm - 1)
\Bigl( 

\chi m

\Bigl( 

\~X(s)
\Bigr) 

 - \chi m

\Bigl( 

\~X(sm - 1)
\Bigr) \Bigr) \Bigr] 

+\BbbE [(Z(s) - Z(sm - 1)) \chi m (X(s))]

+\BbbE 

\Bigl[ 

(Z(s) - Z(sm - 1))
\Bigl( 

\chi m

\Bigl( 

\~X(s)
\Bigr) 

 - \chi m (X(s))
\Bigr) \Bigr] 

= : I1 + I2 + I3 + I4.

For the first term,

I1 =\BbbE 

\Bigl[ 

\BbbE 

\Bigl[ 

Z(sm - 1)\chi m

\Bigl( 

\~X(sm - 1)
\Bigr) \bigm| 

\bigm| 

\bigm| \scrF m - 1

\Bigr] \Bigr] 

=\BbbE 

\Bigl[ 

Z(sm - 1)\BbbE 
\Bigl[ 

\chi m

\Bigl( 

\~X(sm - 1)
\Bigr) \bigm| 

\bigm| 

\bigm| \scrF m - 1

\Bigr] \Bigr] 

= 0.

For the second term,

I2 =\BbbE 

\Bigl[ 

Z(sm - 1)
\Bigl( 

\chi m

\Bigl( 

\~X(s)
\Bigr) 

 - \chi m

\Bigl( 

\~X(sm - 1)
\Bigr) \Bigr) \Bigr] 

\leq C \| Z(sm - 1)\| 
\bigm\| 

\bigm\| 

\bigm\| \chi m

\Bigl( 

\~X(s)
\Bigr) 

 - \chi m

\Bigl( 

\~X(sm - 1)
\Bigr) \bigm\| 

\bigm\| 

\bigm\| 

\leq 2LC \| Z(sm - 1)\| 
\bigm\| 

\bigm\| 

\bigm\| 

\~X(s) - \~X(sm - 1)
\bigm\| 

\bigm\| 

\bigm\| 

\leq C\| Z(s)\| h+Ch2,
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where, for the second inequality, we used the Lipschitz continuity of K and \~K. For
the third term, by Lemma 3.4

I3 \leq Ch
\bigl[ \bigl( 

\| Z(s)\| + \| Z(s)\| 2
\bigr) 

+ h
\bigr] 

+
h\tau 

p
\| \Lambda \| \infty .

For the fourth term,

I4 \leq \| Z(s) - Z(sm - 1)\| 
\bigm\| 

\bigm\| 

\bigm\| \chi m

\Bigl( 

\~X(s)
\Bigr) 

 - \chi m (X(s))
\bigm\| 

\bigm\| 

\bigm\| \leq C\| Z(s)\| h.

Hence,

R(s)\leq C\| Z(s)\| h+C
h\tau 

p
+Ch2,

and

d

ds
\| Z\| 2 \leq  - (r - L)\| Z\| 2 +Ch\| Z\| +C

h\tau 

p
+Ch2,

which implies

sup
s\geq 0

\| Z(s)\| 2 \leq C
h\tau 

p
+Ch2.

3.5. Random batch on source-receiver pairs. In this subsection, as a by-
product and by essentially following the same proof strategies as in sections 3.3 and
3.4, we provide convergence results for the accelerated FWI method using dynamic
mini-batches as proposed in [40]. This method uses spectral element methods to
compute synthetic seismograms and applies random batches on the source-receiver
pairs. For convenience, we briefly review the method. Assume there are NR receiver
stations and NS earthquake events, one can rewrite the sensitivity kernel by

K =
1

NRNS

N\mathrm{R}
\sum 

r=1

N\mathrm{S}
\sum 

s=1

Krs, where Krs =

\int T

0

dt \rho (x)\partial tu
\dagger (T  - t, x;xr)\partial tu(t, x;xs),

(28)

where one uses the spectral element method to solve u(\cdot , \cdot ;xs) by the wave equation
(1), with the source located at x = xs, and u\dagger (\cdot , \cdot ;xr) by the adjoint wave equation
(3), with the adjoint source function

s\dagger (t, x) = [uobs  - u](T  - t, x) \delta d(x - xr).

