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Abstract—Belief propagation (BP) is a classical algorithm
that approximates the marginal distribution associated with a
factor graph by passing messages between adjacent nodes in the
graph. It gained popularity in the 1990’s as a powerful decoding
algorithm for LDPC codes. In 2016, Renes introduced a belief
propagation with quantum messages (BPQM) and described
how it could be used to decode classical codes defined by tree
factor graphs that are sent over the classical-quantum pure-state
channel. In this work, we propose an extension of BPQM to gen-
eral binary-input symmetric classical-quantum (BSCQ) channels
based on the implementation of a symmetric “paired measure-
ment”. While this new paired-measurement BPQM (PMBPQM)
approach is suboptimal in general, it provides a concrete BPQM
decoder can be implemented with local operations. Finally,
we demonstrate that density evolution can be used to analyze
the performance of PMBPQM on tree factor graphs. As an
application, we compute noise thresholds of some LDPC codes
with BPQM decoding for a class of BSCQ channels.

I. INTRODUCTION

Low-density parity-check (LDPC) codes and iterative de-
coding were introduced by Gallager in 1960 [1] but they
did not attract widespread interest until the introduction of
Turbo codes [2] and the rediscovery of LDPC codes [3] four
decades later. Belief propagation (BP), in its general form,
was introduced by Pearl in 1982 [4] as an efficient algorithm
to exactly compute marginals for tree-structured probability
models. BP works by passing messages between neighboring
nodes and it was subsequently shown that BP includes both
Gallager’s iterative decoding and turbo decoding as special
cases [5], [6].

Starting in the 1990s, there has been a growing interest
in generalizing concepts from classical coding to the case
of classical quantum (CQ) channels. Holevo, Schumaker,
and Westmoreland identified the maximum rate of classical
information transfer over a CQ channel [7]. Subsequent works
described code constructions and decoding strategies that
achieve this optimal rate [8], [9]. At the same time, advances in
photonic communication underscored the need for developing
low-complexity decoding protocols [10], [11], [12], [13]. In
particular, there is a significant gap between the information
rate achievable by a receiver with individual pulse-by-pulse
detection and the rate possible with optimal joint quantum
receiver (i.e., measurement of the full output system) if the
mean number of photons per received optical pulse is smaller
than one.

A key question is whether generalizations of BP can also be
used to efficiently decode codes transmitted over CQ channels.
Just as direct computation of the marginal probability distri-
bution is computationally infeasible for large factor graphs in

the classical case, it is experimentally infeasible to naively
implement the optimal (Helstrom) measurement for decoding
a code defined by a large factor graph. This is because it would
require many quantum operations involving all the qubits. The
idea of generalizing BP to decode a classical binary code
transmitted over a CQ channel was introduced by Renes [14]
and it offers an alternative to experimentally infeasible collec-
tive measurements. The described approach is restricted to the
pure-state channel (PSC) and codes whose Tanner graphs are
trees. It is described based on a channel-combining perspective
that also adopted in this work. Following [15], we will refer
to this general decoding method as belief-propagation with
quantum messages (BPQM). In [15], simulation results are
presented for a simple 5-bit code (whose Tanner graph is a
tree) and compared to a classical decoding approach. For the
5-bit code, it is observed in [15] (and proved in [16]) that
bit-optimal decoding is actually block optimal in this context.
However, this version of BPQM had exponential complexity
due to the need for controlled unitary operations which grow
with the size of the tree.

Piveteau and Renes significantly advanced the understand-
ing of BPQM in [17], where they prove that BPQM is si-
multaneously optimal both for bit-error probability and block-
error probability for binary linear codes with tree factor graphs
on the PSC. They additionally reduce the overall decoding
complexity from exponential to quadratic by introducing the
idea of using a quantum reliability register for each qubit
message.

