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The gravitational wave strain emitted by a perturbed black hole (BH) ringing down is typically modeled
analytically using first-order BH perturbation theory. In this Letter, we show that second-order effects are
necessary for modeling ringdowns from BH merger simulations. Focusing on the strain’s (¢, m) = (4,4)
angular harmonic, we show the presence of a quadratic effect across arange of binary BH mass ratios that agrees
with theoretical expectations. We find that the quadratic (4, 4) mode’s amplitude exhibits quadratic scaling with
the fundamental (2, 2) mode—its parent mode. The nonlinear mode’s amplitude is comparable to or even larger
than that of the linear (4,4) mode. Therefore, correctly modeling the ringdown of higher harmonics—
improving mode mismatches by up to 2 orders of magnitude—requires the inclusion of nonlinear effects.
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Nonlinearity is responsible for the rich phenomeno-
logy of general relativity (GR). While many exact non-
linear solutions are known [1,2], LIGO-Virgo-KAGRA
observables—gravitational waves (GWs) from merging
binary black holes (BHs)—must be predicted by numerical
relativity (NR). Analytic perturbation theory has an important
role far from the merger: at early times, post-Newtonian (PN)
theory, and at late times (ringdown), black hole perturbation
theory [3-5], provided that the remnant asymptotes to a
perturbed Kerr BH [6,7]. PN theory has been pushed to
high perturbative order [8], but the standard paradigm for
modeling ringdown is only linear theory (see Ref. [9]
for a review). It may then come as a surprise if linear theory
can be used to model ringdown even at the peak of the
strain [10—15], the most nonlinear phase of a BH merger.

The “magic” nature of the Kerr geometry [16] leads
to a decoupled, separable wave equation for first-order
perturbations (the Teukolsky equation [5]), schematically
written as

Ty =S, (1)

where S is a source term that vanishes for linear perturba-
tions in vacuum, y is related to the first-order correction
to the curvature scalar y,, and the linear differential
Teukolsky operator 7 depends on the dimensionless spin
parameter y = |S|/M? through the combination a = |S|/M,
where S is the BH spin angular momentum and M is the
BH mass (throughout we use geometric units G = ¢ = 1).
The causal Green’s function G ~ 7 ! has an infinite, but
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discrete set of complex frequency poles s, ). [For this
study, we focus only on prograde modes (in the sense
described in [17]), and therefore omit the additional
prograde-retrograde label +. The Green’s function also
has branch cuts, which lead to power-law tails [18], which
we ignore here.] This makes GWs during ringdown well
described by a superposition of exponentially damped
sinusoids, called quasinormal modes (QNMs). The real
and imaginary parts of @, , determine the QNM
oscillation frequency and decay timescale, respectively.
These modes are labeled by two angular harmonic numbers
(¢,m) and an overtone number n. The combination
Mo, ) 1s entirely determined by y.

To date, the linear QNM spectrum has been used to
analyze current GW detections [15,19-21], forecast the
future detectability of ringdown [22-24], and perform tests
of gravity in the strong field regime [25,26].

Since the sensitivity of GW detectors will increase in
the coming years [27-30], there is the potential to observe
nonlinear ringdown effects in high signal-to-noise ratio
(SNR) events. A few previous works have shown that
second-order perturbation effects can be identified in some
NR simulations of binary BH mergers [31,32]. In this Letter,
we show that quadratic QNMs—the damped sinusoids
coming from second-order perturbation theory in GR—
are a ubiquitous effect present in simulations across various
binary mass ratios and remnant BH spins. In particular,
for the angular harmonic (£, m) = (4,4), we find that the
quadratic QNM amplitude exhibits the expected quadratic
scaling relative to its parent—the fundamental (2,2) mode.
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The quadratic amplitude also has a value that is comparable
to that of the linear (4,4) QNMs for every simulation
considered, thus highlighting the need to include nonlinear
effects in ringdown models of higher harmonics.

Quadratic QNMs.—Second-order perturbation theory has
been studied for both Schwarzschild and Kerr BHs [33-43].
This involves the same Teukolsky operator as in Eq. (1),
acting on the second-order curvature correction, and a
complicated source S that depends quadratically on the
linear perturbations [41,42,44]. The second-order solution
results from a rather involved integral of this source
against the Green’s function G [38,43]. We only need to
know that it is quadratic in the linear perturbation and that,
after enough time, it is well approximated by the quad-
ratic QNMs.

