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Abstract—Recently, the authors showed that Reed–Muller
(RM) codes achieve capacity on binary memoryless symmetric
(BMS) channels with respect to bit error rate. This paper extends
that work by showing that RM codes defined on non-binary fields,
known as generalized RM codes, achieve capacity on sufficiently
symmetric non-binary channels with respect to symbol error rate.
The new proof also simplifies the previous approach (for BMS
channels) in a variety of ways that may be of independent interest.

Index Terms—Channel Capacity, Group Codes, EXIT Area
Theorem, Reed-Muller Code, Strong Data-Processing Inequality

I. INTRODUCTION

Generalized Reed–Muller (GRM) codes were introduced

by Kasami, Lin, and Peterson in 1968 [1] as the natural

generalization of binary Reed–Muller (RM) codes [2], [3] to

non-binary alphabets. GRM codes are closely related to other

interesting code families including Reed–Solomon codes [4],

multiplicity codes [5], and lifted codes [6]. These families

remain interesting subjects of research due to their connections

with topics such as local decodability and list decoding.

In 2016, it was established that sequences of RM codes can

achieve capacity on the binary erasure channel (BEC) [7], [8].

This was followed by some extensions and related work [9]–

[11]. A nice tutorial overview of RM codes and results

until 2020 is provided by [12]. Then, in 2021, the authors

showed that RM codes achieve capacity on binary memoryless

symmetric (BMS) channels with respect to bit error rate [13].

The main result of this paper is the following theorem. We

note that all terminology will be defined in later sections.

Theorem 1. Consider a memoryless channel W with capacity

C whose input alphabet is X = Fq and let G be the symmetry

group of the channel. Suppose one of the following holds:

(i) G contains the affine group over Fq;

(ii) q is prime, G contains the additive group of Fq , and

the smallest principal inertia component of W (for the

uniform input distribution) is strictly positive.

Then, for every sequence of GRM codes over Fq with strictly

increasing blocklength and rate converging to R ∈ [0, C),
the symbol-error rate (SER) under symbol-MAP decoding

converges to zero.
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Corollary 2. If q is prime and the channel symmetry group

is transitive (i.e., the channel is symmetric) but it does not

contain the additive group of Fq , then the input alphabet can

be relabeled so that the conclusion of Theorem 1 still holds.

Corollary 3. Consider a memoryless channel W with input

alphabet X = Fq and let Is be the mutual information between

its input and output with a uniform input distribution. Consider

block-coded transmission using group symmetrization over

the affine group of Fq (i.e., each channel use is modulated

by a random affine map known at the receiver). Then, for

every sequence of GRM codes over Fq with strictly increasing

blocklength and rate converging to R ∈ [0, Is), the SER under

symbol-MAP decoding converges to zero.

For the purposes of our analysis, there are two finite-input

channels of interest. The first is the memoryless channel W
(with capacity C) over which the codeword X is transmitted

and the output Y is received. Our goal is to show that code

rates strictly less than C can be achieved with vanishing

symbol error rate. This involves analyzing a second channel

from X0 to Y∼0, which we call the coset channel due to the

group structure in the code.

The high-level idea of our proof is to first show that, as

the blocklength increases, the sequence of coset channels

converges to a deterministic channel (i.e., a channel for which

a minimal sufficient statistic is a non-random function of its

input). For binary inputs, the only deterministic channels are

the perfect channel and uninformative channel but, for non-

binary inputs, there are other possibilities. In the remainder of

the proof, we use channel symmetry and the area theorem to

argue that this limiting channel must be the perfect channel

whenever the rate of the code is strictly less than capacity.

The two conditions appearing in Theorem 1 have different

implications for the symmetry group of the implied coset

channel. Case (i) implies doubly transitive symmetry of the

coset channel, which simplifies much of the analysis. Case

(ii) implies transitive symmetry of the coset channel, and

in this case, we need the assumption that q is prime and

some additional arguments to rule out the possibility that the

coset channel converges to a deterministic limit that is neither

perfect nor uninformative.

Comparison with prior work: The proof for binary RM

codes on BMS channels [13] is based on the convergence

of the power series expansion of the binary entropy function

around the uninformative point. This fails for the non-binary
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case because the analogous power series converges only on a

small subset of the domain. Instead, an approach inspired by

strong data-processing inequalities (Lemma 6) is used here to

bound mean-squared error in terms of mutual information.

