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We construct the covariantly defined multipole moments on the common horizon of an equal-mass,
nonspinning, quasicircular binary-black-hole system. We see a strong correlation between these multipole
moments and the gravitational waveform. We find that the multipole moments are well described by the
fundamental quasinormal modes at sufficiently late times. For each nonzero multipole moment with # < 6,
at least two fundamental quasinormal modes of different ¢ are detectable in the best model. These models
provide faithful estimates of the true mass and spin of the remnant black hole. We also show that by
including overtones, the £ = m = 2 mass multipole moment admits an excellent quasinormal-mode
description at all times after the merger. This demonstrates the perhaps surprising power of perturbation

theory near the merger.
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I. INTRODUCTION

The black hole (BH) no-hair theorem [1,2] suggests that
the final state of a charge-neutral BH merger satisfies the
Kerr solution, which is characterized by only two param-
eters: mass and angular momentum (or equivalently, spin).
Numerical simulations of binary-black-hole (BBH) sys-
tems have directly confirmed this theorem by comparing
the quantities in the final stage with the corresponding Kerr
values [3—6]. The Kerr spacetime is axisymmetric and
has a simple geometry. In stark contrast, as brought out by
numerical simulations, the horizon of a merged BH is
highly distorted at its formation, and undergoes large
dynamical changes as it approaches equilibrium. For a
BH merger to lose its hair and settle down to the final Kerr
state, the horizon distortion must be washed away by
general relativity in the ringdown phase.

In numerical relativity, an event horizon is not a
convenient notion of horizon, as it cannot be determined
during the evolution of the spacetime. It is typically found
in post-processing, once the complete spacetime is known.
Quasilocal objects like apparent horizons are more favored,
because they can be computed on each time slice without
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the knowledge of the complete spacetime. A recent topic in
the study of quasilocal objects is seeking a quantitative
description of the horizon behavior of a BBH merger. One
of the physical quantities used for such an investigation is
the gravitational flux falling into a horizon. It turns out that
the infalling energy flux is correlated with the outgoing flux
of gravitational waves [7,8]. This might seem slightly
surprising at first glance but is indeed reasonable, because
both the ingoing and outgoing flux are generated from the
same gravitational source. Besides the flux, another quan-
tity that can be used in the analysis of BH horizons is the set
of horizon multipole moments. In the following discussion,
we will discuss the multipole moments only in the ring-
down phase, though this concept is also applicable in the
inspiral phase (see, e.g., Ref. [9]).

Horizon multipole moments generalize the mass and
spin of a BH. It is fairly straightforward to define multipole
moments on the isolated horizon of a Kerr BH [10], or
on a dynamical horizon that is axisymmetric throughout
the whole ringdown phase [11]. This is because in both
situations, the horizon possesses a rotational Killing vector,
which is associated with a natural choice of angular
coordinates. In a more general BBH configuration, how-
ever, choosing an appropriate definition of multipole
moments is a nontrivial task. One difficulty comes from
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the nonaxisymmetry of the dynamical horizon. Moreover,
the coordinate system used to express the components of
spacetime quantities varies from simulations to simula-
tions, which calls for an invariant notion of multipole
moments. Ashtekar et al. [12] provide a definition of
horizon multipole moments that is appropriate for this
task. They start with the axisymmetry of the final BH,
construct weighting fields subject to this axisymmetry, and
transport these weighting fields backward along the
dynamical horizon. The resulting multipole moments are
then spatially gauge independent on a given dynamical
horizon. This set of multipole moments will be the subject
of this paper, and we will explain the construction process
in greater detail in later sections.

Regardless of different notions of multipole moments, an
important goal in studying them is to discover any
universality in the horizon behavior of a remnant BH. A
natural avenue is to find inspiration from multipole
moments of the gravitational waveform in the ringdown
phase. BH perturbation theory shows that the gravitational
waves radiated by a perturbed BH at late times can be
characterized by a superposition of exponentially damped
oscillations, called the quasinormal modes (QNMs) [13—
16]. The frequency and the decay constant of each mode are
completely determined by the final mass and spin, con-
sistent with the no-hair theorem. The presence of quasi-
normal modes in the late-time behavior of postmerger
waveforms has already been confirmed in numerical
simulations (e.g., [17,18]). Recently, Giesler et al. [19]
discovered that including overtones even allows a QNM
model to describe the waveform immediately after merger.

Although the waveform multipole moments are a super-
position of QNMs in the ringdown phase, we might not
expect this behavior in multipole moments of the dynami-
cal horizon soon after the common horizon forms. After all,
this horizon is initially highly distorted compared to a Kerr
horizon, so we have no reason to expect perturbation theory
to be valid. Moreover, the time coordinate of the simulation
is quite arbitrary compared to the time coordinate of an
observer at infinity, which is used to define the frequency of
QNMs. Nevertheless, there is strong evidence supporting
the idea that horizon multipole moments exhibit QNM
behavior [8,20-22]. However, such evidence is based on
either the special case of a head-on collision of two BHs, or
a definition of multipole moments that does not refer to the
connection among quasilocal horizons on different time
slices. A definition ignoring the diffeomorphism content of
a dynamical horizon is subject to the arbitrariness of spatial
coordinates.

In this paper, we calculate the horizon multipole moments
that are spatially gauge invariant on the common horizon of
an equal-mass BBH system, following the definition in
Ref. [12]. To investigate the dynamics of these multipole
moments, we test their balance laws, compare them with
waveform multipole moments, and model them as linear

combinations of QNMs. Regarding the QNM models, we
use fundamental tones to analyze the late-time behavior of
multipole moments, and then include overtones in the survey
of their early-time patterns. We will also consider the effect
of mode mixing, which turns out to be significant in most of
the multipole moments.

The rest of this paper is structured as follows. In Sec. II,
we introduce the notions of horizons and quasinormal
modes. We also describe the construction process of the
horizon multipole moments proposed by Ashtekar et al.
[12]. In Sec. III, we describe the configuration of our BBH
simulation and implement the procedure to extract multi-
pole moments on the common horizon. In Sec. IV, we first
look for potential correlations between horizon and wave-
form behavior in the context of their respective multipole
moments. Then, we investigate the damped sinusoidal
patterns of multipole moments using QNM models, with
or without the inclusion of overtones. We finally summa-
rize the results and give remarks on possible future work
in Sec. V.

II. PRELIMINARIES

A. Dynamical horizons

A spacetime is a 4-dimensional Lorentzian manifold M
equipped with a metric g, of signature (—, +, 4, +). Here,
we only consider a vacuum spacetime that is asymptotically
flat." Let V, be the covariant derivative compatible with
Jap- Let S € M be a smooth, orientable, spacelike 2-
manifold with spherical topology S?. Let §,, be the induced
metric on S. (All symbols with tilde in this paper represent
quantities on or associated with S.) The outgoing and
ingoing future-directed null normals to S, denoted as [
and n¢, are normalized subject to [-n = [“n, = —1. The
expansions of [* and n* are

®(l) = Zlabvalb’ (1)
®(n) = qabvanb' (2)
The shear of [¢ is
s .
Oup = qac%dvcld - 56(1)%1;’ (3)

while the shear of n“ is not used in this paper. Note that ¢,
is related to but different from the shear spin coefficient o,
which is usually defined using a complex null tetrad.

A marginally outer trapped surface (MOTS)is a surface S
satisfying © ;) =0 (following the convention in Ref. [23]). A
MOTS is called a future MOTS if © ,,y < 0, orapast MOTS if
O, > 0.The notion of a MOTS is quasilocal, which makes

1 . . . . .
The concepts in this section can be generalized in a non-
vacuum spacetime.
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it very convenient because the calculation does not require
the knowledge of a full spacetime. In numerical simulations
of BHs, there are efficient algorithms [24-28] that compute
MOTSs to locate BHs on every Cauchy surface X.

A marginally trapped tube is a smooth 3-manifold H
foliated by future MOTSs [23]. The 3-manifold H is said to
be a dynamical horizon® [23,30-32] if it is spacelike, or a
timelike membrane if it is timelike. We call 'H a non-
expanding horizon if it is null’ [33-35]. A nonexpanding
horizon is called an isolated horizon® [33-35] if there is a

specific null normal ;a to H such that
(ﬁ;Da - DHE;)W“ — O, (4)

for any tangent vector W* on H. Here D, is the covariant
derivative compatible with the (degenerate) metric ¢,
induced on H> We are not interested in the specific form

of I* on an isolated horizon, though it can be constructed
from any null normal (see Sec. IV B in [35]).

After the merger of a BBH, the outermost MOTSs
(called the common horizons) on Cauchy surfaces trace
out a dynamical horizon.® As we expect the remnant BH to
be Kerr, this dynamical horizon should asymptote to an
axisymmetric isolated horizon [33] as the BH settles down.
We are only interested in this dynamical horizon (which is,
the stack of common horizons) in the rest of this paper, so
we reserve the symbol H to represent this dynamical
horizon henceforth.

We visualize the relation among S, H, and X in Fig. 1.
The figure is based on Fig. 1 of Ref. [12], with slightly
different use of symbols. This figure is merely illustrative:
the shapes of the objects in this figure do not reflect their

?Other literature may use different definitions of a dynamical
horizon. For example, Ref. [29] and the Appendix B of Ref. [30]
allow dynamical horizons to be timelike. We also note that the
original definition of a dynamical horizon does not require [* and
n® to be outgoing and ingoing [31].

3The foliation in the definition of a nonexpanding horizon only
requires MOTSs, instead of future MOTSs. To define a non-
expanding horizon in a nonvacuum spacetime, an additional
condition is imposed on the stress-energy tensor T,: =T U, is
causal and future directed for any future-directed null normal
U? to ‘H. This is an energy condition weaker than the dominant
energy condition.

In a nonvacuum spacetime, matter fields must be “time”
independent on an isolated horizon as well, where “time” is

understood as the parameter generated by la.

>Since g, is degenerate, there exist infinitely many covariant
derivatives compatible with it. The covariant derivative D, here is
uniquely defined as the pullback of V. This can be done, because
the nonexpanding horizon is shear free.

®Reference [29] shows that a tiny portion of early common
horizons may admit ©,) > 0, so the 3-manifold foliated by these
early common horizons may not strictly obey the definition of a
dynamical horizon used in this paper. However, a portion of
0(,) > 0 does not affect the conclusions of this paper.

FIG. 1. Dynamical horizon in a numerical simulation. The
common horizon § is computed on the Cauchy surface X (the
horizontal plane). The dynamical horizon H (the paraboloid)
consists of a stack of S. Note that these shapes do not reflect the
actual appearance of these quantities. See Sec. II A for the
definitions of the vectors. This figure is a modification of Fig. 1
of Ref. [12].

actual appearance in a numerical simulation. The horizontal
plane represents a Cauchy surface %, and the circle on this
plane represents the common horizon §. The common
horizons on all Cauchy surfaces constitute a dynamical
horizon H, shown as the paraboloid. There are four vectors
in this figure: 7 is the unit timelike normal to ¥, 7¢ the unit
timelike normal to 7 within the spacetime, 7 the unit
spacelike normal to S within 7, and 5¢ the unit spacelike
normal to S within X. Based on these unit vectors, we fix

the scaling freedom in /- n = —1 by choosing
1
14 =24 4 34, nt = 5 (39— 7). (5)

We also define another set of null normals that satisfy the
same normalization, {/’,n'}, such that

1

=g = (-5, (6)

B. Multipole moments

The notion of multipole moments on horizons was first
introduced for an isolated horizon [10]. If an isolated
horizon is axisymmetric, multipole moments are defined as
the multipolar expansion of the Weyl scalar ¥,. Multipole
moments were later generalized to a dynamical horizon in
Refs. [11,12,20]. As mentioned in the previous section, we
only consider a dynamical horizon H that asymptotes to an
axisymmetric isolated horizon. In simulations, the late
portion of H can be treated as an axisymmetric isolated
horizon to within numerical accuracy. We construct multi-
pole moments on such a dynamical horizon by following
Ref. [12], and the majority of this section is simply a review
of materials from Ref. [12].
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1. Spherical harmonics on an axisymmetric S

Let & be a general smooth, orientable, spacelike
2-manifold with spherical topology S2. We start by choos-
ing a pair of angular coordinates (6,¢) on S. If S is
axisymmetric (as in the late portion of ), there is a natural
choice of (0, ¢) [10]. Let ¢ on S be the rotational Killing
vector field, which generates closed integral curves and
vanishes at exactly two points (the poles). Let ¢ be the
affine parameter of each closed integral curve with range
[0,27). We then pick a new curve that connects the two
poles and is orthogonal to ¢“ everywhere, and we set it to
be the prime meridian ¢ = 0. We define a variable { that
satisfies

3 1
Dué’ = Feha(ob’ (7)

%g (Vv =0, (8)

where D,, is the covariant derivative compatible with g,
€., the area 2-form, d*V the corresponding area element,
R = \/A/4n the areal radius, and A the area. It is necessary
that ¢ has range [—1,1]. We obtain the angle 6 via
¢ = cos 0. Note that there is a rotational degree of freedom
in choosing the prime meridian, and we will fix this
freedom in Sec. IIT A.