The frequency spectrum of quadratic QNMs is distinct
from the linear QNM spectrum. For each pair of linear
QNM frequencies @, n, ) and @z, m, ,) (in either the
left or right half complex plane), there will be a corre-
sponding quadratic QNM frequency

w = w(fl-mlsﬂl) + w(f2»m2~”2)‘ (2)

As the linear (2,42,0) modes are most important, it is
promising to investigate the quadratic QNMs they generate,
which primarily appear in the (£,m) = (4,4+4) modes
[36,37,43]. The quadratic QNM coming from the (2,2)
mode would have frequency ;7 0)x(220) = 20(22,0) and
would decay faster than the linear fundamental mode
(4,4,0), but slower than the first linear overtone
(4,4,1), regardless of the BH spin. [The (£,m,n) =
(2,2,0) can excite other quadratic QNMs with frequency
® = Wpo0) — W20 These will instead be related to the
memory effect, as they are nonoscillatory. From angular
selection rules they will be most prominent in the (2,0)
mode. While these effects could also prove interesting
to study, they are much more well understood than the
quadratic QNMs in the (4,4) mode, so we reserve their
examination for future work [17,45].]

The NR strain at future null infinity contains all of the
angular information of the GW and is decomposed as

IR (4,0, ) = Zth

=2 ‘m‘<f

Yem)(0.9). (3)

where u is the Bondi time and _,Y(,,,) are the spin-
weighted s = —2 spherical harmonics. We model these data
with two different QNM Ansdtze, valid between times
u € [ug, us]. The first model, which is typically used in the
literature, involves purely linear QNMs,

N
model, L —la) ) (U—Upey
hme Afmn (. )( pc'-k). (4)
=0

n

Here A/, ) is the peak amplitude of the linear QNM with
frequency @ ), N is the total number of overtones
considered in the model, and u, is the time at which the
L? norm of the strain over the two-sphere achieves its
maximum value (a proxy for the merger time), which we
take to be upe = 0 without loss of generality. Note that
here we have suppressed the spheroidal-spherical decom-
position [which we include as in Eq. (6) of [17]].

We will use Eq. (4) to model both the (2,2) and (4,4)
modes of the strain. [We ignore the m < 0 modes because
the binary BH simulations that we consider are non-
precessing and are in quasicircular orbits, so the m < 0
modes can be recovered from the m > (0 modes via
higm) = (—l)fh(f‘_m).] When modeling the (2,2) mode,
we use N = 1 and when modeling the (4,4) mode, we use
N = 2. While prior works have included more overtones in
their models [10-14,17], we restrict ourselves to no more
than two overtones because we find that the amplitudes of
higher overtones tend to vary with the model start time u,
and hence are not very robust. Moreover, their inclusion
does not affect considerably the best-fit amplitude of the
modes in which we are interested.

The novel QNM model, which includes second-order
effects and highlights our main result, only changes
how the (4,4) mode is described, compared to Eq. (4).
It is given by

mode] Q ZA i e~ i®aan (t—=ttpeqy)
+ AEi Z)O) (2, 2’0)e—tw(z.zO)x(z.z.o)(M—upeak)’ (5)
where AEz 200220 44 the peak amplitude of the quadratic

QNM sourced by the linear (2,2,0) QNM interacting
with itself. In each model, for the linear amplitudes we
factor out the angular mixing coefficients, whereas for the
quadratic term we absorb the angular structure (from the
nonlinear mixing coefficients and the Green’s function
integral of the second-order source terms) into the ampli-

tude A 22)0> 2200 we emphasize that the two models

RMO%LL () and A% (11 contain the same number of free
(4.4.2) (4.4)

parameters.

In these ringdown models, we fix the QNM frequencies
to the values predicted by GR in vacuum and fit the QNM
amplitudes to NR simulations, which cannot be predicted
from first principles as they depend on the merger details.
From the quadratic sourcing by the linear (2,2, 0) mode,

2200200 o (Ap50)% We will use this

we expect A
theoretical expectation as one main test to confirm the
presence of quadratic QNMs. To perform this check, we
need a family of systems with different linear amplitudes,
which is easily accomplished by varying the binary mass
ratio g = my/m, > 1.

The proportionality coefficient between (A(;,0))* and

Agj’)m x(220) (Wthh we expect to be order unity [31,43])
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TABLE 1. List of simulations used (ID is shorthand for SXS:
BBH:ID from the SXS catalog [47] where the full list of binary
parameters can be found) with their mass ratios ¢ and dimension-
less remnant spins y . All of these binaries are nonprecessing and
are in quasicircular orbits.