In [13], the “influences” of two subsets (of channel outputs)

on the conditional mean estimator are bounded separately

using two different arguments. In this paper, all influences

are bounded using a single simpler argument (Lemma 15) that

uses extrinsic information transfer (EXIT) functions [14] rather

than generalized EXIT functions [15].

Our analysis of channels builds on the framework developed

by Blackwell [16] and Le Cam [17]. Our introduction and

analysis of the overlap matrix is related to principal iner-

tial components (PICs) [18], [19] and strong data-processing

inequalities [20]–[22]. A key innovation in this work is

Lemma 15, which combines these ideas with a differential

analysis of channels enabled by the EXIT area theorem.

Notation: The real numbers and are denoted by R, the

natural numbers are denoted by N := {1, 2, . . .}, and N0 :=
N ∪ {0}. For N ∈ N0, a range of natural numbers is denoted

by [N ] := {0, 1, . . . , N − 1}. Let ∆q denote the probability

simplex on q elements and ei ∈ Rq be the i-th standard basis

vector. We use Fq to denote the Galois field with q elements.

For a set X , the N -element vector x ∈ XN is denoted by

boldface and is indexed from 0 so that x = (x0, , . . . , xN−1).
For an M -element index set A = {a0, a1, . . . , aM−1} ¦ [N ]
with a0 < a1 < · · · < aM−1, we define the subvector

xA = (xa0
, xa1

, . . . , xaM−1
) ∈ XM without using boldface.

A single random variable is denoted by a capital letter (e.g.,

X,Y, Z). Vectors of random variables are denoted by boldface

capital letters (e.g., X,Y ,Z). All unspecified logarithms (i.e.,

log’s) are taken base-q and thus expressions involving entropy

and mutual information are reported in qits.

All proofs appear in the online version of this paper [23].

II. CHANNELS

We assume throughout that q ∈ N with q g 2 and X =
{0, 1, . . . , q−1}. The symmetric group Sq is the set of bijective

functions (i.e., permutations) mapping X to X with the group

operation given by composition. A permutation group G ¦ Sq

is transitive if, for each x, x′ ∈ X , there exists a permutation

in G the maps x to x′. Likewise, it is doubly transitive if,

for any x1, x2, x
′
1, x

′
2 ∈ X with x1 ̸= x2 and x′1 ̸= x′2, there

exists a permutation in G that maps xk to x′k for k = 1, 2.

We define the action of the symmetric group Sq on R
q (and

the probability simplex ∆q ¦ R
q) according to

Ã(v0, . . . , vq−1) = (vσ(0), . . . , vσ(q−1))

for every Ã ∈ Sq and (v0, . . . , vq−1) ∈ R
q . This operation is

extended to a probability measure P on R
q via the pushfor-

ward measure ÃP defined by

(ÃP )(B) = P (Ã−1B), ∀B ∈ B

where Ã−1B = {Ã−1p | p ∈ B}.

A. Finite-Input Channels

A q-ary input channel W is a conditional distribution

mapping from an input x ∈ X to a probability measure

W (· |x) on a measurable space (Y,A). When convenient, we

use the compact notation Wx(·) =W (· |x).
Following the approach of Blackwell [16], we introduce

a standard version of the channel whose output alphabet is

the probability simplex. For a channel W , the canonical map

ϕ : Y → ∆q is defined by

ϕ(y) :=
(

ϕ0(y), ϕ1(y), . . . , ϕq−1(y)
)

,

where ϕx(y) := (dWx/dW̄ )(y) is the Radon-Nikodym deriva-

tive of Wx with respect to the reference measure

W̄ (A) :=
∑

x∈X

W (A |x), A ∈ A.

The canonical map can also be viewed as the posterior pmf

of with respect to a uniform prior distribution, i.e., ϕx(y) is

the probability that the input is x given the output is y.

Composing the channel W with its canonical map produces

a new channel, W s, on the output space (∆q,B) satisfying

W s(B |x) =W (ϕ−1B |x), ∀x ∈ X , ∀B ∈ B.
Because the canonical map is a sufficient statistic for the

channel input, the mapping from W to W s preserves the

relevant properties of the channel, such as its capacity and

minimum error probability.

