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The modeling of unequal mass binary black hole systems is of high importance to detect and estimate

parameters from these systems. Numerical relativity (NR) is well suited to study systems with comparable

component masses, m1 ∼m2, whereas small mass ratio (SMR) perturbation theory applies to binaries

where q ¼ m2=m1 ≪ 1. This work investigates the applicability for NR and SMR as a function of mass

ratio for eccentric nonspinning binary black holes. We produce 52 NR simulations with mass ratios

between 1∶10 and 1∶1 and initial eccentricities up to 0.8. From these we extract quantities like gravitational

wave energy and angular momentum fluxes and periastron advance, and assess their accuracy. To facilitate

comparison, we develop tools to map between NR and SMR inspiral evolutions of eccentric binary black

holes. We derive post-Newtonian accurate relations between different definitions of eccentricity. Based on

these analyses, we introduce a new definition of eccentricity based on the (2,2)-mode of the gravitational

radiation, which reduces to the Newtonian definition of eccentricity in the Newtonian limit. From the

comparison between NR simulations and SMR results, we quantify the unknown next-to-leading order

SMR contributions to the gravitational energy and angular momentum fluxes, and periastron advance. We

show that in the comparable mass regime these contributions are subdominant and higher order SMR

contributions are negligible.

DOI: 10.1103/PhysRevD.106.124040

I. INTRODUCTION

Binary black hole (BBH) mergers have dominated the

gravitational wave (GW) observations of the LIGO and

Virgo detectors [1,2] in the first, second and the third

observing runs [3–6]. One key parameter of these astro-

physical systems is the mass ratio q ¼ m2=m1 ≤ 1 of the

binaries’ components. Current GW observations [5,7–9]

predominantly find mass ratios close to unity with a few

observations showing support for low mass ratios [10,11].

With the increasing number of GW detections in

the upcoming observing runs by ground-based detectors

[7,12], and space-borne detectors, like the LISA

observatory [13,14], it is likely that more binaries with

mass asymmetries are found. In particular, LISA will

be sensitive to binaries with mass ratios ranging from

q ∼ 1, over intermediate mass-ratio systems (q ∼ 10−3) to

extreme mass ratio inspirals at q ∼ 10−5. Furthermore,

third-generation ground-based detectors with improved

low frequency sensitivity relative to today’s ground-based

detectors will be able to detect the capture of stellar mass

black holes (BHs) by intermediate mass BHs with mass-

ratios down to q ∼ 10−3 [15]. Thus, the modeling of GWs

from BBHs at all mass ratios is of preeminent relevance for

a correct detection and analysis of these sources.

This modeling problem may be tackled by different

approaches: using weak field perturbation theory, like post-

Newtonian (PN) theory [16] and post-Minkowskian expan-

sions [17], effective methods (like the effective-one-body

formalism [18,19] or phenomenological models [20]),

small mass ratio (SMR) perturbation theory [21] and

numerical relativity (NR), i.e., solving numerically the full

Einstein equations [22].
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Orbital eccentricity is an important parameter describing

binary systems as it can help constrain the formation

scenario of these binaries, and thus the astrophysical origin

of GW sources [23–29]. For current ground-based detectors

there are ongoing efforts to search for signatures of orbital

eccentricity in the detected GW signals [30–40]. For future

GW detectors, especially for high-mass ratio binaries

in LISA, it is expected that emission of GWs has not

circularized most binaries yet. Therefore, the correct

modeling of orbital eccentricity effects is fundamental to

accurately describe such systems in future detectors, in

particular for extreme mass-ratio inspirals, which are

described by SMR perturbation theory.

Recently, Ref. [41] demonstrated that NR simulations at

modest mass-ratios (q≳ 0.1) can be used to gain insight

into the accuracy of the SMR expansion, confirming the

known leading-order term, and predicting next-to-leading

order contributions. Reference [41] considered noneccen-

tric (quasicircular) binaries only, with both BHs nonspin-

ning. Here, we begin to extend the analysis in [41] to

eccentric BBHs, while still keeping both BHs nonspinning.

The noncircularity of the binary’s orbit introduces a new

timescale to the two-body problem, the timescale of the

periastron precession, which induces oscillations in the

dynamical and GW quantities of the binary system com-

plicating substantially the analysis relative to the quasicir-

cular case described in [41].

An additional difficulty arises from the fact that

eccentricity is a gauge dependent parameter in general

relativity, thus complicating the comparison between

SMR evolutions and NR simulations. In order to over-

come this problem, we develop tools to extract gauge

invariant quantities from both SMR and NR waveforms.

Using PN theory, we derive relations among the

eccentricity defined from the orbital and (2,2)-mode

gravitational wave frequency, and the PN temporal

eccentricity. We show that a commonly used definition

of eccentricity based on the (2,2)-mode frequency—

Eq. (5) below—does not reduce to the Newtonian

definition of eccentricity. We therefore adopt a new

definition of eccentricity, egw in Eq. (6) below. This

new definition continues to be based on the frequency of

the (2,2) GW-mode, but also satisfies the correct

Newtonian limit.

NR simulations of BBHs have been routinely performed

since more than a decade ago. Motivated by expectation of

small eccentricities for most of the GW signals in the

frequency band of ground-based detectors, most of the NR

groups have focused on the production of simulations of

quasicircular BBH mergers [42–53], with the exception of

a limited number of studies exploring BBH coalescences in

eccentric orbits [53–61]. The Spectral Einstein Code

(SpEC) [62] is an accurate and efficient NR code that

has been used to study quasi-circular inspirals in great

depth [45,50]. Eccentric inspirals at low eccentricity were

studied to some extent [55–58]. We expand SpEC’s

capabilities for accurate simulations of binaries with larger

eccentricities, 0.2≲ e≲ 0.8, which are characterized by

large variations of GW frequency and amplitude between

apastron and periastron passages. We have produced a set

of 52 nonspinning eccentric simulations between mass

ratios 1∶10 and 1∶1, and with initial eccentricities of up to

0.8. The number of orbits is typically ≳20, yielding a

dataset with the longest evolutions and highest initial

eccentricities up to date, which sets it also apart from

the simulations of other groups [53,59,61].

The main purpose of this article is to compare NR and

SMR calculations. This requires a map from the instanta-

neous state of a NR simulation to the geodesic on which the

point-particle instantaneously moves in its motion around

the central black hole. We characterize the instantaneous

state of SMR and NR simulations by symmetric mass

ratio, ν ¼ m1m2=ðm1 þm2Þ2, eccentricity, egw, and orbit-

averaged frequency of the 22-mode, hω22i. These quantities
can be uniquely determined in SMR and NR configurations

and they generate an unambiguous map between SMR and

NR configurations, as described in Sec. V.

We find that the leading order prediction in the SMR

expansion for the energy and angular momentum fluxes

agree with the NR results to within 10%. The next-to-

leading order SMR contributions to the fluxes can be

estimated by rescaling the difference of the NR and leading

order SMR contribution by a factor of the symmetric mass-

ratio. The result has a very small dispersion in symmetric

mass ratio, which implies that the next-to-next-to leading

order SMR contribution is small, even for comparable

masses. This is compatible with the findings of [63] in the

quasicircular case. Comparing the zero-eccentricity limit

of our next-to-leading order estimate to the exact results of

[63] we find the results to be comparable with an overall

small shift likely due to the orbit-averaging procedure

applied to extract quantities from the eccentric NR simu-

lations. A similar analysis is done for the periastron

advance. In this case the NR results are within 8% of

the leading-order (geodesic) SMR result, the next-to-

leading SMR contribution is compatible with previous

exact calculations in the quasi-circular limit [64,65], and

the next-to-next-to-leading SMR contribution appears

small in the comparable mass regime.

This article is organized as follows. In Sec. II we present

a detailed description of the new dataset of eccentric

nonspinning NR simulations produced for this work. We

investigate the relations between different eccentricity

definitions in Sec. III, and we provide a definition of

eccentricity based on the (2,2)-mode frequency, which

reduces to the Newtonian definition of eccentricity in the

Newtonian limit. Section IV describes the SMR evolutions

performed in this work, and Sec. V discusses the mapping

between SMR and NR configurations. In Sec. VI we

compare the quantities extracted from the NR simulations

ANTONI RAMOS-BUADES et al. PHYS. REV. D 106, 124040 (2022)

124040-2



to the SMR perturbation theory results and provide

constraints on the values of the next order terms

in the SMR expansion for the GW energy and angular

momentum fluxes, as well as the periastron advance. In

Sec. VII we summarize our main conclusions and discuss

future work. The appendixes contain additional technical

details: Appendix A describes our method to set the initial

parameters in the NR simulations, in Appendix B we assess

the quality of the NR waveforms, and in Appendix C we

provide details of the derivation of the relations between

different definitions of eccentricity using PN theory.

II. NUMERICAL RELATIVITY SIMULATIONS

The NR simulations produced in this work are performed

with the SpEC code [62], utilizing numerical techniques

summarized in [45,50]. In particular, SpEC evolves a first-

order representation of the generalized harmonic evolu-

tion system [66] using a multidomain spectral method

[67–70]. At the outer boundary constraint-preserving

boundary conditions [66,71,72] are employed, whereas

black hole excision is used inside the apparent horizons

[68–70,73]. The transition to ringdown is accomplished

with the techniques described in Refs. [68,70]. Initial data

are constructed with the eXtended Conformal-Thin

Sandwich (XCTS) approach [74–76], and we describe

in Sec. II A and Appendix A how we achieve binaries with

a desired value of orbital eccentricity.

For improved performance for eccentric systems we

adopt part of the modifications developed in [77] to

produce accurate simulations of hyperbolic encounters.

Most notably, adaptive mesh refinement and GW output is

triggered more frequently to adjust to periastron passages

which happen on fast timescales, and which cause pulses of

higher-frequency GWs that travel through the computa-

tional grid.

A. Numerical relativity dataset

We have produced 52 new numerical relativity simu-

lations of binary black holes on eccentric orbits. The

simulations are summarized in Table I; for each of the

mass-ratios q ¼ 1; 1=2; 1=3; 1=4; 1=6; 1=8 and 1=10, sim-

ulations with several different eccentricities egw are com-

puted. Within the XCTS formalism to construct initial

data, the simulations in Table I were produced using

superposed harmonic Kerr (SHK) initial data [78], except

for the simulation SXS:BBH:2527, which used superposed

Kerr-Schild (SKS) initial data [79] as this is the simulation

with largest initial separation and eccentricity, and initial

tests with SHK initial data were not successful.
1

For each simulation, Table I reports on the parameters

values necessary to reproduce the initial data with the

techniques described in [80]: the inverse mass ratio

1=q ¼ m2=m1 ≥ 1, the orbital separation D0=M0, where

M0 is the initial ADM mass, the initial orbital frequency

M0Ω0, and the initial radial velocity parameter a0 [81,82].
The procedure to determine the initial parameters of the

simulations is described in Appendix A. The simulations

are started at or very close to apastron due to limitations

of the radial map used by the dual-frame method [83]

employed to solve the Einstein equations in SpEC [84].

Specifically, the radial mapping of Eq. (9) in [84] con-

necting the comoving and inertial frames does not allow the

orbital separation to increase more than 1.5 times the initial

separation. We note that this limitation has been recently

overcome in SpEC by defining a new radial map, however,

it is not applied for simulations in this publication, and we

leave it to future work to report on this new feature.

To convey a sense of the physical properties of the BBHs

studied, Table I also lists the number of orbits to merger,

Norbits and the time to merger Tmerger=M, where M is the

total mass. We also specify the time (before merger) Tref=M
where the orbit averaged frequency of the (2,2)-mode

reaches the value ωref
22

¼ 0.042, as well as eccentricity

erefgw and mean anomaly lref=ð2πÞ at this reference time.

These quantities are defined with the procedures outlined

below in Sec. III. The reference frequency is chosen to be

consistent with the length
2
of the shortest simulation, which

corresponds to SXS:BBH:2520 with 4963M of evolution

and 18 orbits. Apart from this particular case, most of the

simulations have typically a time to merger > 104M. This

makes our dataset of eccentric NR waveforms the one with

the longest evolutions of eccentric binary black holes

to date.

We extract the gravitational radiation from each simu-

lation using the same techniques as in [50], and decompose

h ¼ hþ − ih× ¼
X

lm

hlm−2Ylm: ð1Þ

Each mode hlm is further split into real amplitude and

phase as

hlmðtÞ ¼ AlmðtÞe−iϕlmðtÞ; ð2Þ

with an associated GW mode frequency of

ωlm ¼ _ϕlm: ð3Þ

A sample of the computed numerical waveforms are

shown in Fig. 1. One can observe that the highly eccentric

1
After tuning some settings in the linear solvers of the SpEC

initial data code, the SHK initial data was successfully computed,
but in order to save computational resources the evolution with
SHK initial data was not produced.