In this work, we introduce a paired-measurement BPQM
(PMBPQM) protocol which is the first extension of BPQM to
more general symmetric binary-input CQ (BSCQ) channels.
This extension is based on a lemma that shows any BSCQ
channel can be approximated by an orthogonal mixture of
BSCQ channels that output a single qubit. In some ways, this
is similar to the fact that any symmetric binary-input classical
channel can be represented as a stochastic mixture of binary
symmetric channels (BSCs). For classical bit-flip channels,
it is easy to verify that PMBPQM is optimal and we also
demonstrate that it is optimal for the pure-state channel.

For more general BSCQ channels, we also have an example
(see [18]) that shows any approach involving binary-outcome
measurements will be suboptimal relative to the collective
Helstrom success probability. However, by comparing the
performance of PMBPQM to the Helstrom measurement for a
variety of factor graphs with up to 13 qubits, we observe that
PMBPQM is near optimal for the chosen instances. One inter-
esting open question is “What is the worst-case gap between



PMBPQM and the collective Helstrom measurement?”.

We also analyze the performance of PMBPQM for large
factor graphs by deriving its density evolution equations. Den-
sity evolution, which was formalized in [19], is an asymptotic
analysis method that can be used to find noise thresholds for
BP decoding of long LDPC codes sent through symmetric
channels. For LDPC codes on CQ channels with optimal
Helstrom decoding, there are no currently known methods
for computing channel noise thresholds. We demonstrate that
PMBPQM lends itself to asymptotic analysis and characterize
the region of channel parameters for a qubit BSCQ channel
such that asymptotically reliable decoding is achievable via
PMBPQM.

II. NOTATION

We define the set of natural numbers by N = {1,2,...}
and use the shorthand [m] = {1,...,m} for m € N. We
denote the n-dimensional complex Hilbert space by H, and
write the i-th element of the standard basis of 7, as |i) for
i € {0,1,....,n—1}. A pure quantum state, |)) € H,, is
an n-dimensional complex vector. The Hermitian transpose of
|¢) € H,, is denoted either by |¢) or (¢|. The inner product
between [1) and |¢) is denoted by {(¢|w) :== |¢)" ) and all
pure states are normalized such that | (¢ )] = 1.

A stochastic mixture of pure states is called a mixed state.
Consider a random pure state defined by {p;, [i) },¢(,,,) Which
takes value |1);) with probability p;. The associated mixed state
is represented by the density matrix p = Z;”:_Ol Di |0i )i,
which is a positive semidefinite matrix with unit trace. Let
D(Hy,) denote the set of density matrices (i.e., positive semi-
definite n X n complex matrices with unit trace). When the
value of n is not important, we will use H to denote the Hilbert
space and D(H) to represent the set of density matrices.

Finally, we denote with B(H,,) the set of positive semi-
definite n X n complex matrices with bounded (not necessarily
unit) trace. A quantum measurement on an n-dimensional
quantum system is then represented by II = {10, }[72, where

each element IT; € B(H,) and 3°7°, II; = I,.

A. Classical Quantum Channels

Definition 1. A BSCQ channel, W: {0,1} — D(#H.,), maps
classical input z € {0, 1} to the density matrix output W (z) €
D(H.,,) such that the symmetry constraint W (1) = UW (0)U
for U2 = 1 is satisfied. If n = 2, then the output lives in a
2-dimensional Hilbert space and we call this a qubit channel.

Definition 2. A minimum-error measurement 11 = {1, 37,
for a given set of candidate states {p; }|72; with corresponding
probabilities p; = Pr(p = p;) is a measurement that maxi-
mizes the probability of correct detection,

> i Tr[ p;].

Jj=1

Definition 3. The Helstrom measurement is a minimum-
error measurement for a given binary state set {p,,p_}
with corresponding probabilities {p,1 — p}. It is defined by
projectors onto the positive and negative eigenspaces of the

matrix ppy — (1 — p)p_ [20]. We denote the corresponding
success probability as Py(p4, p—, p).