Following Blackwell’s definition of a standard experi-

ment [16], we call a channel standard if its canonical map is

the identity map, and we refer to W s as the standard channel

associated with W . Furthermore, we will call two channels

Blackwell equivalent if they have the same standard channel.

B. Channel Symmetry

In communication theory, the term symmetric channel is

used to refer to a variety of related (but distinct) symmetry

conditions [24], [25]. This paper uses the following definition

due to its compatibility with Blackwell equivalence.

Definition 1 (Channel Symmetry Group). The symmetry

group G of a q-ary channel W is the permutation group

G = {Ã ∈ Sq | ∀x ∈ X , ∀B ∈ B,W s(ÃB |Ãx) =W s(B |x)},
where W s is the standard channel associated with W . In other

words, G is the group of all permutations Ã such that the

distribution of the canonical map ϕ(Y ) under input Ãx is equal

to the distribution of ÃÈ(Y ) under input x.

A channel is called symmetric if its symmetry group is

transitive. Its well known that this condition is sufficient

to ensure that the capacity of the channel is achieved by

the uniform input distribution [24]. More generally, for any

decision-theoretic problem whose loss function has the same

symmetries as the channel, the uniform input distribution

maximizes the expected loss [26, Chapter 6].

A slightly stronger notion of symmetry occurs when the

symmetry group of a channel is associated with a group
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structure on the input alphabet. Let (X , ⊞) be a group with

binary operation denoted by ⊞ , and assume without loss of

generality that 0 is the identity element. Each x ∈ X defines

a permutation Ãx ∈ Sq according to Ãxx
′ = x⊞x′ for every

x′ ∈ X . By Cayley’s theorem, the group (X , ⊞) is isomorphic

to the permutation group H := {Ãx |x ∈ X}, which we

will refer to as the permutation representation of (X , ⊞). The

channel W is called group symmetric if its symmetry group

contains H as a subgroup.

While there exist channels that are symmetric but not group

symmetric, this can occur only if q is not a prime power.

Lemma 4. If a channel W is symmetric with q equal to a

prime power, then it is group symmetric.

C. Group Symmetrization

There is a simple (and commonly used) process that can

equip any channel with any desired symmetry. Moreover, if the

channel capacity is achieved by a uniform input distribution,

then this process does not change the capacity. Let W be a

channel with input alphabet X and let H be any subgroup of

Sq . Now, define a new channel W ′ that, for the input x ∈ X ,

chooses a uniform random element of Ã ∈ H and transmits

Ãx through W . Then, the output of W ′ is defined to be (Y, Ã)
where Y ∈ Y is the output of W . We call this operation

group symmetrization and the symmetry group of the resulting

channel must contain H as a subgroup. The standard channel

W ′s satisfies

W ′s(B |x) = 1

|H|
∑

σ∈H

W s(Ã−1B |x).

If H is transitive, then the group symmetrization operation

implies that the effective input distribution seen by the original

channel W is uniform. So, if one is content to include

group symmetrization in the system, then any desired channel

symmetry can be engineered while still achieving the rate Is
equal to the mutual information between the channel input and

output under a uniform input distribution.

D. Overlap Matrix

We define overlap matrix Q ∈ R
q×q associated with a q-ary

channel W according to

Qx,x′ :=

∫

ϕx(y)ϕx′(y)W̄ (dy).

This matrix is symmetric, positive semidefinite, and doubly

stochastic. Thus, its eigenvalues are real positive numbers

that satisfy 1 = ¼0 g ¼1 g · · · g ¼q−1 g 0. It can be

verified that the eigenvalues of index x g 1 correspond to the

principal inertia components (PICs) of the channel with respect

to the uniform input distribution [18], [19]. The smallest PIC

¼q−1, which plays a prominent role in our analysis, has been

considered previously in the context of perfect privacy [19].

For random variables (X,Y ), the symbol error rate (SER)

is defined by

SER(X |Y ) := min
X−Y−X̂

P

[

X ̸= X̂
]

,

where the minimum is over all Markov chains X − Y − X̂ .

Lemma 5. For any input-output pair (X,Y ) through a q-ary

channel with overlap matrix Q, we have

SER(X |Y ) f 1− Tr(diag(p)Q),

where p ∈ ∆q is the prior pmf of X .