2
We consider the length as measured after the relaxation time,

i.e., the time after which is considered that the burst of junk
radiation has dissipated.
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TABLE I. Properties of the NR simulations used in this work. Columns 2–5 give the initial data parameters needed to reproduce each

simulation (see main text), whereas columns 6–10 give some physical properties: the number of orbits, Norbits, the time to merger

Tmerger=M, and the reference time Tref=M corresponding to a frequency of the (2,2)-mode ωref
22

¼ 0.042, at which the eccentricity erefgw

and mean anomaly lref=ð2πÞ are extracted from the simulation. Here,M is the total mass of the binary after initial transients have settled

down [50]. These parameters and additional properties can be found at numerical precision in the metadata files accompanying each

simulation. (*) Simulation performed with SKS initial data, differently from the rest of simulations, which used SHK initial data (see

main text for details).

Initial data Physical properties

SXS ID 1=q D0=M0 M0Ω0 a0 × 106 Norbits Tmerger=M ðTref − TmergerÞ=M erefgw lref=ð2πÞ
SXS:BBH:2517 1.0 16.03 0.0142 −2.898 19.0 5199 −3177.8 0.024 0.428

SXS:BBH:2518 1.0 22.02 0.0089 −0.808 40.3 16510 −14489.9 0.027 0.251

SXS:BBH:2519 1.0 20.03 0.0102 −1.183 32.0 11593 −9573.4 0.028 0.234

SXS:BBH:2520 1.0 18.03 0.0114 −1.804 18.2 4963 −3011.5 0.105 0.028

SXS:BBH:2521 1.0 26.02 0.0061 −0.416 25.2 8799 −6985.0 0.183 0.273

SXS:BBH:2522 1.0 28.02 0.0053 −0.310 25.0 8930 −7170.0 0.207 0.249

SXS:BBH:2523 1.0 34.02 0.0038 −0.144 27.3 10993 −9314.3 0.239 0.463

SXS:BBH:2524 1.0 60.01 0.0013 −0.015 30.0 17074 −15625.3 0.313 0.567

SXS:BBH:2525 1.0 45.01 0.0022 −0.047 22.5 9820 −8415.9 0.330 0.402

SXS:BBH:2526 1.0 70.01 0.0010 −0.008 26.2 15735 −14412.3 0.352 0.845

SXS:BBH:2527 (*) 1.0 130.00 0.0003 −0.001 19.9 16380 −15345.6 0.437 0.579

SXS:BBH:2528 1.0 65.01 0.0010 −0.011 15.0 7137 −6132.4 0.445 0.621

SXS:BBH:2529 2.0 18.03 0.0120 −1.279 28.1 9025 −6803.6 0.024 0.080

SXS:BBH:2530 2.0 20.02 0.0098 −0.838 25.7 8060 −5905.2 0.097 0.369

SXS:BBH:2531 2.0 26.02 0.0061 −0.294 28.2 9924 −7930.6 0.180 0.944

SXS:BBH:2532 2.0 28.02 0.0053 −0.219 27.8 10050 −8117.4 0.206 0.880

SXS:BBH:2533 2.0 34.01 0.0038 −0.102 30.3 12315 −10478.3 0.238 0.285

SXS:BBH:2534 2.0 60.01 0.0013 −0.011 33.3 18990 −17396.7 0.312 0.595

SXS:BBH:2535 2.0 65.01 0.0010 −0.008 16.3 7798 −6707.7 0.449 0.263

SXS:BBH:2536 3.0 22.02 0.0089 −0.343 53.4 22385 −19827.7 0.024 0.992

SXS:BBH:2537 3.0 22.02 0.0085 −0.344 38.0 13645 −11146.6 0.087 0.201

SXS:BBH:2538 3.0 28.01 0.0056 −0.132 48.6 20622 −18189.4 0.125 0.321

SXS:BBH:2539 3.0 22.02 0.0083 −0.344 31.6 10465 −8036.2 0.126 0.036

SXS:BBH:2540 3.0 17.30 0.0120 −37.880 19.2 4898 −2477.2 0.130 0.071

SXS:BBH:2541 3.0 28.01 0.0055 −0.132 39.9 15662 −13320.9 0.163 0.231

SXS:BBH:2542 3.0 26.02 0.0061 −0.177 32.7 11606 −9310.5 0.180 0.419

SXS:BBH:2543 3.0 28.01 0.0053 −0.132 32.2 11710 −9499.1 0.206 0.293

SXS:BBH:2544 3.0 55.01 0.0015 −0.009 29.4 14782 −13129.2 0.350 0.874

SXS:BBH:2545 4.0 18.02 0.0120 −0.476 37.9 12437 −9510.8 0.021 0.347

SXS:BBH:2546 4.0 20.02 0.0098 −0.312 34.5 10987 −8148.1 0.096 0.776

SXS:BBH:2547 4.0 26.01 0.0061 −0.109 37.5 13397 −10781.8 0.180 0.054

SXS:BBH:2548 4.0 28.01 0.0053 −0.082 37.1 13523 −10988.7 0.206 0.892

SXS:BBH:2549 4.0 34.01 0.0038 −0.038 40.3 16521 −14126.4 0.239 0.005

SXS:BBH:2550 4.0 55.01 0.0015 −0.006 33.5 16935 −15062.7 0.351 0.259

SXS:BBH:2551 4.0 65.01 0.0010 −0.003 20.9 10100 −8730.3 0.451 0.568

SXS:BBH:2552 6.0 18.02 0.0119 −0.212 48.4 16030 −12334.2 0.021 0.866

SXS:BBH:2553 6.0 20.01 0.0098 −0.139 43.7 14068 −10489.5 0.097 0.401

SXS:BBH:2554 6.0 26.01 0.0061 −0.049 47.6 17088 −13796.0 0.181 0.481

SXS:BBH:2555 6.0 28.01 0.0053 −0.036 46.8 17218 −14034.1 0.207 0.224

SXS:BBH:2556 6.0 34.01 0.0038 −0.017 50.8 21006 −18008.4 0.241 0.205

SXS:BBH:2557 6.0 45.01 0.0022 −0.006 40.6 18243 −15790.5 0.334 0.662

SXS:BBH:2558 6.0 65.00 0.0010 −0.001 25.5 12597 −10937.6 0.453 0.066

SXS:BBH:2559 8.0 14.52 0.0164 −0.267 34.6 9005 −4512.5 0.009 0.718

SXS:BBH:2560 8.0 20.01 0.0097 −0.073 53.1 17191 −12852.9 0.097 0.076

SXS:BBH:2561 8.0 26.01 0.0061 −0.026 57.8 20874 −16885.6 0.183 0.033

SXS:BBH:2562 8.0 28.01 0.0053 −0.019 56.6 20959 −17129.4 0.209 0.654

SXS:BBH:2563 8.0 28.01 0.0052 −0.019 43.9 14883 −11378.5 0.261 0.160

SXS:BBH:2564 10.0 14.51 0.0164 −0.156 40.3 10495 −5209.6 0.012 0.312

(Table continued)
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configurations develop a very complex structure in the

waveform due to the eccentricity of the orbits followed by

the BHs. Figure 1 also shows a zoom-in of the merger part

on the waveforms, to highlight the similarity of the merger

and ringdown parts of the waveform with different eccen-

tricities.
3
Merger and ringdown of the high and low

eccentricity inspirals agree well with each other, indicating

that the circularization hypothesis is accurately fulfilled for

our dataset, consistently with the findings in [54,59,61].

We note that recently some unexpected dependence of the

kick velocity on eccentricity was found in [85]. A similar

analysis of the kick velocity can be performed on our

dataset, and we leave such study of the final velocity as well

as other remnant properties for future work.

B. Eccentricity, azimuthal frequency & mean anomaly

We start with the eccentricity definition proposed by

Mora & Will [86],

eΩorb
¼

ffiffiffiffiffiffiffiffiffi

Ω
p
orb

p

−
ffiffiffiffiffiffiffiffiffi

Ω
a
orb

p

ffiffiffiffiffiffiffiffiffi

Ω
p
orb

p

þ
ffiffiffiffiffiffiffiffiffi

Ω
a
orb

p ; ð4Þ

where Ω
p
orb and Ω

a
orb are the values of the orbital frequency at

consecutive periastron and apastron passages, i.e., maxima

and minima of ΩorbðtÞ. Equation (4) is easy to compute

from orbital trajectories and reduces precisely to the normal

eccentricity in the Newtonian limit [86]. eΩorb
was for instance

used in [56] to analyse generic precessing & eccentric BBH

inspirals. To avoid the coordinate-dependence of Ωorb, recent

papers (e.g., [61]) have applied Eq. (4) to frequencies directly

defined from the gravitational radiation:

eω22
¼

ffiffiffiffiffiffiffi

ω
p
22

p

−
ffiffiffiffiffiffiffi

ωa
22

p

ffiffiffiffiffiffiffi

ω
p
22

p

þ
ffiffiffiffiffiffiffi

ωa
22

p ; ð5Þ

where ωa, ωp refer to the (2,2)-mode frequency ω22 at

apastron and periastron, respectively. This procedure is

illustrated in the top panel of Fig. 2: The time-dependent

ω22ðtÞ has maxima ω22

p
;i and minima ω22

a
;i indicated with the

black and orange dots, where the integer i labels the extrema.

The maxima and minima correspond to periastron and

apastron passages, respectively, and occur at times t
p
i and tai .

We show below in Sec. III that eω22
disagrees with eΩorb

;

most notably, eω22
does not have the correct Newtonian

limit. Therefore, we introduce a new eccentricity definition

egw measured from the frequency of the (2,2)-mode, which

has the correct Newtonian limit,

egw ¼ cosðψ=3Þ −
ffiffiffi

3
p

sinðψ=3Þ; ð6aÞ

with

ψ ¼ arctan

�

1 − e2ω22

2eω22

�

: ð6bÞ

This new gravitational-wave frequency egw is also plotted

in the top panel of Fig. 2. The dashed curve for egw is

obtained by constructing interpolating functions through all

TABLE I. (Continued)

Initial data Physical properties

SXS ID 1=q D0=M0 M0Ω0 a0 × 106 Norbits Tmerger=M ðTref − TmergerÞ=M erefgw lref=ð2πÞ
SXS:BBH:2565 10.0 15.01 0.0156 −0.136 43.9 11870 −6587.3 0.015 0.147

SXS:BBH:2566 10.0 30.00 0.0045 −0.008 49.2 17153 −13297.8 0.289 0.938

SXS:BBH:2567 10.0 28.01 0.0050 −0.011 39.8 12581 −8926.6 0.315 0.047

SXS:BBH:2568 10.0 45.00 0.0022 −0.002 57.8 26144 −22709.4 0.335 0.299

FIG. 1. Visualization of simulations at two eccentricities each

for three different mass-ratios. Shown is hþ at inclination angle

ι ¼ π=3 and coalescence phase ϕ ¼ 0, for a binary of total mass

of 60 M⊙ at a distance of 430 Mpc. For ease of plotting, the

waveforms are offset vertically. On each waveform, the location

is marked where the orbit-averaged GW frequency hω22i equals
our reference value Mωref

22
¼ 0.042; for M ¼ 60 M⊙ this corre-

sponds to a GW frequency of 22.6 Hz, near the start of the

frequency band of current GW detectors. The right panel enlarges

the merger part of the signals.

3
The waveforms in Fig. 1 were time-shifted for the merger to

occur at t ¼ 0. Furthermore, the low-eccentricity simulations
(shown in grey) were phase-shifted to have the same phase at
merger as the plotted high-eccentricity simulation.
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maxima fω22

p
;ig and through all minima fω22;

a
i g, and then

evaluating Eqs. (5) and (6) for these interpolating functions.

The average azimuthal frequency from the (2,2)-mode

for the interval between the i-th and iþ 1-th periastron

passages is defined as

hω22ii ¼
1

t
p
iþ1

− t
p
i

Z

t
p

iþ1

t
p

i

ω22ðtÞdt ð7Þ

¼ ϕ22ðtpiþ1
Þ − ϕ22ðtpi Þ

t
p
iþ1

− t
p
i

: ð8Þ

We associate this frequency with the temporal midpoint,

t̂
p
i ¼ 1

2
ðtpiþ1

þ t
p
i Þ; ð9Þ

and interpolate the discrete fðt̂pi ; hω22iiÞg data to obtain a

continuous hω22iðtÞ curve. This curve is also included

in Fig. 2.

The mean anomaly of the eccentric binary is defined

as [87]

l ¼ 2π
t − t

p
i

t
p
iþ1

− t
p
i

; ð10Þ

where t
p
i and t

p
iþ1

are the times of the periastron-passages

immediately before and after the time t of interest, and is

plotted in the lower panel of Fig. 2.

The NR quantities introduced so far are used in Fig. 3

to illustrate the entire NR dataset produced in this work.

Figure 3 shows the tracks of each simulation in the

parameter space spanned by the orbit-averaged (2,2)-mode

frequency, hω22i and the eccentricity, egw. Each simulation

is color-coded by its mass ratio. We also indicate the value

of the mean anomaly at the reference frequency used to

perform the analysis. One can observe that the mean

anomaly at the reference frequency is randomly distributed.