In the (0, ¢) coordinates, the induced metric on S can be
written as [10]

R*sin?2 6

qab = PR (d0),,(d0), + |5I*(dp),(dp)y.  (9)

where |$|?> = ¢%¢p,. The compatible area element, d*V =
R? sin 0d0d¢, is the same as the area element of a fictitious
round 2-sphere metric,

Gay = R?[(d0),(d0), + sin” 6(d¢p) ,(d),]. (10

Spherical harmonics’ are then defined as usual,

26 4+1(¢—m)!

Yeu(0,0) = ir (Ctm)

P (cos)e™?,  (11)

where PJ(x) are the associated Legendre polynomials
(with the Condon—Shortley phase convention) [36].
These Y,,, are orthogonal on S:

VoYV = R (12)

7Spin—weighted spherical harmonics can be defined similarly,
but we do not use them on a horizon in this paper.

where * denotes complex conjugation, and the integration
is with respect to the area 2-form of .

2. Multipole moments on an axisymmetric
isolated horizon

Let S be an axisymmetric MOTS of an axisymmetric
isolated horizon. On this S, we define mass multipole
moments (or simply mass moments) 1,,, and spin multipole
moments (spin moments) L., as

1 -
Ion =1 ]f RY:, &V, (13)
S

1 -
L)f’m - E% éaba)bDaYZ;mJlV. (14)
S

Here, R is the §,,-compatible Ricci scalar® on S, and @, is
the rotational 1-form,

By = —3, "0V, .. (15)

These multipole moments are related to the Weyl
scalar ¥, by

Iy, +iLy, = —f‘PzY}deV, (16)
S
because ¥, on an isolated horizon satisfies [10]
1~ i~ab N ~
T22—1R+§€ Da(l)b. (17)

Although the m = 0 modes (/.o and L,q) are the only
nonvanishing modes because of the axisymmetry of S, we
keep m arbitrary so that we can easily generalize multipole
moments on any MOTS of H in the coming sections.

At the end of Sec. I A, we fixed the scaling freedom in
{l,n}, so there is no ambiguity in the definition of @,. As
the scaling freedom does not affect ¥, and L,,, we can
replace the current pair {/, n} in Eq. (15) by any other null
{l, n} subjectto [ - n = —1. For the purpose of this paper, it
is more convenient and stable to use the pair {//,n’} in the
definition of a rotational 1-form. We define

Wg = _yabnwvbl/c = Yabﬁcvb?c = (Kz)abgb’ (18)

where y,, is the spatial metric induced on X, and (K%),,, =
7.5V.1, is the extrinsic curvature’ of ¥ within the space-
time. Replacing @, by w,, we have an equivalent definition
of spin moments,

*We use the following convention of the spacetime Riemann
tensor R,peq: (V.Y =V, V, ) v, = R, v, for any 4D
I-form wv,. The spacetime Ricci scalar is then defined as
4R = MR . The Riemann tensor and Ricci scalar on a
horizon follow similar conventions.

"We use a sign convention different from Ref. [37].
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1 3
Lem=7 f & w,D, Y5, d*V. (19)
S

It is also useful to rewrite Eq. (19) as
1
Ly, = ——% W%, d?V, (20)
2)s

(p;m = EabDbY;m' (21)

The vectors ¢¢, provide a complete basis for divergence-
free vectors on S [12], and the vector ¢f , is parallel to the
rotational Killing vector field ¢* [see Eq. (7)].

3. 2 + 1 decomposition of H

Except in special situations (e.g., head-on collisions of
two BHs), an arbitrary MOTS S in H is not axisymmetric.
It then becomes tricky to choose a suitable pair of angular
coordinates (6, ¢). We cannot simply apply the construc-
tion process in the previous section, since there is no longer
a rotational Killing vector field on an arbitrary S. However,
we can still take advantage of the axisymmetry of those S in
the late portion of H. In particular, instead of defining
(0, ¢) separately and locally on every S, we adopt the idea
in Ref. [12] and build a vector X* on H that connects (6, ¢)
on all S in a canonical way. We call X the stitching vector
and regard the coordinates (0, ¢) as “evolving” along X
on H.

A dynamical horizon is essentially a stack of MOTSs,
so it naturally admits a 2 4+ 1 decomposition, similar to a
3 4+ 1 decomposition of spacetime (cf. [37] for an intro-
duction of a 3+ 1 decomposition). Additionally, the
foliation by MOTSs is unique for a dynamical horizon,
in contrast to a nonexpanding horizon [23]. We treat X¢
as the time vector of the 2 4+ 1 decomposition, which has
the form,

X4 = a4 p, (22)

where 3 is a tangent vector to be specified on S. The
scalar & and the vector /3 are the lapse and the shift in this
2 4 1 decomposition. We call & the 2-lapse and ¢ the
2-shift, to distinguish them from the usual lapse a and
shift ¢ used in a 3 4 1 decomposition.

The 2-lapse is required to preserve the foliation of
MOTS:s. Let the MOTSs be labeled by a parameter v that
is smooth on H. In other words, each MOTS corres-
ponds to a v = constant surface. (We will identify v with
simulation time ¢ in a numerical simulation, but we
continue using v here to keep the discussion general.)
For X“ being the time vector, we require v to be the
parameter of the integral curve generated by X¢ i.e.,
X% = (0,)". This implies

& = (¢"*D,vD,v)""/2, (23)

where ¢, is the induced metric on H, and D, is the
covariant derivative compatible with qab.lo Note that &
tends to 0 when ¢, approaches a degenerate metric, as in
the case when a merged BH approaches equilibrium.
However, X¢ does not tend to 0, because the limiting
behavior of 7 is nontrivial. This brings difficulties in the
numerical calculation of X%, and we will handle them in
the next section.

Spin moments on an isolated horizon (or the late
portion of H) can be defined using a set of divergence-
free vector fields [Eq. (20)]. This inspires us to define spin
moments on a general S that also uses divergence-free
vector fields. We can obtain a canonical set of divergence-
free vector fields on all S by imposing a mapping
condition on X“: X“ maps divergence-free vector fields
among different S isomorphically. Specifically, once ¢%,,
(the divergence-free vectors on an axisymmetric S) are
known, we can Lie drag them along X“ to all other
MOTSs. In the mathematical language, we are looking for
a vector X“ on H, that satisfies the following statement.
Given a vector field £ that is divergence free on a
particular MOTS S, i.e.,

Lty 20, (24)

we can define & on other MOTSs via Ly&* =0, and
the resultant vector field stays divergence free on all
MOTSs, i.e.,

Leey 20. (25)

The trivial choice p*=0 does not satisfy this
mapping condition. To see this, we first note that
Eq. (25) implies LyL:&,, = 0. Meanwhile, we know
LxLeEqy = L:LxEay = Le(@K) because LyE* =0 and
L€, = a K&, Here, K,, = 4,°G,%V 7, is the extrin-
sic curvature of S within 7, and K = K¢, is its trace. The
expression Lg(& K) is generally nonzero, which contra-
dicts LyL:€,, = 0.

We can find a viable choice of f by eliminating the
inhomogeneity in @K from Ly&,,. In detail, the inhomo-
geneity is

2R

o
AR —— K 2
@Ry R (26)

szfaf(cﬂv =ak-
7 S

""The definitions of qw and D, on a dynamical
horizon are consistent with the ones on an isolated horizon

(Eq. (4)].
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where R = dR/dv. We choose p* such that''
D,p* = (@K -2R/R), (27)

which implies Ly&,, = (2R/R)é,,. Note that 2R /R is only
a function of v. The differential equation LyL:€,, =
L:LxEq, = (2R/ R)L:€,p,, together with the initial condi-
tion Eq. (24), admits the unique solution Eq. (25). In other
words, this choice of 3 [Eq. (27)] satisfies the mapping
condition of X“. In the numerical implementation of
Eq. (27), it is more convenient to define

B =D,y (28)
and solve
4D Dyg = —(@K ~2R/R) (29)

for g on every S. The integration constant in the solution of
¢ does not affect /* and can be selected arbitrarily.
We have thus constructed the time vector X¢ that satisfies
the following four properties:
(1) X“ is constructed covariantly.
(2) X“ preserves the foliation of H.
(3) X* maps divergence-free vectors isomorphically
among different S.
(4) If 'H is axisymmetric, X preserves the rotational
Killing vector.
Now, we are ready to define multipole moments on a
general dynamical horizon H whose late portion is axi-
symmetric. We first construct Y,,,(6,¢) on an axisym-
metric but otherwise arbitrary S as described in Sec. II B 1.
We then extend Y, (6, ¢) to the whole H by

LYy =0. (30)

We define mass (multipole) moments /,,, and spin (multi-
pole) moments L, as functions of » (or time ¢ in numerical
simulations),

1 -
Ion =1 7{ RY:, &V, (31)
S

"'Constrained by the mapping condition of X¢, this choice of
B is actually unique. To see this, we can first assume D, % =
—a K +f for a general smooth scalar function f on 7. Similar to
the argument made in the paragraph after Eq. (27), we have
LxL:&,, = fL:Ey + EypLef. Using Eq. (25), we simply have
L:f = 0. As £ is an arbitrary divergence-free vector on S, f has
to be constant on every S. Because the integration of D, over S
vanishes, f is uniquely determined.

‘We define multipole moments using the complex conjugates
of the spherical harmonics, instead of the spherical harmonics
themselves. This is different from Ref. [12].

1 3
Lin =3 jq{ ew,D, Y5, d*V, (32)
S

where R still represents the §,,-compatible Ricci scalar
and o, is still defined by Eq. (18). These multipole
moments are dimensionless, so they are sometimes
referred to as geometric multipole moments. They extend
Egs. (13) and (19), but the relation among ¥,, R, and
€% D @), is not as simple as Eq. (17), so Eq. (16) no longer
holds on a general MOTS." Also, see Refs. [12,20] for
other definitions of multipole moments on a dynamical
horizon.

4. Alternative calculation of X*

The 2 + 1 decomposition, Eq. (22), nicely resembles the
3+ 1 decomposition of a spacetime, but there exist
numerical difficulties in the implementation. For example,
as H becomes null and ¢,;, becomes degenerate, & tends to
zero and the components of 7 diverge. References [12,30]
discuss these ill behaviors and provide an alternative
solution to handle them. Using this alternative solution,
we can compute X stably on both dynamical and isolated
horizons, as described below.

Let V¢ be a normal to S within H such that

VeD,v = 1. (34)

The vector V¢ is unique and well defined on both
dynamical and isolated horizons. It is null on an isolated
horizon and reduces to the spacelike vector a7’ on a
dynamical horizon. Thus, it is more promising to use

X4 = Ve 4 p (35)

in numerical simulations. The 2-shift f* may also be
problematic because of its dependence on & and K
[Eq. (29)]. As 'H becomes null, evaluating & and K may
become unstable. A better way to obtain 3 is to use the
following differential equation for g,

I 1 2R
G°D,Dyg =~ 53 LyGu, — — |- 36
allby (zq vYab R (36)

Q

Ppenrose and Rindler studied the right-hand side of Eq. (17)
and called its additive inverse the complex curvature [38]

i

1~ .
/C:ZR— &bD,w,. (33)

[\

They also provide the relation between ¥, and C in Ref. [38].
The complex curvature is closely related to horizon’s tendicity
and vorticity, which are visualized in Ref. [39].
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This new equation generalizes Eq. (29), the original equa-
tion for g presented in Ref. [12], because §%° Ly §,,, reduces
to 2@ K on a dynamical horizon.

As a simple example, let us consider the event
horizon of a Kerr BH in the Boyer-Lindquist coordinates
{tgL, rBL,OpL, Pp1 }- This event horizon is automatically
an isolated horizon [33] and admits a foliation of MOTSs
labeled by v = tg;. The 2-shift * vanishes on the horizon,
so X“ coincides with the null Killing vector V¢ =
(04, )* + Qp(0y,, )¢, where Qp is the horizon angular
velocity [40].

