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The gravitational wave strain emitted by a perturbed black hole (BH) ringing down is typically modeled

analytically using first-order BH perturbation theory. In this Letter, we show that second-order effects are

necessary for modeling ringdowns from BH merger simulations. Focusing on the strain’s ðl; mÞ ¼ ð4; 4Þ

angular harmonic,we show thepresenceof a quadratic effect across a range ofbinaryBHmass ratios that agrees

with theoretical expectations.We find that the quadratic ð4; 4Þmode’s amplitude exhibits quadratic scalingwith

the fundamental ð2; 2Þmode—its parentmode. Thenonlinearmode’s amplitude is comparable to or even larger

than that of the linear ð4; 4Þ mode. Therefore, correctly modeling the ringdown of higher harmonics—

improving mode mismatches by up to 2 orders of magnitude—requires the inclusion of nonlinear effects.

DOI: 10.1103/PhysRevLett.130.081402

Nonlinearity is responsible for the rich phenomeno-

logy of general relativity (GR). While many exact non-

linear solutions are known [1,2], LIGO-Virgo-KAGRA

observables—gravitational waves (GWs) from merging

binary black holes (BHs)—must be predicted by numerical

relativity (NR). Analytic perturbation theory has an important

role far from the merger: at early times, post-Newtonian (PN)

theory, and at late times (ringdown), black hole perturbation

theory [3–5], provided that the remnant asymptotes to a

perturbed Kerr BH [6,7]. PN theory has been pushed to

high perturbative order [8], but the standard paradigm for

modeling ringdown is only linear theory (see Ref. [9]

for a review). It may then come as a surprise if linear theory

can be used to model ringdown even at the peak of the

strain [10–15], the most nonlinear phase of a BH merger.

The “magic” nature of the Kerr geometry [16] leads

to a decoupled, separable wave equation for first-order

perturbations (the Teukolsky equation [5]), schematically

written as

T ψ ¼ S; ð1Þ

where S is a source term that vanishes for linear perturba-

tions in vacuum, ψ is related to the first-order correction

to the curvature scalar ψ4, and the linear differential

Teukolsky operator T depends on the dimensionless spin

parameter χ≡ jSj=M2 through the combination a ¼ jSj=M,

where S is the BH spin angular momentum and M is the

BH mass (throughout we use geometric units G ¼ c ¼ 1).

The causal Green’s function G ∼ T −1 has an infinite, but

discrete set of complex frequency poles ωðl;m;nÞ. [For this

study, we focus only on prograde modes (in the sense

described in [17]), and therefore omit the additional

prograde-retrograde label �. The Green’s function also

has branch cuts, which lead to power-law tails [18], which

we ignore here.] This makes GWs during ringdown well

described by a superposition of exponentially damped

sinusoids, called quasinormal modes (QNMs). The real

and imaginary parts of ωðl;m;nÞ determine the QNM

oscillation frequency and decay timescale, respectively.

These modes are labeled by two angular harmonic numbers

ðl; mÞ and an overtone number n. The combination

Mωðl;m;nÞ is entirely determined by χ.

To date, the linear QNM spectrum has been used to

analyze current GW detections [15,19–21], forecast the

future detectability of ringdown [22–24], and perform tests

of gravity in the strong field regime [25,26].

Since the sensitivity of GW detectors will increase in

the coming years [27–30], there is the potential to observe

nonlinear ringdown effects in high signal-to-noise ratio

(SNR) events. A few previous works have shown that

second-order perturbation effects can be identified in some

NR simulations of binary BHmergers [31,32]. In this Letter,

we show that quadratic QNMs—the damped sinusoids

coming from second-order perturbation theory in GR—

are a ubiquitous effect present in simulations across various

binary mass ratios and remnant BH spins. In particular,

for the angular harmonic ðl; mÞ ¼ ð4; 4Þ, we find that the

quadratic QNM amplitude exhibits the expected quadratic

scaling relative to its parent—the fundamental ð2; 2Þ mode.
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The quadratic amplitude also has a value that is comparable

to that of the linear ð4; 4Þ QNMs for every simulation

considered, thus highlighting the need to include nonlinear

effects in ringdown models of higher harmonics.

