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ABSTRACT: A visible-light photoredox-catalyzed method is reported that enables the coupling between benzylic C—H substrates
and N—H azoles. Classically, medicinally relevant N-benzyl azoles are produced via harsh substitution conditions between the azole
and a benzyl electrophile in the presence of strong bases at high temperatures. Use of C—H bonds as the alkylating partner
streamlines the preparation of these important motifs. In this work, we report the use of N-alkoxypyridinium salts as a critically
enabling reagent for the development of a general C(sp*)—H azolation. The platform enables the alkylation of electron-deficient,
-neutral, and -rich azoles with a range of C—H bonds, most notably secondary and tertiary partners. Moreover, the protocol is mild
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enough to tolerate benzyl electrophiles, thus offering an orthogonal approach to existing Sy2 and cross-coupling methods.

N-Benzyl azoles are an abundant motif in drug discovery," with
key examples including letrozole,” bifonazole,” and carboeto-
midate” (Figure 1). Such motifs exhibit widespread utility as
active compounds across a number of disease areas and
medical uses. Generally, azoles, such as pyrazoles, possess
tempered nucleophilicity relative to halides or carboxylates.”
Thus, their alkylation via substitution reactions typically
requires harsh conditions. Indeed, the preparation of the C—
N bond of letrozole relies on an Sy2-type protocol with
triazole and a benzyl electrophile (halide/tosylate) at 100 °C
with strong base.® Additionally, benzyl electrophiles are prone
to hydrolysis and often require extra preparatory steps. Thus, a
need exists for new mild and streamlined protocols to be
developed. In addition, a strategy that differs from classical
transition metal cross-coupling conditions would also allow for
an expanded substrate scope to include electron-rich azoles,
organoboranes, and alkyl, aryl, and benzyl/allyl halides to
maximize synthetic route opportunities.7

Recently, alternative alkylating partners have been inves-
tigated, with carboxylic acids being a particularly attractive
option.® Although they are abundant and provide a handle for
accessing radicals and carbocations, their activation requires
acyl group manipulations or strong oxidants to facilitate the
decarboxylation. By contrast, C—H bonds represent the most
prevalent functionality in organic compounds; accordingly,
rendering them reactive for C—X bond formation would be
greatly advantageous toward the goal of a streamlined reaction
platform.” The primary advantage of C—H functionalization
methods is a decrease in preparatory steps of reagents and
eventual use for the rapid diversification of late-stage targets.

A handful of methods have demonstrated that single-
electron oxidization of arenes can activate the benzylic C—H
positions toward subsequent functionalization, albeit requiring
high oxidation potentials.10 In the past few years, a mechanistic
strategy for expanding the C—H scope employs a hydrogen-
atom transfer (HAT) event prior to a (radical) oxidation (i.e.,
radical—polar crossover, RPC)."" Notably, the combination of