III. PAIRED-MEASUREMENT BPQM
A. Representation of Symmetric CQ Channels

Lemma 4. Any qubit BSCQ channel is unitarily equivalent to
W: {0,1} = D(Hz) satisfying W (z) = oZp(0,p)oZ with

2 p z
p(0.p) = 0% (1 = p)H |0)(0] H' + ET)or,

where H is the Hadamard operator and |0) := cos(%)|0) +
sin() 1)

Proof: See [18]. [ |
We now introduce a “paired measurement” that processes
the outputs of an arbitrary BSCQ channel into an orthogonal
combination of qubit BSCQ channels. This illustrates the
symmetry of collective Helstrom measurement. It is also
one part of PMBPQM, which uses bit-node and check-node
combining in concert with sequential applications of paired
measurement.

Definition 5. For a BSCQ channel W (z) = U?pU~? with
p € D(Han), let {|v;)}|7_; be n orthogonal eigenvectors of
W(0) — W (1) with non-negative eigenvalues {\;}|"_, satis-
fying (W(0) — W(1)U |v;) = =A;U |v;) and U [v;) L [v;).
The existence of such a set is established in Lemma 6 and the
paired measurement for W is defined to be

My = { foy) ey + U ey oy U}

Lemma 6. Consider the task of distinguishing between
equiprobable outputs of a BSCQ channel {W(0),W(1)}.
Then, the optimal Helstrom measurement 11 o for this channel
is equivalent to first implementing the paired measurement
for W and then using its outcome, j, to select the second
measurement, Iy (j) = { o) ;] , U Jv;)(v;| U}

Proof: Define M = p — UpU and let |v;) be an
eigenvector of M with eigenvalue A;. Then, U |v;) is an
eigenvector with eigenvalue —)\; because

n
j=1

M(U |v;)) = (pU — Up) |v;) = U(UpU — p) |v;)
= —UM |vj) = =\;U |vy).

The Helstrom measurement is determined by the positive
and negative eigenspaces of M. Thus, one can choose an
orthonormal basis {|v;)}|7_; for the n largest eigenvalues
{Aj =, such that (v;|U|v;) = 0 and the Helstrom mea-
surement is given by

Iy = { Z [07)(v;] 7ZU|vj><vj| U}-

For the case where 0 is an eigenvalue of M, the correspond-
ing eigenvectors can be grouped arbitrarily into these two
projectors without affecting the error probability. However, the
existence of the paired measurement decomposition requires
a longer argument and this is given in [18]. [ |



Lemma 7. For a BSCQ channel W: {0,1} — D(Ha,)
with equiprobable inputs, the channel W followed by paired
measurement Iy, is equivalent to a BSCQ which defines the
classical mixture of symmetric qubit channels given by

n
= wiozpicz 1l ).
=0

From this, we see that the j-th paired outcome has probability
p;j = Tr[(|vj)(v;| + U |vj){v;|U)p| and results in a post-
measurement density matrix equivalent to
pi = 1 ( (il plvg) (vl Uplvs) ) '
T \(uilpU Jvj) - (v;[UpU Jvj)
Proof: See [18]. |

B. Channel Combining for Bit and Check Nodes

The following definitions of bit-node and check-node com-
bining can be found in [21] and are straightforward generaliza-
tions of classical definitions for LDPC codes. Since these op-
erations preserve channel symmetry, the paired-measurement
can also be applied to the combined channels.

Definition 8. For CQ channels W, W’, the bit-node and check-
node channel combining operations are defined by

(W e W]z )'*W( ) ® W'(z)
(W B W’](z) Z W(a)eW ().
z'e{0,1}

Lemma 9. If W, W’ are symmetric CQ channels, then W @W'
and W B W' are symmetric CQ channels.

Proof: See [18]. [ |

C. Optimality of PMBPQM for Pure State Channels (PSC)

We show that implementing paired-measurements before
bit- and check-node combining is equivalent on PSCs to the
BPQM method outlined in [14], [15]. Given that a coherent
implementation of this BPQM method has been proven to be
optimal for PSCs [17], it follows that paired-measurement
BPQM is likewise optimal for PSCs. First, we define the
canonical PSC Wj.