ID 1502 1476 1506 1508 1474 1505 1504 1485 1486 1441

g 100 1.00 1.00 1.28 1.28 1.33 1.98 3.09 3.72 8.00
xr 073 0.68 0.71 0.73 0.73 0.71 0.71 0.68 0.70 0.72

ID 1500 1492 1465 1458 1438 1430

q 1.00 1.00 1.71 3.80 5.87 8.00
Xf 0.53 0.48 0.48 0.47 0.47 0.50

ID 0305
q 1.22
Xy 0.69

comes from the spacetime dependence of the full quadratic
source as well as the Green’s function. While, in principle,
this can be computed, we use the fact that it should only
depend on the dimensionless spin y of the remnant BH.

We consider a family of 17 simulations (listed in Table I)
of binary BH systems in the range g € [1, 8]. To control the
dependence on y, six are in the range y, = 0.5 + 0.035,
and ten have y;=0.7+0.035. The final simulation,
SXS:BBH:0305, is consistent with GW150914 [46].
These simulations were produced using the Spectral
Einstein Code (SPEC) and are available in the SXS
catalog [47-49]. For each simulation, the strain waveform
has been extracted using Cauchy characteristic extraction
and has then been mapped to the superrest frame at 250M
after upeye [50-54] using the techniques presented in [54]
and the code SCRI [55-58].

Quadratic fitting.—In order to fit the ringdown models to
the NR waveforms, using the least-squares implementation
from SCIPY v1.6.2 [59], we minimize the L? norm of the
residual

(R.R) for R=hNR  — Aot (6)

where the inner product between modes a and b is
(a,b) = / " dua()b(u), (7)
Uy

with a(u) being the complex conjugate of a(u). We will fix
up = 100M and vary the value of uy. In Eq. (6), pmodel jg
given by Eq. (4) with N = 1 for the (2, 2) mode and Eq. (5)
for the (4,4) mode by default, unless explicitly mentioned
that we use the purely linear model, Eq. (4), with N = 2.
We fix the frequencies and perform a spheroidal-to-
spherical angular decomposition of the linear terms in
our QNM models using the open-source PYTHON package
QNM [60].

We show the main result of the fits in Fig. 1 for a range of
initial times u, with which we find the best-fit amplitudes
to be stable (shown later). In the top panel, we see that

Az and Azzo) (2,2,0)

relationship, 111ustrated by the shaded blue region that is
obtained by combining the fitted quadratic curves for

are consistent with a quadratic

uy € [15M,30M]. In this region, we find the ratio
Agii)o x(2.20) /(A 220))* to range between 0.20 and 0.15.

[In addition to the amplitudes, we can also check the
consistency of the phases of the quadratic (4,4) QNM and
the linear (2,2,0) QNM. We find that the phase of

(2.2.0)x(2.2.0)
A(44) /Azzo

for each simulation, for start times in the range
uy € [15M,30M].] Again we emphasize that here A,

has the mixing coefficients factored out, while A(2 2)0) 2.20)

is always within 0.4 rad of zero,

contains whatever angular structure arises through non-
linear effects. There is no noticeable difference in the
quadratic relationship followed by the 0.7 and 0.5 spin
families of waveforms, compared to the variations that are

observed in the best-fit A(2 20)x(22.0)

(4.4) due to the choice of
the model start time .

We emphasize that this quadratic behavior is unique to

the A<2 2>0) (22.0) mode, as can be seen in the bottom panel

of Fig. 1, where we show the best-fit linear amplitude
A(s40) as a function of Ay, ). These two modes are not
related quadratically (for more on their scaling with mass
ratio, see Ref. [61]), which confirms the distinct physical

origin of A4 40y and A @ 2)()) 229 The best-fit amplitudes
of A(44,0) and Ay, ) are nearly constant across these values

of uy, which is why the four bottom figures look

the same. A key result of Fig. 1 is that AEZ 2)0) (2200 4

comparable to or larger (by a factor of ~4 in cases with
g~ 1) than Ay 40 at the time of the peak. Given that the

(2.2.0)x(2.2.0)

exponential decay rates of A( 1) and A 44 for a

BH with y, = 0.7 are Im[Mw 5 0)x(22,0)] = —0.16 and
Im[Maw 4 40)] = —0.08, respectively, even beyond 10M
after upeq, the quadratic mode will be larger than the linear
mode for equal mass ratio binaries. [We also find the peak

amplitude A44,) to be comparable or sometimes larger

than AEZ 2)0> 2.20) (see bottom panel of Fig. 3), but, since

Im[Maw 4 4,)] = —0.25, this (4,4,1) mode decays fast
enough that it will be comparable or smaller than the
quadratic (4, 4) mode after u = 10M.] Thus, for large SNR
events in which the (4,4) mode is detectable, the quadratic
QNM could be measurable.