We assess the accuracy of the simulations by computing the

unfaithfulness between waveforms at different resolution in

Appendix B, and we obtain that our dataset of simulations

has a median maximum mismatch between different

resolutions of < 10−3, indicating a convergent behavior

of the waveforms with increasing resolution.

C. Quantities for comparisons with small

mass-ratio theory

In our comparisons with small mass-ratio perturbation

theory, we will also utilize several more quantities extracted

from the NR simulations. We define an orbit-averaged

radial frequency based on the periastron passages as

hΩr
22
ii ¼

2π

t
p
iþ1

− t
p
i

; ð11Þ

which is interpolated to a continuous hΩr
22
iðtÞ curve. From

this, we compute periastron advance K as the ratio between

the azimuthal and radial frequencies [88],

FIG. 2. Top panel: Time evolution of the frequency of the

(2,2)-mode (solid blue line) for the simulation SXS:BBH:2558.

The values of the (2,2)-mode frequency at periastron and apastron

are indicated with orange and black dots, respectively. These are

used to compute the orbit-averaged frequency of the (2,2)-mode

(solid red curve), and the eccentricity egw (dashed green curve)

through Eq. (6). Bottom panel: Time evolution of the mean

anomaly (solid purple line) computed using Eq. (10) for the same

simulation as in the top panel. The vertical dashed gray lines in

both panels correspond to the times of the periastron passages.

FIG. 3. Parameter space coverage of the NR simulations

produced in this work. Each curve corresponds to one NR

simulation in the orbit-averaged (2,2)-mode frequency, hω22i,
and eccentricity, egw, plane. The simulations start at high

eccentricity and low frequencies (bottom right side), and along

the evolution the eccentricity decays with increasing orbital

frequency (left top part of the panel). The curves are colored

according to the inverse mass ratio 1=q of the simulation, and we

indicate also the values of the mean anomaly at the reference

frequency, lref , of Mωref
22

¼ 0.042, at which the comparison to

SMR results is performed in Sec. VI.

ANTONI RAMOS-BUADES et al. PHYS. REV. D 106, 124040 (2022)

124040-6



K ¼ hω22i=2
hΩr

22
i : ð12Þ

The instantaneous energy and angular momentum fluxes

are computed from the GW modes, hlm, using the expres-

sions [89],

_Egw ¼ 1

16π

X

∞

l¼2

X

þl

m¼−l

j _hlmðtÞj2; ð13Þ

_Jgwz ¼ 1

16π

X

∞

l¼2

X

þl

m¼−l

ð−mÞℑ½ _h�lmðtÞhlmðtÞ�; ð14Þ

where _h ¼ dh=dt, ℑ the indicates the imaginary part and
_h�lm denotes the complex conjugate of _hlm. In the case of

nonspinning binaries only the z-component of the angular

momentum flux is nonzero. Analogous to Eq. (7) we define

the orbit average of either of these fluxes as

hXii ¼
1

t
p
iþ1

− t
p
i

Z

t
p

iþ1

t
p
i

XðtÞdt: ð15Þ

We associate these discrete averages over each radial

oscillation period with the midtime t̂
p
i , and interpolate to

obtain continuous functions h _EgwiðtÞ and h _Jgwz iðtÞ. A first

estimate of the peaks is computed using an envelope

subtraction method as in [56]. Each estimate of the peak

is used to set a window of ∼30M on which a polynomial fit

is performed. Finally, this polynomial fit is used to compute

the value of the peak.

III. DISCUSSION ABOUT ECCENTRICITY

DEFINITIONS

There is a large variety of measures of eccentricity in

use in general relativity [90]. Many of these measures

derive from the trajectories of the binaries and are

therefore coordinate dependent. This makes them generally

unsuitable for comparisons between different modeling

approaches, which may be computed in different gauges or

where there may be no well-defined notion of trajectory at

all. However, one gauge invariant observable common to

all approaches to modeling gravitational waves from

compact binaries is the waveform itself. In this sense, it

may seem more reasonable to define eccentricity in terms

of gravitational wave quantities rather than quantities

dependent on the trajectories of the black holes.

A gravitational wave mode (see Sec. II), has an instanta-

neous frequency ωlm ¼ _ϕlm, which can be related in the

inspiral regime to the instantaneous orbital Ωorb ¼ _ϕorb by

the approximation [16],

ωlm ≈mΩorb: ð16Þ

However, as eccentricity increases the approximation of

Eq. (16) is no longer valid as can be observed in the top

panel of Fig. 4, where the left- and right-hand sides of

Eq. (16) in the case of the ðl; mÞ ¼ ð2; 2Þ multipole are

displayed. In the top plot of Fig. 4, the upper and bottom

panels correspond to a q ¼ 1=6 configuration with two

different initial eccentricities e0ω22
¼ 0.03, 0.63, respec-

tively. The relation between the orbital and the (2,2)-mode

FIG. 4. Top panel: Time evolution of the (2,2)-mode frequency

extracted for two mass-ratio 1=q ¼ 6 NR simulations (SXS:

BBH:2545 and SXS:BBH:2551 described in Table I) with two

different initial eccentricities. For each simulation twice the

orbital frequency 2Ωorb (blue solid lines), the frequency of the

(2,2)-mode (red solid lines), ω22, and the 1PN expression for

the frequency of the (2,2)-mode from Eq. (17) evaluated using

the NR coordinates, ω
1PN;c⃗NR
22

, (black dashed lines) are shown.

Additionally, the orbit-averaged values of the frequency of the

(2,2)-mode (red dash-dotted lines), hω22i, and twice the orbit-

averaged orbital frequency (blue dots), 2hΩorbi, are displayed for

each configuration. Bottom panel: Eccentricity evolution com-

puted from the orbital and (2,2)-mode frequencies using Eqs. (5)

and (6), and the 1PN expression for the eccentricity of the

(2,2)-mode computed from (18) using NR coordinates, e
1PN;c⃗NR
ω22

(black dashed lines).
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frequency is no longer the simple factor 2, as in the

quasicircular case. In order to derive the relation between

both frequencies in the more generic eccentric case, we use

PN theory. Specifically, we compute ω22 at 1PN order

using the instantaneous gravitational modes from [91]. We

obtain a 1PN-accurate expression for ω22 in harmonic

coordinates of the form,

ω1PN
22

¼ F ðν; r; _r; ̈r; _ϕ; ϕ̈Þ; ð17Þ

where ̈r denotes two time derivatives on r. The explicit

expression for F is given in Eq. (C6) in Appendix C 1

together with details of the derivation. Because of
_ϕ ¼ Ωorb, Eq. (17) is a relation between ω22 and Ωorb.

The top panel of Fig. 4 shows that the use of Eq. (17)

with NR coordinates (ω
1PN;c⃗NR
22

in the figure) agrees notably

better with the (2,2)-mode NR frequency than 2Ωorb. The

deviations in Eq. (16) increase with eccentricity. The

relative error can be larger than 10%, whereas Eq. (17)

leads to differences smaller than 1%.

It is important to note that the scaling relation in Eq. (16)

between orbital and gravitational wave frequencies is still

satisfied in an orbit-averaged sense. This is shown in the

upper panel of Fig. 4 for the orbit-averaged frequencies

hω22i (solid red lines) and hΩorbi (blue dots).

Let us now turn to eccentricity defined from the extrema

of a frequency. Equation (5) can be evaluated from ω22

(as written), or from the orbital frequency Ωorb. Because

ω22ðtÞ and ΩorbðtÞ have modulations of different amplitude

(as seen in the top panels of Fig. 4), the corresponding

eccentricities eω22
and eΩorb

are also different, as visible in

the lower panels of Fig. 4.
4
Given the remarkable agree-

ment of the PN approximation toω22 with respect to the NR

values, one can insert Eq. (17) into the right-hand side of

Eq. (5), expand the corresponding expressions up to 1PN,

and obtain an approximation for eω22
in terms of the

coordinates as

e1PNω22
¼ Gðν; ra;p;Ωa;p

orb ; ̈ra;pÞ; ð18Þ

where the expression for G is given by (C14) in

Appendix C 1, and the subscripts/superscripts a, p refer

to the apastron and periastron, respectively. The bottom

panel of Fig. 4 shows that Eq. (18) successfully reproduces

eω22
. Given the overall agreement, we do not pursue to

explore higher PN orders, or possible resummations of this

PN expression to improve its behavior in the strong field

regime, and we leave possible extensions of these expres-

sions, like the inclusion of spin effects, for future work.

The relations in Eqs. (17) and (18) allow one to obtain an

estimate of the eccentricity measured from the (2,2)-mode

frequency from the coordinates of the system. This can be

useful, for instance, to set an eccentricity reduction or

eccentricity control procedure based on the eccentricity

measured from the waveforms instead of the trajectories

without having to evolve the system such that the gravi-

tational waves reach the extraction radii, and thus, saving

computational time.

Equation (18), as used in the lower panel of Fig. 4, still

utilizes the NR trajectory. If one substitutes in a PN

trajectory in the quasi-Keplerian parametrization [92],

one obtains relations between eΩorb
or eω22

and the PN

eccentricity parameters, most notably the widely used et
[91,93–100].

A detailed derivation of the relation eΩorb
− et up to 3PN

order for nonspinning binaries can be found in Appendix C 2.

We focus here on the relation eω22
− et, which is derived up

to 1PN order in Appendix C 3, providing

e1PNω22
¼

ffiffiffiffiffiffiffiffiffiffiffiffi

2 − et
p ð1þ etÞ − ð1 − etÞ

ffiffiffiffiffiffiffiffiffiffiffiffi

2þ et
p

ffiffiffiffiffiffiffiffiffiffiffiffi

2 − et
p ð1þ etÞ þ ð1 − etÞ

ffiffiffiffiffiffiffiffiffiffiffiffi

2þ et
p

− γxet
ð54ηþ 101Þe2t þ 192η − 1380

84ðe4t − 5e2t þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi

4 − e2t
p

þ 4Þ
; ð19Þ

where x ¼ Ω
2=3
orb , and γ ¼ 1=c2 is a bookkeeping parameter

identifying the 1-PN corrections. At Newtonian order,

Eq. (19) reduces to

e0PNω22
¼

ffiffiffiffiffiffiffiffiffiffiffiffi

2 − et
p ð1þ etÞ − ð1 − etÞ

ffiffiffiffiffiffiffiffiffiffiffiffi

2þ et
p

ffiffiffiffiffiffiffiffiffiffiffiffi

2 − et
p ð1þ etÞ þ ð1 − etÞ

ffiffiffiffiffiffiffiffiffiffiffiffi

2þ et
p : ð20Þ

While Eq. (20) achieves the right limits for circular and

parabolic orbits—e0PNω22
ðet¼0Þ¼0 and e0PNω22

ðet¼1Þ¼1—it

disagrees otherwise. This can be easily seen by expanding

Eq. (20) for small eccentricities,

e0PNω22
¼ 3

4
et þ

11

64
e3t þOðe5t Þ; ð21Þ

which explicitly demonstrates that for small eccentricities in

the Newtonian limit, eω22
does not reduce to et, but rather to

3=4et. An expansion of Eq. (20) in the large eccentricity

limit 1 − et ≪ 1 yields

1 − e0PNω22
¼

ffiffiffi

3
p

ð1 − etÞ þOðð1 − etÞ2Þ; ð22Þ

which also exhibits a wrong slope (
ffiffiffi

3
p

) for et near 1.

Equations (21) and (22) show that the definition of eccen-

tricity based on the (2,2)-mode frequency will be different

from the Newtonian definition of eccentricity in the two

limits of the bound case. Additional PN orders will introduce

4
The eccentricity curves in the lower panels show a spurious

bump close to merger arising from the interpolation of the
maxima and minima close to the plunge. Our analysis focuses
on the inspiral regime and is not affected by this feature. We leave
to future work the improvement of the eccentricity measurement
in the transition from inspiral to plunge.
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higher frequency corrections to the Newtonian behavior,

whose impact in the leading Newtonian correction factors

between the eccentricity will depend on the region of the

parameter space considered.

The relation etðeω22
Þ at Newtonian order can be obtained

by inverting Eq. (20),

ψ ¼ arctan

�

1 − e2ω22

2eω22

�

;

e0PNt ¼ cosðψ=3Þ −
ffiffiffi

3
p

sinðψ=3Þ: ð23Þ

Applying Eq. (23) to eω22
will yield an eccentricity-

definition that reduces to the Newtonian definition of

eccentricity.

As a consequence of the previous analysis we propose a

new definition of eccentricity measured from the frequency

of the (2,2)-mode, which corrects the naive result eω22

obtained from the extrema of ω22 by Eq. (23),

egw ≡ e0PNt ðeω22
Þ: ð24Þ

By construction, egw reduces to the Newtonian definition

of eccentricity in the Newtonian limit. In the bottom panel

of Fig. 4, egw is shown to be closer to eΩorb
than eω22

. Both

egw and eΩorb
have the correct Newtonian limit, and the

differences may be explained due to coordinate effects

affecting eΩorb
, and higher PN terms, as egw is obtained

from Eq. (20).