Definition 10. The canonical pure state channel (PSC), Wy,
maps binary input z € {0,1} to Wy(z) = oZ(H |0)(0| HT)oZ

Now, we show that using paired-measurement BPQM after
check combining is equivalent to coherent BPQM check node
combining [14] via applying CNOT; ;5.

Lemma 11. Implementing the paired-measurement to distin-
guish between [Wy & Wy:](0) and (Wy @ W/ |(1) is unitarily
equivalent to implementing

CNOTlHQ[We WO’](Z)CNOT:L*)Q
= > | (=00 (-1)”
je{0,1}

(1 + cos(6) cos(#
and cos(0%®) =

07| 13)Gl

")) p1 = 1= po, cos(by') =
cos(0)—cos(0’)
1—cos(0) cos(0’)"

where pg =
cos(0)+cos(0’)
1+4-cos(0) cos(0’)’

Aoy

Figure 1: The left side shows the five-qubit factor-graph. The
right side depicts paired-measurement BPQM for the five-qubit
factor-graph, where each stage of paired-measurement BPQM
merges two qubits into one new qubit.

Proof: The difference matrix is given by

(Wo 8 W] (0) — [Wo 8 Wer](1)

1 0 0 O

. . ’ ! O -1 0 0
:QSln(g)COS(g)Sln(%)COS(%) 0O 0 -1 0
0 0 0 1

The optimal choice of paired measurement is defined by
|o) = %(1,0,0,1) and |01) = %(71,0,0,1) with re-
spective eigenvalues of +2sin(6) cos(f)sin(6’) cos(6’). The
probability of obtaining outcome Ty = |0g){o|+U |00){o| U
is po = 3(1 + cos(f) cos(#')) for symmetry operator U =
o0x®I. The corresponding post-measurement state for outcome
i € {0,1} is given by
pli,z) = oZH |—02) (02| H o} ]
Using [14], we can similarly demonstrate unitary equiva-

lence of paired-measurement for bit-node combining to the
coherent BPQM operation. First, we define

a4 O O a_—
n. la- O 0 —as
U@(@, 0 ) i 0 b+ b 0 )
0 b- —by 0
1 Cos(e e)icos(9+9)
at ‘= —= )
/1 + cos() cos(0)

/1 — cos(0) cos(9")

Lemma 12. Implementing the paired-measurement to distin-
guish between Wy @ Wy ](0) and Wy @ Wy |(1) is unitarily
equivalent to
Us (6, 0)[Wo ® Wo'l(2)Us (6.6)" := |(~
where cos(6®) = cos(6) cos(0").

Proof: See [18]. [ |

IV. RESULTS FOR THE FIVE-QUBIT FACTOR GRAPH

A. Decoding on General BSCQ Channels

Now, consider a qubit BSCQ W which is neither a pure
state channel nor a purely classical channel. Specifically, we
consider the channel family defined by

W(z) = (1 p)H |(~1)°6)(~1)°6] '
FPH|(-1) 0 ()= HT ()

o (L )

D*09)((=1)%6°|,
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Figure 2: Left hand side depicts success probability for both the Helstrom and paired-measurement BPQM approach as a
function of 6 for p € {0,0.1,0.3}. Right hand side depicts relative difference in success probability between the Helstrom and

paired-measurement BPQM approach (i.e. —¢—

and observe that W(z) = U*pU? for p = W(0) and
U = ox. PMBPQM enables message-passing decoding for
general BSCQ channels. Here, we plot simulation results for
PMBPQM for the root node of the 5-qubit factor graph with
parity checks x1®xoPx3 = 0 and 1 Px4PBxs = 0 depicted in
Figure 1. We note that one can coherently decode all of the bits
by adopting the message-passing framework introduced in [17]
which introduces a quantum register to store the reliability of
the message.