To apply the RBM, in each iteration step m we choose a receiver index subset
\frakR m \subset \{ 1,2, . . . ,NR\} and a source index subset \frakS m \subset \{ 1,2, . . . ,NS\} randomly and
independently. The random batch kernel is then given by

\~K =
1

pRpS

\sum 

r\in \frakR m

\sum 

s\in \frakS m

Krs.(29)

Now one can use this kernel in the main loop of Algorithm 1 to update the velocity
model X.

Our contribution here is to give a convergence result for the RBM in source-
receiver pairs in analogy to Theorem 3.1. Since the strategy of the proof is essentially
the same, we only state the following key lemma.
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Lemma 3.5. Let Y be a velocity model, fixed and determined, and let \chi m(Y) :=
\~K(Y) - K(Y). Then it holds that \BbbE S[\chi m(Y)] =\BbbE [\chi m(Y)] = 0 and

\BbbE S[\chi 
2
m(Y)] =

\biggl( 

1

pR
 - 1

NR

\biggr) 

\Lambda R,(30)

\BbbE [\chi 2
m(Y)] =

\biggl( 

1

pS
 - 1

NS

\biggr) 

\BbbE \Lambda S +\BbbE S[\chi 
2
m(Y)],(31)

where we have used the shorthand notation \BbbE S for conditional expectation \BbbE S[ \cdot ] :=
\BbbE [ \cdot | \frakS m = 1, . . . ,Nobs], and

\Lambda R =
1

NR  - 1

N\mathrm{R}
\sum 

r=1

\Biggl( 

Kr  - 
1

NR

N
\sum 

l=1

Kl

\Biggr) 2

, with Kr =
1

NS

N\mathrm{S}
\sum 

s=1

Krs,(32)

\Lambda S =
1

NS  - 1

N\mathrm{S}
\sum 

r=1

\Biggl( 

\~Ks  - 
1

NS

N
\sum 

l=1

\~Kl

\Biggr) 2

, with \~Ks =
1

pR

\sum 

r\in \frakR m

Krs.(33)

Proof. It is straightforward to show \BbbE S[\chi m(Y)] = \BbbE [\chi m(Y)] = 0. To show (30),
we compute

\BbbE S[\chi 
2
m(Y)] =\BbbE 

\left[ 

 

\Biggl( 

1

pR

\sum 

r\in \frakR m

Kr  - 
1

NR

N\mathrm{R}
\sum 

r=1

Kr

\Biggr) 2
\right] 

 

=
1

p2
R

\BbbE 

\Biggl( 

\sum 

r\in \frakR m

Kr

\Biggr) 2

 - 1

N2
R

\Biggl( 

N\mathrm{R}
\sum 

r=1

Kr

\Biggr) 2

.

Note that

\BbbE 

\Biggl( 

\sum 

r\in \frakR m

Kr

\Biggr) 2

=

N\mathrm{R}
\sum 

r=1

K2
r \BbbP (r \in \frakR m) +

\sum 

r,l:r \not =l

KrKl \BbbP (r \in \frakR m and l \in \frakR m)

=
pR
NR

N\mathrm{R}
\sum 

r=1

K2
r +

pR(pR  - 1)

NR(NR  - 1)

\sum 

r,l:r \not =l

KrKl,

and thus

\BbbE S[\chi 
2
m(Y)] =

\biggl( 

1

pRNR

 - 1

N2
R

\biggr) N\mathrm{R}
\sum 

r=1

K2
r +

\biggl( 

pR  - 1

pRNR(NR  - 1)
 - 1

N2
R

\biggr) 

\sum 

r,l:r \not =l

KrKl,

=

\biggl( 

1

pR
 - 1

NR

\biggr) 

1

NR  - 1

N\mathrm{R}
\sum 

r=1

\Biggl( 

Kr  - 
1

NR

N\mathrm{R}
\sum 

l=1

Kl

\Biggr) 2

,

yielding (30). Then (31) can be obtained by taking the expectation with respect to
\frakS m and \frakR m separately.