5. Balance laws

Let AH be the portion of a dynamical horizon H
between any two MOTSs S; and S,. The gravitational
energy flux across A’H is defined as [30-32]

F (AH) = F,o(AH) + F, - (AH), (37)

where the first term on the right-hand side,

1

Foo(AH) = n

/ |dR|6 6 dV, (38)

arises naturally at a perturbed event horizon [41], and the
second term,

1
Foe(&H) = / |dR|C,C V., (39)
T JAH
arises only when AH is not null. Here,

|dR| = \/q**D,RD,R = R/\/&, (40)

g0 =gV, 1, = @ + D*In (41)

64 is defined in Eq. (3), and @’V is the volume element
determined by ¢g,,. It is feasible but inconvenient to use the
energy flux 7, (AH) in numerical studies, because the
expression depends on two simulation times, #; for §; and
t, for S,. A more practical choice is the time derivative

dF, d T,
T ) oA = fim =2

(42)
We call dF/dt the energy flux rate and may regard it as
the energy flux across a common horizon. Its constituents
dF,,/dt and dF . /dt can be defined similarly.

The difference between the areal radii R, (of S;) and R,
(of S,) is proportional to the energy flux [30-32]":

“In a nonvacuum spacetime, matter fields would have con-
tribution to the right-hand side.

1
Ry R =2F, = /A IdR|(0,50% 420,20V, (43

This is the area balance law for areal radii. The differential
version is more convenient in numerical studies:

dR dF

There are balance laws for multipole moments as well.
The difference in /,,, and L, between S| and S, can also
be expressed as a flux across AH [12]15:

Ifm[S]

_/ |dR|< Yo lxR+ L g, Y;m>d3v

_I)f’m[S ]

d
+ /AH ‘2R| (640" +2¢,84)Y5, PV, (45)
Ln[Ss] = Len[Si]
1

=5 [ KA = KD, @0 DY, ). (d6)

Here, (K™),, = q.°q,*V.%, is the extrinsic curvature of H
within the spacetime M, and K™ = (K™)?_ is its trace.
The differential versions of these two balance laws are

dl,, d
Al — dR Y* a9,Y%5 |d*V
o [ Rl ViR )
d [ |dR| b
ab 4 pr e )Y APV 47
dt AH 2R ( ba + éac fmd ( )
dL,, 1d
m__ -7 KH ab_K'H ab
& 2d [(K™) q”]
x D, (&, DY, \d*V. (48)

All these balance laws, Eqs. (43)-(48), offer internal
checks on numerical simulations, because both sides of
these equations can be calculated independently. We will
use them to check the correctness of our simulation in
Appendix A.

C. Quasinormal modes

Perturbations of the Kerr spacetime can be described by
the Teukolsky equation [13,14]. It was first derived using
the Kinnersley tetrad [42] in Boyer-Lindquist coordinates
{tgL> '8L> @81, PL }- In this paper, we will only be con-
cerned with the Teukolsky equation governing gravitational

>The right-hand side of Eq. (46) can be treated as a “general”
gravitational angular momentum flux [30,32]. We do not have a
good physical interpretation for the flux terms on the right-hand
side of Eq. (45).
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perturbations. Let ‘I’(()l) and ‘I‘f‘l) denote the first-order

perturbation of the Weyl scalars ¥, and W,. Then,
W= ‘I‘él) has spin weight s = 2 and describes the ingoing
gravitational wave, while y = p““{‘il) is a spin-weight
s = —2 quantity representing the outgoing gravitational
wave, where p is one of the spin coefficients of the
Kerr metric.

The Teukolsky equation is separable. With appropriate
boundary conditions imposed at horizons and spatial
infinity, it admits solutions

Womn = €L R(rpp ) Vi (0L, PBL. A0 pn).  (49)

The indices ¢, m represent angular modes, while n repre-
sents overtones. The indices take on integer values and
satisfy £ > |s|, [m| < I, and n > 0. The quantity wg,,, is a
complex number called the quasinormal mode frequency,
which necessarily has a negative imaginary component
[46-49] because the perturbed BH system is dissipative.
Besides (£, m, n), the frequency wy,,, also depends on
the spin weight s, the mass Mf,” and the dimensionless
spin y s of the unperturbed Kerr BH. We calculate the values
of wg,,, using the qnm package [50]. The functions
sVem(OpL, PpL, Awsy,,) are the spin-weighted spheroidal
harmonics, where a = y M is the dimensionful spin (i.e.,
spin angular momentum per unit mass). They reduce to the
spin-weighted spherical harmonics (Y, (0gr, ¢pr) [51] if
a = 0, which further reduce to the usual spherical har-
monics Y, (0pr, ¢pr) if s = 0. The radial part R(rgp) is
not important in this paper. For further discussion on the
Teukolsky equation, see Refs. [13,14,16,52]. Also, see
Ref. [44] for a review of QNMs and Ref. [53] for details of
the spin-weighted spheroidal harmonics.

In a BBH simulation, one often expands a physical
quantity on a 2-sphere S’ into angular modes using
spherical harmonics. If one performs such an expansion
on a time collection of 2-spheres, then each angular mode is
a function of simulation time ¢. To investigate potential
quasinormal behavior of a mode in the ringdown phase, one
then decomposes the mode into several damped sinusoids
of t. For example, strain & is usually expanded into /A,
using the s = —2 spin-weighted spherical harmonics. Then,
the ringdown portion of h,, can be modeled as a linear

"“There are two distinct families of QNMs: the prograde
modes, w}mn, that corotate with the BH, and the retrograde
modes, @y,,,, that counterrotate with the BH. They are related by

Oy = —(w},,,)" [43-45]. In this paper, we will only consider

w}, for m # 0, but we will use both w}, = and wy,,, for m = 0.
For the sake of readability, we drop these superscripts and keep
using the notation wy,, throughout the paper. The meaning
should be clear from the context.

""The final Kerr BH mass, M, is smaller than the initial total
ADM mass of the system, M. See Sec. IIl A for the numerical
value of their ratio in our simulation.

combination of e~! [19,54,55]. Also, see Ref. [22] for
the QNM description of the shear spin coefficient o on the
horizon of a merged BH. Note that the spherical harmon-
ics used in simulations are constructed with respect to
some specifically chosen angular coordinates, and differ-
ent literature in general uses different sets of angular
coordinates.

Several groups have studied the quasinormal behavior of
mass moments [8,20-22]. They either consider head-on
collisions of two BHs or use definitions of multipole
moments without referring to the connection among
MOTSs (i.e., no Lie dragging along the vector X“). In
contrast, we will investigate the quasinormal behavior of
multipole moments for an orbiting BBH system, and the
definition of our multipole moments does take into account
the relation among MOTSs. We will model mass and spin
moments as linear combinations of QNMs, and choose
different models for different moments. We will describe
these models explicitly in Sec. IV, but no matter what
models we apply, we determine coefficients in these models
by unweighted least square linear fitting.

III. NUMERICAL IMPLEMENTATION

A. Binary-black-hole simulation

We simulate the BBH system using the Spectral Einstein
Code (SPEC) [56], which adopts the first order gener-
alized harmonic formalism [57]. SpEC constructs quasi-
equilibrium initial data that is given by a Gaussian-
weighted superposition of two single-BH analytic solutions
[58]. Spacetime quantities are evolved in the damped
harmonic gauge after a smooth transition from the quasie-
quilibrium initial gauge [59]. SpEC uses excision bounda-
ries that are placed slightly inside apparent horizons
[60—62], and imposes constraint-preserving conditions on
the outer boundary [57,63]. Apparent horizons are calculated
using the fastflow method [26]. A SpEC simulation starts
with a spectral grid containing two excised regions (within
two apparent horizons), and switches to a new grid that has
only one excised region (within the common horizon) after
merger. We consider the merger as the instant when the
common horizon first appears. SpEC uses a dual-frame
configuration [64] whose domain arrangement is described
in Ref. [65]. The adaptive mesh refinement algorithm, which
SpEC uses to dynamically control grid resolutions and
domain arrangement, is discussed in Refs. [66,67].

We evolve an equal-mass, nonspinning, noneccentric
[68] BBH system. We use the same configuration as SXS:
BBH:0389 in the SXS catalog [69] and record the simu-
lation parameters in Table I. We simulate the BBH system
at two resolutions. The target truncation errors of the
adaptive mesh refinement algorithm are ~5 x 1078 for
the higher resolution and ~2 x 10~/ for the other reso-
lution. Unless specified, the results in this paper are
generated from the higher resolution run. We only focus
on the post-merger portion of our BBH simulation. We set
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TABLE I. Parameters for the BBH simulation studied in this
paper. The symbols g, Dy, €, @, and e represent the mass ratio,
initial coordinate separation, initial orbital frequency, initial rate
of change of separation, and eccentricity. The symbols , p stand
for the dimensionless spin vectors of the two BHs. We choose the
initial free data to be the Gaussian-weighted superposition of two
BHs in the Kerr-Schild coordinates, and this is called superposed
Kerr-Schild in SpEC [58].

Parameter Value

Initial free data superposed Kerr-Schild

q 1

D, 15.43M
Qg 0.01525
ao —0.00003721
ZAB 0, 0, 0)

e ~0.0009
Number of orbits 18.6

t =0 at the merger (i.e., when the common horizon
first appears). We assume the merged BH settles down
to the Kerr state at 7, = S00M (where M is the initial total
ADM mass of the BBH system), and we shall see in
Sec. IVA that this is a good assumption. The final Kerr
BH has dimensionless spin y; = 0.68644 (measured by
the method of approximate Killing vectors [58]) and mass
M; = 0.95162M. Table II shows several @, (s My)
that are used in this paper.

We process the simulation following the procedure
described in Sec. IIB. We first calculate the invariant
spherical coordinates (6,¢) on the common horizon at
t = ty, when the common horizon is axisymmetric. With
(0, ¢), we immediately obtain a set of spherical harmonics
Yz by Eq. (11) at t = t;. We then find V by V* L S and
Eq. (34), find p* by Egs. (28) and (36), and construct the
stitching vector X“ on H by Eq. (35). Next, we Lie drag
Y., along X [Eq. (30)] backward in time, from the final
state 1 = 7, to the merger ¢ = 0. Finally, we calculate the

TABLE II. The values of several spin-weight-2 QNM frequen-
cies wy,,, used in this paper. They are generated by the qnm
package [50], based on the remnant parameter M ; = 0.95162M
and y, = 0.68644. QNM frequencies are complex numbers. The
real part, Re(wy,,, ), is the oscillation frequency, while the inverse
imaginary part, —1/Im(wg,,,), is the characteristic decay time.
Note that we express the QNM frequencies in the unit of M,
instead of M.

f, m,n Re(wfmn) [M_l] _I/Im(wfmn) [M]
2,2,0 0.5535 11.707

2,2, 1 0.5410 3.8713
2,2,2 0.5180 2.2923
3,2,0 0.7920 11.235
4,2,0 1.0172 10.938
2,0,0 0.4132 11.236

mass and spin moments by Eqgs. (31) and (32). Because of
the symmetry of the BBH configuration, the mass moments
1 ,,, are nonvanishing only for even # and even m, while the
spin moments L., are nonvanishing only for odd # and
even m. To fix the rotational degree of freedom mentioned
in Sec. II B, we multiply /,,, and L,,, by an m-dependent
phase factor ™1, where 7 is some real constant, such that
I, is real at r = 0. Under this convention, the even-m
modes are unambiguous, but the odd-m modes are still
determined up to a sign. We do not choose a further
convention to fix this sign, because all odd-m modes are
trivial in this paper.

Besides the coordinates {t,0, ¢} used above, we some-
times need the notion of simulation coordinates {z, x, y, 2}
in this paper. These are the horizon-penetrating Cartesian
coordinates used directly to simulate the BBH system in
SpEC, and they are called the inertial coordinates in
Ref. [61]. We also construct the simulation spherical

coordinates {t, r, 6, ¢} such that

x = rsin #cos ¢, (50)
y = rsin Osin ¢, (51)
z= rcos 0. (52)

On a dynamical horizon, which is a 3D object, we only
need {7, 0, g[)} Note that in general, & # 6 and ¢ # ¢.

B. Rotation procedure on multipole moments

To compare multipole moments with QNMs in this
simulation, we need to apply one more procedure on these
multipole moments. In Sec. IIB 3, by Lie dragging a
spherical harmonic basis as in Eq. (30), we construct an
invariant basis of Y,,’s and use it to define multipole
moments. While this construction leads to an invariantly
defined set of multipole moments, this basis of Y, s is not
well adapted for the QNM analysis. In particular, as the
dynamical horizon H approaches the Kerr horizon, the Lie
dragged Y,,,’s are rotating with respect to the Kerr-Schild
coordinates. This rotation can be understood from the
following chain of arguments.
(1) In the limit at equilibrium, the right-hand side of
Eq. (36) vanishes, so X“ approaches V<.