The following lemma will also us to connect MMSE esti-

mation error with conditional mutual information.

Lemma 6. For any Markov chain S − T −X − Y where Y
is an observation of X through q-ary channel, we have,

I(X;Y |S)− I(X;Y |T )

g
¼2q−1

2 ln q
E
[

∥E[eX |T ]− E[eX |S]∥2
]

,

where ¼q−1 is the minimal eigenvalue of the overlap matrix

For a q-ary channel W with canonical map ϕ, we define

the squared-error discrepancy

¶ := E
[

∥ϕ(Y )− E[ϕ(Y ) |X]∥2
]

where Y is the output for a uniformly distributed input X .

Note that ¶ is zero if and only if the output of the standard

channel is determined uniquely by the input (i.e., the channel

is deterministic). This discrepancy can also be expressed in

terms of the overlap matrix Q or the PICs:

¶ =
1

q
Tr(Q)− 1

q
Tr(Q2) =

1

q

q−1
∑

x=1

¼x(1− ¼x).

If ¶ is close to zero, then the PICs are clustered near the

boundaries 0 and 1 of the unit interval. The next result gives

sufficient conditions under which the PICs are all close to the

same boundary point.

Lemma 7. Consider a q-ary channel with symmetry group G
and squared-error discrepancy ¶. Suppose one of the following

holds:

(i) G is doubly transitive;

(ii) G is transitive, q is prime, and 4q2¶ < 1.

Then, the overlap matrix Q satisfies

min
b∈{1,q}

|Tr(Q)− b| f 2q¶.

III. CODES

A. Group Codes

In coding theory, the term group code is used to refer

to a few related (but distinct) mathematical objects. These

include binary codes closed under modulo-2 addition [25],

sets of points real space generated by a group of orthogonal

transformations applied to a single point [27], and codes whose

codewords are elements of a group ring [28]. The group

structure of binary codes was recognized early and exploited

in [25], [29]. Later, similar ideas were developed for non-

binary codes and channels [27], [30]. In this paper, we use

the following definition.
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Definition 2 (Group code). Let (X , ⊞) be a group where 0 ∈
X is the identity. A set C ¦ XN is called a group code over

(X , ⊞) if the set C forms a group with respect to the binary

operation x⊞x
′ = (x0⊞x

′
0, x1⊞x

′
1, . . . , xN−1⊞x

′
N−1).

Definition 3 (Matched to channel). A group code over (X , ⊞)
is matched to channel W if the symmetry group of W contains

the permutation representation of (X , ⊞) as a subgroup.

For a group code matched to a channel, the code and

channel together have a property which is akin to the ge-

ometric uniformity defined by Forney [30]. Similar ideas

were explored more recently for group codes over integer

rings [31]. In particular, one gets the uniform error property

where the error rate of the optimal decoder is independent of

the transmitted codeword.

B. The Coset Channel

For this section, assume that C ¦ XN is a group code over

(X , ⊞) and that for all x ∈ X , there exists c ∈ C such that

c0 = x. Under these assumptions, the cosets of the subgroup

{c ∈ C | c0 = 0} partition the code C into q sets of equal size.

We define the coset channel to be the channel from X0 to Y∼0

defined as follows:

1) Given the input x0 ∈ X , a codeword X is drawn

uniformly from the coset {c ∈ C | c0 = x0}.

2) The output Y∼0 is a memoryless observation of X∼0

through the channel W .

From now on, we will use V to denote the coset channel and

È to denote its canonical map. Composing V with È gives the

standard coset channel V s.

Lemma 8. If the code is matched to the channel W and, for all

u ∈ X , there exists c ∈ C with c0 = u, then the coset channel

V is group symmetric. Also, the output of the standard coset

channel does not depend on which coset element is chosen, i.e.,

for an arbitrarily distributed input X0, the output È(Y∼0) is

conditionally independent of X∼0 given X0.

If the code has additional symmetries that are matched to the

channel, then the symmetry group of the coset channel may be

larger. For the following result, let G be the permutation group

of the channel W , let H be the permutation representation of

the group (X , ⊞), and let the group of homogeneous alphabet

relabelings that preserve the code be given by

F :=
{

Ã ∈ Sq | ∀c ∈ C,
(

Ã(c0), Ã(c1), . . . , Ã(cN−1)
)

∈ C
}

.