© 2023 American Chemical Society

WACS Publications

HAT and RPC has been engineered into one catalytic cycle
utilizing different HAT species: Lei and co-workers used the
phenoxy radical of 2,3-dichloro-$,6-dicyano-p-benzoquinone
(DDQ);'* the Noél group employed a UV-activated
decatungstate catalyst;'> and the Stahl group leveraged a
sulfonimide radical derived from N-fluorobenzenesulfonimide
(NESI) in conjugation with copper catalysis."* While all three
methods proceed via a carbocation intermediate, noticeably
lacking in the scope of each protocol is the formation of fully
substituted centers arising from in situ-generated tertiary
carbocations. Recently, our group,”” concurrently with the
Doyle group,'® published a visible-light photoredox-catalyzed
[HAT+RPC] mechanism that can engage classically weak
nucleophiles, including fluoride, and readily forge fully
substituted centers from tertiary C—H precursors. We
hypothesized that the established platform could be extended
to the formation of an array of N-benzyl azoles, including those
bearing fully substituted centers. In addition, these works
demonstrated the power of photoredox catalysis to mediate a
formal hydride abstraction with two different types of HAT
reagents: tert-butyl peroxybenzoate (TBPB) and N-acyloxyph-
thalimide. Thus far, only photoredox platforms have exhibited
such modularity in the examination of stereoelectronically
diverse HAT reagents for the [HAT+RPC] process. Herein we
report the implementation of N-alkoxypyridinium salts in this
process. Simple N-alkoxypyridinium salts can be readily
prepared in one step and offer an electronically tunable HAT
scaffold.'”"® Finally, mechanistic evidence suggests that an
electron-donor—acceptor (EDA) complex may be operable for
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A. Importance of N-benzylic azole motif in drug discovery
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B. Mechanistic strategy for C-H azolation
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Figure 1. Background on C—H azolation methods. (A) N-benzyl
azoles are attractive pharmaceutical motifs. (B) Recent mechanism for
C—H functionalization. (C) Current C—H azolation methods
utilizing [HAT+RPC].

activating the pyridinium reagents for certain electron-rich
benzylic partners.'”

Our efforts toward the development of a C—H azolation
protocol initiated with the use of TBPB to facilitate the HAT
event. Although successful in our prior work for C—H
fluorination with nucleophilic fluoride (N = 10.8—13.2),”
switching to less nucleophilic coupling partners such as
pyrazoles (N = 8.9—9.6) resulted in competitive trapping of
the carbocation by both benzoate (N = 16.8) and tert-butanol
(N = 54)° bygproducts (Figure 2A). Work by Hong,*' Li,”
and Lakhdar™ has demonstrated that N-alkoxypyridinium
reagents can facilitate intermolecular HAT processes at P—H,
C(sp*)—H, Si—H, and a-oxy C(sp®)—H bonds.”* We
hypothesized that this reagent could also be used for the
intermolecular abstraction of H- at benzylic C(sp*)—H bonds
in the desired transformation (Figure 2B). While N-
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Figure 2. Optimization with N-alkoxypyridinium reagents. (A) Use of
TBPB can lead to competitive nucleophiles. (B) Proposed mechanism
and Stern—Volmer experiment. (C) Optimization of the N-
alkoxypyridinium scaffold.

alkoxypyridiniums bearing long-chain alkyl groups have been
used for intramolecular 1,5-HAT processes,” they have not
been used widely for intermolecular efforts at C(sp*)—H
bonds.”” The pyridinium reagents would be particularly
attractive in the desired transformation, as reductive
fragmentation would reduce the generation of competitive
nucleophilic byproducts (Figure 2B). Accordingly, we rapidly
synthesized a suite of N-methoxy- and N-ethoxypyridinum
reagents.”® With indane and 4-bromopyrazole as our model
substrates, we delightfully observed the desired C—H azolation
product (Figure 2C).

Electron-withdrawing p-cyanopyridinium pyr-1 was discov-
ered to result in higher product formation, possibly due to a
lower reduction potential (see the Supporting Information).
Stern—Volmer experiments corroborated an interaction
between the excited state of the photocatalyst and pyr-1.
Next, we explored the generality of the substrate scope.

Starting with an exploration of azoles (Figure 3), an array of
electron-withdrawing groups at the 4-position of pyrazole were
well-tolerated, including other halides (2—4), esters (), and
trifluoromethyl (6), cyano (7), and nitro groups (8).
Substitution at the 3-position of pyrazole also resulted in

https://doi.org/10.1021/jacs.2c12850
J. Am. Chem. Soc. 2023, 145, 3861—-3868


https://pubs.acs.org/doi/suppl/10.1021/jacs.2c12850/suppl_file/ja2c12850_si_001.pdf
https://pubs.acs.org/doi/10.1021/jacs.2c12850?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.2c12850?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.2c12850?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.2c12850?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.2c12850?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.2c12850?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.2c12850?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.2c12850?fig=fig2&ref=pdf
pubs.acs.org/JACS?ref=pdf
https://doi.org/10.1021/jacs.2c12850?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Journal of the American Chemical Society

