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Abstract—Recently, the authors showed that Reed-Muller
(RM) codes achieve capacity on binary memoryless symmetric
(BMS) channels with respect to bit error rate. This paper extends
that work by showing that RM codes defined on non-binary fields,
known as generalized RM codes, achieve capacity on sufficiently
symmetric non-binary channels with respect to symbol error rate.
The new proof also simplifies the previous approach (for BMS
channels) in a variety of ways that may be of independent interest.

Index Terms—Channel Capacity, Group Codes, EXIT Area
Theorem, Reed-Muller Code, Strong Data-Processing Inequality

I. INTRODUCTION

Generalized Reed—Muller (GRM) codes were introduced
by Kasami, Lin, and Peterson in 1968 [1] as the natural
generalization of binary Reed—Muller (RM) codes [2], [3] to
non-binary alphabets. GRM codes are closely related to other
interesting code families including Reed—Solomon codes [4],
multiplicity codes [5], and lifted codes [6]. These families
remain interesting subjects of research due to their connections
with topics such as local decodability and list decoding.

In 2016, it was established that sequences of RM codes can
achieve capacity on the binary erasure channel (BEC) [7], [8].
This was followed by some extensions and related work [9]-
[11]. A nice tutorial overview of RM codes and results
until 2020 is provided by [12]. Then, in 2021, the authors
showed that RM codes achieve capacity on binary memoryless
symmetric (BMS) channels with respect to bit error rate [13].

The main result of this paper is the following theorem. We
note that all terminology will be defined in later sections.

Theorem 1. Consider a memoryless channel W with capacity
C whose input alphabet is X = F, and let G be the symmetry
group of the channel. Suppose one of the following holds:

(i) G contains the affine group over IFy;

(ii) q is prime, G contains the additive group of F,, and
the smallest principal inertia component of W (for the
uniform input distribution) is strictly positive.

Then, for every sequence of GRM codes over F, with strictly
increasing blocklength and rate converging to R € [0,C),
the symbol-error rate (SER) under symbol-MAP decoding
converges to zero.
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Corollary 2. If q is prime and the channel symmetry group
is transitive (i.e., the channel is symmetric) but it does not
contain the additive group of ¥, then the input alphabet can
be relabeled so that the conclusion of Theorem 1 still holds.

Corollary 3. Consider a memoryless channel W with input
alphabet X = F, and let I, be the mutual information between
its input and output with a uniform input distribution. Consider
block-coded transmission using group symmetrization over
the affine group of Iy (i.e., each channel use is modulated
by a random affine map known at the receiver). Then, for
every sequence of GRM codes over F, with strictly increasing
blocklength and rate converging to R € [0, I;;), the SER under
symbol-MAP decoding converges to zero.

For the purposes of our analysis, there are two finite-input
channels of interest. The first is the memoryless channel W
(with capacity C') over which the codeword X is transmitted
and the output Y is received. Our goal is to show that code
rates strictly less than C' can be achieved with vanishing
symbol error rate. This involves analyzing a second channel
from X, to Y.y, which we call the coset channel due to the
group structure in the code.

The high-level idea of our proof is to first show that, as
the blocklength increases, the sequence of coset channels
converges to a deterministic channel (i.e., a channel for which
a minimal sufficient statistic is a non-random function of its
input). For binary inputs, the only deterministic channels are
the perfect channel and uninformative channel but, for non-
binary inputs, there are other possibilities. In the remainder of
the proof, we use channel symmetry and the area theorem to
argue that this limiting channel must be the perfect channel
whenever the rate of the code is strictly less than capacity.

The two conditions appearing in Theorem 1 have different
implications for the symmetry group of the implied coset
channel. Case (i) implies doubly transitive symmetry of the
coset channel, which simplifies much of the analysis. Case
(i) implies transitive symmetry of the coset channel, and
in this case, we need the assumption that ¢ is prime and
some additional arguments to rule out the possibility that the
coset channel converges to a deterministic limit that is neither
perfect nor uninformative.