This new definition of eccentricity is adopted throughout

the rest of the paper, and its applications to data analysis are

further investigated in upcoming work [101].

IV. SMR THEORY AND DATA

In the small mass-ratio (SMR) limit, the dynamics of a

black hole binary can be described through the gravitational

self-force formalism. For the inspiral part of the waveform,

this formalism leads to a systematic expansion of the

waveform in integer powers of the symmetric mass-ratio

ν. This expansion is known as the postadiabatic (PA)

expansion. In this section, we introduce the necessary

parts of this formalism to produce SMR eccentric inspirals

for comparison to our NR data. For a more in depth review

of the formalism see e.g., [21,102].

A. Equations of motion

In the SMR limit an eccentric inspiral of nonspinning

black holes can be described as a series of evolving

(perturbed) eccentric orbits in a Schwarzschild background.

Eccentric orbits in Schwarzschild are often identified by

their semilatus rectum p and geodesic eccentricity eg,

which in turn are defined through the periastron and

apastron positions, rp and ra,

p ¼ 2rarp

ra þ rp
; ð25Þ

and

eg ¼
ra − rp

ra þ rp
: ð26Þ

The position along the eccentric orbit is tracked by a phase qr
conjugate to the radial action, defined such that qr ¼ 0

mod 2π corresponds to the orbit being at periastron. The

equations of motion for the evolution of the inspiral can be

described as an expansion in the symmetric mass ratio ν

(keeping the total mass M fixed),

dp

dt
¼ 0þ νFpðp; eg; qrÞ þOðν2Þ; ð27aÞ

deg

dt
¼ 0þ νFeg

ðp; eg; qrÞ þOðν2Þ; ð27bÞ

dqr
dt

¼ Ω
r
geoðp; egÞ þ νfrðp; eg; qrÞ þOðν2Þ; ð27cÞ

dϕ

dt
¼ Ωgeoðp; egÞ þ νfrðp; eg; qrÞ þOðν2Þ; ð27dÞ

where t is retarded time at future null infinity, Ωr
geo and Ωgeo

are the geodesic radial and azimuthal frequencies (with

respect to t), and theF’s and f are the first order (gravitational

self-force) corrections to the equations of motion.

By applying a near-identity (averaging) transformation

Eqs. (27) can be put in an orbit averaged form (without loss

of generality) [103]. The leading terms give rise to the

adiabatic (or 0-post-adiabatic, 0PA) approximation to the

inspiral equations of motion,

dp

dt
¼ νhFpiðp; egÞ; ð28aÞ

deg

dt
¼ νhFeg

iðp; egÞ; ð28bÞ

dqr
dt

¼ Ω
r
geoðp; egÞ; ð28cÞ

dϕ

dt
¼ Ωgeoðp; egÞ: ð28dÞ

The next order in ν in the approximation—the 1-post-

adiabatic or 1PA order—requires knowledge of the average

parts of the second order Fp and Feg
, i.e., the second order

gravitational self-force. Despite major progress in calculat-

ing the second order self-force and corresponding 1PA

corrections for nonspinning quasicircular inspirals

[63,104,105], there are no second-order self-force results

yet for eccentric inspirals. Without the input of the second
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order self-force, any 1PA corrections based purely on the

conservative part of the first-order self-force are not gauge

invariant [106], and not suitable for comparison with NR.

Consequently, for this work we will focus on comparisons

with the adiabatic (0PA) SMR results.

B. Gravitational wave strain

The gravitational wave strain produced by a test particle

orbiting a Schwarzschild black hole can be found by

solving the Teukolsky equation for ψ4. We write ψ4 at

future null infinity as

lim
r→∞

rψ4 ¼ ν
X

lmn

Zlmn−2Ylmðθobs;ϕobsÞe−iϖmnt; ð29Þ

where ϖmn ¼ mΩgeo þ nΩr
geo, and Zlmn are the mode

amplitudes. The strain-modes at infinity, Eq. (1), are then

given as

hlm ¼ −2ν
X

n

Zlmn

ϖ2
mn

e−iϖmnt ð30Þ

¼ ν
X

n

Almnðp; egÞe−iðmϕþnqrÞ; ð31Þ

where in the last step we have written the strain explicitly in

terms of the variable evolved by Eq. (28). To obtain the

strain produced by an adiabatic (0PA) inspiral, one simply

elevates the geodesics variables ðp; eg; qr; qϕÞ in Eq. (31) to
their inspiral (evolving) counterparts in Eq. (28).

C. SMR data and interpolation

To produce SMR 0PA waveforms
5
we need the various

quantities appearing on the right-hand sides of Eqs. (28)

and (31). The 0th order “frequencies” Ω are known

analytically [107], while the hFpi, hFeg
i, and Almn need

to be calculated numerically. All three may be obtained by

solving the Teukolsky equation sourced by a test mass

following an eccentric geodesic to obtain the Zlmn’s in

Eq. (29), which we do using the arbitrary precision

frequency domain code developed in [108–110].

Specifically, we calculate hFpi, hFeg
i, andZlmn on a grid

of Chebyshev nodes in x ¼ ðMΩgeoÞ2=3 (18 nodes between
0.001 and 0.130) and eg (12 nodes between 0 and 0.5), and

interpolate the results using Chebyshev polynomials. The

resulting interpolant has a typical relative interpolation

error of about 10−5.

Note that the SMR 0PA inspiral waveforms generated

here could in principle have been generated with Fast

EMRI Waveforms (FEW) framework [111–113]. We chose

a different approach because FEW was not yet publicly

available when this project started and to retain a better

control over numerical errors in the model. In particular, the

FEW model was not designed to faithfully reproduce the

minima and maxima of the waveform frequency ω22.

D. Frequencies

From a (0PA) SMR inspiral we have two distinct ways of

obtaining the average orbital and radial frequencies. We can

apply the procedure of Secs. II B and II C to extract the

average orbital hω22i and radial frequencies hΩr
22
i from the

SMR 0PA waveform. We will denote these frequencies

hω0PAi and Ω
r
0PA. Alternatively, we have the instantaneous

geodesic frequencies Ωgeo and Ω
r
geo as they appeared in

Eq. (28). In the ν → 0 limit, i.e., when there is no inspiral,

Eq. (31) gives the following expression of the waveform

frequency ωlm:

ωlm ¼ −ℑ
d

dt
log

�

X

n

Almnðp; egÞe−iðmϕþnqrÞ
�

ð32Þ

¼ ℜ

P

nðm dϕ
dt
þ n dqr

dt
ÞAlmnðp; egÞe−iðmϕþnqrÞ

P

nAlmnðp; egÞe−iðmϕþnqrÞ
ð33Þ

¼mΩgeoðp;egÞþΩ
r
geoðp;egÞℜ

P

nnAlmnðp;egÞe−inqr
P

nAlmnðp;egÞe−inqr
:

ð34Þ

From this we note that the waveform frequency is exactly

2π periodic in qr, and consequently the radial period is

exactly 2π=Ωr
geo. A less obvious observation is that the

average of the second term in (32) vanishes after averaging

over a radial period. A sufficient condition for this to be

true is

jAlm0ðp; egÞj >
�

�

�

�

X

n≠0

Almnðp; egÞe−inqr
�

�

�

�

; ð35Þ

since this guarantees that
P

nAlmnðp; egÞe−inqr is con-

fined to a half of the complex plane and must return to the

same complex argument after one period. The condition

(35) is clearly satisfied for low eccentricity orbits since

Almn ¼ OðegnÞ. However, condition (35) is easily violated
by high eccentricity zoom-whirl orbits. Nonetheless, we

observe empirically that the average of the second term

(32) vanishes in all geodesic waveforms used in this work.

We thus find that in the ν → 0 limit we have exactly,

Ω
r
0PA ¼ Ω

r
geo; and hω0PAi ¼ 2Ωgeo: ð36Þ

This, of course, does not come as a surprise, since this

is precisely what the frequency recovery procedure of

Secs. II B and II C was designed to achieve. However,

using the SMR 0PA inspiral waveforms we can now

investigate what happens for finite values of ν when the5
In the language of [105] this would be a 0PAT1 waveform.
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system is evolving. Figure 5 shows both the frequencies,

Ω
r
0PA and hω0PAi=2, recovered from a SMR 0PAwaveform

at equal mass (ν ¼ 1=4) and the geodesic frequencies, Ωr
geo

and Ωgeo, inferred from the underlying inspiral dynamics.

Even at equal mass there is hardly any perceivable differ-

ence between the two sets of frequencies.

To compare the frequencies obtained through the two

procedures more closely we pick three frequencies along

the adiabatic inspiral depicted in Fig. 5. For each of these

frequencies we generate a series of adiabatic inspirals with

symmetric mass-ratios varying between ν ¼ 10−3 and

ν ¼ 1=4 going through that point (and randomized initial

values of qr). For each of these inspirals we extract the

azimuthal and radial frequency from the waveform using

the procedure of Secs. II B and II C. Figure 6 shows the

difference between these frequencies and the corresponding

values obtained directly from the underlying geodesic. We

observe a small, but measurable, difference between the

two sets of frequencies, which appears to grow linearly

with ν and is larger for higher frequencies. Since the SMR

0PA waveform contains no higher order frequency correc-

tions, this difference arises purely from unintended side

effects of the frequency recovery procedure. Some con-

tributing factors are the averaging over a radial period while

the inspiral is evolving, and limitations in establishing a

radial period in the first place.

E. Eccentricity

To calculate the gauge invariant eccentricty egw for a

SMR 0PA waveform we again have two options. First, we

can follow the procedure of Secs. II B and II C to determine

the minima and maxima of ω22 of the SMR 0PAwaveform,

and compute egw using Eqs. (5) and (6). Wewill refer to this

as e0PAgw .

Alternatively, we want to obtain egw directly from the

dynamical variables p and eg. Unfortunately, there is no

analytic closed form expression for egw in terms of p and

eg. Instead we start from the (numerical) “snapshot”

waveform generated by a test particle going around a

geodesic with fixed p and eg. The snapshot waveform hlm
is a biperoidic function of the radial and azimuthal phases

qr and ϕ as described by Eq. (31). Using the expression for

ω22 in Eq. (32), we find the minima and maxima of the

frequency with respect to qr and calculate the correspond-

ing eω22
, which can be input to (6) to provide egw. We will

refer to this quantity as e
geo
gw .

We obtain a numerical representation of the function

e
geo
gw ðp; egÞ by taking grid of numerical SMR solutions

of the Teukolsky equation, and interpolating the result

with Chebyshev polynomials to obtain e
geo
gw with a

relative accuracy of 10−7 across the relevant parameter

space. Conversely, we can numerically invert this

relationship to obtain a function for p and eg given x

and e
geo
gw .

Figure 7 explores the difference between e
geo
gw and e0PAgw

for adiabatic inspirals. As expected, the difference between

these two approaches for obtaining egw vanishes in the

ν → 0 limit. For ν ≠ 0, this difference grows again propor-

tional to ν, similarly to Fig. 6.

FIG. 5. Frequency extraction procedure applied to an SMR

waveform at 0PA at equal mass. The solid curves arise directly

from the SMR inspiral and its dynamics. The filled circles are

the result of applying our frequency extraction procedure to the

maxima of the instantaneous frequency ω22ðtÞ. Even at equal

mass where the inspiral is fastest, the recovered orbital averaged

azimuthal and radial frequencies agree well with the geodesic

frequencies of the underlying SMR dynamics. This figure is

analogous to Fig. 4.

FIG. 6. Absolute relative difference between the frequencies

from the waveform (azimuthal hω0PAi=2 and radial Ωr
0PA), and

the frequencies from the geodesic inspiral (azimuthal Ωgeo and

radial Ωr
geo), as a function of symmetric mass ratio ν at three

selected points along the inspiral from Fig. 5. The frequencies

extracted from the waveforms, hω0PAi and Ω
r
0PA, have been

computed using the orbit-average procedure of Secs. II B and II C

employing the periastron passages. The gray line indicates a

linearly increasing ν-dependence.
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F. Geodesic snapshot vs inspiral waveform quantities

The preceding subsections have explored the difference

between extracting the frequencies Ωϕ=r, and eccentricity

egw from evolving adiabatic (0PA) waveforms and extracting

the same information from geodesic “snapshots” that are not

evolving at all. The relative difference between the two

methods is found to beOðνÞ. For the comparisons in the rest
of this work we choose to work with the geodesic snapshot

SMR quantities, since these can in general be obtained more

efficiently and reliably. For the leading order comparisons

this will not make a difference. However, for any higher

order corrections that we infer, we must be aware that these

also contain a next-to-leading order correction due to

comparing NR quantities from an evolving waveform with

SMR geodesic snapshot quantities.

V. CHOOSING “INDEPENDENT” VARIABLES

In this section we study several options for the variables

describing the state of a binary inspiral. We present some of

the choices of variables made in the literature when

comparing SMR and NR results, discuss their applicability

in the eccentric case and, finally, describe the choice of

variables which better adapt to our study.