Communication

pubs.acs.org/JACS

Br
1.5 equiv. pyr-1 2/\‘
Br, |
Ir(dFppy)s (1 mol%) N-N
OOFRA!
N 7:3DCEHFIP (0.2M), 24 hrs
36W Blue LEDs, R.T.
1 equiv. 3 equiv. C—H azolation product

Secondary Benzylic C-H Functionalization

EWG on pyrazole
1, R = Br, 80% yield

R g S = Flégg%ig@ld R 9, R = CO,Et, 87% yield, rir = 1:12
AR AL J7, 10, R = Br, 8% yield, rxr = 13
7 1 4 R=F 67%yield N2 11.R =1, 80% yield, rr = 5:1
_N 5 R=CO,Et, 75%yield N~ »R=1,80%yield rr=51
N B o v 1 12, R = CF3, 67% yield, one isomer
/ 8, 1 = CF5, 83% yield 13, R = Ph, 35% yield, rir = 2:1°
7, R = CN, 84% yield® : : =2
8, R = NO,, 86% yield®
FaC Br | EtO,C 7
2\(05 2\(05,; SN
74 2
N N 1 C 0 (T
N~ Ncr N~ g, N- N- N-
1 8 / / / !

14, 75% yield® 15, 76% yield
EDG on pyrazole

16, 78% yield 17, 67% yield® 18, 20% yield®

Me Me
/] 2/\|¥ )/1 7
N-N n-N N‘N | N-N
/ Vi ;M "

19, 55% yield® 20, 43% yield® 21, 64% yield? 22, 31% yield

rr=1.2:1°¢
Other Azoles

3 equiv. TBPB Z/ \\N

Ir(PFPPY)s (1 mol%) N

Me
DCE (2M), 3A MS, 24 hrs

36W Blue LEDs, R.T.

Me Br,
“”e "
N
H

3 equiv. 1 equiv. fully substituted

products

Tertiary Benzylic C-H Functionalization

EWG on pyrazole
R
Z/

R
\ {/ i {/ N Z/ \
N N N N
N N N N
M M M M
34, R =Br, 64% yield 40, R =1, 63% yield?
35, R = Cl, 62% yield? 41, R =Ph, 23% yield
36, R = CN, 55% yield
37, R = CO,Et, 52% yield

38, R = CFg, 66% yield?
39, R = F, 60% yield?

EDG on pyrazole

R

42, 50% yield? 43, R = Me, 34% yield
44, R = Bpin, 33% yield

Other Azoles

Me o R
! y N &
Me™ >y N / ) N. .N
N’ Cl N N
Me
Me MeMe OO Meme Me e

48, R = Ph, 73% yield

45, 18% yield? 46, 26% yield 47,50% yield® 49, R = Me, 40% yield

Br Q R cl CN CHO cl

N N N N N
- - AN O A O N S Y
N‘;J N‘;J N‘y/\‘/‘l\h N‘;/‘I{IQ 4N a e 4N 4N MES/QN
I / e I ! !

23, 72% yield? 24, 47% yield® 25, 70% yield 27, R = Me, 78% vield, rr = 1.5:1?
rr=2:12 28, R = Ph, 88% yield?

N N
| I
Me
26, R = SEt, 85% yield, rr = 1.2:1° \Me0

30, 67% yield® 31,32% yield 32, 45% yield
rr=1:10

. 33, 38% yield®
29, 80% yield?

Figure 3. Azole scope for secondary and tertiary benzylic C—H substrates. Reactions were run on a 0.5 mmol scale. DCE = 1,2-dichloroethane.