(2) Because V“is tangent to the horizon and perpendicular
to the foliation, it must be a null normal of the Kerr
horizon. This implies

X4 = f(t + Quop*). (53)
where 1“ and ¢“ are the timelike and rotational Killing

vector fields of the Kerr spacetime, Qy is the horizon
angular velocity [40], and f is some function.
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(3) This function f is actually a constant, since X“
preserves the foliation and the foliation is known
to become stationary at late times. Moreover,
the simulation coordinates in SpEC are remark-
ably close to the Kerr-Schild coordinates at late
times,18 which fixes the normalization f = 1. Thus,
we have

X0, % 0, + Q0 ), (54)

where we write the Killing vector fields explicitly

in the simulation coordinates ¢, ¢ [Note that the
normalization is irrelevant to the Lie dragging
procedure, Eq. (30).]

We now see that the azimuthal coordinate ¢, being
Lie dragged along X, is rotating with frequency Qp,
relative to the Kerr-Schild azimuthal coordinate. In Kerr
perturbation theory, one uses a Kerr-Schild-like coor-
dinate system to obtain QNM frequencies. If we use an
azimuthal coordinate that is Lie dragged along X¢, we
expect different frequencies in the temporal behaviors
of perturbed quantities. We can, however, simply undo
this rotation by the transformation ¢ — ¢ — Qt, which
yields the transformation Y,,, — Y,,e” ™. Crucially,
this transformation changes the temporal behaviors of
horizon multipole moments, and makes them more
suitable for the QNM analysis. However, we note that
the transformed ¢ is not covariantly defined, because
the transformation depends on the simulation time.

We will apply this procedure on multipole moments in
Sec. IV, specifically in Egs. (59) and (67). Note that we use
a symbol Q here instead of Q, because we will choose a
frequency value slightly different from Qp. See Sec. IVA
for the detail of this choice of Q.

IV. RESULTS

In this section, we analyze in detail both the mass and
spin moments extracted from the BBH simulation
described in Sec. III. In particular, we investigate the
dominant mass moment (/,,) in Sec. IV A, the dominant
spin moment (L3,) in Sec. IV B, and the I,, multipole
moment in Sec. [V C. We summarize the behaviors of other
multipole moments up to £ = 6 in Sec. IV D. For those
readers interested in the correctness of our simulation, we
numerically confirm the balance laws and demonstrate the
error convergence in Appendix A.

BRef. [70] found that an isolated BH in damped harmonic
gauge has lapse, shift, and extrinsic curvature nearly identical
to that of Kerr-Schild coordinates, only the spatial metric is
different.

1.0 122
— 1]
-== Re(ly)
05— N+ ... IM(I,)
0.0
0 10 20 30 40 50 60 70 80
t/M
I, Error-floor Correction
100
|Re(Ix)]
103 [Re(I)]
106
10°°
10-12

0 50 100 150 200 250 300 350 400

t/M

FIG. 2. The mass moment /,, and its floor correction. The top
panel shows |I5,| in blue/solid, Re(/5,) in orange/dashed, and
Im(7,,) in purple/dotted. The bottom panel shows |[Re(Iy,)| in
cyan/solid. This curve directly demonstrates the damped oscil-
lation pattern of I,,. It also reveals a numerical floor at the level
4 x 1076 after ¢~ 150M. Subtracting this floor from I,,, we
obtain the floor-corrected mass moment I,,, which is shown in
pink/dashed in the bottom panel. The pattern of damped
oscillation extends to ¢ ~ 280M.

A. (2,2) mass moment

The (2,2) mass moment /5, is the dominant mode among
the 1., with nonzero m. Figure 2 shows the (2,2) mass
moment as a complex function of 7. In the top panel, the
magnitude (absolute value), the real part, and the imaginary
part of 5, are plotted in blue (solid), orange (dashed), and
purple (dotted). We use a linear scale to demonstrate that
both real and imaginary parts alternate between positive
and negative values. The linear scale also provides a better
reading on the magnitude of these curves before ¢ < 30M.
Note that the imaginary part of 7,, is 0 at t = 0, since we
choose the convention that /,, is real at = 0 (see Sec. III).
In the bottom panel, we show |Re(/,,)], i.e., the absolute
value of the real part of I,,, in cyan (solid). We use a
logarithmic scale in this panel to show the manifest pattern
of damped oscillations of /,,. This curve decays exponen-
tially until reaching a floor at the level 4 x 107° after
t ~150M. Because I,, (and other [,, with nonzero m)
should approach O because of the axisymmetry of the
remnant BH, the floor provides a measure of numerical
error for I,,. We can remove this numerical floor by
subtracting it from 7,,. Specifically, we define

722 = 122 - mean[lzz(t > 400M)], (55)
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where mean|l,, (¢ > 400M)| refers to the average value'
of I,, over the range 400M <t < 500M. The bottom
panel displays |Re(Iy)| in a pink dashed style. We
observe that |Re(1»,)| also possesses a pattern of damped
oscillation, but now the pattern extends to r ~280M. As
I, has a longer-lasting nontrivial behavior, we will use
1,, instead of I, from now on. However, we keep in
mind that the ¢ > 150M portion of I,, is within numeri-
cal uncertainty, so we will only focus on # < 150M from
now on. All conclusions in this paper are based on the
portion ¢ < 150M.

To further analyze the behavior of this mass moment,
we will implement the rotation procedure outlined in
Sec. III B. We first check the validity of Eq. (54) in the
simulation at late times by comparing Qp with Q,. Here, Q,

is defined as the average value of X¢ (the g}ﬁ-component of
X4) over the common horizon S at time ¢, i.e.,

Q, = m%an(X¢). (56)

Note that in the simulation, the maximum deviation of X%
from Q, on every S is within 1075 for > 300M, as
expected. What is unexpected is shown in the top panel of
Fig. 3: Although we expect Q, to approach the horizon
angular velocity [40],

Xf

it does not completely settle down even at 1 = 1, = 500M.
Nevertheless, as €, varies gradually near t = 500M, we set
the rotational frequency of the transformation ¢ — ¢ — Qt
in this paper to be

Qy = = 0.208819M!, (57)

Q = Q,_sp0n = 0.208784M". (58)

All results in the following sections are based on this
choice. We also show the relative difference® between Q,
and Qp in the inset.

We rotate the mass moments by defining

I (t) = Ipn(t)e ™. (59)

Even more specifically, I (1) is a series of discrete data
points generated from the simulation. They are equally spaced by
0.1M in 400M < t < 500M. The quantity mean[/,,(t > 400M)]
is the unweighted mean of these data points, which is of the
order of 107% in our simulation.

In this paper, the relative difference/error between any two
numbers, f and g, is defined as 2|f — g|/|f + g|. The relative
difference between Qg and Q is 1.7 x 107*. This is the same as
the difference between the surface gravity for V* and the Kerr
surface gravity, introduced in Appendix B.

Rotational Frequency

0.2088
0.2087 —— Rel. Diff. (2, Q)
0.2086
— O xM 2x107*

0.2085 U x M 200 300 400 500

100 200 300 400 500

t/M
I,, Rotation Procedure

101
1073
10
107
10°°

0 20 40 60 80 100 120 140 160

t/M

FIG. 3. The rotational frequency of Y,,, and the rotated mass

moment. The top panel shows €, (purple/solid), the rotational
frequency of Y,,,, as a function of time. The curve does not settle
down to a constant even at a very late time. This panel also shows
Qp (cyan/dashed), the horizon angular velocity, as a reference.
The relative difference between , and Q is given in the inset.
We show the comparison between I,, (blue/solid) and its rotated
version I, (orange/dashed) in the bottom panel. Applying the
rotation does not alter the decay rate, but it increases the
frequency significantly.

The bottom panel of Fig. 3 compares the rotated mass
moment |Re(7,,)| (orange/dashed) with the nonrotated one
|Re(15,)| (blue/solid). The rotation does not change the
decay rate of the mass moment but greatly increases its
oscillation frequency: I,, oscillates almost four times as
quickly as T,,. Thus, the use of I,, or I,, may lead to very
different conclusions. In this paper, we choose to investigate
the behavior of 1,,, namely the rotated, error-floor-corrected
(2,2) mass moment. As we will see, the behavior of this mass
moment resembles that of a gravitational waveform.

Our first step in the analysis of 15, is to compare it with
the waveform strain h.>' We extract h on the surfaces of
multiple concentric spherical shells of finite Euclidean radii
r, and extrapolate ri to Z as a function of retarded time 7,
[72-76]. Then, rhy, is the (£ = 2, m = 2) coefficient in the
s = —2 spin-weighted spherical harmonic expansion of rh.
Note that rh,, is both time shifted and phase shifted in this
paper: We set t, . = 0 when |rh,,| (not necessarily |rh|)

21Comparison between horizon data and asymptotic data in
sPEC BBH simulations is not new. Reference [71] is such an
example that compares masses, spins, and recoil velocities of
remnant BHs.
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122 VS ’f'hgg
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107 -
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FIG. 4. The comparison between the mass moment I,, (blue/
solid) and the waveform rh,, (orange/dashed). The mass moment
is plotted as a function of simulation time ¢, while the waveform is
of retarded time f,,. The waveform is time shifted and multiplied
by a constant factor, as described in the main text. The black
dotted vertical line marks ¢ = 50M, at which the values of two
curves are matched. We see strong correlation between these two
quantities in 20M <t < 120M.

reaches its maximum. We also multiply rhy,, by a
constant complex factor such that rhy(t = 50M)
matches T (1 = 50M).** We show both I, (blue/solid)
and rh,, (orange/dashed) in Fig. 4. The graph displays the
absolute values of their real parts, so that we can compare
the decay and oscillation between the two curves simul-
taneously. The horizontal axes represent the simulation
time ¢ for I, and the retarded time f,., for rhy,. We see
from the graph that I,, and rh,, are strongly correlated.
Specifically, in the range 20M <t < 120M, they share
the same decay constant and oscillation frequency. For
t > 120M (not shown), the comparison becomes mean-
ingless, because the strain reaches its level of numerical
error. For t < 20M, I, and rh,, are less correlated,
possibly because the meaning of time (or the behavior
of the lapse) in the strong field regime is substantially
different from at infinity.

Figure 4 strongly suggests that the mass moment I,,,
like 55, is described by the QNM of spin-weight s = —2
or s = 2. We include the possibility s = 2 here, because
the frequency of an s =2 QNM is the same as that
of s=-2% In the following sections, we investigate
the quasinormal pattern of I,, quantitatively, by linearly
fitting 75, to multiple QNMs of spin weight s =2 (or
equivalently s = =2).

22Matching at any time between 25M and 95M yields a very
similar result. ~
It is interesting that /,,, a spin-weight-0 quantity, is described
by spin-weight-+2 QNMs. Understanding this is an interesting
topic for future work.

jzg Fit Using wpyq

107
1073
= 104

103

10

FIG.5. The mismatch between I,, and its fit using @w,,, QNMs
[Eq. (60)], plotted as a function of the initial fitting time #,. Both
the L = 2 (blue/solid) and L = 3 (orange/dashed) curves decay
sharply before #, = 18M, because overtones are not included in
the model. The L = 2 curve, which only uses the w,,; QNM,
contains a persistent oscillatory pattern after 7, = 18 M. This is a
beat pattern formed by the @,,, and w3, QNMs, and is removed
in the L = 3 curve.

1. Mode mixing

We start with a model with only fundamental modes,

L
722 = Z szoe—iwfzo(f—fo)’ (60)
=2

with a fitting time range f, <t < 120M. We choose
120M as the end fitting time, when the mass moment
is still slightly above the numerical error of I,, (see
Fig. 2). The parameters C,,, are to be determined by a
linear fit. (All the symbols Cy,, in this paper should be
understood as fitting parameters.) We consider several
L > 2 and allow t#,, to vary. We measure the error of fit by
the mismatch between I,, and its fit. The mismatch
between two complex-valued functions f(¢) and g(z) is
defined as

Re((flg))
Ve

M(f.g) =1~ (61)

where

<ﬂm=/?m¢mm, (62)

with integration domain over the fitting time range.