Comparison with prior work: The proof for binary RM
codes on BMS channels [13] is based on the convergence
of the power series expansion of the binary entropy function
around the uninformative point. This fails for the non-binary
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case because the analogous power series converges only on a
small subset of the domain. Instead, an approach inspired by
strong data-processing inequalities (Lemma 6) is used here to
bound mean-squared error in terms of mutual information.

In [13], the “influences” of two subsets (of channel outputs)
on the conditional mean estimator are bounded separately
using two different arguments. In this paper, all influences
are bounded using a single simpler argument (Lemma 15) that
uses extrinsic information transfer (EXIT) functions [14] rather
than generalized EXIT functions [15].

Our analysis of channels builds on the framework developed
by Blackwell [16] and Le Cam [17]. Our introduction and
analysis of the overlap matrix is related to principal iner-
tial components (PICs) [18], [19] and strong data-processing
inequalities [20]-[22]. A key innovation in this work is
Lemma 15, which combines these ideas with a differential
analysis of channels enabled by the EXIT area theorem.

Notation: The real numbers and are denoted by R, the
natural numbers are denoted by N := {1,2,...}, and Ny =
NU{0}. For N € Ny, a range of natural numbers is denoted
by [N] = {0,1,...,N — 1}. Let A, denote the probability
simplex on ¢ elements and e; € R, be the i-th standard basis
vector. We use [F;, to denote the Galois field with g elements.
For a set X, the N-element vector x € XV is denoted by
boldface and is indexed from O so that = (z¢,,...,ZN—1).
For an M-element index set A = {ag,a1,...,ap—1} C [N]
with ag < a1 < --- < ap—_1, we define the subvector
TA = (Tag,Tays- -+ Tay_,) € XM without using boldface.
A single random variable is denoted by a capital letter (e.g.,
X,Y, 7). Vectors of random variables are denoted by boldface
capital letters (e.g., X, Y, Z). All unspecified logarithms (i.e.,
log’s) are taken base-q and thus expressions involving entropy
and mutual information are reported in gits.

All proofs appear in the online version of this paper [23].

II. CHANNELS

We assume throughout that ¢ € N with ¢ > 2 and X =
{0,1,...,g—1}. The symmetric group S, is the set of bijective
functions (i.e., permutations) mapping X to X with the group
operation given by composition. A permutation group G C S,
is transitive if, for each z, 2’ € X, there exists a permutation
in G the maps x to z’. Likewise, it is doubly transitive if,
for any x1,x92,x], 25 € X with 21 # 5 and 2} # ), there
exists a permutation in G that maps xy, to x}, for k =1,2.

We define the action of the symmetric group S, on R? (and
the probability simplex A, C R?) according to

0'(’()0, “ee ,’Uq_l) = (UU(O), e 71]0'((]71))
for every o € S, and (v, ...,v,—1) € RY. This operation is
extended to a probability measure P on RY via the pushfor-

ward measure o P defined by
(oP)(B) = P(c™'B), VBe€B

where 071B = {o71p|p € B}.

A. Finite-Input Channels

A g-ary input channel W 1is a conditional distribution
mapping from an input z € X to a probability measure
W(-|x) on a measurable space (),.4). When convenient, we
use the compact notation W, (-) = W(-|z).

Following the approach of Blackwell [16], we introduce
a standard version of the channel whose output alphabet is
the probability simplex. For a channel W, the canonical map
¢: Y — Ay is defined by

oY) = (do(¥) P1(¥), -+ dg—1(y)),

where ¢, (y) == (dW, /dW)(y) is the Radon-Nikodym deriva-
tive of W, with respect to the reference measure

W(A) =Y W(Alz), AcA
reX
The canonical map can also be viewed as the posterior pmf
of with respect to a uniform prior distribution, i.e., ¢, (y) is
the probability that the input is x given the output is y.
Composing the channel W with its canonical map produces
a new channel, TW*, on the output space (A,, B) satisfying

WS(B|x)=W(¢ 'B|x), VrecX,VBcB.