Quadratic QNMs.—Second-order perturbation theory has

been studied for both Schwarzschild and Kerr BHs [33–43].

This involves the same Teukolsky operator as in Eq. (1),

acting on the second-order curvature correction, and a

complicated source S that depends quadratically on the

linear perturbations [41,42,44]. The second-order solution

results from a rather involved integral of this source

against the Green’s function G [38,43]. We only need to

know that it is quadratic in the linear perturbation and that,

after enough time, it is well approximated by the quad-

ratic QNMs.

The frequency spectrum of quadratic QNMs is distinct

from the linear QNM spectrum. For each pair of linear

QNM frequencies ωðl1;m1;n1Þ and ωðl2;m2;n2Þ (in either the

left or right half complex plane), there will be a corre-

sponding quadratic QNM frequency

ω≡ ωðl1;m1;n1Þ þ ωðl2;m2;n2Þ: ð2Þ

As the linear ð2;�2; 0Þ modes are most important, it is

promising to investigate the quadratic QNMs they generate,

which primarily appear in the ðl; mÞ ¼ ð4;�4Þ modes

[36,37,43]. The quadratic QNM coming from the ð2; 2Þ
mode would have frequency ωð2;2;0Þ×ð2;2;0Þ ≡ 2ωð2;2;0Þ and

would decay faster than the linear fundamental mode

ð4; 4; 0Þ, but slower than the first linear overtone

ð4; 4; 1Þ, regardless of the BH spin. [The ðl; m; nÞ ¼
ð2; 2; 0Þ can excite other quadratic QNMs with frequency

ω ¼ ωð2;2;0Þ − ωð2;2;0Þ. These will instead be related to the

memory effect, as they are nonoscillatory. From angular

selection rules they will be most prominent in the ð2; 0Þ
mode. While these effects could also prove interesting

to study, they are much more well understood than the

quadratic QNMs in the ð4; 4Þ mode, so we reserve their

examination for future work [17,45].]

The NR strain at future null infinity contains all of the

angular information of the GW and is decomposed as

hNRðu; θ;ϕÞ≡
X

∞

l¼2

X

jmj≤l

hNRðl;mÞðuÞ−2Yðl;mÞðθ;ϕÞ; ð3Þ

where u is the Bondi time and
−2
Yðl;mÞ are the spin-

weighted s ¼ −2 spherical harmonics. We model these data

with two different QNM Ansätze, valid between times

u ∈ ½u0; uf�. The first model, which is typically used in the

literature, involves purely linear QNMs,

hmodel;L
ðl;m;NÞðuÞ ¼

X

N

n¼0

Aðl;m;nÞe
−iωðl;m;nÞðu−upeakÞ: ð4Þ

Here Aðl;m;nÞ is the peak amplitude of the linear QNM with

frequency ωðl;m;nÞ, N is the total number of overtones

considered in the model, and upeak is the time at which the

L2 norm of the strain over the two-sphere achieves its
maximum value (a proxy for the merger time), which we
take to be upeak ¼ 0 without loss of generality. Note that

here we have suppressed the spheroidal-spherical decom-
position [which we include as in Eq. (6) of [17] ].
We will use Eq. (4) to model both the ð2; 2Þ and ð4; 4Þ

modes of the strain. [We ignore the m < 0 modes because
the binary BH simulations that we consider are non-
precessing and are in quasicircular orbits, so the m < 0

modes can be recovered from the m > 0 modes via

hðl;mÞ ¼ ð−1Þlhðl;−mÞ.] When modeling the ð2; 2Þ mode,

we use N ¼ 1 and when modeling the ð4; 4Þ mode, we use
N ¼ 2. While prior works have included more overtones in
their models [10–14,17], we restrict ourselves to no more
than two overtones because we find that the amplitudes of
higher overtones tend to vary with the model start time u0
and hence are not very robust. Moreover, their inclusion
does not affect considerably the best-fit amplitude of the
modes in which we are interested.
The novel QNM model, which includes second-order

effects and highlights our main result, only changes
how the ð4; 4Þ mode is described, compared to Eq. (4).
It is given by