Since both F and G are subgroups of Sq , their intersection

F ′ := F ∩G is also a subgroup of Sq .

Lemma 9. If the code is matched to the channel W , then the

symmetry group of the coset channel V contains the group

ïF ′, Hð generated by F ′ and H .

For the case where q is not prime, our proof technique

requires that the coset channel has doubly transitive symmetry.

In view of Lemma 9, a sufficient condition for this can be read-

ily verified when q is a prime power and C is a linear code over

X = Fq (and hence a group code with respect to the additive

group of Fq). Furthermore, if the code contains the all ones

codeword (i.e., (1, . . . , 1) ∈ C) then its group of homogeneous

alphabet relabelings contains the affine group over Fq , which

is defined by Aq := {Ãa,b ∈ Sq | a ∈ Fq \ {0}, b ∈ Fq} where

Ãa,b(x) = (a · x) + b uses Fq addition and multiplication.

Lemma 10. If C ¦ F
N
q is a linear code that contains the

all ones codeword and the symmetry group of the channel W
contains the affine group Aq , then the code is matched to the

channel W and the symmetry group of the coset channel V is

doubly transitive.

Lastly, we recall that the permutation automorphism group

of the code of a C ¦ XN is the group of permutations Ã ∈ SN

such that (cπ(0), cπ(1), . . . , cπ(N−1)) ∈ C for all c ∈ C. If this

group is transitive then the coset channel defined for symbol

position 0 is Blackwell equivalent to the coset channel for any

other position i ∈ [N ].

C. Generalized Reed–Muller Codes and Puncturing

The natural generalization of binary RM codes to non-

binary alphabets was introduced by Kasami et al. in 1968 and

dubbed Generalized Reed–Muller (GRM) codes [1]. The GRM

code RMq(r,m) ¦ F
N
q is a length N = qm linear code over

Fq . Like binary RM codes, GRM codes can be defined as

polynomial evaluation codes.

The rate of RMq(r,m), denoted by Rq(r,m), is computed

using the base-q logarithm. Thus, it equals the number of Fq

information symbols (i.e., the dimension of the code) divided

by the number of Fq codeword symbols.

Lemma 11. For integers q g 2, 0 f r f m(q − 1), and

0 f k < m − r, the rates of RMq(r,m − k) and RMq(r,m)
satisfy

Rq(r,m− k)−Rq(r,m) f 4k√
m− k

.

Definition 4 (Punctured Code). For a code C ¦ F
N
q and

index set I ¦ [N ], the punctured code formed by the symbol

positions indexed by I is given by CI := {cI ∈ F
|I|
q | c ∈ C}.

Remark 1. Although one may also consider a puncturing

operation that includes reordering of code symbols, this is not

needed for our results. For our definition, the symbols are kept

in the same order but their indices are renumbered.

Lemma 12 (GRM Puncturing). If one punctures the code C =
RMq(r,m) by keeping only the first qm−k symbol positions

(i.e., giving CI with I = [qm−k]), then CI = RMq(r,m −
k). Moreover, puncturing a uniform random codeword from C
gives a uniform random codeword from CI .

IV. MAIN RESULTS

A. SER of the Coset Channel

This section gives bounds on the SER of the coset channel

(defined in Section III-B) under the following conditions:

Condition 1 (Code). The input X is distributed uniformly

of the codewords of a q-ary group code C that has code rate
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R. The code has a transitive permutation automorphism group

and, for each x ∈ X , there exists c ∈ C with c0 = x.

Condition 2 (Channel). The output Y is an observation of

the input through a symmetric memoryless channel W that is

matched to the code and has capacity C.

Under these conditions, X0 is uniformly distributed, the

coset channel V is group symmetric, and the SER of the coset

channel is an upper bound on the maximal SER of the code:

max
i∈[N ]

SER(Xi |Y ) = SER(X0 |Y ) f SER(X0 |Y∼0)

For the purposes of analysis, we introduce a degraded family

of channels that interpolates between W and an uninformative

channel. Specifically, we define Wt to be the composition of

W and an erasure channel with erasure probability t ∈ [0, 1].
The implied coset channel is denoted by Vt and its squared

error discrepancy is given by

¶(t) := E
[

∥Ψ(t)− E[Ψ(t) |X0]∥2
]

, 0 f t f 1

where Ψ(t) := Èt(Y∼0(t)) = E[eX0
|Y∼0(t)]. Here, the

second expression for Ψ(t) holds because X0 is uniformly

distributed, and thus the canonical map is equal to the posterior

pmf. Finally, the average discrepancy is defined to be

¶avg :=

∫ 1

0

¶(t) dt.