For the five-qubit factor-graph, the PMBPQM approach
consists of the following steps:

1) Implementing paired measurement on qubits 2 and 3 for
W @ W to get outcome a and post-measurement state
pla.2)

2) Implementing paired measurement on qubits 4 and 5 for
W B W to get outcome b and post-measurement state
p(b; z)

3) Implementing paired measurement for p(a, z) ® p(b, 2);
obtain measurement outcome ¢ and post-measurement
state p(c, z)

4) Measuring p(c,z) and qubit 1 through Helstrom mea-
surement for {W(0) ® p(c,0), W(1) ® p(c, 1)}

This process is depicted in Figure 1. We then generate
success probabilities for the five-qubit factor-graph using both
a paired-measurement BPQM approach and a collective Hel-
strom measurement respectively. The left hand side of Figure
2 shows the overall success probability of both approaches,
while the right hand side of Figure 2 plots their relative
difference. We observe that the relative difference is small
for all choices of channel parameters (6, p) and in the special
case of a PSC (p = 0), there is no relative difference.

We have also considered the “worst case” gap between
paired-measurement BPQM and the collective Helstrom mea-
surement. For the tested cases, the worst case gap is rel-
atively small and the paired-measurement BPQM is either
optimal or close-to-optimal in all cases. We also tested that
PMBPQM outperforms the naive locally-greedy taht first

Dhtson—Fopont ) a5 function of @ for p € {0,0.05,0.1,0.2,0.3}.

measures and the performs classical BP. This is discussed
further in [18] where we demonstrate that a small gap between
local measurement strategies and the collective Helstrom will
also occur with any approach using semi-local binary-output
measurements. Namely, there exists an example where no local
measurement approach or extension of BPQM can achieve the
optimal Helstrom success probability.

Lemma 13. Consider a tree factor graph for a binary linear
code where all bits are sent through CQ channels. When the
root bit has value z € {0,1}, we denote the density matrix
of the observations by p,. Let Pry(po,p1) be the optimal
success probability for decoding algorithms that start from the
bottom of the tree and, in each round, measure a single check
node or bit node is conditional on all previous measurement
results. Then, there are CQ channels where

Piu(po, p1) < Pu(po, p1.3).
Proof: See [18]. [ |

V. DENSITY EVOLUTION

Density evolution is an technique that allows one to analyze
the asymptotic performance of a given code ensemble with
BP decoding by tracking the probability density function of
messages that are passed along edges of a factor graph [22].
Density evolution thus determines whether a given channel and
degree distribution leads to asymptotically reliable decoding.
In turn, this enables the construction and optimization of
low-density parity-check (LDPC) codes that achieve reliable
communication at rates close to the channel capacity.

While there is no currently known method to analyze
the performance of general protocols such as the collective
Helstrom measurement, we demonstrate here that it is possible
to extend density evolution to provide an asymptotic analysis
(via Monte Carlo simulation) of PMBPQM. Such a method
is possible because each the paired measurement operation
allows the result of bit- and check-node combining to be
viewed as a new single-qubit BSCQ channel. Thus, the paired
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Figure 3: The left diagram shows a heat map depicting the noise threshold for LDPC codes on (1) as a function of |§ — 0|
and g = 2p (where p is the bit flip probability for a BSC). Yellow indicates channel parameter pairs that are below the noise
threshold for the (3,6) code. Dark green and light green indicate the same for the (3,4) and (4,5) codes respectively. Dark
purple indicates channel parameters that are above the noise threshold for all tested code structures. On the right, we see a
corresponding diagram for the Holevo bounds of the associated code rates, {0.2,0.25,0.5}.

measurements can be iteratively performed up the tree and
the threshold can be found by tracking the channel parameters
after a large number of channel combining iterations.