h
model;Q
ð4;4Þ ðuÞ ¼

X

1

n¼0

Að4;4;nÞe
−iωð4;4;nÞðu−upeakÞ

þ A
ð2;2;0Þ×ð2;2;0Þ
ð4;4Þ e−iωð2;2;0Þ×ð2;2;0Þðu−upeakÞ; ð5Þ

where A
ð2;2;0Þ×ð2;2;0Þ
ð4;4Þ is the peak amplitude of the quadratic

QNM sourced by the linear ð2; 2; 0Þ QNM interacting
with itself. In each model, for the linear amplitudes we
factor out the angular mixing coefficients, whereas for the
quadratic term we absorb the angular structure (from the
nonlinear mixing coefficients and the Green’s function
integral of the second-order source terms) into the ampli-

tude A
ð2;2;0Þ×ð2;2;0Þ
ð4;4Þ . We emphasize that the two models

hmodel;L
ð4;4;2Þ ðuÞ and hmodel;Q

ð4;4Þ ðuÞ contain the same number of free

parameters.
In these ringdown models, we fix the QNM frequencies

to the values predicted by GR in vacuum and fit the QNM
amplitudes to NR simulations, which cannot be predicted
from first principles as they depend on the merger details.
From the quadratic sourcing by the linear ð2; 2; 0Þ mode,

we expect A
ð2;2;0Þ×ð2;2;0Þ
ð4;4Þ ∝ ðAð2;2;0ÞÞ

2. We will use this

theoretical expectation as one main test to confirm the
presence of quadratic QNMs. To perform this check, we
need a family of systems with different linear amplitudes,
which is easily accomplished by varying the binary mass
ratio q≡m1=m2 ≥ 1.

The proportionality coefficient between ðAð2;2;0ÞÞ
2 and

A
ð2;2;0Þ×ð2;2;0Þ
ð4;4Þ (which we expect to be order unity [31,43])
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comes from the spacetime dependence of the full quadratic

source as well as the Green’s function. While, in principle,

this can be computed, we use the fact that it should only

depend on the dimensionless spin χf of the remnant BH.

We consider a family of 17 simulations (listed in Table I)

of binary BH systems in the range q ∈ ½1; 8�. To control the
dependence on χf, six are in the range χf ¼ 0.5� 0.035,

and ten have χf ¼ 0.7� 0.035. The final simulation,

SXS:BBH:0305, is consistent with GW150914 [46].

These simulations were produced using the Spectral

Einstein Code (SPEC) and are available in the SXS

catalog [47–49]. For each simulation, the strain waveform

has been extracted using Cauchy characteristic extraction

and has then been mapped to the superrest frame at 250M
after upeak [50–54] using the techniques presented in [54]

and the code SCRI [55–58].

Quadratic fitting.—In order to fit the ringdown models to

the NR waveforms, using the least-squares implementation

from SCIPY v1.6.2 [59], we minimize the L2 norm of the

residual

hR;Ri for R≡ hNRðl;mÞ − hmodel
ðl;mÞ ; ð6Þ

where the inner product between modes a and b is

ha; bi≡

Z

uf

u0

du aðuÞbðuÞ; ð7Þ

with aðuÞ being the complex conjugate of aðuÞ. We will fix

uf ¼ 100M and vary the value of u0. In Eq. (6), hmodel is

given by Eq. (4) with N ¼ 1 for the ð2; 2Þmode and Eq. (5)

for the ð4; 4Þ mode by default, unless explicitly mentioned

that we use the purely linear model, Eq. (4), with N ¼ 2.

We fix the frequencies and perform a spheroidal-to-

spherical angular decomposition of the linear terms in

our QNM models using the open-source PYTHON package

QNM [60].

We show the main result of the fits in Fig. 1 for a range of

initial times u0 with which we find the best-fit amplitudes

to be stable (shown later). In the top panel, we see that

Að2;2;0Þ and A
ð2;2;0Þ×ð2;2;0Þ
ð4;4Þ are consistent with a quadratic

relationship, illustrated by the shaded blue region that is

obtained by combining the fitted quadratic curves for

u0 ∈ ½15M; 30M�. In this region, we find the ratio

A
ð2;2;0Þ×ð2;2;0Þ
ð4;4Þ =ðAð2;2;0ÞÞ

2 to range between 0.20 and 0.15.