The instantaneous state of a nonspinning eccentric

binary is captured by four dynamical variables. For

example, in the SMR setup these are the ðp; eg; qr;ϕÞ that
appear in Eq. (27). In this work we are interested in

comparing quantities that are observable for a distant

observer. Since the instantaneous value of ϕ is completely

degenerate with the position of this observer, it carries no

useful information about the state of the binary. Moreover,

we are presently interested in observables that are inte-

grated over a radial cycle, eliminating qr. Thus we can

identify the instantaneous state of the binary with two

variables, like ðp; egÞ. Of course, ðp; egÞ are not gauge

invariant and therefore not useful to find an NR simulation

in the same instantaneous state. In order to compare the

SMR and NR results, we need a set of two variables that

can fix the instantaneous state of the binary and be

unambiguously computed both in NR and the SMR

formalism.

One pair of variables extensively used in the literature

[56,64] are the azimuthal and radial frequencies hΩorbi and
hΩr

orbi defined in analogy to Eqs. (7) and (11) from the

orbital frequency Ωorb. These two frequencies can be

calculated analytically at geodesic order in the SMR

formalism [107], and they can be extracted from NR data

[56]. However, since they are derived from the coordinate

trajectories in NR, they are not fully gauge invariant (e.g.,

Fig. 17 of [114]).

A second possibility are frequencies computed from the

gravitational radiation instead, e.g., hω22i and hΩr
22
i, which

are manifestly gauge invariant. Then, as shown in Secs. III

and IV, the orbit-averaged azimuthal frequencies from the

waveform and the trajectories can be related by a factor 2,

while the radial frequency stays the same. These frequen-

cies are plotted in the top panel of Fig. 8. For some portions

of NR simulations the ratio hω22i=ð2hΩr
22
iÞ lies below the

value of the corresponding circular orbit at the same hω22i,
i.e., the NR frequencies fall outside the range spanned by

geodesics. It might be possible to rectify this situation by

applying a linear mass-ratio gravitational self-force cor-

rection to the NR frequencies. This would, however, result

in a very convoluted analysis requiring SMR inputs on the

NR side of the comparison. Thus, to avoid such a

complication we discard the radial and azimuthal frequen-

cies as independent variables to describe both NR and SMR

eccentric inspirals.

A third possibility as a pair of independent variables

are the binding energy, Eb, and the dimensionless angular

momentum, j. This pair of variables has been extensively

used for comparisons between NR simulations and

effective-one-body (EOB) evolutions [115–117]. Both

quantities can be analytically calculated at geodesic order

in the SMR formalism [107], and they can also be extracted

from the NR simulations. Nonetheless, the computation of

the reduced angular momentum and the binding energy

from NR simulations requires the application of some

unknown offsets to both quantities. This is due to the fact

that Eb and j are reconstructed by integrating the fluxes to

infinity and using the initial (ADM) or final mass and

angular momentum. However, the fluxes at the start of the

simulations, due to junk radiation, and at the end, due to the

exponential power decay during ringdown, are not very

well resolved. Consequently, the obtained Eb–j curves are

FIG. 7. Comparison of egw obtained directly from the geodesic

strain e
geo
gw with egw from an evolving adiabatic inspiral, e0PAgw as a

function of the geodesic frequency Ωgeo. The main panel shows

an equal mass inspiral (ν ¼ 1=4). The inset shows the absolute

difference between the two approaches at three selected points

along the inspiral for varying mass-ratios. The gray lines in the

inset indicate the a linearly growing symmetric mass ratio

dependence.
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generally off by a shift in the Eb–j plane [116]. Even after

that shift is applied, it is possible that the NR data exist

in the region of the Eb–j plane that is inaccessible by

geodesics. Thus, in order to avoid the introduction of

systematics from the determination of the offset in Eb and j,
here we do not consider them as independent variables for

the mapping between SMR and NR configurations.

Finally, we present a combination of variables such that

Schwarzschild geodesics and NR simulations lie in the

same region of parameter space. These variables are the

eccentricity measure egw, defined in Eqs. (5) and (6), and

the orbit-averaged azimuthal frequency computed from the

(2,2)-mode, hω22i, defined in Eq. (7). The lower panel of

Fig. 8 displays egw as a function of hω22i, for the NR

simulations in Table I and for Schwarzschild geodesics.

The egw–hω22i plane is naturally overlapping for both NR

and Schwarzschild geodesics, without the need of any

shifts or rescalings. This eccentricity definition by con-

struction spans the range from 0 (circular) to 1 (parabolic

orbit). This remains true at any level of the SMR approxi-

mation. Additionally, we note that given a (2,2)-mode

waveform egw is uniquely determined, and thus, it is a

gauge invariant observable.

However, we note that the leading order contribution to

egw cannot be computed analytically in the SMR formalism

but requires solving the first order field equations numeri-

cally. Similarly, the next-to-leading order in mass-ratio

correction to egw requires the second order metric pertur-

bation, which has not yet been calculated for eccentric

orbits. Consequently, calculating the next-to-leading order

contribution to the expansion of any observable at fixed egw
and hω22i requires obtaining the second order metric

perturbation. (The only exception to this are quantities at

fixed egw ¼ 0 or egw ¼ 1, since the higher order corrections

to these values are zero by construction.)

In the limit egw → 0, fixing egw and hω22i reduces to the

usual comparisons done for quasicircular inspirals. Hence,

we consider these two variables, egw and hω22i, as our

independent variables for the comparison of NR and SMR

inspirals.

VI. RESULTS

In this section we compare the energy and angular

momentum fluxes, as well as the periastron advance,

obtained from NR and SMR adiabatic evolutions, and

provide constraints on the magnitude of the next order term

in the SMR expansion for the mass ratios considered here.

We consider the orbit-averaged energy and angular

momentum fluxes from the NR simulations in Table I,

computed using Eqs. (13)–(15), as well as the periastron

advance K, computed using Eq. (12).

The orbit-averaged fluxes extracted from the NR sim-

ulations are illustrated in the top two rows of Fig. 9. In order

to reduce the dynamical range of the fluxes, we rescale

them with the Newtonian (0PN) quasicircular values for

these quantities [16],

h _EQC;0PN
gw i ¼ 32

5
ν2Ω

10=3
orb ; ð37aÞ

h_JQC;0PNz;gw i ¼ 32

5
ν2Ω

7=3
orb : ð37bÞ

Here, Ωorb denotes the orbital frequency for which we

substitute hω22i=2; see Sec. III for details.

The rescaling by Eqs. (37) produces a smooth depend-

ence of the fluxes in parameter space, with practically

no curves crossing each other. This is because most of

the mass ratio dependence is already accounted for by the

rescaling factors. In the right-hand panels, the data are

plotted as function of egw only. This projection highlights

how well the normalization accounts for the ν- and
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FIG. 8. Top panel: Ratio of the orbit-averaged azimuthal

and radial frequencies computed from the (2,2)-mode,

hω22i=ð2hΩr
22
iÞ, as a function of the orbit-averaged frequency,

hω22i. The colored curves represent the NR simulations in

Table I, whereas the grey shaded area indicates the region

covered by Schwarzschild geodesics, bounded by the diagonal

black curve representing quasi-circular geodesics. Bottom panel:

Eccentricity, egw, computed using Eqs. (5) and (6), as a function

of hω22i, for the same NR simulations as in the upper panel.

While geodesics exist at all eccentricities, we have only generated

SMR configurations in the grey shaded area. In both panels each

NR simulation has been color-coded according to its symmetric

mass ratio ν.
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hω22i-dependence, with only the eccentricity-dependence

remaining. The eccentricity dependence qualitatively

resembles the expected analytical behaviour for the energy

flux for eccentric binaries with corrections of the form

∼ 1

ð1−e2Þx ð1þ ae2 þ be4 þ � � �Þ, where x ¼ 7=2 or 2, for the

energy and angular momentum fluxes respectively, while a
and b are coefficients which can be found in [118,119]. We

do not introduce eccentric corrections to the rescaling
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FIG. 9. Left column: From top to bottom energy flux, angular momentum flux and periastron advance extracted from the NR

simulations in Table I as a function of eccentricity, egw, and orbit-averaged azimuthal frequency, hω22i. Each curve corresponds to a NR
simulation in Table I, and is color-coded by symmetric mass ratio ν. The energy and angular momentum fluxes are rescaled by the

quasicircular Newtonian expressions in Eqs. (37). The red planes indicate the reference frequency Mωref
22

¼ 0.042. Right column:

Projection of the left plots, in the Z–egw plane, where Z indicates the quantity in the z-axis (fluxes or periastron advance). The red-white

circles indicate the points where each NR simulation passes the reference frequency Mωref
22

¼ 0.042.
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factors as our eccentricity definition, egw, only reduces to

the temporal eccentricity, et, at Newtonian order, while

higher PN order corrections may be important to reproduce

the eccentricity dependence of the NR fluxes, especially at

the end of the inspiral regime. Hence, we leave the

exploration of the eccentricity dependence of the NR fluxes

for future work.

The periastron advance is not rescaled, since the

Newtonian value is simply 1 by Kepler’s first law. As a

consequence, a larger dependence of this quantity on mass

ratio is observed when projected into the KNR − egw plane.

While the values corresponding to a fixed reference of

ωref
22

¼ 0.042 (red circles) as a function of eccentricity show

a similar behavior as the fluxes. Overall, the inspection of

the NR curves in Fig. 9 indicates that most of the mass ratio

dependence may be already captured by the leading order

mass ratio contribution.

Moving to the comparison of NR against SMR results,

the NR and SMR fluxes rescaled by the leading order

symmetric mass ratio squared as well as the periastron

advance, are shown in Figs. 10–12 for three different

reference frequencies representative of the full inspiral,

Mωref
22

¼ 0.034, 0.042, 0.063. The SMR fluxes are deter-

mined numerically from geodesic snapshots at the quan-

tities selected in Sec. V, ðν; egw;ωref
22
Þ, as explained in

Sec. IV. The SMR values for the periastron advance

correspond to the analytic geodesic result for the periastron

advance, which can be readily obtained from expressions

available in the Black Hole Perturbation Toolkit [120],

KSMR ¼
2pK

�

4eg
p−6þ2eg

�

π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pðp − 6þ 2egÞ
p ; ð38Þ

where K is the complete elliptical integral of the first kind,

and p and eg have been evaluated at the corresponding

values of ωref
22

and egw.

In the case of the fluxes (Figs. 10 and 11), both NR and

SMR show qualitatively good agreement, which is main-

tained with increasing eccentricity. This indicates that the

effect of eccentricity is well captured by the SMR calcu-

lations. Additionally, the dependence on mass ratio when

rescaling by the leading order symmetric mass ratio

contribution is small. The qualitative agreement between

the NR and SMR degrades with increasing reference

frequency, as expected because higher order mass ratio

corrections are larger in the strong field. The periastron

advance, shown in Fig. 12, has a stronger dependence on

mass ratio than the fluxes, especially at high frequencies.

As in the case of the fluxes, with increasing eccentricity the

agreement of the periastron advance between NR and SMR

does not substantially degrade, indicating that eccentric

effects are accurately described within SMR theory using

adiabatic evolutions. Overall, for both fluxes and periastron

advance the SMR curves overestimate the NR results for all

frequencies, mass ratios and eccentricities.

Before proceeding to a more quantitative comparison of

the difference between NR and SMR, we assess the accuracy

of the NR values shown in Figs. 10–12 by comparing

NR data obtained with different numerical settings. The data

in Figs. 10–12 were obtained from the highest numerical

resolution (Lev3) with applied center-of-mass (CoM)

FIG. 10. Orbit-averaged energy flux rescaled by the leading

order symmetric mass ratio dependence ðν−2Þ as a function of

eccentricity at three different reference frequencies, Mωref
22

¼
0.034, 0.042, 0.063. Each marker corresponds to a NR simulation

at the specified reference frequency, and it is color coded by mass

ratio. The solid lines are the leading order SMR energy flux.

FIG. 11. Orbit-averaged angular momentum flux rescaled by

the leading order symmetric mass ratio dependence ðν−2Þ as a

function of eccentricity at three different reference frequencies,

Mωref
22

¼ 0.034, 0.042, 0.063. Each marker corresponds to a NR

simulation at the specified reference frequency, and it is color

coded by mass ratio. The solid lines are the leading order SMR

angular momentum flux.
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correction,
6
extrapolation order 4, and all the spin-weighted

spherical harmonic modes up to l ≤ 8. For the particular

reference frequency of ωref
22

¼ 0.042, we show in Fig. 13 the

absolute difference between the quantities computed from

this reference waveform against the same quantities calcu-

lated from a waveform, where one of the previous conditions

is modified at a time. Precisely, the differences are computed

against a waveform without CoM correction; using extrapo-

lation order 3; a lower resolution (Lev2), and also in the

case in which only l ≤ 4 modes are included. The largest

differences for the three quantities typically occur when

comparing against the lower resolution (Lev2). Furthermore,

the individual errors are summed in quadrature for an overall

error estimate for the subsequent analysis.