We begin by describing bit- and check-node combining
operations for higher-degree bit and check nodes. First, we
consider the case where the bit node has degree d, and the
check node has degree d., and where for each node the channel
corresponding to the j** qubit is denoted as (/). The steps
are then given by:

1) For j € {1,...,|%]}, execute paired measurement
{[W(Zj—l) ® W 2](0), [WwZ-1 @W(2j)](1)} to get
post-measurement channels {W(12) . Jy(de=1.dv)}
(or W(dv=1 if d,, is odd)

2) Repeat the above step with the post-measurement chan-
nel set to form the new set { W (1234 Jy7(5678) " 1 etc.

3) Repeat until only a single post-measurement qubit re-
mains with effective channel T/

4) Implement a final paired measurement for W ® W

For a check node, the steps are analogous (with bit-node
combining replaced by check-node combining) except there
is no additional combining with W (in the 4th step).
Density evolution works by tracking the distribution of the
PMBPQM qubit channels. This is implemented using a Monte
Carlo process sometimes called population dynamics (see [18]
for details). For a depth-N LDPC code tree corresponding
to a factor graph with alternating bit and check layers, and
bit nodes are degree d, and check nodes are degree d.. We
suppose that all bits are initially sent separately through the
BSCQ channel Wy ,(z) = (1 — p) |(=1)6){((—1)?6| + p3.
The following method is used for density evolution:
1) Create multiset S = {(0,p)}|+L, with M = 5000 copies
of the channel parameters and initialize multiset S’ = ()
2) For jin {1,2,...,N}:
a) Randomly draw (0, ¢) and (0',¢’) from S
b) If j is odd, implement iterative paired measure-
ments for the check node until all d. qubits are
condensed to a single post-measurement qubit state

p(j:2) = (1= a;) (=1)0;)((—=1)%0;] + a;5

c) If 7 is even, implement iterative paired measure-
ments for the check node until all d, qubits and
the parent qubit (with parameters (6, ¢)) are con-
densed to a single post-measurement qubit state,
P, 2) = (1= 4) (=10, (~1)°0,] + ¢,

d) Add the new channel parameters (6;,q;) to S’

e) Repeat 2a-2d until S’ has M elements, set S = S’

3) The overall success probability is the average over
(0,q) € S of the success probability for distinguishing
between (1 — q) |0)(0] + q3 and (1 — q) |[—0)(—6]| + q5

We say (6, q) is below the noise threshold if the success

probability for the root bit approaches 1 as N — oo.

VI. CONCLUSIONS

We introduce a paired-measurement BPQM protocol that
extends BPQM to the case of BSCQ channels. This pro-
tocol reduces to BP for classical symmetric channels and
matches the known (optimal) BPQM protocol for the pure-
state channel. For more general BSCQ channels, we show
that PMBPQM is performs well in all tested instances. We also
consider the application of PMBPQM to large factor graphs by
using asymptotic analysis techniques. Based on Monte Carlo
density evolution, we plot the region of channel parameters for
which PMBPQM achieves asymptotically reliable decoding
for a few different regular LDPC codes on BSCQ channels.
The introduction of PMBPQM naturally leads to interesting
open questions about the “worst case” gap between paired-
measurement BPQM and the collective Helstrom measure-
ment; as well as whether there exists an extension of BPQM
that is optimal for general BSCQ channels.

VII. ACKNOWLEDGMENTS

The authors would like to thank Narayanan Rengaswamy,
Joseph Renes, and Saikat Guha for helpful discussions. This
work was supported in part by the National Science Founda-
tion (NSF) under Grants No. 1908730 and 1910571. Any opin-
ions, findings, conclusions, and recommendations expressed in
this material are those of the authors and do not necessarily
reflect the views of these sponsors.



[1]

[2]

[3]

[4]
[51

[6]

[7]

[8]

[9]

[10]

[11]

REFERENCES

R. G. Gallager, Low-Density Parity-Check Codes. PhD thesis, M.L.T.,
Cambridge, MA, USA, 1960.

C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit
error-correcting coding and decoding: Turbo-codes,” in Proc. IEEE Int.
Conf. Commun., vol. 2, (Geneva, Switzerland), pp. 1064—-1070, IEEE,
May 1993.