[In addition to the amplitudes, we can also check the

consistency of the phases of the quadratic ð4; 4Þ QNM and

the linear ð2; 2; 0Þ QNM. We find that the phase of

A
ð2;2;0Þ×ð2;2;0Þ
ð4;4Þ =A2

ð2;2;0Þ is always within 0.4 rad of zero,

for each simulation, for start times in the range

u0 ∈ ½15M; 30M�.] Again we emphasize that here Að2;2;0Þ

has the mixing coefficients factored out, while A
ð2;2;0Þ×ð2;2;0Þ
ð4;4Þ

contains whatever angular structure arises through non-

linear effects. There is no noticeable difference in the

quadratic relationship followed by the 0.7 and 0.5 spin

families of waveforms, compared to the variations that are

observed in the best-fit A
ð2;2;0Þ×ð2;2;0Þ
ð4;4Þ due to the choice of

the model start time u0.
We emphasize that this quadratic behavior is unique to

the A
ð2;2;0Þ×ð2;2;0Þ
ð4;4Þ mode, as can be seen in the bottom panel

of Fig. 1, where we show the best-fit linear amplitude

Að4;4;0Þ as a function of Að2;2;0Þ. These two modes are not

related quadratically (for more on their scaling with mass

ratio, see Ref. [61]), which confirms the distinct physical

origin of Að4;4;0Þ and A
ð2;2;0Þ×ð2;2;0Þ
ð4;4Þ . The best-fit amplitudes

of Að4;4;0Þ and Að2;2;0Þ are nearly constant across these values

of u0, which is why the four bottom figures look

the same. A key result of Fig. 1 is that A
ð2;2;0Þ×ð2;2;0Þ
ð4;4Þ is

comparable to or larger (by a factor of ∼4 in cases with

q ≈ 1) than Að4;4;0Þ at the time of the peak. Given that the

exponential decay rates of A
ð2;2;0Þ×ð2;2;0Þ
ð4;4Þ and Að4;4;0Þ for a

BH with χf ¼ 0.7 are Im½Mωð2;2;0Þ×ð2;2;0Þ� ¼ −0.16 and

Im½Mωð4;4;0Þ� ¼ −0.08, respectively, even beyond 10M

after upeak the quadratic mode will be larger than the linear

mode for equal mass ratio binaries. [We also find the peak

amplitude Að4;4;1Þ to be comparable or sometimes larger

than A
ð2;2;0Þ×ð2;2;0Þ
ð4;4Þ (see bottom panel of Fig. 3), but, since

Im½Mωð4;4;1Þ� ¼ −0.25, this ð4; 4; 1Þ mode decays fast

enough that it will be comparable or smaller than the

quadratic ð4; 4Þ mode after u ¼ 10M.] Thus, for large SNR

events in which the ð4; 4Þ mode is detectable, the quadratic

QNM could be measurable.

Comparisons.—Figure 2 shows the GW150914 simu-

lation (SXS:BBH:0305) and its fitting at u0 ¼ 20M, the

time at which the residual in the ð4; 4Þ mode reaches its

minimum. The top panel shows the waveform fit with the

TABLE I. List of simulations used (ID is shorthand for SXS:

BBH:ID from the SXS catalog [47] where the full list of binary

parameters can be found) with their mass ratios q and dimension-

less remnant spins χf . All of these binaries are nonprecessing and

are in quasicircular orbits.

ID 1502 1476 1506 1508 1474 1505 1504 1485 1486 1441

q 1.00 1.00 1.00 1.28 1.28 1.33 1.98 3.09 3.72 8.00

χf 0.73 0.68 0.71 0.73 0.73 0.71 0.71 0.68 0.70 0.72

ID 1500 1492 1465 1458 1438 1430

q 1.00 1.00 1.71 3.80 5.87 8.00

χf 0.53 0.48 0.48 0.47 0.47 0.50

ID 0305

q 1.22

χf 0.69
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ð4; 4Þ quadratic model h
model;Q
ð4;4Þ as a function of time, where

we find that it can fit rather well the amplitude and phase

evolution of the numerical waveform at late times.