We now perform a more quantitative comparison of

SMR and NR results for the particular reference frequency,

ωref
22

¼ 0.042. The difference between the SMR and NR

fluxes rescaled by the leading order power of symmetric

mass ratio as a function of eccentricity are shown in the

top and mid left panels of Fig. 14, while in the bottom

panels the differences for periastron advance are displayed.

Each data point carries the error bar determined through

the analysis in Fig. 13. We see that at 0PA order there is

already good agreement between NR and SMR results,

with relative differences typically of the order ≲10%, with

the largest discrepancies occurring at equal masses, as

expected from a small mass ratio expansion.
Given the visible mass ratio trends in the left panels of

Fig. 14, we rescale by another power of symmetric mass

ratio to estimate the magnitude of the unknown 1PA

contributions. The right panels of Fig. 14 show that this

FIG. 12. Periastron advance as a function of eccentricity at

three different frequencies, Mωref
22

¼ 0.034, 0.042, 0.063. Each

marker corresponds to a NR simulation at the specified reference

frequency, and it is color coded by mass ratio. The solid lines

correspond to joining the values of the geodesic periastron

precession at the same ðν; egw;ωref
22
Þ values as the NR configu-

rations.

FIG. 13. Error estimates for the energy and angular momentum

fluxes, and the periastron advance computed from the NR

simulations in Table I at a reference frequency of ωref
22

¼ 0.042.

Taking as a reference data computed from the waveform computed

with highest numerical resolution (Lev3), with extrapolation order

4, CoM correction, and all the modes up to l ≤ 8, we compute the

absolute difference that arises when each one of these conditions is

changed, i.e., comparing to the values computed from the wave-

form with extrapolation order 3; without CoM correction; against a

lower resolution; and against the waveform with incomplete modes

only up to l ≤ 4. In the case of periastron advance the impact of

higher order modes is not assessed as this quantity is computed

from the (2,2)-mode. The orange circles represent the quadrature

sum of the individual error contributions.

6
We perform center-of-mass correction and extrapolation of

the waveforms using the scri package [121], which implements
the methods developed in [122–124].
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scaling collapses the three quantities into one-dimensional

curves. These one-dimensional curves represent the next-

to-leading order 1PA contribution to the respective quan-

tity, as a function of eccentricity. The small residual spread

in mass ratio in these curves represents unknown yet higher

order terms. The fact that the right panels of Fig. 14

collapse to quasi one-dimensional curves indicates that

such ≥ 2PA contributions are small compared to the 1PA

contribution.

Additionally, we have added to the right top and mid

panels of Fig. 14 the second order self-force results for the

quasicircular fluxes from [63]. The agreement is good, but a

small shift is noticeable between the quasicircular results

with respect to our eccentric results. This feature may be a

consequence due to the fact that the results from [63] are

based on a two-timescale expansion computed from the

self-force dynamics, while our fluxes are averaged over a

radial period of an evolving SMR waveform. However, a

FIG. 14. Left panels: Difference between the SMR and NR fluxes and periastron advance as a function of eccentricity at a reference

frequency of ωref
22

¼ 0.042. The energy and angular momentum fluxes (top and mid panels) have been rescaled by the leading order

symmetric mass ratio power, ν−2. Right panels: Same quantity as in the corresponding left plot rescaled by an additional power in

symmetric mass ratio. In all panels each point is color-coded by symmetric mass ratio and carries the error bar computed in Fig. 13. The

red dots in right top and mid panels corresponds to the quasicircular second order self-force results from [63]. In the right bottom plot

the gray dot refers to the SMR prediction for quasicircular binaries from [88], and the dots circled by magenta disks correspond to the

periastron advance values for the q ¼ 1; 1=8 quasicircular NR simulations computed in [88].
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more detailed study is required to determine the source of

this small discrepancy, which is within the error bars.

In the case of the periastron advance, when rescaling by

an additional power of symmetric mass ratio in the bottom

right panel of Fig. 14, we include also the quasi-circular

1PA SMR result [64,65] and the two quasicircular non-

spinning NR simulations (q ¼ 1; 1=8) from [88]. The

eccentric results have comparatively large error bars at

small eccentricities because the amplitude of the oscilla-

tions inω22 (from which all quantities are derived) becomes

small and more difficult to resolve. A similar shift as in the

case of the fluxes is present in the bottom right panel of

Fig. 14 between the quasicircular results from [88] and

the low-eccentricity data points of our new analysis. We

leave for future work the precise determination of such

small differences between our results for the fluxes and the

periastron advance, and the existing quasicircular results

from the literature.

Finally, we remark that the dependence of the fluxes and

periastron advance with eccentricity resembles a functional

form as expected from the PN results [118,119,125], where

for instance the eccentric corrections to the fluxes are of the

form ∼ 1

ð1−e2Þx ð1þ ae2 þ � � �Þ, where x and a are coeffi-

cients to be determined. This suggests that fitting such

results as a function of eccentricity and mass ratio could

provide some phenomenological expressions for the

unknown 1PA SMR terms as a function of eccentricity,

mass ratio and frequency, as a similar eccentricity depend-

ence is observed for other frequencies in the inspiral. We

leave such a task for future work, as well as the production

of new eccentric NR simulations at smaller mass ratios,

which may help assess the contributions of the unknown

higher order terms in the SMR perturbation theory for

eccentric nonspinning binaries.

VII. CONCLUSIONS

We have presented a new set of BBH NR simulations

produced with the SpEC code with the objective of

exploring the accuracy of the small mass-ratio expansion

for eccentric nonspinning binary black holes. In particular,

our study aims to extend recent work [41] on assessing the

accuracy of the SMR theory for nonspinning quasicircular

BBH to nonspinning eccentric BBHs.

The simulations produced in this work cover mass ratios,

q ∈ ½0.1; 1�, initial eccentricities, e0gw ∈ ½0.01; 0.8�, and

initial mean anomalies close to apastron, l0 ∼ π. Each

simulation is performed at three different resolutions,

and most of them have ≳20 orbits, which makes our

dataset the one with the longest eccentric BBH simulations

to date.

These simulations are compared to waveforms produced

using the gravitational self-force formalism. Using an

existing frequency domain Teukolsky code [108–110],

we have generated eccentric inspirals in a Schwarzschild

background that are accurate to leading order in the SMR

expansion.

As a first step towards comparing the NR and SMR

results, we adapted the orbit-average method from [56] to

extract the radial and azimuthal frequencies, the energy and

angular momentum fluxes, and measure the eccentricity

from waveforms. We have validated this procedure to

extract orbit-averaged frequencies by using the 0PA inspi-

rals, where the geodesic azimuthal and radial frequencies

are provided as an outcome of performing such evolutions.

We find that the procedure of extracting the frequencies,

and eccentricities produces relative differences of 10−5

in the early inspiral, while the discrepancies increase up

to ∼10−2 close to merger due to a combination of the

boundary effects and the rapid increase of the frequencies,

which is a clear limitation of the procedure. Thus, we

restrict this study to the inspiral part of the waveform, and

leave for future work an improvement of the extraction

procedure to describe more faithfully the transition from

inspiral to plunge of the signal.

We investigated eccentricity eΩorb
defined from the

orbital frequency and eccentricity eω22
defined from the

gravitational wave (2,2) mode, and found them to system-

atically differ. Using PN theory we have derived relations

between different definitions of eccentricity. The instanta-

neous orbital and (2,2)-mode frequency are not related by

the simple factor 2 for eccentric binaries, as is the case of

the orbit-averaged frequencies, and thus, we have provided

PN-accurate expressions relating both, which produce

relative differences of ∼10−2 when tested on NR simu-

lations. Furthermore, we have provided PN-accurate

expressions relating eΩorb
, eω22

and the temporal eccentric-

ity, et. We show that in the Newtonian limit eω22
∼ 3et=4, so

that eω22
does not have the correct Newtonian limit. In

Eq. (6), we propose a new eccentricity definition egw based

on the (2,2)-mode frequency, which reduces to et in the

Newtonian limit.

Comparisons between NR and SMR require a map

which associates a SMR inspiral with the instantaneous

state of an eccentric NR inspiral. We investigated several

proposals in the literature for variables that identify the

same inspiral in the NR simulations and SMR evolutions.

We find that some choices used in the literature lead to the

NR simulations lying outside the range spanned by the

geodesic results, hampering comparisons. We propose to

use as variables the orbit-averaged azimuthal frequency,

hω22i, and eccentricity egw, measured both from the

instantaneous frequency of the (2,2)-mode, which do not

suffer from this limitation.

Moving to the comparison between NR and SMR

results, we have focused on the energy and angular

momentum fluxes, as well as the periastron advance.

Overall, we find good agreement between the NR and

SMR values, with relative differences typically ≲10%, and

no particular degradation with increasing eccentricity.
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We assess the contributions coming from the unknown

higher order term in the PA expansion (1PA) by considering

the difference between the NR and SMR fluxes and

periastron advance. After rescaling by the symmetric

mass-ratio cubed, we find that the differences collapse to

one dimensional curves as a function of eccentricity with

very small spread in mass ratio; see Fig. 14. This behavior

indicates that the next order term in the SMR expansion

(2PA) has a very small contribution compared to the 1PA

term. Furthermore, we compare these differences for the

fluxes and the periastron against available results in the

literature for quasicircular binaries from [63,88], and find

that the results are consistent with our findings, except for

small shifts which are within the error bars. We leave for

future work the precise determination of the origin of this

small feature.

The eccentricity dependence of the fluxes and periastron

advance rescaled by symmetric mass ratio also suggests a

functional form similar to the one predicted by the known

PN results [118,119,125]. An interesting extension of the

work presented here would be the modeling of these

differences between the adiabatic SMR inspirals and the

NR simulations, by fitting them as a function of mass ratio,

eccentricity and orbit-averaged frequency fq; egw; hω22ig,
and provide some phenomenological expressions which

can be used to compute the unknown 1PA term for the

fluxes and periastron advance. Another possible future

direction is to focus on comparing the phasing between NR

and SMR, and extend previous studies for quasicircular

binaries [41] to the eccentric case.

Future work will also include extending our set of

simulations to higher mass ratios, and to gradually incor-

porate spins. Other applications of the simulations will

include the calculation of the redshift factor [126], extend-

ing current studies on quasicircular binaries [127] to the

eccentric case. Finally, these simulations will also be of

paramount relevance to assess the accuracy of the currently

existing inspiral-merger-ringdown eccentric waveform

models [57,128–131].
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APPENDIX A: NUMERICAL RELATIVITY

INITIAL CONDITIONS

The quasiequilibrium, extended conformal thin sand-

wich initial data used by SpEC requires choice of two sets

of input parameters. The first set consists of masses and

spins of the two black holes. The second set determines

the orbital configuration of the two BHs. This second set

consists of an initial separation D0=M0, an initial instanta-

neous orbital frequencyM0Ω0 and the initial instantaneous

radial velocity a0 ¼ _r=r (see [80–82] for details). Our task
is to determine this second set of initial-data parameters

such that the subsequent evolution has an eccentricity close

to a certain desired value e0 and an inspiral of reasonable

length (20–50 orbits).

Let us first point out three considerations that will

influence our procedure: First, as discussed in Sec. II A

the present radial map used in SpEC cannot accommodate

that the distance between the two black holes increases

by more than a factor 1.5. We will avoid this problem by

starting NR simulation near apastron.
7
Second, there are

previous results on how the tangential momentum in an

eccentric binary varies with the eccentricity. Specifically,

we will utilize the correction factor of the tangential

momentum [49],

λ0t ðr; e; ν; signÞ ¼ 1þ sign ×
e

2
×

�

1 −
1

r
ð2þ νÞ

	

; ðA1Þ

where r is the orbital separation and sign ¼ �1 is the sign

of the correction [49]. While this correction has been

derived in the low eccentricity limit, it has been shown

[61] to be useful to determine the initial parameters in

eccentric moving puncture simulations. We average the

correction with both signs to arrive at

λ̄0t ðr; e; νÞ ¼
1

2
×

�

λ0t ðr; e; ν;−1Þ þ
1

λ0t ðr; e; ν;þ1Þ

	

; ðA2Þ

as in Eq. (2.3) of [61]. The third consideration concerns

the choice of coordinates: our SpEC simulations start

from superposed harmonic Kerr (SHK) data [78],

whereas Eq. (A1) was derived in Arnowitt-Desner-Misner

transverse-traceless (ADMTT) coordinates. Therefore, we

will also employ a coordinate transformation from ADMTT

coordinates to harmonic coordinates.

Overall, we proceed as follows:

(1) Choose mass-ratio q ≤ 1, and a desired eccentricity

e0. Set spins χ i ¼ 0, masses m1 ¼ 1=ð1þ qÞ,

7
Very recently a new radial map has been developed and

implemented in SpEC, which avoids these restrictions.
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m2 ¼ q=ð1þ qÞ (so that M0 ¼ m1 þm2 ¼ 1),

and ν ¼ m1m2=M
2

0
¼ q=ð1þ qÞ2.