We first consider the simplest choice L =2 in this
model, which means we fit 75, using only the fundamental
tone of (2,2) QNMs. The mismatch M as a function of the
initial fitting time 7, is shown in blue (solid) in Fig. 5. The
curve decays from 1072 to 107> before #, = 18M. This
decay is expected, because the current model does not
include overtones, which are strongly excited near the
merger. However, it is surprising to see a wavy pattern in
the curve after t, = 18 M, since the QNM fit of rh,, does
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not have such a feature [19,54]. This oscillatory pattern
extends well beyond t, = 70M, which is not shown.

This oscillatory pattern suggests that the L = 2 model
does not capture an essential feature of 7,,. We can rule out
the following two possibilities for this missing feature.
First, this feature is not related to the oscillation of I,, i.e.,
the nonrotated mass moment. This is because the period of
the oscillatory pattern in the L =72 mismatch curve
(~26M) differs from the period of I,,. Second, the missing
feature is not related to the w,,, overtones either, because
the oscillatory pattern cannot be eliminated by including
them in the L =2 model (not shown). Accordingly, we
consider one more possibility: There is another fundamen-
tal tone, other than @, that contributes to I,,. Indeed,
Wy and w3y, share a similar decay rate, and they can
generate a beat period of 26.3M (see Table II), which is
close to the period of the oscillatory pattern (~26M). So we
now examine the model Eq. (60) with L = 3. The orange
dashed curve in Fig. 5 represents the mismatch using this
model. It contains no oscillatory pattern at late times,
confirming the non-negligible contribution of the (3,2)
fundamental tone to 7,,. The curve decreases steadily after
the local maximum at ¢ = 27.4M, so we may treat =
27.4M as the instant when overtones are negligible, and
only two fundamental tones dominate. We have also
investigated the L =4 and L =5 cases, but they hardly
improve the fit (not shown).

We now connect the presence of the (3,2) QNM in the
description of T,, to the concept of mode mixing. In BH
perturbation theory, the natural angular basis for strain &
(whose second time derivative is W,) is the spin-weighted
spheroidal harmonics (Sec. 11 C). However, the natural
angular basis for A at future null infinity Z* is the basis of
the spin-weighted spherical harmonics [69]. This is the
basis used, for example, in LIGO-Virgo-KAGRA wave-
form analysis. The use of spherical harmonics intertwines
spheroidal modes of the same m but different # [77]. For
example, the spherical mode #h,, (i.e., the expansion
coefficient corresponding to _,Y,,) can be decomposed
into not only the w,,, modes, but also the @3,, modes, etc.
This phenomenon is called mode mixing. In our BBH
configuration (equal-mass, non-spinning), modes other
than @,,, may be ignored in h,,’s decomposition. This
is because the @,,, modes are strongly dominant [18], and
the mixing of spheroidal and spherical harmonics is tiny
[77]. However, this argument does not apply to mass
moments /,,,. The natural angular basis of the perturbed
R in Eq. (31) is neither spheroidal nor spherical harmonics,
but a complicated function of angles (6, ¢) instead.” The
mixing of this complicated angular function and spherical
harmonics, if non-negligible, would lead to the presence

*The angular dependence of the perturbed R is a surface
derivative of spheroidal harmonics in certain coordinates. See
Ref. [78] for expressions of the perturbed R.
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FIG. 6. The mismatch between I, and its fit using w,,, and
@330 QNMs [Eq. (63)]. The N = 0 curve is, by construction, the
same as the L =3 curve in Fig. 5. Adding higher overtones
renders a better fit for all #,, and specifically, brings down the
portion of large mismatch before ¢ ~ 10M. This figure demon-
strates the important contribution of overtones to the mass
moment.

of (3,2) QNMs in I,,. In this paper, we refer to this
phenomenon as mode mixing as well, but in a somewhat
broader sense.

Now that we know I, can be well approximated
by the fundamental tones of (2,2) and (3,2) QNMs after
t = 27.4M, we shall analyze the effect of overtones on I,,.
Inspired by the use of overtones in the QNM fit of
waveforms and horizon moments in Refs. [19,22,54], we
consider the following model,

N
722 = C3zoe—iw3zo(f—lo) + Z C22n€_iw22"(t_t°>, (63)
n=0

with the same fitting time range #, < t < 120M. Figure 6
shows the mismatch of this model as a function of 7, for
multiple N (0 < N < 3). By construction, the N = 0 curve
is the same as the L =3 curve in Fig. 5. As more
overtones are included, the mismatch curve becomes
flatter and lower, and the initial damping part shrinks
and ends earlier. For N = 3, we no longer see the initial
damping part. This means that the overtones w,,, (at least
for 1 < n < 3) do contribute to I,,, and the fitting model
Eq. (63) indeed captures them. Note that compared to the
N = 0 model, those N > 1 models improve the accuracy
even after the overtones are supposed to damp away. This
might be caused by overfitting to numerical noise. We also
checked several N > 4 models, but they do not display
much improvement (not shown) compared to the N =
3 model.

2. Fit using fundamental tones

In this section, we wNill have a closer look at the late-time
QNM description of I,,. We continue using the model
Eq. (60) with L = 3, which reads

722 = szoe—iwzzo(f—lo) + C3206—iw320(l—f0)' (64)

124045-13



YITIAN CHEN et al.

PHYS. REV. D 106, 124045 (2022)

Iyy Fit (t =50 ~120M; wayy & wszg)

=
o
=)

—— Actual -=~- Fit

|Re(jzz)|
[
o

=
Q e
= [=)]

N e i

I22 & IZZ,ﬁt 122 & IQQ,coarse

Relative error
[
o
w

[
e
[l

50 60 70 80 90
t/M

100 110 120

Ipy Fit (t =0~ 120M; wys, & wss)

=
o
=}

|Re(j22)|
[
o

106
_ 101
o
o
2107
©
2 1

103

0 20 40 60 80 100 120
t/M

FIG.7. The comparison between I,, and its fit. The left two panels are based on the fit using @,y and w5, [Eq. (64)], in the time range
50M <t < 120M. The right two panels are based on the fit using {@,5, @231, @222, @223, B399 } [Eq. (63) with N = 3], in the time range
0 < 1 < 120M. The top two panels show the absolute real parts of 75, (blue/solid) and its fit (orange/dashed). In either top panel, the two
curves overlap very well. The bottom two panels show the relative difference between I, and the fit in purple/solid, and the difference in
I,, between two resolutions in cyan/dashed. The quantity 75 course Tefers to the (2,2) mass moment extracted from the low-resolution

simulation.

Instead of varying 7, as in the previous section, we now fix
the value of #. In particular, we choose #, = 50M, at which
all overtones have decayed sufficiently.”

The top left panel of Fig. 7 shows the fit using this model
with the fitting time range S0M <t < 120M. The blue
solid curve represents the actual mass moment I,,, while
the orange dashed curve represents the fit. They are both
plotted in the magnitude of their real parts. We see that the
two curves overlap very well, so the model Eq. (64) indeed
provides a good description of I»,. The relative difference
between I,, and its fit (including their imaginary parts) is
plotted in purple (solid) in the bottom panel of the same
figure. For reference, the cyan dashed curve in this panel is
the relative difference in 7,, between the two resolutions
used in our simulation (Sec. IIT A), which provides another
estimate of the numerical error of 1,,. Note that both curves
in the bottom panel have an increasing trend, as I,, gets
closer to the level of numerical uncertainty. After ¢ > 80M,
the relative error of the QNM fit is larger than the numerical
error of I,, by about two orders of magnitude. This means
the model is good but not perfect, and there is room for
improvement in the future. Ideas for potential improvement
include replacing the current fitting scheme (ordinary least
square) by weighted least squares (putting more weight on
the late-time portion of the curve) and rotating 1,,, into I,
by a time-varying frequency.

Once we accept that the model Eq. (64) can describe the
mass moment at late times, we may use it to estimate the

BAt to = 5S0M, the mismatch of this model (Fig. 5) }las
decreased below 4 x 1076, which is the numerical error of I,,
estimated by the numerical floor in Fig. 2.

final mass and spin of the remnant. The QNM frequencies
Wy and w3y, used to generate the left panels of Fig. 7 are
calculated based on M and y, that are measured by SPEC
(Sec. IIT'A). In the following discussion, we regard the
SpEC values of M, and y as their true values. Now, we
allow M and y; to deviate from the true values, and repeat
the QNM fit over the (M, y;) parameter space (similar to
the procedure in Ref. [19]). For each (M, y ;) combination,
we measure the error of the fit by the mismatch, Eq. (61).
The result is visualized as a heat map of log;, M in the left
panel of Fig. 8: the lighter the shading, the smaller the
mismatch. We also show the true values of M, and y; in
golden (solid) lines for reference. We see from the plot that
not only does the mismatch have a deep minimum over the
(My, yy) parameter space, but also the minimum approx-
imately recovers the true values. In particular, the best
estimates of the mass and spin (i.e., their values at the
minimum) are M’; = 0.95390M and y’; = 0.68825. We can

assess the goodness of these estimates by the error,

er = /(M =M/ + (=22 (65)

as proposed in Ref. [19]. The error of these estimates is
€ =29x 1073, compared to a difference between the two
resolutions, 3 x 107°, Note that the minimum mismatch
does not necessarily make (M), y;) a better pair of
candidates for the final mass and spin, because as we will
see, different QNM models produce different (M, x})
combinations, and there is no consistent choice among
these models to determine mass and spin yet.
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FIG. 8. Heat maps of the mismatch log,, M over the (M, y ;) parameter space. The left panel is based on the model Eq. (64), while the
right one on the model Eq. (63) with N = 3: the lighter the shading, the smaller the mismatch. In each panel, we use two golden lines to
represent the true values of M ; and y ;. The dashed curves are the contour lines of constant mismatch. The deep minimum of the mismatch
is located close to the golden cross, which means that the QNM model can be used to recover the true values of the remnant parameters.

3. Fit using overtones

We extend the analysis in the previous section to the
early-time portion of I,,, by including overtones up to
n = 3. In particular, we investigate the model Eq. (63) with
N = 3, and fix the fitting time range as 0 < ¢ < 120M. The
right panels of Fig. 7 shows the comparison between the
actual T, and its QNM fit using this N = 3 model. We see
from the top panel that the QNM description of the (2,2)
mass moment is valid even near the merger. The relative
error of this fit is 1073=1072, which is about two orders of
magnitude greater than the numerical error measured by the
difference in I,, between two resolutions, as shown in the
bottom panel. Again, this means the model could be
improved in the future.

This model also provides an estimate of the final mass and
spin of the remnant. The right panel of Fig. 8 shows the
mismatch heat map over the (M, y;) parameter space,
together with a golden cross representing the true M ; and y ;.
Once more, we see a deep minimum near the golden cross.
The mass (M’ } =10.95699M) and spin (;(} = 0.69066) at the
minimum reproduce the true values, with error €, = 6.8
1073, This result also rules out overfitting partially, because
almost any (M, y ;) combination yields a worse fit than the
true values. We cannot completely rule out overfitting since
the five complex frequencies represent 10 real degrees of
freedom, and we only vary two (final mass and spin).

B. (3,2) spin moment

The (3,2) spin moment L3, is the dominant mode among
L, with nonzero m. Figure 9 shows the value of |[Re(L3,)|,
i.e., the magnitude of the real part of L, in cyan (solid).

Similar to the |Re(/,;)| curve in Fig. 2, this curve has a
pattern of damped oscillation before t = 150M, and then
stays unchanged on a 5 x 107% numerical error floor after
t = 150M. We subtract this floor from L3, and define the
floor-corrected spin moment

Z432 = L32 - mean[L32(t Z 400M)] (66)

The pink dashed curve in Fig. 9 represents the value of
|Re(L3,)|. After the error floor correction, the damped
oscillation extends to t = 280M. Nevertheless, we will only
focus on the portion ¢ < 150M of L, henceforth. In Fig. 9,
we also observe that the early-time portion of both curves
does not follow a normal damped-oscillatory pattern: the

L3y Error-floor Correction

100
[Re(Ls)]
-3 —
10 [Re(Ls)|
106
100
10-12

0 50 100 150 200 250 300 350 400

t/M

FIG. 9. The spin moment L3, and its floor correction. The
original (3,2) spin moment (cyan/solid) reaches a numerical
floor at the level 5 x 1076 after t ~ 150M. We define the floor-
corrected spin moment L5, (pink/dashed) by subtracting the floor
from L. The damped oscillatory pattern of Ls, extends to
t ~280M. We also observe that the first several cycles are
stretched wider near the local maxima.
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FIG. 10. The mismatch between L5, and its fit using the model
Eq. (68). The intuitive choice Q = {3} (blue/solid) actually
produces the QNM fit with the largest mismatch. The best
single-Z model uses £ = 2 (orange/dashed), producing a mis-
match ~1072. The best two-Z model uses £ = 2, 3 (purple/dash-
dot), which decreases the mismatch by a factor of ~1000
compared to the orange dashed curve after t, = 20M. The £ =
2, 3 curve exhibits a wavy pattern, which can be reduced by using
the £ = 2, 3,4 model (cyan/dotted).

first 3—4 cycles are stretched wider at the local maxima,
especially near t ~25M and ¢t ~ 50M. This is caused by
mode mixing, as we shall see in the following subsection.
This feature is not visible in Fig. 2, where the mixing of
modes is relatively small.