The bottom panel shows the residual of the NR waveform

with the linear and quadratic ð4; 4Þ QNM models, hmodel;L
ð4;4;2Þ

and h
model;Q
ð4;4Þ , and a conservative estimate for the numerical

error obtained by comparing the highest and second highest

resolution simulations for SXS:BBH:0305. We see that,

even though the linear and quadratic ð4; 4Þmodels have the

same number of free parameters, the residual of h
model;Q
ð4;4Þ

is nearly an order of magnitude better, which confirms

the importance of including quadratic QNMs. Since, in

general, the quadratic mode decays in time slower than

the ð4; 4; 2Þ QNM, the quadratic model generally better

describes the late time behavior of the waveform. In

addition, the best-fit value of Að4;4;0Þ—which is the most

important QNM in the ð4; 4Þ mode at late times—differs in

the linear and quadratic models, which causes the residuals

to be rather different even beyond u ¼ 50M when

we expect the overtones and quadratic mode to be

subdominant.

In addition to the residuals, we quantify the goodness of

fit by our models through the mismatch

M ¼ 1 − Re

2

6

4

hhNRðl;mÞjh
model
ðl;mÞi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hhNRðl;mÞjh
NR
ðl;mÞihh

model
ðl;mÞ jh

model
ðl;mÞi

q

3

7

5
: ð8Þ

The top panel of Fig. 3 shows the mismatch in the ð4; 4Þ
mode between the NR waveform and the QNM model as a

function of u0. The red and blue lines show the results

for the SXS:BBH:0305 simulation when the ð4; 4Þ mode

was modeled with hmodel;L
ð4;4;2Þ and h

model;Q
ð4;4Þ , respectively. As a

FIG. 1. Relationship between the peak amplitudes of the linear ð2; 2; 0Þ and the quadratic ð2; 2; 0Þ × ð2; 2; 0Þ QNMs (top) as well as

the linear ð4; 4; 0Þ QNM (bottom), at different model start times u0. Colors show different mass ratios q, and circles and triangles denote
systems with remnant dimensionless spin χf ≈ 0.5 and χf ≈ 0.7, respectively. Each blue curve is a pure quadratic fit with start time u0,

and the shaded region brackets every one of the individual fits.

FIG. 2. Top: in black, the NR waveform for the SXS:BBH:0305

simulation and its comparison to the quadratic ð4; 4Þ QNMmodel

with start time u0 ¼ 20M [total is dashed blue; yellow and green

are contributions from individual QNMs, respectively the linear

ð4; 4; 1Þ and the quadratic ð2; 2; 0Þ × ð2; 2; 0Þ]. Bottom: residual

in the ð4; 4Þ mode when using the linear (solid red) or the

quadratic (dashed blue) ð4; 4Þ model. We also show a

conservative estimate of the numerical error.
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reference, we also show the numerical error calculated for

SXS:BBH:0305. (The numerical error for the other simu-

lations tends to be worse since they were not run with as fine

of a resolution, but the errors are nonetheless comparable to

that of SXS:BBH:0305.) We see that the numerical error is

below the fitted model mismatches for u0 ≲ 40M, but will

cause the mismatch to worsen at later times. We also see that

the linear model performs worse than the quadratic model for

any u0, confirming that the residual difference shown in the

bottom panel of Fig. 2 was not a coincidence of the particular

fitting time chosen there. At times u0 ≈ 20M, we see that

the mismatch is about 2 orders of magnitude better in the

quadratic model. We find similar results for all of the

simulations analyzed in this Letter (except for a few

simulations at early times 0≲ u0 ≲ 10M, for which the

linear model can have a marginally better mismatch; light

blue thin curves show the mismatch of the hmodel;Q
ð4;4Þ in those

simulations), although the mismatch difference becomes

more modest for simulations with q ≈ 8 since the relative

amplitude of the quadratic mode decreases [cf. bottom panel

of Fig. 1 where we see that amplitude of the ð2; 2; 0Þ mode

decreases with q, while the amplitude of the ð4; 4; 0Þ mode

increases with q]. When comparing the mismatches to

the error, we find that every simulation remains above the

numerical error floor until u0 ≳ 40M. [We emphasize that

the reason the numerical error curve increases with u0 is

because of the normalization factor in Eq. (8); i.e., with

higher u0 the integral of the numerical error becomes more

comparable to the strain’s amplitude.]