(2) Choose a tentative initial separation as the apastron

distance of a Newtonian binary with periastron

distance of rp ¼ 9M0, i.e., D̃0 ¼ ð1þ e0Þ×
ð1 − e0Þ−1rp. If a PN evolution with the same

parameters indicates that the inspiral may be too

short, increase D̃0.

(3) Compute 3.5PN quasicircular estimates for the

tangential and radial momenta, p0
t ; p

0
r in ADMTT

coordinates using Eqs. (A2) and (2.16) in [61].

(4) Calculate the correction factor λ̄t using Eq. (A2).

(5) Construct the ADMTT position and momentum

vectors in Cartesian coordinates,

xADMTT ¼ ð0; D̃0; 0Þ; ðA3Þ

pADMTT ¼ ðp0
r ; λ̄

0
tp

0
t ; 0Þ: ðA4Þ

Here, we placed the black holes on the y-axis. Note

that λ̄t ≤ 1, so that the tangential momentum is

reduced, consistent with our goal to start at apastron.

(6) Apply the transformation from ADM to harmonic

coordinates [132] to obtain the position and velocity

vector in harmonic coordinates,

xH ¼ Y½xADMTT; pADMTT�; ðA5Þ

vH ¼ V½xADMTT; pADMTT�; ðA6Þ

where Y and V are operators mapping the ADM

coordinates to harmonic coordinates expanded up to

3PN order [132]. (Note that the expressions in [132]

are restricted to nonspinning binaries.)

(7) Read of the initial data parameters from the position

and velocity vectors in harmonic coordinates,

D0 ¼ jxHj; ðA7Þ

Ω0 ¼
jxH × vHj

D2

0

; ðA8Þ

a0 ¼
vH · xH

D2

0

; ðA9Þ

where Euclidean vector operations are used.

Figure 15 compares the target eccentricity e0 with the

actual eccentricity e0gw achieved near the start of each

simulation. There is an offset between these eccentricities.

We note that specially for high eccentricities the use of

the correction factor is not accurate due to the fact that

it is an expression derived in the low eccentricity limit.

Furthermore, we attribute the larger differences between

our target and measured initial eccentricities as compared

to other studies like [61] due to the assumptions on the

identification we made between harmonic and superposed

harmonic coordinates, and inaccuracies in the PN expres-

sions for the eccentric corrections being amplified due to

the transformation from the ADM to the harmonic gauge.

The calculation of the initial parameters presented in

this section is useful for placing points in the eccentric

parameter space with a limited accuracy. In the future we

plan to adopt an iterative procedure to specify the desired

initial eccentricity and mean anomaly as done in [58,133],

to accurately and efficiently populate the eccentric param-

eter space.

APPENDIX B: NUMERICAL RELATIVITY

WAVEFORM QUALITY

In this appendix we assess the accuracy of the NR

waveforms listed in Table I. For each simulation SpEC

employs multiple subdomains. The shape, size and number

of subdomains is dynamically varied during the simulations

according to the spectral adaptive mesh refinement (AMR)

procedure [79,134]. The accuracy of the simulations is

controlled by a tolerance parameter which determines when

AMR should add or remove grid points within a given

subdomain, and when a subdomain should be split into

two, or when two neighboring subdomains should be

combined into one. As a consequence, it is difficult to

obtain strict convergence as a function of the AMR

tolerance parameter. Convergence may fail, for instance,

due to two identical simulation having different AMR

tolerances in a particular subdomain modifying the number

of grid points in it, or different subdomain boundaries in a

particular time. Notwithstanding these issues, most simu-

lations in the SXS catalog show convergence with the AMR

tolerance [50].

In this work we have run each simulation at three

different AMR tolerances, henceforth called different

FIG. 15. Initial eccentricity (crosses), e0gw, as defined in Eq. (6),
measured from the NR simulations in Table I, and initial

eccentricity (dots), e0, specified in Eq. (A2), as a function of

the merger time of the simulations. Each simulation is color-

coded according to its inverse mass ratio.
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resolutions for brevity. This appendix extends the error

analysis of our main results with calculations of the

mismatch between waveforms obtained at the highest

and second highest resolutions.

Following Ossokine et al. 2020 [135], we compute the

SNR-weighted mismatch between waveforms computed

from the highest and the next-to-highest resolutions. The

mismatches are computed for binary masses 20 M⊙ ≤

M ≤ 200M⊙, and using as a Power Spectral Density

(PSD), the Advanced LIGO’s zero-detuned high-power

design sensitivity curve [136]. When both waveforms are in

band, we use fmin ¼ 10 Hz and fmax ¼ 2048 Hz, as the

lower and upper bounds of the integral. For waveforms

where this is not the case, we set fmin ¼ 1.05fstart, where
fstart is the starting frequency of the NR waveform. To

represent dependence on M, we compute the mean and the

maximum over M. The results of the mismatch calculation

are shown in Fig. 16. The vertical dashed lines denote the

median values of each distribution. We note that the median

value of the maximum mismatch is below 10−3, while for

the mean mismatch is ∼10−4. Three simulations (SXS:

BBH:2517, SXS:BBH:2525, SXS:BBH:2564) have maxi-

mum mismatches above 1%, M̄SNR
max ¼ 0.011; 0.065, 0.041,

respectively. The highest mismatch occurs for SXS:

BBH:2525 which is both the shortest evolution in our

dataset (making it more prone to systematics due to the

ringdown transition in SpEC [68,70]), and which was also

the first simulation produced in our dataset, so it does not

take into account some improvements in SpEC, which

have been introduced during this project (see Sec. II for

details). Overall, the mismatches are comparable to the

ones obtained in the SXS catalog for quasicircular binaries

[50] (see Fig. 9 there, but note that [50] uses a flat PSD).

This indicates that SpEC is capable to perform simulation

of eccentric BBH with a numerical error comparable to the

quasicircular case.

APPENDIX C: CALCULATION OF eω22

IN PN EXPANSIONS

In this appendix we use PN theory to investigate the

relation among eω22
, eΩorb

and the post-Newtonian et [137].

In the following, we set the total mass, M ¼ 1, to ease the

notation.

1. Relation eω22
− eΩorb

Section III showed that the differences between eω22
and

eΩorb
can be explained within PN theory. This appendix

derives the relations used there at 1PN using harmonic

coordinates. As a first step, we calculate eω22
from h22 at the

1PN order [91],

h22 ¼ 4ν

ffiffiffi

π

5

r

h

Ĥ0PN
22 þ γĤ1PN

22

i

e−2iϕ; ðC1Þ

Ĥ0PN
22 ¼ 1

r
− _r2 þ 2ir_r _ϕþr2 _ϕ2; ðC2Þ

Ĥ1PN
22 ¼

�

9

14
−
27ν

14

�

r4 _ϕ4 þ i_r

��

45ν

7
þ 25

21

�

_ϕþ
�

9

7
−
27ν

7

�

r3 _ϕ3

	

þ 1

r2

�

ν

2
− 5

�

þ
�

26ν

7
þ 11

42

�

r _ϕ2

þ i

�

9

7
−
27ν

7

�

r_r3 _ϕþ _r2

r

�

−
16ν

7
−
15

14

�

þ
�

27ν

14
−

9

14

�

_r4; ðC3Þ

where γ ¼ 1

c2
is the PN order bookkeeping parameter, i is the imaginary unit, r is the radial separation, ϕ is the orbital phase

and the overdot represents a time derivative.

Taking the complex argument of Eq. (C1) and expanding to 1PN order yields

ϕ1PN
22

¼ −2ϕþ δþ γr_r _ϕ
41r3 _ϕ2 þ 47r_r2 þ 235 − 2νð51r3 _ϕ2 þ 60r_r2 − 57Þ

21ðC2

1
þ C2

2
Þ ðC4Þ

with C1 ¼ r3 _ϕ2
− r_r2 þ 1, C2 ¼ 2r2 _r _ϕ, tan δ ¼ C2=C1.

FIG. 16. Histograms of the SNR-weighted mismatch between

the two highest resolutions for each simulation in Table I. The

orange and green distributions correspond to the mean and

maximum mismatch over the total mass range considered

M ¼ ½20; 200� M⊙. The vertical dashed lines correspond to the

median values of the distributions.
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The frequency ω22 entering the definition of eω22
can be

expressed as

ω22 ≡
dϕ22

dt
¼ ∂ϕ22

∂r
_rþ ∂ϕ22

∂_r
̈rþ ∂ϕ22

∂ϕ
_ϕþ ∂ϕ22

∂ _ϕ
ϕ̈: ðC5Þ

Expanding Eq. (C5) at 1PN order, we obtain

ω1PN
22

¼ F ðν; r; _r; ̈r; _ϕ; ϕ̈Þ ¼ ω0

22
þ γω1

22
; ðC6Þ

where

ω0

22
¼ −2

C2

1
þ C2

2

½ _ϕ − ð̈rrþ ð4þ ̈rr2Þ_r2 − 2r_r4Þr _ϕþ r3ð2 − ̈rr2 þ 3r_r2Þ _ϕ3 þ r6 _ϕ5 þ ϕ̈r2 _rð−1þ r_r2 þ r3 _ϕ2Þ�; ðC7Þ

ω1

22
¼ −1

21ðC2

1
þ C2

2
Þ2 ½ð1 − r_r2Þð_r2ð−235 − 114νþ 7r_r2ð−47þ 18νÞÞ þ ̈rrð−235 − 114νþ r_r2ð18ð−47þ νÞ

þ r_r2ð−47þ 120νÞÞÞÞ _ϕþ r3ð2_r2ð388þ r_r2ð875þ r_r2ð53 − 138νÞ − 84νÞ þ 432νÞ þ ̈rrð−7ð73þ 18νÞ
þ r_r2ðr_r2ð29 − 66νÞ þ 2ð53þ 576νÞÞÞÞ _ϕ3 þ r6ð_r2ð1093þ 4r_r2ð47 − 120νÞ þ 774νÞ þ ̈rrð−317þ 90ν

þ r_r2ð−59þ 156νÞÞÞ _ϕ5 þ r9ð̈rr − 2_r2Þð−41þ 102νÞ _ϕ7 þ ϕ̈r_rðð−1þ r_r2Þ2ð−235 − 114ν

þ r_r2ð−47þ 120νÞÞ þ r3ð347þ 534νþ r_r2ð810 − 624νþ r_r2ð−29þ 66νÞÞÞ _ϕ2 þ r6ðr_r2ð59 − 156νÞ
þ 7ð89þ 78νÞÞ _ϕ4 þ r9ð41 − 102νÞ _ϕ6Þ�: ðC8Þ

This result is used in the main text in Eq. (17).

At the turning points apastron and periastron, _r ¼ 0 and

ϕ̈ ¼ 0, and Eq. (C6) simplifies to

ω
1PNa;p
22

¼ 2 _ϕð1 − ̈rr2 þ r3 _ϕ2Þ
1þ r3 _ϕ2

þ γ
̈rr _ϕ½235þ 114νþ ð41 − 102νÞr3 _ϕ2�

21ð1þ r3 _ϕ2Þ2
ðC9Þ

At apastron, ̈r < 0 whereas at periastron ̈r > 0.

Substituting Eq. (C9) into Eq. (5), and replacing
_ϕ ¼ Ωorb, one obtains

eω22
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω
p
22
ðrp;Ωp

orb; ̈rp; ν; γÞ
q

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ωa
22
ðra;Ωa

orb; ̈ra; ν; γÞ
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω
p
22
ðrp;Ωp

orb; ̈rp; ν; γÞ
q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ωa
22
ðra;Ωa

orb; ̈ra; ν; γÞ
p

;

ðC10Þ

where fra;p;Ωa;p
orb ; ̈ra;pg indicate the corresponding quan-

tities at apastron and periastron, respectively. Expanding

Eq. (C10) to 1PN order yields

e1PNω22
≡ Gðν; ra;p;Ωa;p

orb ; ̈ra;pÞ ¼ e0ω22
þ γe1ω22

; ðC11Þ

where

e0ω22
¼ α−

αþ
; ðC12Þ

e1ω22
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Δðra;Ωa
orb; ̈raÞΩ

p
orbð1þ r2pð̈rp þ rpðΩp

orbÞ2ÞÞ
q

42ð1þ r3pðΩp
orbÞ2Þ1=2α21

×

�

̈rarað−235 − 114νþ r3að−41þ 102νÞðΩa
orbÞ2Þ

ð1þ r3aðΩa
orbÞ2Þð−1þ r2að̈ra − raðΩa

orbÞ2ÞÞ

þ ̈rprpð235þ 114νþ r3pð41 − 102νÞðΩp
orbÞ2Þ

ð1þ r3pðΩp
orbÞ2Þð1þ r2pð̈rp þ rpðΩp

orbÞ2ÞÞ

	

;

ðC13Þ

with

α� ¼ Δðrp;Ωp
orb; −̈rpÞ1=2 � Δðra;Ωa

orb; ̈raÞ1=2; ðC14Þ

Δðr;Ωorb; ̈rÞ ¼ 2Ωorb

�

1 −
̈rr2

1þ r3Ω2

orb

�

: ðC15Þ

This result is used in the main text in Eq. (18).