1. Mode mixing

Following the rotation procedure in Sec. Il B, we define
the rotated spin moments,

Ly (t) = Ly, (1)e™ ™, (67)

and investigate the mode mixing in Ls,. We perform a
QNM fit of L, using the following model:

Ly = Zcfzoe ~iven(t=h), (68)
/€0

We choose the fitting time range to be ¢, < t < 120M, with
to varying, and assess the goodness of fit by mismatch
[Eq. (61)]. The set Q consists of integers to be specified.
Since we are investigating the (£ = 3, m = 2) spin moment,
the most intuitive choice of Q is the singleton {3}, i.e., only
considering the (3,2) QNM. However, this choice com-
pletely fails the QNM fit with mismatch always above 0.1, as
indicated by the blue solid curve in Fig. 10. The best single-#
model is actually of £ = 2 (the orange dashed curve in the
same graph), whose mismatch is smaller than the £ =3
curve (blue/dashed) by a factor of 10 after ¢ty = 10M. Thus,
the (2,2) QNM is the actual dominant mode in L+,. This is
not unreasonable, because the perturbation of D,(é°w),)
[see L,,,’s definition, Eq. (32)] is not guaranteed to satisfy
the Teukolsky equation.

From Fig. 10, we see that even the best single-£Z model
has poor performance with mismatch ~1072. Thus, we

L3, Fit Using wagy,, w320, wazo
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104
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FIG. 11. The mismatch between L, and its fit using the model

Eq. (69). By construction, the N = 0 curve is the same as the cyan
dotted curve in Fig. 10. Including higher overtones brings down
the mismatch, but also reveals a new oscillatory pattern. Unless
this pattern is resolved, the effect of overtones on L3, remains
unclear.

move on to models using two different #’s. In particular, we
consider all possible pairs of # among {2, 3,4, 5}. The pair
¢ = 2,3 yields the best QNM fit, as shown in purple/dash-
dot in Fig. 10, while all other pairs produce much worse
mismatch (not shown).26 The mismatch of the £ =2, 3
curve is much smaller than the # =2 curve (orange/
dashed), by a factor of ~1000 after + = 20M. This means
that the (2,2) and (3,2) QNMs are the first two dominant
modes in Ls,. It also demonstrates that a two-Z model can
outperform any single-# model when mode mixing is
significant.

The purple dash-dot curve in Fig. 10 has a wavy pattern
after t = 20M, similar to the L = 2 curve in Fig. 5, which
suggests a further mode mixing. This oscillatory feature is
indeed reduced by using the £ = 2, 3,4 model, as shown by
the cyan dotted curve in Fig. 10. We continued expanding
the model to include more #, but we found the improve-
ment negligible (not shown). Hence, our (3,2) spin moment
is best described by a linear combination of the (2,2), (3,2)
and (4,2) QNMs at late times (¢ > 20M).

For t <20M, the mismatch of the Z = 2,3,4 model
(cyan/dotted) decays sharply from 1072 to 107>. To probe
the effect of overtones on the early-time behavior of L1,
we consider the following fitting model,

z32 — C32()e_iw320(t_t°) + C4206—im420(’—f0)

N
+ Z Cppe~i®2a(1=00) (69)
n=0

with the fitting range ¢, <t < 120M. We plot the mis-
match as a function of 7, in Fig. 11 for five different V.

*The pairs £ = 2,4 and £ = 2,5 have mismatch close to the
orange dashed curve in Fig. 10, while the remaining pairs close to
the blue dashed curve.
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By construction, the N = 0 curve (blue/solid) is identical to
the cyan dotted curve in Fig. 10. As more overtones are
included, the mismatch decreases, and the initial decay
pattern fades. However, it is yet unclear whether the decay
completely disappears, because a newly emerging wavy
pattern overshadows this decay. The wavy pattern is mani-
fest in all four N > 0 curves and persists for even higher N
(not shown). This suggests more potential mixing from other
QNMs, which we do not pursue further in this paper.27

C. (2,0) mass moment

There are two major differences between multipole
moments of m = 0 and those of m # 0. First, an m =0
multipole moment is real-valued, while an m # 0 mode is
complex-valued. Second, as the remnant BH settles down,
a nontrivial m = 0 mode tends to a nonzero constant, while
a nontrivial m # 0 mode always tends to 0. Because of
these distinctions, it is instructive to discuss m = 0 multi-
pole moments separately. We apply the techniques used in
the previous two sections (Secs. IVA and IV B) on I,,, but
with slight modification.

Mass and spin moments of a Kerr BH can be calculated
theoretically given its mass and spin [8]. Let /5 iheory De the
theoretical value of the (2,0) mass moment of a Kerr BH.
We find that the relative difference between 15 and 15 ineory
always lies below 4 x 107 after = 150M, so our Iy,
indeed approaches the expected value. To investigate the
possible QNM description of /,,, we subtract its asymptotic
value and define

720 = 120 — mean[lzo(t > 4OOM)] (70)

This is similar to Eq. (55), except that the nonzero value of
I, at a late time is related to the horizon geometry instead
of numerical errors. Note that for m = 0, there is no need to
rotate I, and we can directly set I, = I, [see Eq. (59)].

We expect I, to be described by the fundamental tone of
the (2,0) QNM at late times. Because @, is a complex
number while I,, is real-valued, we use the following
fitting model for 720,28

720 = E_MO_[O) [Al COSAQ(I — to) +A2 Sin/lz(l - lo)], (71)

where 4, and 4, are the real and imaginary parts of —@,.
The real parameters A; and A, are to be determined by a
linear fit. The fitting range is #y < t < 120M as usual. We
first vary 7, and analyze the mismatch Eq. (61) as a function
of ty in Fig. 12. This curve ultimately reaches the level of

"We have tried including an sy, term in the fitting
model Eq. (69). This only improves the mismatch little and
generates a figure similar to Fig. 11.

*This model can be regarded as a linear combination of the
prograde mode with the frequency wj,, and the retrograde mode
with @3-
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FIG. 12. The mismatch between I,, and its fit using the @,
QNM [Eq. (71)]. The mismatch decays to the 107> level very
slowly, unlike the T,, case. There are irregular bumps along the
curve, which is in stark contrast to the smooth curves in Figs. 7
and 10. The origin of these bumps is unknown.

1073, but very gradually. This is different from the mis-
match curve of I, fit by the w,,, mode (the blue solid curve
in Fig. 5), which damps sharply to the 107> level before
to = 20M. Such a distinction is unexpected, because the
decay rates of w,gy and @,y differ by only a few percent
(see Table II). This suggests that the model Eq. (71) may
not be appropriate for I,, before t, = 70M (at which I,
drops to near 1079).

Next, we examine the performance of the model after
t = 70M, by fitting I,, with the @,y mode in the time
range 70M < t < 120M. The top panel of Fig. 13 displays
both I,, and its fit, which overlap to within about 1%
relative error. The absolute difference between these
two curves is shown in purple (solid) in the bottom panel.

jgo Fit (t="70~120M; (Ugoo)
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FIG. 13. The comparison between I,, and its fit based on the
model Eq. (71). The top panel shows the absolute values of I,
(blue/solid) and the fit (orange/dashed), and these two curves
overlap well. The bottom panel shows the absolute difference
between I, and the fit in purple/solid, and the difference in T,
between two resolution in cyan/dashed.
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FIG. 14. Heat map of the mismatch log;y M over the (M, )
parameter space. This is generated based on the fit of 7, using the
model Eq. (71). The fitting time range is 70M < ¢t < 120M. The
color representation is similar to Fig. 8, and we again use two
golden lines to represent the true values. The dashed curves are
the contour lines of constant mismatch. Although the minimum
mismatch is located near the golden cross, the minimum is
shallow, as discussed in Sec. IV C.

Here, we use the absolute difference instead of relative
difference to measure error, because I, Crosses zero
periodically. The amplitude of the purple solid curve stays
near the level 10~7, which means the relative error is at the
level 1072-107", after we take into account the magnitude
of I,y. The bottom panel also shows the absolute difference
in 1,, between two resolutions for reference (cyan/dashed).
The figure indicates that 7,, can be reasonably described by
the @,y mode at sufficiently late times.

Knowing that the model Eq. (71) can describe the late-
time behavior of I,,, we would like to estimate the final
mass and spin by minimizing the mismatch of the fit.
The outcome is not so satisfactory compared to the
previous cases. Figure 14 shows the mismatch of the
QNM fit (with the fitting range 70M < t < 120M), as both
the final mass and spin vary. Again, the golden lines
represent the true mass and spin, and a lighter-shaded
region has lower mismatch. The local minimum is achieved
at M} =0.95374M and )(} = 0.69868, which yields an
error €, = 1.2 x 1072, about 4 times the error € In
Sec. IVA 2. This means that, with regard to the perfor-
mance of mass or spin estimate, fitting I, is inferior to
fitting 7,,. To understand why the @,n, model for I is less
faithful, we should realize that this model is not very
sensitive to the remnant parameters. This can be seen
from Fig. 14, where the local minimum of the mismatch
is shallow. Specifically, the minimum mismatch is
1.61 x 1073, which is very close to the mismatch at the

true mass and spin, 1.87 x 107>, There is actually a
fundamental reason for the weakness of this model: the
variation in the values of @,y versus spin is much smaller
than the one of @w,y. In particular, as the spin ranges from
0.5 to0 0.9, Re(wyyg) increases by 45%, while Re(wqg) by
only 7%. In summary, the @w,q, model is a reasonable but
spin-insensitive model for I,, at late times.

D. Other multipole moments

Here, we briefly summarize the results for those multi-
pole moments that have not been discussed previously. We
will focus on the nontrivial 7,,, and L, up to # = 6. Note
that these multipole moments are all floor-corrected and
rotated.

We start with the multipole moments with £ = m,
specifically, I, and 766.29 Fitting T, or Is with a
single-Z QNM model results in a beat pattern at late times,
so there is mode mixing in both cases. The best™ multi-#
model (with m fixed) for the late-time behavior of I,
consists of the @,y and ws,, modes, while the best model
for I consists of wggy and ws4,. We have not found any
good model that describes the early-time behavior of 7,4
and I¢. For example, simply including @, (or @eg,)
overtones in a QNM model does not eliminate the initial
decay of Iy, (or I).

Next, we consider the nontrivial multipole moments with
0 <m < ¢: 1y, Iy, Iy, Lsy, and Ls,. Their behaviors are
very similar to that of L,. Mode mixing is significant for
these multipole moments, and the best multi-# models for
them are comprised of three or four fundamental tones of
different #. For example, 14, I, and Ls, are all best
described by the {0)220, @370, W42(), 0)520} model at late
times. For early-time behavior, adding overtones does
greatly reduce the initial decay pattern, but this comes
with the emergence of additional oscillatory patterns whose
origin is unclear at this time.

Finally, we study the multipole moments with m = 0:
T40- Tsos L3o, and Lsy.*" They all approach their respective
theoretical values with error below 1.2 x 107>, The best
multi-# model [by extending Eq. (71)] for Ls, uses
{@x0, w300}, While the best model for 1), Lsy, and I,
uses { w0, 300, D400 }- A common feature shared by these
models is their failure to describe the multipole moments
before 1 ~ 60—80M. At sufficiently late times, these models
do produce a good description of the respective multipole
moments. However, we should keep in mind that the m = 0
QNMs used in these models are not as sensitive to the

*The moment Iy has a constant value.

*The best model includes all £ that can appreciably improve
the QNM fit, and excludes those ¢ that produce negligible
improvement.

*!The moment L is proportional to the angular momentum of
the merged BH.
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remnant spin as the m # 0 QNMs, so the models might not
be very precise.