In the bottom panel of Fig. 3, we show the best-fit

amplitudes of the QNMs in the ð4; 4Þ mode as functions of

u0. We show the results for SXS:BBH:0305 (thick lines) as

well as the rest of the simulations (thin lines). We see that at

u0 ≳ 10M the amplitude of Að4;4;0Þ is extremely stable, but

the faster the additional QNM decays, the more variations

that are seen. Nevertheless, the A
ð2;2;0Þ×ð2;2;0Þ
ð4;4Þ exhibits only

∼20% variations for u0 ∈ ½15M; 30M�, whereas Að4;4;1Þ

varies by ∼90% in the same range. Before and near

u0 ≈ 10M every amplitude shows considerable variations,

which is why we use u0 ≥ 15M in this Letter. This suggests

a need to improve the QNM model, either by including

more overtones as in [10], modifying the time dependence

of the linear [62] and quadratic terms, or considering more

nonlinear effects.

Finally we check which frequency is preferred by the

ð4; 4Þ mode of the numerical strain. For this, we fix two

frequencies to be the linear ωð4;4;0Þ and ωð4;4;1Þ frequencies,

and keep one frequency free. We vary the frequency of that

third term and fit every amplitude to minimize the residual

in Eq. (6). Figure 4 shows contours of the mismatch over

the real and imaginary parts of the unknown frequency

for the SXS:BBH:0305 simulation using u0 ¼ 20M.

We confirm that the data clearly prefer the frequency

ωð2;2;0Þ×ð2;2;0Þ ¼ 2ωð2;2;0Þ over ωð4;4;2Þ.

Conclusions.—We have shown that second-order effects

are present in the ringdown phase of binary BH mergers for

a wide range of mass ratios, matching theoretical expect-

ations and helping improve ringdown modeling at late

times. We analyzed 17 NR simulations and in every one of

them we found that, in the ðl; mÞ ¼ ð4; 4Þ mode, the

quadratic QNM analyzed has a peak amplitude that is

FIG. 3. Top: mismatch in the ð4; 4Þ mode for SXS:BBH:0305,

as well as for every other simulation examined, and a comparison

to the numerical error floor. Bottom: amplitudes of the three

QNM terms in the quadratic ð4; 4Þ QNM model as a function of

the model start time u0.

FIG. 4. Contour plot of the mismatch between the SXS:

BBH:0305 waveform and a ð4; 4Þ model with three QNMs, in

which two frequencies are fixed to the GR predictions of the

linear ð4; 4; 0Þ and ð4; 4; 1Þ QNMs, but the third is varied. The

contour lines are logarithmically spaced in M between 10−6 and

10−2. The start time of the model is taken to be u0 ¼ 20M.
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comparable to or larger than the ðl; m; nÞ ¼ ð4; 4; 0Þ
fundamental linear QNM. Because of the relatively slow

decay of this quadratic QNM, we find that for nearly

equal-mass systems this QNM will be larger than the

corresponding linear fundamental mode even 10M
after upeak.

These results highlight that we may be able to observe

this nonlinear effect in future high-SNR GW events with a

detectable ð4; 4Þ harmonic. A quantitative analysis, and a

generalization to other harmonics, will be performed in the

future to assess in detail the detectability of quadratic

QNMs and how well they can be distinguished from linear

QNMs, for current GW detectors at design sensitivity as

well as next-generation GW detectors. It would also be

interesting to study how the linear-quadratic relationship of

these nonlinearities varies with the spin of the remnant,

especially as one approaches maximal spin.