4. Numerical examples. In this section, we present some synthetic tomog-
raphy tests using random batch gradient reconstruction, where the wave equations
are solved by FGA and the sensitivity kernel are constructed using (15). Note that
the random batch gradient reconstruction method we propose can be applied to any
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(a) (b) (c)

(d) (e) (f)

Fig. 1. Example 4.1. 2D FWI results with batch strategy 1. (a) and (d) plot the resulted
velocities after five and three iterations using batch strategy 1 with sampling rate 10\% and 2.5\%,
respectively. Comparisons of the same setup are also given for the wavefields ((b) and (e)) and
kernels ((c) and (f)).

gradient-based iterative method, but the proof of the convergence may be more com-
plicated than that in the previous section. So in the following subsections, we mainly
use L-BFGS for the iterations and show the convergence numerically but leave the
rigorous proof for further studies. We present one gradient descent example in section
4.5. We remark that all the computations are performed on a Dell T7920 worksta-
tion with dual Intel Xeon Gold 6130 Processor (16 Cores, 22M Cache, 2.10GHz) and
compiled with GFORTRAN and MPICH.

4.1. Full-waveform inversion for a 2D model. In the first example, we
present a test using FWI to image a 2D (in the x - z plane) square region. As a proof
of methodology, we set point receivers on the top and right of the square region and
set point sources aligning on the bottom and left of the square region. The target
velocity field is set as

c(x, z) =C0

\biggl( 

1 - \alpha exp

\biggl( 

 - \beta 

L2

\bigl( 

(x - xc1)
2 + (z  - zc)

2
\bigr) 

\biggr) 

+\alpha exp

\biggl( 

 - \beta 

L2

\bigl( 

(x - xc2)
2 + (z  - zc)

2
\bigr) 

\biggr) \biggr) 

,(34)

where C0 = 2500 m/s, xc1 = 1344 m, xc2 = 1824 m, zc = L = 1584 m, \alpha = 0.03,
\beta = 24.2. See Figure 1(a) for a demonstration of the setup. FWI iteration starts with
the background velocity, that is, c0 \equiv 2500 m/s homogeneously. In this example, the
beam number N = 32766, and \epsilon =L/256.

We use FGA to simulate the forward and adjoint wave equations. To reconstruct
the wavefields and kernels, we use the two following strategies to generate random
batch:
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(a) (b) (c)

Fig. 2. Example 4.1. 2D FWI results with batch Strategy 2 using the sampling rate 2.5\%. After
three iterations, we have (a) velocity, (b) wavefield, (c) kernel.

0 1 2 3 4 5 6

Iteration step

10

20

30

40

50

60

70

f

Strategy1 2.5%

Strategy2 2.5%

Strategy1 10%

(a)

Fig. 3. Example 4.1. 2D FWI results: Decay of the misfit function.

\bullet Strategy 1. As we proposed in section 3.2, for each iteration step m and time
evolution step k, we choose batches such that \{ \frakB m,k, \frakB 

\dagger 
m,k : m \in \BbbN , k =

0,1, . . . , T/\tau \} is independent.
\bullet Strategy 2. For each iteration step m we choose two batches \frakB m and \frakB 