D. J. C. MacKay, “Good error-correcting codes based on very sparse
matrices,” IEEE Trans. Inform. Theory, vol. 45, pp. 399—431, March
1999.

J. Pearl, “Reverend Bayes on inference engines: A distributed hierarchi-
cal approach,” in AAAI Conf. Artificial Intelligence, 1982.

R. J. McEliece, D. J. C. MacKay, and J. Cheng, “Turbo decoding as
an instance of Pearl’s "belief propagation” algorithm,” IEEE J. Select.
Areas Commun., vol. 16, pp. 140-152, Feb. 1998.

F. R. Kschischang and B. J. Frey, “Iterative decoding of compound codes
by probability propagation in graphical models,” IEEE J. Select. Areas
Commun., vol. 16, no. 2, pp. 219-230, 1998.

B. Schumacher and M. D. Westmoreland, “Sending classical information
via noisy quantum channels,” Phys. Rev. A, vol. 56, pp. 131-138, Jul
1997.

M. M. Wilde and S. Guha, “Polar codes for classical-quantum channels,”
IEEE Transactions on Information Theory, vol. 59, pp. 1175-1187, Feb
2013.

V. Giovannetti, S. Lloyd, and L. Maccone, “Achieving the holevo bound
via sequential measurements,” Physical Review A, vol. 85, Jan 2012.
A. Jagannathan, M. Grace, O. Brasher, J. H. Shapiro, S. Guha, and J. L.
Habif, “Demonstration of quantum-limited discrimination of multicopy
pure versus mixed states,” Phys. Rev. A, vol. 105, p. 032446, Mar 2022.
Q. Zhuang, Z. Zhang, and J. H. Shapiro, “Optimum mixed-state dis-
crimination for noisy entanglement-enhanced sensing,” Phys. Rev. Lett.,
vol. 118, p. 040801, Jan 2017.

[12]

[13]

[14]

[15]

[16]

(17]

(18]

(191

[20]
(21]

[22]

M. P. da Silva, S. Guha, and Z. Dutton, “Achieving minimum-error
discrimination of an arbitrary set of laser-light pulses,” Physical Review
A, vol. 87, may 2013.

S. Guha, “Structured optical receivers to attain superadditive capacity
and the holevo limit,” Phys. Rev. Lett., vol. 106, p. 240502, Jun 2011.

J. M. Renes, “Belief propagation decoding of quantum channels by
passing quantum messages,” New Journal of Physics, vol. 19, no. 7,
p. 072001, 2017.

N. Rengaswamy, K. P. Seshadreesan, S. Guha, and H. D. Pfister,
“Quantum advantage via qubit belief propagation,” in Proc. IEEE Int.
Symp. Inform. Theory, pp. 1824-1829, 2020.

N. Rengaswamy, K. P. Seshadreesan, S. Guha, and H. D. Pfister, “Belief
propagation with quantum messages for quantum-enhanced classical
communications,” npj Quantum Information, vol. 7, no. 1, pp. 1-12,
2021.

C. Piveteau and J. M. Renes, “Quantum message-passing algorithm for
optimal and efficient decoding,” arXiv preprint arXiv:2109.08170, 2021.
S. Brandsen, A. Mandal, and H. D. Pfister, “Belief propagation with
quantum messages for symmetric classical-quantum channels,” extended
version to be submitted to arXiv.

T. J. Richardson and R. L. Urbanke, “The capacity of low-density parity-
check codes under message-passing decoding,” IEEE Trans. Inform.
Theory, vol. 47, pp. 599-618, Feb. 2001.

C. W. Helstrom, “Quantum detection and estimation theory,” Journal of
Statistical Physics, vol. 1, no. 2, pp. 231-252, 1969.

J. M. Renes, “Duality of channels and codes,” IEEE Trans. Inform.
Theory, vol. 64, no. 1, pp. 577-592, 2018.

T. J. Richardson and R. L. Urbanke, Modern Coding Theory. New York,
NY: Cambridge University Press, 2008.