The expressions derived above can be useful to estimate

ω22, or the eccentricity eω22
, for NR simulations, where the

trajectories are output in Cartesian or polar coordinates
8

and are typically cleaner quantities than the frequencies

of the extracted waveform modes, especially for finite

8
We note that the expressions derived above correspond to

harmonic coordinates [91], while NR coordinates typically do
not correspond to these ones. Thus, one should transform the
harmonic coordinates to the ones used by the corresponding NR
code. However, in practice we find that for our SpEC simulations
not performing such a transformation still provides accurate
results.
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difference codes [44]. Another application of Eq. (C10) is

for eccentricity reduction/control purposes, where short

evolutions are done to iteratively converge to the desired

value of eccentricity. In these methods [44,49,81,82]

one typically chooses a trajectory-based definition of

eccentricity instead of a waveform-based one due to the

extra computational cost, which involves the evolution of

the gravitational radiation reaching the extraction radii.

However, with the expressions provided in Eq. (C10), one

can obtain an approximation of eω22
from the coordinates.

2. Relation eΩorb
− et

Most eccentric waveform models for compact binaries

use PN theory to describe the inspiral regime and/or

their initial parameters [92–100,129,131,138]. A commonly

used description of eccentric orbits is the quasi-Keplerian

parametrization [92] where three different eccentricity

parameters et, er and eϕ describe the orbit [137]. These

three eccentricities are not independent from each other,

and they are all related at a given PN order. Eccentric PN

waveform models typically use the temporal eccentricity, et,
as the eccentricity parameter. In the following, PN-accurate

expressions between the eccentricity defined from the orbital

frequency, eΩorb
, and et, are computed.

In order to perform this calculation we use the 3PN

expression for Ωorb, which can be found in Appendix A of

[54]. The calculation of eΩorb
requires the values of the

orbital frequency at periastron and apastron, which corre-

spond to values of the eccentric anomaly of u ¼ 0 and

u ¼ π, respectively. Thus, at the turning points, the orbital

frequency can be expressed as

Ω
a;p
orb ¼ x3=2ðΩ0PN

orb þ γΩ1PN
orb þ γ2Ω2PN

orb þ γ3Ω3PN
orb Þ; ðC16Þ

where γ is the PN bookkeeping parameter. Using the

abbreviation ϵ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − e2t
p

, the contributions at different

PN order can be written as

Ω
0PN
orb ¼ 1

ð1� etÞ2
ϵ; ðC17Þ

Ω
1PN
orb ¼ �ðν − 4Þetx

ð1� etÞ2ϵ
; ðC18Þ

Ω
2PN
orb ¼ �x2

12ϵ3ð1� etÞ2
½�9e2t þ ð−5ν2 þ 35ν − 48Þe3t þ etð−ν2 þ νð−41þ 72ϵÞ − 180ϵþ 24Þ ∓ 18ð−5þ 2νÞð−1þ ϵÞ�;

ðC19Þ

Ω
3PN
orb ¼ ∓x3

13440ϵ5ð1� etÞ2
½−560νð3ν2 − 59ν − 36Þe5t ∓ 70ð960ν2 þ ð123π2 − 10880Þνþ 2880Þðϵ − 1Þ

∓ 1680ð2ν3 − 27ν2 − 29νþ 12Þe4t þ 560e3t ðν2ð288ϵ − 334Þ þ νð389 − 852ϵÞ þ 960ϵþ 2ν3 − 936Þ
∓ 3e2t ð1120ν2ð46ϵ − 85Þ þ νð−239680ϵ − 7175π2 þ 584944Þ þ 2240ð150ϵ − 227Þ þ 1120ν3Þ
þ 4etð140ν2ð432ϵ − 421Þ þ νð4305π2ϵ − 555520ϵþ 130796Þ þ 6720ð55ϵ − 23Þ þ 140ν3Þ�; ðC20Þ

where the upper sign corresponds to apastron and the lower

sign corresponds to periastron. To derive Eq. (C20) we

assumed that the value of x is the same at apastron and

periastron as it corresponds to an orbit-averaged frequency,

which is evolved using the radiation reaction equations in

an adiabatic evolution. This approximation may not be

accurately fulfilled when postadiabatic effects become

more relevant as in the case of the binary close to merger.

Substituting Eq. (C20) into Eq. (4) and PN-expanding the

result to 3PN order, one obtains

eΩorb
¼ e0PN

Ωorb
þ γe1PN

Ωorb
þ γ2e2PN

Ωorb
þ γ3e3PN

Ωorb
; ðC21Þ

where

e0PN
Ωorb

¼ et; ðC22Þ

e1PN
Ωorb

¼ x

2
ð4 − νÞet; ðC23Þ

e2PN
Ωorb

¼ x2et

24ð1 − e2t Þ
½12ð−2þ 15ϵ − 4e2t Þ

þ νð13e2t − 72ϵþ 41Þ þ ν2ð1 − e2t Þ�; ðC24Þ

e3PN
Ωorb

¼ x3et

24ð1− e2t Þ2
�

24ð−17þ 30ϵþ 9ð1− e2t Þ þ 10ϵ3Þ

þ ν

�

5832

35
þ
�

123π2

8
− 1708

�

ϵþ 9

2
ð1− e2t Þ− 42ϵ3

þ 62ð1− e2t Þ2
�

þ ν2
�

−258þ 252ϵþ 73ð1− e2t Þ

− 72ϵ3 þ 21

2
ð1− e2t Þ2

�

þ 1

2
ν3ð1− e2t Þ2

	

: ðC25Þ
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We note that in the derivation of Eq. (C22) only the

instantaneous contributions to the orbital frequency up to

3PN order have been used, while tail contributions or spin

terms, which would appear beyond 1PN order, have been

neglected. We leave for future work including spin effects,

as well as contributions from the tail terms.

3. Relation eω22
− et

This derivation proceeds similarly to appendix C 1, but

starting from the quasi-Keplerian parametrization. We start

with 1PN expressions for the (2,2)-mode waveform, h22, in
the quasi-Keplerian parametrization [91],

hQK
22

¼ 4νx

ffiffiffi

π

5

r

h

ĥ0PN22 þ γĥ1PN22

i

e−2iϕ; ðC26Þ

ĥ0PN22 ¼ 2

½1 − et cosðuÞ�2
�

1 − e2t þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − e2t

q

et sinðuÞ

−
1

2
et cosðuÞ½1 − et cosðuÞ�

	

; ðC27Þ

Ĥ1PN
22 ¼ −

x

42ð1− e2t Þð1− et cosðuÞÞ3
½ð64ν− 278Þe4t þ ð46νþ 64Þe2t þ e3t cos

3ðuÞðð17ν− 57Þe2t − 17ν− 27Þ

þ e2t cos
2ðuÞðð114− 34νÞe2t þ 34νþ 54Þ þ et cosðuÞðð114− 34νÞe4t þ ð207− 89νÞe2t þ 123ν− 405Þ

þ i

ffiffiffiffiffiffiffiffiffiffiffiffi

1− e2t

q

et sinðuÞðð272− 46νÞe2t þ et cosðuÞðð34ν− 114Þe2t þ 50ν− 138Þ− 38ν− 20Þ− 110νþ 214�: ðC28Þ

The phase of Eq. (C28) can be written as

ϕ1PN
22

¼ tan−1
�

A0

A1

�

þ γ
xet

B0

½sinðuÞðð103 − 78ηÞe4t þ ð917 − 294ηÞe2t þ 72ð4η − 13ÞÞ þ etð2 sinð2uÞðð117η − 340Þe2t

− 54ηþ 277Þ þ etð21ðη − 1Þet sinð4uÞ þ sinð3uÞð−6ηðe2t þ 13Þ þ 79e2t þ 5ÞÞÞ�; ðC29Þ

where

A0 ¼ 4et

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − e2t

q

sinðuÞ cosð2ϕÞ þ sinð2ϕÞð−e2t cosð2uÞ þ 2et cosðuÞ þ 3e2t − 4Þ; ðC30Þ

A1 ¼ 4et

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − e2t

q

sinðuÞ sinð2ϕÞ þ cosð2ϕÞðe2t cosð2uÞ − 2et cosðuÞ − 3e2t þ 4Þ; ðC31Þ

B0 ¼ 42

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − e2t

q

ðet cosðuÞ − 1Þ2ð2e3t cos3ðuÞ − e2t cosð2uÞ þ 7e2t − 8Þ: ðC32Þ

The time derivative of ϕ1PN
22

ðx; et; u;ϕÞ can be expressed in functional form as

ω1PN
22

≡
dϕ

1PN;QK
22

dt
¼ ∂ϕ22

∂x
_xþ ∂ϕ22

∂et
_et þ

∂ϕ22

∂u
_uþ ∂ϕ22

∂ϕ
_ϕ: ðC33Þ

The time derivatives _x, _et and _ϕ can be found in [54,139],

while for the eccentric anomaly, u, we use the Kepler

equation at Newtonian order to write
9

_u ¼
_lþ _et sin u

1 − et cos u
; ðC34Þ

where l is the mean anomaly, and an expression for _l in the
quasi-Keplerian parametrization can be found in [54]. We

note that the 3PN Kepler equation can be found in [54,139];

however, we restrict to low PN order for simplicity of

the calculations, and to avoid the introduction of the true

anomaly, which substantially complicates the higher order

calculations [140].

At 1PN order, one can write the following expression for

the frequency of the (2,2)-mode,

ω
QK;1PN
22

¼ ω
QK;0
22

þ γω
QK;1
22

; ðC35Þ

where

9
We note that there are no 1PN order corrections to the Kepler

equation, and that the first higher order PN correction enters at
2PN order [92,140].
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ω
QK;0
22

¼ −
2x3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − e2t
p

ðe2t cosð2uÞ − 4et cosðuÞ − 5e2t þ 8Þ
ðet cosðuÞ − 1Þ2ð2e3t cos3ðuÞ − e2t cosð2uÞ þ 7e2t − 8Þ ; ðC36Þ

ω
QK;1
22

¼ x5=2et

168

ffiffiffiffiffiffiffiffiffiffiffiffi

1− e2t
p

ðet cosðuÞ− 1Þ4ðe2t ðcosð2uÞ− 2et cos
3ðuÞÞ− 7e2t þ 8Þ2

½cosðuÞðð5155− 1605νÞe8t þ 21ð86νþ 213Þe6t

− 24ð279νþ 838Þe4t þ 16ð288ν− 1321Þe2t þ 768ð115− 16νÞÞ þ etð−4ð7ð102ν− 253Þe6t þ ð19781− 4995νÞe4t
þ ð6936ν− 43318Þe2t − 4608νþ 33120Þ þ e5t cosð7uÞðð5− 15νÞe2t − 6νþ 79Þ− 14e4t cosð6uÞðð6ν− 32Þe2t
− 21νþ 92Þ þ e3t cosð5uÞðð3νþ 461Þe4t þ 9ð166ν− 445Þe2t − 2484νþ 7492Þ þ 4e2t cosð4uÞðð849− 174νÞe4t
þ ð509− 1107νÞe2t þ 2016ν− 4298Þ þ et cosð3uÞð−495ðν− 5Þe6t þ ð6306ν− 27043Þe4t þ 20ð1535− 69νÞe2t
− 336ð32ν− 57ÞÞ þ 2 cosð2uÞð6ð95νþ 708Þe6t − 3ð1553νþ 964Þe4t þ 8ð642νþ 619Þe2t þ 128ð33ν− 214ÞÞÞ�:

ðC37Þ

Evaluating Eq. (C35) at the turning points, apastron, u ¼ π, and periastron, u ¼ 0, one obtains

ω
a;p
22
ðx; et; ηÞ ¼

4x3=2
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − e2t
p

ðet � 1Þ2ð2 ∓ etÞ
� γ

x5=2etð11ð6η − 23Þe2t � ð607 − 78ηÞet þ 96η − 690Þ
21

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − e2t
p

ðe2t þ et − 2Þ2
; ðC38Þ

where the upper and lower signs correspond to apastron and periastron, respectively.

Finally, substituting the result of Eq. (C38) into the eccentricity definition of Eq. (5), and expanding to 1PN order one

obtains

e
1PN;QK
ω22

¼
ffiffiffiffiffiffiffiffiffiffiffiffi

2 − et
p ð1þ etÞ − ð1 − etÞ

ffiffiffiffiffiffiffiffiffiffiffiffi

2þ et
p

ffiffiffiffiffiffiffiffiffiffiffiffi

2 − et
p ð1þ etÞ þ ð1 − etÞ

ffiffiffiffiffiffiffiffiffiffiffiffi

2þ et
p − γxet

ð54ηþ 101Þe2t þ 192η − 1380

84ðe4t − 5e2t þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi

4 − e2t
p

þ 4Þ
: ðC39Þ

This is Eq. (19) from the main text.
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