HFIP = hexafluoroisopropanol. “48 h. 72 h. %60 °C. 96 h.

good to excellent yields (9—13). Difunctionalized pyrazoles
afforded high yields of the products (14—17), and an extended
heterocycle was also successful in the protocol (18). Excitingly,
more electron-rich pyrazoles were successfully alkylated with
our system, representing a class of substrates that are not
compatible with base-metal-catalyzed strategies due to
potential catalyst poisoning (19—22). Furthermore, 1,2,3-
and 1,2,4-triazoles (N & 7.7) were also viable nucleophiles, as
was benzotriazole (23—25).° Substituted tetrazoles, imida-
zoles, and benzimidazoles were also viable substrates (26—33).

Given the minimal effect of steric hindrance observed, we
questioned whether the photoredox-catalyzed [HAT+RPC]
platform could enable the functionalization of tertiary benzylic
C—H bonds. To the best of our knowledge, the synthesis of
fully substituted carbon centers has not been reported in prior
C—H azolation methods with the [HAT+RPC] formula,
despite the enhanced carbocation stability. Classically, tertiary
benzyl halides/tosylates are unstable and/or prepared with
harsh reagents (strong acids) and expensive oxidants.”’
Moreover, the carboxylic acid equivalent of 2-isopropylnaph-
thalene is not widely available from commercial vendors. The
use of C—H alternatives thus represents an advantage in terms

of synthetic ease and available resources. Gratifyingly, 2-
isopropylnaphthalene could be readily functionalized with a
wide array of azoles using TBPB as the HAT reagent.
Currently, we postulate that a methyl radical could be the most
effective H-atom abstractor for tertiary benzylic C—H sites,
which can be derived from -OtBu via a facile f-scission.'®**
Various 4- and 3-substituted pyrazoles were successfully
alkylated (34—41), with the latter being functionalized at the
less sterically hindered nitrogen. Electron-rich pyrazoles also
afforded the products in modest yields (42—44). Notably, 44
contains a nucleophilic arylboron functionality that would not
be tolerated by transition metal approaches. Moreover, the
strength of the carbocation strategy was highlighted with the
alkylation of 3,5-dimethylpyrazole to give sterically congested
adduct 43, albeit in low yield. Finally, the protocol was also
successful at producing fully substituted tetrazole, imidazole,
and (benzo)triazole C—N adducts (46—49).>’

Next, we examined the generality of the benzylic C—H
scope. Methylene sites on both cyclic and acyclic precursors
afforded appreciable yields of C—N products (50—57).
Diphenylmethane, a common motif in drug targets (Figure
1a), worked in good yield (51). Electron-deficient functional
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Scope of C-H Coupling Partner
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Figure 4. Scope of the C—H reaction partner. “60 °C. 48 h. “Tetrahydrofuran (5 equiv). “Conditions: hydrocarbon (3 equiv), azole (1 equiv), and
TBPB (3 equiv) as indicated in Figure 3. ‘1 equiv of C—H precursor, azole (3 equiv), and pyr-1 (1.5 equiv). ‘Eosin Y (5 mol %).

groups at the para position did not significantly hinder the
reaction efficiency (52—56); nevertheless, higher yields were
observed with electron-donating groups (57). Notably, our
carbocation-generating protocol is permissible of aryl bromide
and chloride motifs, allowing for the retention of functional
handles for further derivatization via classical cross-coupling
catalysis. Meta substitution was also well-tolerated (58). The
primary benzylic substrate leading to 59 represents another
class of substrates not demonstrated in other [HAT+RPC]
strategies for azolation. C—H functionalization of allylic
positions was achieved, giving 60 and 61 in 18% and 49%
yield, respectively. Lastly, a-oxy C—H sites were also viable
substrates for the visible-light-mediated azolation (62).