\dagger 
m

independently and set \frakB m,k =\frakB m, \frakB \dagger 
m,k =\frakB 

\dagger 
m for all k= 0,1, . . . , T/\tau , that

is, we lose the independence for time evolution steps.
In Figure 1(a) and(d), we plot the resulting velocities after four iteration steps

using batch Strategy 1 with sampling rates p/N = 10\% and p/N = 10\%, respectively,
and one can see that the low-velocity region has already been captured (though there
are blurs and artifacts). We also plot time-shots of the wavefields for both 10\% and
2.5\% reconstructions in Figure 1(b),(e), respectively, and the kernels for both 10\%
and 2.5\% reconstructions in Figure 1(c),(f), respectively. For a comparison, we use
batch Strategy 2 to generate batches and redo the test with the sampling rate 2.5\%.
In Figure 2, the inversion result is poor even though the wavefield and kernel look
``okay."" The decay of the misfit functional for these two different strategies is shown
in Figure 3.

We can see from Figures 1(b),(e), and 2(b) that different strategies of batch gen-
eration in FGA capture similar wavefront shapes; this is because FGA as a ray-based
asymptotic method gives correct ray-path information; the wavefields are smooth be-
cause they are reconstructed by complex-valued Gaussian functions. Figures 1(c),(f),
and 2(c) also show that the banana-doughnut shapes of the kernels look similar to one
another. But one can see a significant difference by looking at small-scale structures:
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(a) (b)

(c)

0 1 2 3 4 5 6 7 8 9 10

Iteration step

4

6

8

10

12

lo
g

2
(f

)

20%TTI

(d)

Fig. 4. Example 4.2. 2D TTI model results with gradually changing background. (a) Target
velocity field; (b) velocity field after 10 iteration steps; (c) velocity field after 10 iteration steps,
subtracting the background velocity field c10  - c0; (d) decay of the misfit function.

apparently, there is roughness or a ``noise-like"" structure in Figure 1(f) generated by
Strategy 1, while Figure 2(c) generated by Strategy 2 shows a smooth kernel. The
reason for this difference lies is because Strategy 2 has no randomness in time evo-
lution, and so it is smooth when integrating (or summing, for numerical purposes)
over time to get the kernel (15), while Strategy 1 uses an independent random batch
for each time evolution step and thus shows more randomness. We note here that
it is the time-independence that helps Strategy 1 attain a better convergence than
Strategy 2, which can be seen in the proof of Lemma 3.1 where the computation of
variance (22) relies on the independence directly.

4.2. Travel-time inversion for a 2D gradually changing background

model. In the previous subsection, the perturbation in the velocity field is small
(3\%). As observed in the literature (see, e.g., [6]), TTI has a much wider convergence
zone than FWI, so when the perturbation is large, one can use TTI instead of FWI to
get a convergent result. To further test the performance of the proposed method, we
look at a region with gradually changing background velocity and aim to image a tar-
get of low-velocity perturbation using travel-time inversion. As shown in Figure 4(a),
48 stations are put near the surface, 24 sources are put deep inside the earth near the
bottom of the target region of size 6336 m \times 3168 m, and the background velocity
field has a gradual change from 2500m/s at the top ground to 3000m/s at the deep
bottom, and the velocity field is given by

(35) c(x, z) =
\Bigl( 

C1

\Bigl( 

1 - z

2L

\Bigr) 

+C2

z

2L

\Bigr) 

\biggl( 

1 - \alpha exp

\biggl( 

 - \beta 

L2

\bigl( 

(x - xc)
2 + (z  - zc)

2
\bigr) 

\biggr) \biggr) 

,

where C1 = 2500 m/s, C2 = 3000 m/s, zc = L = 1584 m, xc = 3168 m, \alpha = 0.1,
\beta = 24.2. TTI iteration starts with the background velocity c0, which is given by
(35), with the same parameter values as specified above except that here \alpha = 0. In
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this numerical example, the beam number N = 32768, and \epsilon = L/256. We use FGA
to simulate the forward and adjoint wave equations with sampling rate p/N = 20\% to
generate the random batch for wavefield and kernel reconstructions. In Figure 4(b),
we plot the resulting velocity model c10 after 10 iteration steps, and one can see a
good match with the target velocity model; this also can be seen in Figure 4(c) where
c10  - c0 is plotted; Figure 4(d) shows the decay of the misfit functional, and one can
see the iteration has numerical convergence.