Because the canonical map is a sufficient statistic for the
channel input, the mapping from W to W* preserves the
relevant properties of the channel, such as its capacity and
minimum error probability.

Following Blackwell’s definition of a standard experi-
ment [16], we call a channel standard if its canonical map is
the identity map, and we refer to W* as the standard channel
associated with W. Furthermore, we will call two channels
Blackwell equivalent if they have the same standard channel.

B. Channel Symmetry

In communication theory, the term symmetric channel is
used to refer to a variety of related (but distinct) symmetry
conditions [24], [25]. This paper uses the following definition
due to its compatibility with Blackwell equivalence.

Definition 1 (Channel Symmetry Group). The symmetry
group G of a g-ary channel W is the permutation group

G={0€eSy|Vx e X,VB e B,W*(oB|ozx) =W?*(B|z)},

where W?* is the standard channel associated with . In other
words, G is the group of all permutations o such that the
distribution of the canonical map ¢(Y") under input oz is equal
to the distribution of ¢+)(Y") under input x.

A channel is called symmetric if its symmetry group is
transitive. Its well known that this condition is sufficient
to ensure that the capacity of the channel is achieved by
the uniform input distribution [24]. More generally, for any
decision-theoretic problem whose loss function has the same
symmetries as the channel, the uniform input distribution
maximizes the expected loss [26, Chapter 6].

A slightly stronger notion of symmetry occurs when the
symmetry group of a channel is associated with a group
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structure on the input alphabet. Let (X', 8) be a group with
binary operation denoted by H, and assume without loss of
generality that O is the identity element. Each x € X defines
a permutation o, € S, according to o,z’ = x@z’ for every
2/ € X. By Cayley’s theorem, the group (X, @) is isomorphic
to the permutation group H = {o, |z € X'}, which we
will refer to as the permutation representation of (X', 8). The
channel W is called group symmetric if its symmetry group
contains H as a subgroup.

While there exist channels that are symmetric but not group
symmetric, this can occur only if ¢ is not a prime power.

Lemma 4. If a channel W is symmetric with q equal to a
prime power, then it is group symmetric.

C. Group Symmetrization

There is a simple (and commonly used) process that can
equip any channel with any desired symmetry. Moreover, if the
channel capacity is achieved by a uniform input distribution,
then this process does not change the capacity. Let W be a
channel with input alphabet X and let H be any subgroup of
Sq. Now, define a new channel W' that, for the input x € X,
chooses a uniform random element of 0 € H and transmits
ox through . Then, the output of W’ is defined to be (Y, 0)
where Y € Y is the output of W. We call this operation
group symmetrization and the symmetry group of the resulting
channel must contain H as a subgroup. The standard channel
W's satisfies

1

WB|z)=— Y WS 'Blz).

(Bla) = g 3 W™ Bl
If H is transitive, then the group symmetrization operation
implies that the effective input distribution seen by the original
channel W is uniform. So, if one is content to include
group symmetrization in the system, then any desired channel
symmetry can be engineered while still achieving the rate I
equal to the mutual information between the channel input and

output under a uniform input distribution.

D. Overlap Matrix

We define overlap matrix Q € R?*7 associated with a g-ary
channel W according to

%m:/%@%@mww

This matrix is symmetric, positive semidefinite, and doubly
stochastic. Thus, its eigenvalues are real positive numbers
that satisfy 1 = Ao > Ay > -+ > Aj—1 > 0. It can be
verified that the eigenvalues of index x > 1 correspond to the
principal inertia components (PICs) of the channel with respect
to the uniform input distribution [18], [19]. The smallest PIC
Aq—1, which plays a prominent role in our analysis, has been
considered previously in the context of perfect privacy [19].

For random variables (X,Y), the symbol error rate (SER)
is defined by

SER(X|Y) = min P|X # X|,

X-Y-X

where the minimum is over all Markov chains X — Y — X.

Lemma 5. For any input-output pair (X,Y") through a q-ary
channel with overlap matrix Q, we have

SER(X |Y) < 1 - Tr(diag(p)Q),
where p € Ay is the prior pmf of X.