Comparisons.—Figure 2 shows the GW150914 simu-
lation (SXS:BBH:0305) and its fitting at uy = 20M, the
time at which the residual in the (4,4) mode reaches its
minimum. The top panel shows the waveform fit with the
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FIG. 1. Relationship between the peak amplitudes of the linear (2, 2,0) and the quadratic (2,2,0) x (2,2,0) QNMs (top) as well as

the linear (4, 4,0) QNM (bottom), at different model start times u,. Colors show different mass ratios g, and circles and triangles denote
systems with remnant dimensionless spin y; ~ 0.5 and y; ~ 0.7, respectively. Each blue curve is a pure quadratic fit with start time u,

and the shaded region brackets every one of the individual fits.

(4,4) quadratic model ha‘?ffl’Q

we find that it can fit rather well the amplitude and phase
evolution of the numerical waveform at late times.

as a function of time, where

T
100 — Re[hlfY)] — Re[hai’f)el’Q] 1
QNM I QNM
Re“”(4,4,1)] Re[h(2,2,o)x(2,2,o)]

0 20 40 60 80

FIG. 2. Top: in black, the NR waveform for the SXS:BBH:0305
simulation and its comparison to the quadratic (4,4) QNM model
with start time u, = 20M [total is dashed blue; yellow and green
are contributions from individual QNMs, respectively the linear
(4,4,1) and the quadratic (2,2,0) x (2,2,0)]. Bottom: residual
in the (4,4) mode when using the linear (solid red) or the
quadratic (dashed blue) (4,4) model. We also show a
conservative estimate of the numerical error.

The bottom panel shows the residual of the NR waveform

with the linear and quadratic (4,4) QNM models, hI(TS%L

and h?fjf 1€ and a conservative estimate for the numerical

error obtained by comparing the highest and second highest
resolution simulations for SXS:BBH:0305. We see that,

even though the linear and quadratic (4,4) models have the
model,Q
(44)

is nearly an order of magnitude better, which confirms
the importance of including quadratic QNMs. Since, in
general, the quadratic mode decays in time slower than
the (4,4,2) QNM, the quadratic model generally better
describes the late time behavior of the waveform. In
addition, the best-fit value of A4 40)—which is the most
important QNM in the (4,4) mode at late times—differs in
the linear and quadratic models, which causes the residuals
to be rather different even beyond u = 50M when
we expect the overtones and quadratic mode to be
subdominant.

In addition to the residuals, we quantify the goodness of
fit by our models through the mismatch

same number of free parameters, the residual of &

NR
<h(f,m)

OB A O S

model
M=1-Re |h(;"5>

The top panel of Fig. 3 shows the mismatch in the (4,4)
mode between the NR waveform and the QNM model as a
function of uy. The red and blue lines show the results
for the SXS:BBH:0305 simulation when the (4,4) mode

was modeled with 2™°%LE and pm0d2

(4.42) @4) respectively. As a
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] 102- —— SXS:BBH:0305 (h™odelL)
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FIG. 3. Top: mismatch in the (4,4) mode for SXS:BBH:0305,

as well as for every other simulation examined, and a comparison
to the numerical error floor. Bottom: amplitudes of the three
QNM terms in the quadratic (4,4) QNM model as a function of
the model start time u.

reference, we also show the numerical error calculated for
SXS:BBH:0305. (The numerical error for the other simu-
lations tends to be worse since they were not run with as fine
of a resolution, but the errors are nonetheless comparable to
that of SXS:BBH:0305.) We see that the numerical error is
below the fitted model mismatches for 1, < 40M, but will
cause the mismatch to worsen at later times. We also see that
the linear model performs worse than the quadratic model for
any ug, confirming that the residual difference shown in the
bottom panel of Fig. 2 was not a coincidence of the particular
fitting time chosen there. At times uy ~ 20M, we see that
the mismatch is about 2 orders of magnitude better in the
quadratic model. We find similar results for all of the
simulations analyzed in this Letter (except for a few
simulations at early times 0 < uy < 10M, for which the