V. CONCLUSION

In this paper, we numerically construct the multipole
moments on the common horizon of an equal-mass BBH
system on a sequence of time slices. The construction
process captures the connection among the common
horizons on different time slices, which ensures that this
set of multipole moments is spatially gauge independent.
We apply a geometrically motivated rotation to the multi-
pole moments, which turns out to simplify the analysis. We
compare the multipole moments of the horizons with those
of the gravitational waveform, and see a strong correlation
between the (¢ = 2,m = 2) mass multipole moment and
the strain (2,2)-mode. Specifically, they share the same
oscillation frequency and decay constant at late times. This
suggests the possible QNM description of horizon multi-
pole moments, which we pursue next.

We consider all nontrivial multipole moments up to
¢ =6, and model each multipole moment as a linear
combination of spin-weight-2 QNMs. At sufficiently late
times, these multipole moments are well described by the
fundamental tones of QNMs: not only do the true values
overlap with the predicted values fit to the QNM models,
but also the mismatch between them is small. However, the
multipole moments do not match one-to-one with the
fundamental tones, and we actually see a manifest
mode-mixing phenomenon in all the multipole moments.
For example, our best QNM model for the late-time
behavior of the (2,2) mass moment consists of the @,
and w3, QNMs, where the ws, mode has a tiny but
nonnegligible contribution. A more counter-intuitive exam-
ple is the (3,2) spin moment, in which the @,,;, mode
dominates over the w3,y mode, instead of vice versa. We
find that in general, the (¢, m) multipole moment at late
times is described by a QNM model consisting of the
(Z', m) fundamental tones for the first several possible £’
Note that the mode mixing in horizon moments does not
originate from spherical-spheroidal mode mixing (the latter
is studied in, e.g., Ref. [77]). The waveform perturbation
W, (to which 7% is closely related) satisfies the Teukolsky
equation [13] and has spheroidal harmonics as angular
dependence. In contrast, the perturbation of surface Ricci
scalar R does not satisfy the Teukolsky equation and has a
potentially more complicated angular dependence. The
mode mixing in horizon moments comes from the mixing
between this complicated angular dependence and spheri-
cal harmonics, so the mixing is potentially more significant.

We also explore the possibility of QNM modeling for the
early-time behavior of multipole moments by including
overtones. We find that the inclusion of @,,, overtones up
to n = 3 is sufficient to provide an accurate representation
of the (2,2) mass moment immediately after the merger.
This extends the power of BH perturbation theory back to

the time of coalescence. However, this picture does not
apply to other multipole moments: a QNM model with
overtones does reduce the mismatch significantly, but at the
same time, it also unveils further mixing of modes. As a
consequence, a more careful modeling with overtones is
needed in the future to describe the early-time behavior of
multipole moments other than the (2,2) mass moment.

Taking into account the effect of mode mixing, we find
that the QNM models using fundamental tones at late times
provide a fairly faithful estimate of the remnant mass and
spin, especially for those multipole moments of nonzero m.
Furthermore, in the case of the (2,2) mass moment, the
QNM model with overtones also recovers the true mass and
spin at the minimum mismatch. We also note that for the
m = 0 multipole moments, the performance of these
estimates is not as good as in the m # O cases. This is
interpreted as resulting from the weaker dependence of the
m = 0 mode frequencies on the spin.

In summary, this paper provides promising evidence for
the QNM description of horizon multipole moments of a
remnant BH in the ringdown phase of an equal-mass
nonspinning BBH system. These multipole moments are
spatially gauge independent, as we take into account the
relation among apparent horizons in the construction step.
Such gauge independence, along with the accuracy of the
SPEC code, allows these multipole moments to be described
with QNMs much more accurately than those horizon
multipole moments constructed in previous literature
(e.g., [8,9]).

As future work, one can consider more generic BBH
systems whose progenitors have different masses or non-
zero spins, and then construct horizon multipole moments
as outlined in this paper. One may also define a similar set
of horizon multipole moments for the progenitor BHs, and
investigate their possible imprint on the common horizon
multipole moments. Note that Ref. [9] discusses the
multipole moments of the progenitors, but the construction
there does not yet capture the connection among the
apparent horizons. Regarding the QNM models, one can
continue improving them to mitigate the effect of mode
mixing. Such improvement should reveal a clearer pattern
in the early-time portion of horizon multipole moments.
Regarding the similarities between horizon behavior and
waveforms at 7, we have shown qualitatively the strong
correlation between a horizon mode /,, and a waveform
mode /,,. It would be interesting to explore whether this
correlation can be turned into a quantitative relation
between horizon moments and waveform modes.
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APPENDIX A: BALANCE LAWS AND ERROR
CONVERGENCE

As mentioned in Sec. IIB5, the balance laws,
Eqgs. (44), (47), and (48), provide internal consistency
checks for BH simulations. In this section, we use
them to test the correctness of the BBH simulation in
Sec. Il A. We start by showing the energy flux rate
dF ,/dtin Fig. 15, as it is relevant to the area balance law.
The graph displays the o-part (dF,,/dt) in blue (solid)
and the {-part (dF gyg/ dt) in orange (dashed), as a
function of simulation time 7. We only show the time
range t < 30.8M, since the calculation of the {-part is
numerically unstable at late times because of the diver-
gence of the components of 7. Both curves decay
exponentially, with higher decay rates near the merger.
We see that the o-part always dominates the {-part,
except at the merger. They differ by a factor of 2-3 after
t = 5M, which is not significant.

Next, we investigate the numerical violations of these
three balance laws as functions of simulation time
(t £30.8M). The violations are measured by the relative
difference between the left- and right-hand sides of their
respective equations. We find that the area balance law
[Eq. (44)] always holds within 107*, and for most of the
time within 107>, The mass moment balance law [Eq. (47)]
always holds within 3 x 107 for all nontrivial mass
moments with 1 < # < 8% and the spin moment balance
law [Eq. (48)] always holds to within 107> for all nontrivial
spin moments up to £ = 8.

To demonstrate the convergence of relative errors in the
balance laws, we perform simulations of the same BBH
system as described in Sec. III A, but at four additional
resolutions. Including the two resolutions used in the main
text, we have six resolutions in total. These resolutions are
labeled “Lev-i”, where i = 1,2,...,6. For a fixed i, the

#We did not check the balance law for Iy, even though it is
nontrivial. This is because I, is equal to the constant /7 (which
we checked), and both sides of the differential balance law should
vanish.

Energy Flux Rate
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FIG. 15. The energy flux rate dF ,/dt. The rate consists of two

parts, and we show the o-part (dF 4.0/ dt) in blue/solid and the
{-part (dF ,/dt) in orange/dashed. We only consider the time
range 0 <t < 30.8M. Except at the merger, the o-part is always
greater than the {-part, but the difference is not substantial: the
o-part is at most 2-3 times as much as the {-part.
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FIG. 16. The convergence of relative errors in the balance laws.
The horizontal axis represents the resolution labeled by “Lev,”
and the vertical axis represents the L, norm of the relative errors
in these balance laws. The blue dotted line stands for the area
balance law. The solid lines are for the mass moment balance law,
while the dashed lines for the spin moment balance law.

target truncation error of the adaptive mesh refinement
algorithm is ~2 x 4~/ x 107, Note that Lev-6 corresponds
to the higher resolution in the main text, while Lev-5
corresponds to the lower one.

Figure 16 shows the L, norm™ of the relative errors in
the balance laws. The blue dotted line represents the area
balance law, while the solid lines stand for the mass
moment balance law, and the dashed lines for the spin
moment balance law. We only show three mass moments
and three spin moments here, but we checked that these

3Specifically, the relative error in a balance law is a time series
in 0 <t <30.8M. The L, norm here refers to the Euclidean L,
norm of this time series, then divided by the square root of the
length of the series.

124045-20



MULTIPOLE MOMENTS ON THE COMMON HORIZON IN A ...

PHYS. REV. D 106, 124045 (2022)

curves are representative of the behaviors of other non-
trivial horizon moments. We can see from the graph that the
errors converge as the resolution increases from Lev-2 to
Lev-5, and they reach floors around Lev-5. Therefore, we
conclude that the balance laws for the area, mass moments,
and spin moments are accurate and satisfied in our
simulation.

APPENDIX B: SURFACE GRAVITY

In this section, we briefly investigate the surface gravity

on a dynamical horizon [12,30,79],

ky = —n, VeV, Vb, (B1)
Here, n“ is the ingoing null normal to the common horizon
(t = constant slice) on H, satisfying V*n, = —1. As the
dynamical horizon approaches an isolated horizon, V¢
becomes null and this surface gravity coincides with the
one on an isolated horizon. Because «y is a function on a
dynamical horizon, it is more convenient to consider the
average value of xy over each common horizon S, which
we denote as Ky ;.

In Fig. 17, we show ky as a function of the simulation
time ¢, starting from ¢t = 25M. The blue solid curve
represents ky,, and the orange dashed curve represents
max(ky —ky,), i.e., the maximum deviation of «xy
from its average value on every S. We see from the blue
curve that ky, is settling down, and we check that the
absolute difference between «y 400y and Ky ,—soom
is ~107°. The orange curve tells us that ky is a constant
on every common horizon after t = 200M, with error
~107%. From this, we conclude that ky already reaches a
constant on the dynamical horizon at t = 500M, with
error ~107>,

Ky on every §

0.22125

0.22100

0.22075
0.22050
0.22025
0.22000

0.21975

0.21950

FIG. 17. The temporal behavior of the surface gravity xy on the
dynamical horizon. The average value of ky, denoted by ky ,, is
shown in blue/solid. The maximum deviation of ky from xy , on
every common horizon S is shown in orange/dashed in the inset.
We see that ky becomes a constant at t = 500M.

The final value of ky in our simulation is

KV,IZSOOM =0.221 177M_l s (BZ)

which is very close to the Kerr surface gravity [40,80],

1
= MfQ%, =0.221214M~".

KKerr = 4Mf (B3)

Note that this expression for kg, is calculated using the
canonical null Killing vector of the Kerr solution on the
horizon. The relative difference between xy ;5003 and Kger
is 1.7 x 10™*. This confirms the approximation f = 1 in
Sec. III B, and is related to the slight deviation of Q,_sqo,
from Qg seen in Sec. IVA.

[1] W. Israel, Event horizons in static vacuum space-times,
Phys. Rev. 164, 1776 (1967).

[2] B. Carter, Axisymmetric Black Hole Has Only Two Degrees
of Freedom, Phys. Rev. Lett. 26, 331 (1971).

[3] M. A. Scheel, M. Boyle, T. Chu, L.E. Kidder, K.D.
Matthews, and H.P. Pfeiffer, High-accuracy waveforms
for binary black hole inspiral, merger, and ringdown, Phys.
Rev. D 79, 024003 (2009).

[4] M. Campanelli, C.O. Lousto, and Y. Zlochower,
Algebraic classification of numerical spacetimes and
black-hole-binary remnants, Phys. Rev. D 79, 084012
(2009).

[5] R. Owen, Degeneracy measures for the algebraic classi-
fication of numerical spacetimes, Phys. Rev. D 81, 124042
(2010).

[6] S. Bhagwat, M. Okounkova, S. W. Ballmer, D. A. Brown,
M. Giesler, M. A. Scheel, and S. A. Teukolsky, On choosing
the start time of binary black hole ringdowns, Phys. Rev. D
97, 104065 (2018).

[7] J. L. Jaramillo, R. P. Macedo, P. Moesta, and L. Rezzolla,
Black-hole horizons as probes of black-hole dynamics I:
Post-merger recoil in head-on collisions, Phys. Rev. D 85,
084030 (2012).

[8] A. Gupta, B. Krishnan, A.B. Nielsen, and E. Schnetter,
Dynamics of marginally trapped surfaces in a binary black
hole merger: Growth and approach to equilibrium, Phys.
Rev. D 97, 084028 (2018).

[9] V. Prasad, Generalized source multipole moments of
dynamical horizons in binary black hole mergers, arXiv:
2109.01193.

124045-21



YITIAN CHEN et al.

PHYS. REV. D 106, 124045 (2022)

[10] A. Ashtekar, J. Engle, T. Pawlowski, and C. Van Den
Broeck, Multipole moments of isolated horizons, Classical
Quantum Gravity 21, 2549 (2004).

[11] E. Schnetter, B. Krishnan, and F. Beyer, Introduction to
dynamical horizons in numerical relativity, Phys. Rev. D 74,
024028 (2006).

[12] A. Ashtekar, M. Campiglia, and S. Shah, Dynamical black
holes: Approach to the final state, Phys. Rev. D 88, 064045
(2013).

[13] S. A. Teukolsky, Rotating Black Holes—Separable Wave
Equations for Gravitational and Electromagnetic Perturba-
tions, Phys. Rev. Lett. 29, 1114 (1972).