The following lemma will also us to connect MMSE esti-
mation error with conditional mutual information.

Lemma 6. For any Markov chain S —T — X — Y where Y
is an observation of X through q-ary channel, we have,

I(X:Y|8)—I(X;Y|T)

A1
> SiLE|[|Blex |T) - Elex | ).

where \;_1 is the minimal eigenvalue of the overlap matrix

For a g-ary channel W with canonical map ¢, we define
the squared-error discrepancy

5 =E[[lo(Y) - E[p(Y) | X]||*]

where Y is the output for a uniformly distributed input X.
Note that § is zero if and only if the output of the standard
channel is determined uniquely by the input (i.e., the channel
is deterministic). This discrepancy can also be expressed in
terms of the overlap matrix @) or the PICs:

-1

Az(1—Ap).

1

Q

5= L TH(Q) - - T(@?) =

| =

x

If 0 is close to zero, then the PICs are clustered near the
boundaries 0 and 1 of the unit interval. The next result gives
sufficient conditions under which the PICs are all close to the
same boundary point.

Lemma 7. Consider a q-ary channel with symmetry group G
and squared-error discrepancy 6. Suppose one of the following
holds:

(i) G is doubly transitive;

(ii) G is transitive, q is prime, and 4¢*5 < 1.
Then, the overlap matrix Q) satisfies

in | Tr(Q) — b| < 246.
bg{lﬁ}l r(Q) — bl < 2¢

III. CoDEs
A. Group Codes

In coding theory, the term group code is used to refer
to a few related (but distinct) mathematical objects. These
include binary codes closed under modulo-2 addition [25],
sets of points real space generated by a group of orthogonal
transformations applied to a single point [27], and codes whose
codewords are elements of a group ring [28]. The group
structure of binary codes was recognized early and exploited
in [25], [29]. Later, similar ideas were developed for non-
binary codes and channels [27], [30]. In this paper, we use
the following definition.
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Definition 2 (Group code). Let (X, @) be a group where 0 €
X is the identity. A set C C XV is called a group code over
(X, B) if the set C forms a group with respect to the binary
operation x Bz’ = (roBxp, v1Ba), ..., en_1Bay_,).

Definition 3 (Matched to channel). A group code over (X, B)
is matched to channel W if the symmetry group of W contains
the permutation representation of (X', @) as a subgroup.

For a group code matched to a channel, the code and
channel together have a property which is akin to the ge-
ometric uniformity defined by Forney [30]. Similar ideas
were explored more recently for group codes over integer
rings [31]. In particular, one gets the uniform error property
where the error rate of the optimal decoder is independent of
the transmitted codeword.

B. The Coset Channel

For this section, assume that C C X" is a group code over
(X, @) and that for all z € X, there exists ¢ € C such that
co = x. Under these assumptions, the cosets of the subgroup
{c € C| ¢y = 0} partition the code C into ¢ sets of equal size.
We define the coset channel to be the channel from X to Yg
defined as follows:

1) Given the input zyp € X, a codeword X is drawn

uniformly from the coset {c € C| ¢y = x0}.
2) The output Y. is a memoryless observation of X.g
through the channel .
From now on, we will use V' to denote the coset channel and
1) to denote its canonical map. Composing V' with 1) gives the
standard coset channel V®.

Lemma 8. If the code is matched to the channel W and, for all
u € X, there exists ¢ € C with co = u, then the coset channel
V' is group symmetric. Also, the output of the standard coset
channel does not depend on which coset element is chosen, i.e.,
for an arbitrarily distributed input Xy, the output ¥(Y.o) is
conditionally independent of X..o given Xj.

If the code has additional symmetries that are matched to the
channel, then the symmetry group of the coset channel may be
larger. For the following result, let G be the permutation group
of the channel W, let H be the permutation representation of
the group (X, @), and let the group of homogeneous alphabet
relabelings that preserve the code be given by

F:={oeS,|VeceC,(o(cn),0(c1),...,o(cn-1)) EC}.