linear model can have a marginally better mismatch; light
model,Q
(4.4)

simulations), although the mismatch difference becomes
more modest for simulations with g = 8 since the relative
amplitude of the quadratic mode decreases [cf. bottom panel
of Fig. 1 where we see that amplitude of the (2,2, 0) mode
decreases with ¢, while the amplitude of the (4,4, 0) mode
increases with g]. When comparing the mismatches to
the error, we find that every simulation remains above the
numerical error floor until uy 2 40M. [We emphasize that
the reason the numerical error curve increases with u is
because of the normalization factor in Eq. (8); i.e., with

blue thin curves show the mismatch of the & in those

0.5 10—2
X wi2.2,0)x(2,2,0)

0.4 X 1073 z
—_ 0
303 g

g 10—4 %i
=
| =

1.050 1.075 1100 1.125 1150 1.175 1.200"
Re[w]

FIG. 4. Contour plot of the mismatch between the SXS:
BBH:0305 waveform and a (4,4) model with three QNMs, in
which two frequencies are fixed to the GR predictions of the
linear (4,4,0) and (4,4,1) QNMs, but the third is varied. The
contour lines are logarithmically spaced in M between 10~° and
1072, The start time of the model is taken to be u, = 20M.

higher u the integral of the numerical error becomes more
comparable to the strain’s amplitude.]

In the bottom panel of Fig. 3, we show the best-fit
amplitudes of the QNMs in the (4,4) mode as functions of
ugy. We show the results for SXS:BBH:0305 (thick lines) as
well as the rest of the simulations (thin lines). We see that at
uy 2 10M the amplitude of A4 40) is extremely stable, but

the faster the additional QNM decays, the more variations

that are seen. Nevertheless, the Agi’ijo)xaz‘o) exhibits only

~20% variations for u, € [15M,30M], whereas A4
varies by ~90% in the same range. Before and near
uy ~ 10M every amplitude shows considerable variations,
which is why we use uy > 15M in this Letter. This suggests
a need to improve the QNM model, either by including
more overtones as in [10], modifying the time dependence
of the linear [62] and quadratic terms, or considering more
nonlinear effects.

Finally we check which frequency is preferred by the
(4,4) mode of the numerical strain. For this, we fix two
frequencies to be the linear (4 49) and w(44,1) frequencies,
and keep one frequency free. We vary the frequency of that
third term and fit every amplitude to minimize the residual
in Eq. (6). Figure 4 shows contours of the mismatch over
the real and imaginary parts of the unknown frequency
for the SXS:BBH:0305 simulation using u, = 20M.
We confirm that the data clearly prefer the frequency
W(22,0)x(22.0) = 20(22,0) OVET B (442)-

Conclusions.—We have shown that second-order effects
are present in the ringdown phase of binary BH mergers for
a wide range of mass ratios, matching theoretical expect-
ations and helping improve ringdown modeling at late
times. We analyzed 17 NR simulations and in every one of
them we found that, in the (£,m) = (4,4) mode, the
quadratic QNM analyzed has a peak amplitude that is
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comparable to or larger than the (£,m,n) = (4,4,0)
fundamental linear QNM. Because of the relatively slow
decay of this quadratic QNM, we find that for nearly
equal-mass systems this QNM will be larger than the
corresponding linear fundamental mode even 10M
after upeq-

These results highlight that we may be able to observe
this nonlinear effect in future high-SNR GW events with a
detectable (4,4) harmonic. A quantitative analysis, and a
generalization to other harmonics, will be performed in the
future to assess in detail the detectability of quadratic
QNMs and how well they can be distinguished from linear
QNMs, for current GW detectors at design sensitivity as
well as next-generation GW detectors. It would also be
interesting to study how the linear-quadratic relationship of
these nonlinearities varies with the spin of the remnant,
especially as one approaches maximal spin.

The confirmation of quadratic QNMs opens new pos-
sibilities for more general understanding of the role of
nonlinearities in the ringdown of perturbed black holes. It is
now clear that we can readily improve the basic linear
models that have been used previously in theoretical and
observational ringdown analyses. Quadratic QNMs provide
new opportunities to maximize the science return of GW
detections, by increasing the likelihood of detecting multi-
ple QNM frequencies. One of these key science goals is
performing high-precision consistency tests of GR with
GW observations. Fulfilling this aim will require a correct
ringdown model, which incorporates the nonlinear effects
that we have shown to be robustly present.
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