4.3. Travel-time inversion for a three-layered model. In this example,
we apply TTI inversion with random batch gradient reconstruction in a cross-well
setup, which is often used for high-resolution reservoir characterization in exploration
geophysics. Two wells with 24 sources and 48 stations, respectively, are set on the
left and right sides of a region of size 3168m \times 6436m. The target velocity model is
chosen to be three-layered in the form of

c(x, y, z) = c(x, z)

=

\left\{ 

 

 

 

 

 

 

C1, if z0 < z < z1,

C2

\Bigl( 

1 - \alpha exp
\Bigl( 

 - \beta 
L2

\bigl( 

(x - xc)
2 + (z  - zc)

2
\bigr) 

\Bigr) \Bigr) 

if z1 < z < z2,

C3, if z > z2,

(36)

where the background velocities in three layers are C1 = 1800 m/s, C2 = 2000 m/s,
C3 = 2200 m/s, and the layer interfaces are located at z0 = 0 m, z1 = 2112 m,
z2 = 4224 m. A low-velocity region characterized by a Gaussian perturbation is
located at the center of the second layer with xc = 1584 m, zc = 3168 m, and we
choose \alpha = 10\%, \beta = 24.2, and L = 3168 m. See Figure 5(a) for an illustration
of the velocity model and the source-receiver setup. In this numerical example, the
beam number N = 32766, and \epsilon = L/256. Travel-time inversion iteration starts
with a piecewise constant background velocity, which is given by (36), with the same
parameter values specified above except that here \alpha = 0. We use FGA to simulate the
forward and adjoint wave equations with sampling rate p/N = 20\% to generate the
random batch for wavefield and kernel reconstructions. In Figure 5(b), we plot the
resulting velocity model c9 after nine iteration steps, and one can see a good match
with the target velocity model. Figure 5(c) shows the difference in resulting and target
velocity models c9 - c, and one can see that the residual is relatively small compared to
the background and the Gaussian perturbation. Decay of the misfit during iteration
is shown in Figure 6, and one can see that the iteration has numerical convergence.

4.4. Travel-time inversion for a 3D model. In this subsection, we present
a test using TTI to image a 3D cube region. The target velocity field is assumed
homogeneous in the y-direction and is set to be a 10\% Gaussian perturbation of a
homogeneous background with velocity 2500m/s, i.e.,

(37) c(x, y, z) = c(x, z) =C0

\biggl( 

1 - \alpha exp

\biggl( 

 - \beta 

L2

\bigl( 

(x - xc)
2 + (z  - zc)

2
\bigr) 

\biggr) \biggr) 

,

where C0 = 2500 m/s, xc = zc = L = 1584 m, \alpha = 0.1, \beta = 24.2. Travel-time
inversion iteration starts with a velocity field with 2500 m/s homogeneously. In this
numerical example, the beam number N = 65534, and \epsilon = L/64. We use FGA to
simulate the forward and adjoint wave equations in three dimensions. To reconstruct
the wavefields and kernels, we use Strategy 1 with sampling rates p/N=5\%, 10\%,
and 20\% to generate the random batch for wavefield and kernel reconstructions.
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(a) (b) (c)

Fig. 5. Example 4.3. 2D TTI results for a three-layered model. (a) Target velocity; (b) velocity
after nine iteration steps; (c) the difference between velocity after nine iteration steps and target
velocity.
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Fig. 6. Example 4.3. 2D TTI results for a three-layered model: Decay of the misfit function.

It can be seen from Figure 7 that even when 5\% of the beams are used, the
tomography can capture at least the location and shape of the low-velocity region
and give a reasonable model. The larger the sampling rate, the better the resolution
of the resulting image. This phenomenon can be further seen in Figure 8 as we look
at the values of the misfit functional. One can observe a smaller misfit value for a
larger sampling rate, which is consistent with Theorem 3.1 since larger p/N implies
smaller variance in (20) for fixed N . On the other hand, for the first several iteration
steps, the values of the misfit functions are almost the same for different sampling
rates, which numerically indicates that the convergence rate of the iteration is not
sensitive to the batch size.