Since both F' and G are subgroups of S, their intersection
F’':= F NG is also a subgroup of S,.

Lemma 9. If the code is matched to the channel W, then the

symmetry group of the coset channel V contains the group
(F',H) generated by F' and H.

For the case where ¢ is not prime, our proof technique
requires that the coset channel has doubly transitive symmetry.
In view of Lemma 9, a sufficient condition for this can be read-
ily verified when ¢ is a prime power and C is a linear code over
X =T, (and hence a group code with respect to the additive

group of F,). Furthermore, if the code contains the all ones
codeword (i.e., (1,...,1) € C) then its group of homogeneous
alphabet relabelings contains the affine group over IF,, which
is defined by A, :== {04 € Sq|a € Fy\ {0},b € Fy} where
Oap(z) = (a-x)+ b uses Fy addition and multiplication.

Lemma 10. If C C F(J]V is a linear code that contains the
all ones codeword and the symmetry group of the channel W
contains the affine group Ay, then the code is matched to the
channel W and the symmetry group of the coset channel V' is
doubly transitive.

Lastly, we recall that the permutation automorphism group
of the code of a C C X'V is the group of permutations 7 € Sy
such that (cq(0), ¢x(1) -+, Cr(n—1)) € C for all ¢ € C. If this
group is transitive then the coset channel defined for symbol
position 0 is Blackwell equivalent to the coset channel for any
other position i € [N].

C. Generalized Reed—Muller Codes and Puncturing

The natural generalization of binary RM codes to non-
binary alphabets was introduced by Kasami et al. in 1968 and
dubbed Generalized Reed—Muller (GRM) codes [1]. The GRM
code RM,(r,m) C FY is a length N = ¢ linear code over
F,. Like binary RM codes, GRM codes can be defined as
polynomial evaluation codes.

The rate of RM,(r, m), denoted by R, (r,m), is computed
using the base-g logarithm. Thus, it equals the number of F,
information symbols (i.e., the dimension of the code) divided
by the number of F, codeword symbols.

Lemma 11. For integers ¢ > 2, 0 < r < m(q — 1), and
0 <k < m—r, the rates of RM,(r,m — k) and RM,(r,m)

satisfy
4k

Ry(r,m —k) — Ry(r,m) < .
m—k

Definition 4 (Punctured Code). For a code C C IF(JZV and
index set I C [N], the punctured code formed by the symbol
positions indexed by I is given by C; := {c; € Flf‘ | ceC}

Remark 1. Although one may also consider a puncturing
operation that includes reordering of code symbols, this is not
needed for our results. For our definition, the symbols are kept
in the same order but their indices are renumbered.

Lemma 12 (GRM Puncturing). If one punctures the code C =
RM,(r,m) by keeping only the first ¢™~* symbol positions
(i.e., giving Cr with I = [q™*]), then C; = RM(r,m —
k). Moreover, puncturing a uniform random codeword from C
gives a uniform random codeword from Cj.

IV. MAIN RESULTS
A. SER of the Coset Channel

This section gives bounds on the SER of the coset channel
(defined in Section III-B) under the following conditions:

Condition 1 (Code). The input X is distributed uniformly
of the codewords of a g-ary group code C that has code rate
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R. The code has a transitive permutation automorphism group
and, for each x € X, there exists ¢ € C with ¢y = z.

Condition 2 (Channel). The output Y is an observation of
the input through a symmetric memoryless channel W that is
matched to the code and has capacity C.

Under these conditions, X is uniformly distributed, the
coset channel V' is group symmetric, and the SER of the coset
channel is an upper bound on the maximal SER of the code:

roax SER(X;|Y) = SER(Xo|Y) < SER(Xo | Yao)

For the purposes of analysis, we introduce a degraded family
of channels that interpolates between W and an uninformative
channel. Specifically, we define W, to be the composition of
W and an erasure channel with erasure probability ¢ € [0, 1].
The implied coset channel is denoted by V; and its squared
error discrepancy is given by

3(t) =E[lw(t) — E[W(t) | Xo]|*], 0<t<1

where U(t) = (Yo(t)) = Elex,|Y~o(t)]. Here, the
second expression for W(t) holds because Xy is uniformly
distributed, and thus the canonical map is equal to the posterior
pmf. Finally, the average discrepancy is defined to be

1
Savg = / 5(t) dt.
0

We begin with a lower bound on the overlap matrix of
the coset channel. In combination with Lemma 5, this bound
shows that the SER of the coset channel is strictly less than
the trivial upper bound 1 — 1/q whenever the code rate R is
strictly less than the capacity of the channel W;.