The confirmation of quadratic QNMs opens new pos-

sibilities for more general understanding of the role of

nonlinearities in the ringdown of perturbed black holes. It is

now clear that we can readily improve the basic linear

models that have been used previously in theoretical and

observational ringdown analyses. Quadratic QNMs provide

new opportunities to maximize the science return of GW

detections, by increasing the likelihood of detecting multi-

ple QNM frequencies. One of these key science goals is

performing high-precision consistency tests of GR with

GW observations. Fulfilling this aim will require a correct

ringdown model, which incorporates the nonlinear effects

that we have shown to be robustly present.

We thank Max Isi and the Flatiron Institute for fostering

discourse, and Vishal Baibhav, Emanuele Berti, Mark

Cheung, Matt Giesler, Scott Hughes, and Max Isi for

valuable conversations. Computations for this work were

performed with the Wheeler cluster at Caltech. This work

was supported in part by the Sherman Fairchild Foundation

and by NSF Grants No. PHY-2011961, No. PHY-2011968,

and No. OAC-1931266 at Caltech, as well as NSF Grants

No. PHY-1912081, No. PHY-2207342, and No. OAC-

1931280 at Cornell. The work of L. C. S. was partially

supported by NSF CAREER Grant No. PHY-2047382.

M. L. was funded by the Innovative Theoretical Cosmology

Fellowship at Columbia University. L. H. was funded by

the DOE DE-SC0011941 and a Simons Fellowship in

Theoretical Physics. M. L. and L. C. S. thank the Benasque

Science Center and the organizers of the 2022 work-

shop “New frontiers in strong gravity,” where some of

this work was performed; and M. L. acknowledges NSF

Grant No. PHY-1759835 for supporting travel to this

workshop.

Note added.—Recently, we learned that Cheung et al.

conducted a similar study, whose results are consistent with

ours [63].

*
kmitman@caltech.edu

†
m.lagos@columbia.edu

‡
lcstein@olemiss.edu

[1] H. Stephani, D. Kramer, M. A. H. MacCallum, C.

Hoenselaers, and E. Herlt, Exact Solutions of Einstein’s Field

Equations, CambridgeMonographs onMathematical Physics

(Cambridge University Press, Cambridge, England, 2003).

[2] J. B. Griffiths and J. Podolsky, Exact Space-Times in

Einstein’s General Relativity, Cambridge Monographs on

Mathematical Physics (Cambridge University Press,

Cambridge, England, 2009).

[3] T. Regge and J. A. Wheeler, Stability of a Schwarzschild

singularity, Phys. Rev. 108, 1063 (1957).

[4] F. J. Zerilli, Gravitational field of a particle falling in a

Schwarzschild geometry analyzed in tensor harmonics,

Phys. Rev. D 2, 2141 (1970).

[5] S. A. Teukolsky, Perturbations of a rotating black hole. 1.

Fundamental equations for gravitational electromagnetic

and neutrino field perturbations, Astrophys. J. 185, 635

(1973).

[6] R. Penrose, Gravitational collapse: The role of general

relativity, Riv. Nuovo Cimento 1, 252 (1969).

[7] P. T. Chrusciel, J. Lopes Costa, and M. Heusler, Stationary

black holes: Uniqueness and beyond, Living Rev. Relativity

15, 7 (2012).

[8] L. Blanchet, Gravitational radiation from post-Newtonian

sources and inspiralling compact binaries, Living Rev.

Relativity 17, 2 (2014).

[9] E. Berti, V. Cardoso, and A. O. Starinets, Quasinormal

modes of black holes and black branes, Classical Quantum

Gravity 26, 163001 (2009).

[10] M. Giesler, M. Isi, M. A. Scheel, and S. A. Teukolsky, Black

Hole Ringdown: The Importance of Overtones, Phys. Rev.

X 9, 041060 (2019).

[11] S. Bhagwat, X. J. Forteza, P. Pani, and V. Ferrari, Ringdown

overtones, black hole spectroscopy, and no-hair theorem

tests, Phys. Rev. D 101, 044033 (2020).

[12] G. B. Cook, Aspects of multimode Kerr ringdown fitting,

Phys. Rev. D 102, 024027 (2020).
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