[14] S. A. Teukolsky, Perturbations of a rotating black hole. I.
Fundamental equations for gravitational, electromagnetic,
and neutrino-field perturbations, Astrophys. J. 185, 635
(1973).

[15] W. H. Press and S. A. Teukolsky, Perturbations of a rotating
black hole. II. Dynamical stability of the Kerr metric,
Astrophys. J. 185, 649 (1973).

[16] S. A. Teukolsky and W. H. Press, Perturbations of a rotating
black hole. III—Interaction of the hole with gravitational
and electromagnet ic radiation, Astrophys. J. 193, 443
(1974).

[17] A.Buonanno, G. B. Cook, and F. Pretorius, Inspiral, merger
and ring-down of equal-mass black-hole binaries, Phys.
Rev. D 75, 124018 (2007).

[18] E. Berti, V. Cardoso, J. A. Gonzalez, U. Sperhake, M.
Hannam, S. Husa, and B. Brugmann, Inspiral, merger and
ringdown of unequal mass black hole binaries: A multipolar
analysis, Phys. Rev. D 76, 064034 (2007).

[19] M. Giesler, M. Isi, M. A. Scheel, and S. A. Teukolsky, Black
Hole Ringdown: The Importance of Overtones, Phys. Rev.
X 9, 041060 (2019).

[20] R. Owen, The final remnant of binary black hole mergers:
Multipolar analysis, Phys. Rev. D 80, 084012 (2009).

[21] D. Pook-Kolb, O. Birnholtz, J. L. Jaramillo, B. Krishnan,
and E. Schnetter, Horizons in a binary black hole merger II:
Fluxes, multipole moments and stability, arXiv:2006.03940.

[22] P. Mourier, X. Jiménez Forteza, D. Pook-Kolb, B. Krishnan,
and E. Schnetter, Quasinormal modes and their overtones at
the common horizon in a binary black hole merger, Phys.
Rev. D 103, 044054 (2021).

[23] A. Ashtekar and G.J. Galloway, Some uniqueness results
for dynamical horizons, Adv. Theor. Math. Phys. 9, 1
(2005).

[24] T. W. Baumgarte, G. B. Cook, M. A. Scheel, S. L. Shapiro,
and S. A. Teukolsky, Implementing an apparent horizon
finder in three-dimensions, Phys. Rev. D 54, 4849 (1996).

[25] P. Anninos, K. Camarda, J. Libson, J. Masso, E. Seidel,
and W.-M. Suen, Finding apparent horizons in dynamic
3-D numerical space-times, Phys. Rev. D 58, 024003
(1998).

[26] C. Gundlach, Pseudospectral apparent horizon finders: An
efficient new algorithm, Phys. Rev. D 57, 863 (1998).

[27] D. M. Shoemaker, M. F. Huq, and R. A. Matzner, Generic
tracking of multiple apparent horizons with level flow,
Phys. Rev. D 62, 124005 (2000).

[28] J. Thornburg, A Fast apparent horizon finder for
three-dimensional Cartesian grids in numerical relativity,
Classical Quantum Gravity 21, 743 (2004).

[29] D. Pook-Kolb, O. Birnholtz, J. L. Jaramillo, B. Krishnan,
and E. Schnetter, Horizons in a binary black hole merger I:
Geometry and area increase, arXiv:2006.03939.

[30] A. Ashtekar and B. Krishnan, Dynamical horizons and their
properties, Phys. Rev. D 68, 104030 (2003).

[31] A. Ashtekar and B. Krishnan, Dynamical Horizons: Energy,
Angular Momentum, Fluxes and Balance Laws, Phys. Rev.
Lett. 89, 261101 (2002).

[32] A. Ashtekar and B. Krishnan, Isolated and dynamical
horizons and their applications, Living Rev. Relativity 7,
10 (2004).

[33] A. Ashtekar, S. Fairhurst, and B. Krishnan, Isolated hori-
zons: Hamiltonian evolution and the first law, Phys. Rev. D
62, 104025 (2000).

[34] A. Ashtekar, C. Beetle, O. Dreyer, S. Fairhurst, B.
Krishnan, J. Lewandowski, and J. Wisniewski, Isolated
Horizons and Their Applications, Phys. Rev. Lett. 85,
3564 (2000).

[35] A. Ashtekar, C. Beetle, and J. Lewandowski, Geometry of
generic isolated horizons, Classical Quantum Gravity 19,
1195 (2002).

[36] R. Courant and D. Hilbert, Methods of Mathematical
Physics (John Wiley & Sons, Ltd, New York, 1989).

[37] T. W. Baumgarte and S. L. Shapiro, Numerical Relativity:
Solving Einstein’s Equations on the Computer (Cambridge
University Press, Cambridge, England, 2010).

[38] R. Penrose and W. Rindler, Spinors and Space-Time
(Cambridge University Press, Cambridge, England, 1984).

[39] R. Owen et al., Frame-Dragging Vortexes and Tidal Ten-
dexes Attached to Colliding Black Holes: Visualizing the
Curvature of Spacetime, Phys. Rev. Lett. 106, 151101
(2011).

[40] R. M. Wald, General Relativity (Chicago University Press,
Chicago, USA, 1984).

[41] S.W. Hawking and J.B. Hartle, Energy and angular
momentum flow into a black hole, Commun. Math. Phys.
27, 283 (1972).

[42] W. Kinnersley, Type D Vacuum Metrics, J. Math. Phys.
(N.Y.) 10, 1195 (1969).

[43] E.W. Leaver, An analytic representation for the quasi-
normal modes of Kerr black holes, Proc. R. Soc. A 402,
285 (1985).

[44] E. Berti, V. Cardoso, and A. Q. Starinets, Quasinormal
modes of black holes and black branes, Classical Quantum
Gravity 26, 163001 (2009).

[45] M. Isi and W.M. Farr, Analyzing black-hole ringdowns,
arXiv:2107.05609.

[46] B.F. Whiting, Mode stability of the Kerr black hole,
J. Math. Phys. (N.Y.) 30, 1301 (1989).

[47] Y. Shlapentokh-Rothman, Quantitative mode stability for
the wave equation on the Kerr spacetime, Ann. Inst. Henri
Poincaré 16, 289 (2015).

[48] R. Teixeira da Costa, Mode stability for the Teukolsky
equation on extremal and subextremal Kerr spacetimes,
Commun. Math. Phys. 378, 705 (2020).

[49] M. Casals and R. T. da Costa, Hidden spectral symmetries
and mode stability of subextremal Kerr(-de Sitter) black
holes, Commun. Math. Phys. 394, 797 (2022).

[50] L.C. Stein, qnm: A Python package for -calculating
Kerr quasinormal modes, separation constants, and

124045-22



MULTIPOLE MOMENTS ON THE COMMON HORIZON IN A ...

PHYS. REV. D 106, 124045 (2022)

spherical-spheroidal mixing coefficients, J. Open Source
Software 4, 1683 (2019).

[51] J.N. Goldberg, A.J. MacFarlane, E.T. Newman, F
Rohrlich, and E. C. G. Sudarshan, Spin s spherical harmon-
ics and EDTH, J. Math. Phys. (N.Y.) 8, 2155 (1967).

[52] J.B. Hartle and D.C. Wilkins, Analytic properties of
the Teukolsky equation, Commun. Math. Phys. 38, 47
(1974).

[53] R. A. Breuer, J. Ryan, M. P., and S. Waller, Some properties
of spin-weighted spheroidal harmonics, Proc. R. Soc. A
358, 71 (1977).

[54] S. Bhagwat, X. J. Forteza, P. Pani, and V. Ferrari, Ringdown
overtones, black hole spectroscopy, and no-hair theorem
tests, Phys. Rev. D 101, 044033 (2020).

[55] A. Dhani, Importance of mirror modes in binary black
hole ringdown waveform, Phys. Rev. D 103, 104048
(2021).

[56] http://www.black-holes.org/SpEC.html.

[57] L. Lindblom, M. A. Scheel, L. E. Kidder, R. Owen, and O.
Rinne, A new generalized harmonic evolution system,
Classical Quantum Gravity 23, S447 (2006).

[58] G. Lovelace, R. Owen, H. P. Pfeiffer, and T. Chu, Binary-
black-hole initial data with nearly-extremal spins, Phys.
Rev. D 78, 084017 (2008).

[59] B. Szilagyi, L. Lindblom, and M. A. Scheel, Simulations of
binary black hole mergers using spectral methods, Phys.
Rev. D 80, 124010 (2009).

[60] F. Pretorius, Numerical relativity using a generalized har-
monic decomposition, Classical Quantum Gravity 22, 425
(2005).

[61] D. A. Hemberger, M. A. Scheel, L. E. Kidder, B. Szilagyi,
G. Lovelace, N. W. Taylor, and S. A. Teukolsky, Dynamical
excision boundaries in spectral evolutions of binary black
hole spacetimes, Classical Quantum Gravity 30, 115001
(2013).

[62] M. A. Scheel, M. Giesler, D. A. Hemberger, G. Lovelace, K.
Kuper, M. Boyle, B. Szildgyi, and L. E. Kidder, Improved
methods for simulating nearly extremal binary black holes,
Classical Quantum Gravity 32, 105009 (2015).

[63] O. Rinne, L. Lindblom, and M. A. Scheel, Testing outer
boundary treatments for the Einstein equations, Classical
Quantum Gravity 24, 4053 (2007).

[64] M. A. Scheel, H. P. Pfeiffer, L. Lindblom, L. E. Kidder, O.
Rinne, and S. A. Teukolsky, Solving Einstein’s equations
with dual coordinate frames, Phys. Rev. D 74, 104006
(20006).

[65] L. T. Buchman, H. P. Pfeiffer, M. A. Scheel, and B. Szilagyi,
Simulations of non-equal mass black hole binaries with
spectral methods, Phys. Rev. D 86, 084033 (2012).

[66] G. Lovelace, M. A. Scheel, and B. Szilagyi, Simulating
merging binary black holes with nearly extremal spins,
Phys. Rev. D 83, 024010 (2011).

[67] B. Szildgyi, Key elements of robustness in binary black hole
evolutions using spectral methods, Int. J. Mod. Phys. D 23,
1430014 (2014).

[68] A. Buonanno, L. E. Kidder, A. H. Mroue, H. P. Pfeiffer, and
A. Taracchini, Reducing orbital eccentricity of precessing
black-hole binaries, Phys. Rev. D 83, 104034 (2011).

[69] M. Boyle et al., The SXS Collaboration catalog of binary
black hole simulations, Classical Quantum Gravity 36,
195006 (2019).

[70] V. Varma and M. A. Scheel, Constructing a boosted,
spinning black hole in the damped harmonic gauge, Phys.
Rev. D 98, 084032 (2018).

[71] D. A. B. Iozzo et al., Comparing remnant properties from
horizon data and asymptotic data in numerical relativity,
Phys. Rev. D 103, 124029 (2021).

[72] M. Boyle and A.H. Mroue, Extrapolating gravitational-
wave data from numerical simulations, Phys. Rev. D 80,
124045 (2009).

[73] M. Boyle, Angular velocity of gravitational radiation from
precessing binaries and the corotating frame, Phys. Rev. D
87, 104006 (2013).

[74] M. Boyle, L.E. Kidder, S. Ossokine, and H.P. Pfeiffer,
Gravitational-wave modes from precessing black-hole bina-
ries, arXiv:1409.4431.

[75] M. Boyle, Transformations of asymptotic gravitational-
wave data, Phys. Rev. D 93, 084031 (2016).

[76] D. A.B. Iozzo, M. Boyle, N. Deppe, J. Moxon, M. A.
Scheel, L. E. Kidder, H. P. Pfeiffer, and S. A. Teukolsky,
Extending gravitational wave extraction using Weyl char-
acteristic fields, Phys. Rev. D 103, 024039 (2021).

[77] E. Berti and A. Klein, Mixing of spherical and spheroidal
modes in perturbed Kerr black holes, Phys. Rev. D 90,
064012 (2014).

[78] J. B. Hartle, Tidal shapes and shifts on rotating black holes,
Phys. Rev. D 9, 2749 (1974).

[79] 1. Booth and S. Fairhurst, Isolated, slowly evolving, and
dynamical trapping horizons: Geometry and mechanics
from surface deformations, Phys. Rev. D 75, 084019 (2007).

[80] M. R.R. Good and Y. C. Ong, Are black holes springlike?,
Phys. Rev. D 91, 044031 (2015).

124045-23