Lemma 13. Assume that Conditions 1 and 2 hold with R < C.
Forall 0 <t < 1—R/C, the overlap matrix Q(t) of the coset
channel V; satisfies

Te(Q(1)) = ¢~ /070,

Next, we combine Lemma 13 with the constraints on the
overlap matrix in Lemma 7 to provide a stronger bound on
the SER in terms of the average discrepancy.

Lemma 14. Assume that Conditions 1 and 2 hold with R < C
and the average discrepancy satisfies

s (L= R/C)gHe - 1)
avg > q

Further, suppose that one of the following conditions holds:

(i) the symmetry group of V is doubly transitive, or
(ii) the symmetry group of V is transitive, q is prime, and

1- R/C
5avg T
Then, the SER satisfies
46
ER(Xo|Yo) < —2& |
SER(Xo | Yeo) < 1—R/C

Finally, we provide a link between the average discrepancy
and the entropy rates of subsets of the code. The following
result is obtained by combining a decomposition of the squared
error discrepancy, via the Efron-Stein-Steele inequality, with
Lemma 6 and the EXIT area theorem.

Lemma 15. Assume Conditions 1 and 2 hold. Furthermore,
assume that overlap matrix of W has minimal eigenvalue
Amin > 0. Let B be a collection of subsets of [N such that
(i) nBeBB ={0}
(ii) For each B € B, the punctured code Cp has a transitive
permutation automorphism group.

Then, we have

2Ingq (H(XB) )
Javg < —R|.
we <5z 2\ T

B. Proof of Theorem 1

We begin by verifying the conditions used in Section IV-A.
Since the GRM code is a linear code over F,, it is auto-
matically a group code under the additive group of F,. Also,
is is well known that GRM codes have doubly transitive
permutation automorphism groups [1]. For a linear code, each
code position either takes all possible values or is always 0.
Thus, for all x € X, there is a ¢ € C such that ¢ = x because
otherwise C would only contain the all zero codeword due to
transitive symmetry and have rate zero. Together, these results
imply Condition 1 is satisfied.

Next, we note that cases (i) and (ii) of Theorem 1 both
require that G contains the additive group of IF,. This implies
that the channel W is group symmetric and the code is
matched to the channel. Thus, Condition 2 is also satisfied.

Under these conditions, we can apply Lemma 8 to see that
the coset channel is is group symmetric and, for case (ii), we
can apply Lemma 10 to see that it is doubly transitive. Having
verified the assumptions of Lemma 14, we conclude that for
any € € (0,1] there exists §* > 0, such that if R (r,m) <
(1 —€)C and favg < 6%, then

40.vg

SER(X( | Yo) < T-R/C

The final step of the proof is to show that d.,, converges
to zero as m — oo. If C' = 0, the theorem is vacuous, S0
we assume C > 0. If the channel symmetry group is doubly
transitive, then C' > 0 implies Ay, > 0. Otherwise, ¢ is
prime and Anin, > 0 by assumption. The desired convergence
is established by the following result, which is obtained by
combining the rate difference property of GRM codes in
Lemma 11 with the generic bound in Lemma 15.

Lemma 16. For a GRM code RM,(r,m) with m > ¢* on
a channel W whose overlap matrix has minimal eigenvalue
Amin > 0, we find that

7431
Savg < 2D (TFI08T) _ o (Inm)
)\1211in \/% \/TT/L

We note that proofs delegated to the extended version [23]
also utilize the following additional references [32]—[35].
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