Next, we sought to apply the method to late-stage
functionalization of pharmaceutical scaffolds. The seven-
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membered cyclic core of ivabradine, used in the treatment of
heart failure, was successfully elaborated at the a-benzylic site
in 48% yield (63). Celestolide (64, 70% yield) and the core of
donepezil (65, 45% yield) also underwent C—H azolation with
the [HAT+RPC] protocol in appreciable yields. Lastly, we
demonstrated that azole derivatives of the antifungal agent
bifonazole (66) can be readily prepared in one step from
commercially available 4-benzylbiphenyl. These examples
demonstrate the utility of direct functionalization of benzylic
C—H bonds as opposed to the established multistep processes
involving conversion of a benzyl alcohol to a benzyl chloride
followed by harsh conditions.>

Next, an array of other tertiary benzylic C—H partners were
translated to fully substituted products (67—71). y-Phenyl-
lactone gave sterically congested 68 in good yield, as did
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phenylcyclohexane (69). Monofunctionalization of com-
pounds containing two tertiary benzylic sites was successful
(70), and last, installation of a congested C—N center on 9-
methylfluorene was realized (71). Notably, for substrates 68—
71, the corresponding benzyl chlorides or carboxylic acids are
either commercially unavailable or prohibitively expensive.
Excitingly, compound 72 was successfully prepared, demon-
strating potential for the azolation of heteroarene C—H
substrates.

To probe regioselectivity, a competition experiment was
conducted. Using pyr-1, a preference for azolation at indane
over 2-isopropylnaphthalene was observed. High selectivity for
the secondary position of 73 (16.3:1) was congruent with this
finding. The protocol appears to be selective for secondary
benzylic C—H sites over primary benzylic (74) and aliphatic
tertiary (75) sites and is completely selective for a-oxy benzylic
positions over secondary benzylic ones (76; see the Supporting
Information).

Finally, we sought to evaluate the specificity and
orthogonality of our photocatalytic C—H azolation. Classically,
letrazole and bifonazole are prepared via Sy2-type reactions on
benzyl chlorides with heat and strong bases.”* As depicted in
Figure 4, this platform is sufficiently mild to tolerate the
preparation of 77 in 40% yield with no detection of the Sy2
product (>20:1 regioselectivity). Subsequently, high yields
were achieved for Sy2 azidation (78), thiolation (79), and
esterification (80) substitution reactions. Furthermore, the
benzyl chloride functionality could also serve as an electrophile
in a Pd-catalyzed cross-coupling (81).'

Lastly, pyridinium salts have been reported to participate in
EDA complexes.'®**”%** Control experiments suggested that
when HFIP is added as a cosolvent, an EDA complex could be
operable, on the basis of the observation of product without
photocatalyst and an observed bathochromic shift in the UV—
vis spectra (Figure Sb). Presumably, the EDA complex
facilitates oxidation of the arene, which triggers fragmentation
of pyr-1 to release a methoxy radical. Subsequent HAT at the
benzylic position of the resultant arene radical cation can
generate the benzylic carbocation.” Further UV—vis studies
indicated that only electron-rich substrates form an EDA
complex (see the Supporting Information), suggesting that
other substrates may follow a photocatalyst-mediated mecha-
nism.

In conclusion, we have successfully developed a benzylic C—
H azolation reaction via a photoredox-catalyzed formal hydride
abstraction mechanism. An N-methoxypyridinium salt was
used as an effective intermolecular HAT reagent at benzylic
C(sp®)—H bonds. We have demonstrated the generality of the
method, as it includes the alkylation of a plethora of azoles.
Additionally, a broad C—H partner scope was established,
including the alkylation of secondary and tertiary benzylic C—
H sites, the latter of which afford a direct and simplified route
to N-tert-alkyl azole motifs. Importantly, we showcase the
complementary nature of our reaction conditions to classical
Sx2 and transition metal cross-coupling conditions, which are
two current state-of-the-art technologies for forging alkylated
azole products. Lastly, mechanistic studies suggest that a
plausible EDA mechanism is operable for certain C—H
substrates.
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