We begin with a lower bound on the overlap matrix of

the coset channel. In combination with Lemma 5, this bound

shows that the SER of the coset channel is strictly less than

the trivial upper bound 1 − 1/q whenever the code rate R is

strictly less than the capacity of the channel Wt.

Lemma 13. Assume that Conditions 1 and 2 hold with R < C.

For all 0 f t < 1−R/C, the overlap matrix Q(t) of the coset

channel Vt satisfies

Tr(Q(t)) g qC−R/(1−t).

Next, we combine Lemma 13 with the constraints on the

overlap matrix in Lemma 7 to provide a stronger bound on

the SER in terms of the average discrepancy.

Lemma 14. Assume that Conditions 1 and 2 hold with R < C
and the average discrepancy satisfies

¶avg f (1−R/C)(q
1

2
(C−R) − 1)

q
.

Further, suppose that one of the following conditions holds:

(i) the symmetry group of V is doubly transitive, or

(ii) the symmetry group of V is transitive, q is prime, and

¶avg <
1−R/C

8q2
.

Then, the SER satisfies

SER(X0 |Y∼0) f
4¶avg

1−R/C
.

Finally, we provide a link between the average discrepancy

and the entropy rates of subsets of the code. The following

result is obtained by combining a decomposition of the squared

error discrepancy, via the Efron-Stein-Steele inequality, with

Lemma 6 and the EXIT area theorem.

Lemma 15. Assume Conditions 1 and 2 hold. Furthermore,

assume that overlap matrix of W has minimal eigenvalue

¼min > 0. Let B be a collection of subsets of [N ] such that

(i)
⋂

B∈B B = {0}
(ii) For each B ∈ B, the punctured code CB has a transitive

permutation automorphism group.

Then, we have

¶avg f 2 ln q

¼2min

∑

B∈B

(

H(XB)

|B| −R

)

.

B. Proof of Theorem 1

We begin by verifying the conditions used in Section IV-A.

Since the GRM code is a linear code over Fq , it is auto-

matically a group code under the additive group of Fq . Also,

is is well known that GRM codes have doubly transitive

permutation automorphism groups [1]. For a linear code, each

code position either takes all possible values or is always 0.

Thus, for all x ∈ X , there is a c ∈ C such that c0 = x because

otherwise C would only contain the all zero codeword due to

transitive symmetry and have rate zero. Together, these results

imply Condition 1 is satisfied.

Next, we note that cases (i) and (ii) of Theorem 1 both

require that G contains the additive group of Fq . This implies

that the channel W is group symmetric and the code is

matched to the channel. Thus, Condition 2 is also satisfied.

Under these conditions, we can apply Lemma 8 to see that

the coset channel is is group symmetric and, for case (ii), we

can apply Lemma 10 to see that it is doubly transitive. Having

verified the assumptions of Lemma 14, we conclude that for

any ϵ ∈ (0, 1] there exists ¶∗ > 0, such that if Rq(r,m) f
(1− ϵ)C and ¶avg f ¶∗, then

SER(X0 |Y∼0) f
4¶avg

1−R/C
.

The final step of the proof is to show that ¶avg converges

to zero as m → ∞. If C = 0, the theorem is vacuous, so

we assume C > 0. If the channel symmetry group is doubly

transitive, then C > 0 implies ¼min > 0. Otherwise, q is

prime and ¼min > 0 by assumption. The desired convergence

is established by the following result, which is obtained by

combining the rate difference property of GRM codes in

Lemma 11 with the generic bound in Lemma 15.

Lemma 16. For a GRM code RMq(r,m) with m g q2 on

a channel W whose overlap matrix has minimal eigenvalue

¼min > 0, we find that

¶avg f 2 ln q

¼2min

(

7 + 3 logqm√
m

)

= O

(

lnm√
m

)

.

We note that proofs delegated to the extended version [23]

also utilize the following additional references [32]–[35].
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