4.5. Travel-time inversion for a 3D refraction model. In this subsection,
we give an example using TTI to image a 3D cuboid region with a completely reflective
bottom interface. The target velocity field is assumed homogeneous in the y-direction
and is set to be a 10\% Gaussian perturbation of a homogeneous background with
velocity 2500m/s, i.e.,

(38) c(x, y, z) = c(x, z) =C0

\biggl( 

1 - \alpha exp

\biggl( 

 - \beta 

L2

\bigl( 

(x - xc)
2 + (z  - zc)

2
\bigr) 

\biggr) \biggr) 

,
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(a) (b)

(c) (d)

Fig. 7. Example 4.4. 3D TTI results. (a) Velocity model after nine iteration steps with sam-
pling rate 5\%; (b) velocity model after seven iteration steps with sampling rate 10\%; (c) velocity
model after seven iteration steps with sampling rate 20\%; (d) velocity model after nine iteration
steps with sampling rate 100\%.
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Fig. 8. Example 4.4. 3D TTI results: Decay of misfit function.

where C0 = 2500 m/s, xc = L = 1584 m, zc = 891 m, \alpha = 0.1, \beta = 6.05. Travel-time
inversion iteration starts with a velocity field with 2500 m/s homogeneously. In this
numerical example, the beam number N = 65534, and \epsilon = L/64. We use FGA to
simulate the forward and adjoint wave equations in three dimensions. To reconstruct
the wavefields and kernels, we use Strategy 1 with sampling rates p/N = 5\%, 20\%,
and 100\% to generate the random batch for wavefield and kernel reconstructions.
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(a) (b)

(c) (d)

Fig. 9. Example 4.5. 3D TTI model results with reflection bottom. (a) Target velocity field;
(b) velocity field after 14 iteration steps with sampling rate 100\%; (c) velocity field after 11 iteration
steps with sampling rate 20\%; (d) velocity field after 15 iteration steps with sampling rate 5\%.
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Fig. 10. Example 4.5. 3D TTI Model results with reflection bottom: Decay of misfit function.

It can be seen from Figure 10 that, in this test, the tomography can capture
at least the location and shape of the low-velocity region and give a reasonable
model. The results with different sampling rates are nearly the same. This phe-
nomenon can be further observed in Figure 10 as we look at the values of the misfit
function.

We can also compare the computation times to show the effectiveness of the
stochastic method in saving computations. As one can see from Table 1, for different
sampling rates from 100\% to 5\%, the computation time spent for one iteration step
varies from 30.08 hours to 4.18 hours, which indicates that it can save about 86.1\%
CPU time by using the random batch method.

5. Conclusion and discussion. In this paper, we propose a type of stochas-
tic gradient descent method for seismic tomography. Specifically, we use the frozen
Gaussian approximation (FGA) to compute seismic wave propagation, and then we
construct stochastic gradients by random batch methods (RBMs). One can easily gen-
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Table 1

Table of efficiency for different sampling rates.

Efficiency of random batch method

Sampling rate Computation time Savings

100\% 30.08h 0\%

20\% 7.65h 74.6\%
10\% 5.08h 83.1\%

5\% 4.18h 86.1\%

eralize this idea by replacing FGA with any other efficient wave propagation solver,
e.g., the Gaussian beam method. The convergence of the proposed method is proved
in the mean-square sense, and we present four examples of both wave-equation-based
travel-time inversion (TTI) and full-waveform inversion (FWI) to show the numeri-
cal performance. This method introduces the possibility of efficiently solving high-
dimensional optimization problems in seismic tomography. We plan to apply it to the
imaging of Earth's subsurface structures using realistic seismic signals.
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