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A B S T R A C T

Simulating extreme structural behavior is of vital importance as it is a major means to study the damage and
failure mechanism of engineering structures. However, convergence issues frequently occur when simulating
structural response under extreme loading using traditional nonlinear solution strategies, e.g., the Newton–
Raphson family of methods. Though commercial finite element software provides explicit dynamic methods
to overcome this issue, they are only conditionally stable and require a small time step size. In this paper, a
new explicit dynamic approach to simulate static problems involving extreme structural behavior is presented.
The multi-support excitation pattern is employed to apply a nodal displacement history of the problem in
a dynamic way, then the unconditionally stable explicit KR-𝛼 method is used to eliminate the convergence
issues. Three examples are presented to illustrate the effectiveness of the proposed dynamic approach, and a
parametric study is conducted to investigate the influence of the algorithmic parameters. The results indicate
that the proposed method provides the same accuracy as the traditional static method without any convergence
issues.
1. Introduction

The finite element method (FEM) is a common way to study the
damage and failure of reinforced concrete (RC) structures, especially,
nonlinear static analysis is preferred as it can reproduce the whole
process of the damage evolution and reveal the failure mechanism.
However, since structural failure usually involves extreme behavior,
e.g., rebar buckling and concrete crushing, it can be difficult to ac-
curately and effectively perform and analyze since the stress state
is complicated. Furthermore, extreme behavior generally occurs sud-
denly, and thus convergence problems can be encountered. The model
may fail before the structure reaches its real limit state, thus sufficient
information about the failure mechanism cannot be obtained.

In order to overcome the convergence issue in static nonlinear
extreme behavior modeling, several approaches have been developed in
the last few decades. To name a few, the arc-length method is proposed
to perform buckling analysis instead of using load-control schemes [1].
The line search technique is developed to improve the direction search
in nonlinear iterations when using full and modified Newton–Raphson
methods [2]. To solve problems with both material and geometrical
onlinearities, the Krylov–Newton Accelerations method is used to
mprove the convergence [3]. Also, the quasi-Newton method with

∗ Corresponding author.
E-mail address: dcfeng@seu.edu.cn (D.-C. Feng).

BFGS-type secant stiffness operator was developed by researchers for
the cyclic loading analysis of concrete structures [4,5]. However, these
methods can only improve the convergence problem rather than elimi-
nating the issue. It is still a challenging task to model extreme behavior,
especially in the assessment of structures subjected to complex stress
states (e.g., shear effect).

Another way to deal with the convergence issue in static extreme
behavior modeling is to employ dynamic direct integration algorithms,
especially the explicit family ones. In fact, in modeling structures made
of brittle materials such as masonry and concrete, unstable nonlineari-
ties due to crack propagation and/or strain-softening usually exist and
may induce local dynamic processes in the middle of an overall static
process under certain conditions, and dynamic algorithms may be more
suitable to deal with such unstable nonlinearities [6]. Several dynamic
solution methods have been applied to solve static problems, and
examples include buckling analysis involving mode jumping [1] and
snap-through [7], crack propagation simulation in RC [8,9] and ma-
sonry structures [10], debonding failure analysis in FRP-strengthened
beams under static loads [6], in-plane behavior simulation of masonry
infilled concrete frames [11] and loading–unloading–reloading behav-
iors simulation of RC beams [12]. However, these applications are
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usually based on commercial FEM software like ABAQUS, in which tra-
ditional conditionally stable explicit algorithms (e.g., central difference
method) are employed. To keep the stability of the dynamic algorithm,
a strict limitation is required in the time step size, usually at the level of
10−6 s, which represents a great computational cost [13]. In addition,
as an open-source FEM software, OpenSees is widely used in various
structural analysis but no one has employed the dynamic integration
algorithms to solve the convergency issue involving in static extreme
behavior simulations. In fact, convergency issues occur frequently in
OpenSees especially for structures under complicated stress states such
as shear walls under cyclic loadings.

In general, dynamic direct integration algorithms can be divided
into two categories: the implicit family and the explicit family. The
implicit algorithms are unconditionally stable, such as the Newmark-
𝛽 method [14] and the generalized-𝛼 method [15]. These implicit
lgorithms require forming the tangent stiffness matrix at each time
tep and the utilization of an iteration scheme to satisfy equilibrium at
he current time step. Therefore, convergence issues may occur when
orming the tangent stiffness matrix under nonlinear scenarios. One
olution to avoid the convergence issue is to utilize explicit algorithms
n which no tangent stiffness matrix and no iteration are required,
uch as the widely-used central difference method(CDM). However,
he CDM is only conditionally stable and requires a time step size
hat is inversely proportional to the highest natural frequency of the
tructure, which is usually unacceptable for a system with a large
umber of freedoms. Moreover, the CDM is a non-dissipative scheme,
he solution accuracy can be severely ruined by spurious oscillations
hich are caused by the dispersion errors in the high-frequency modes.
o avoid the extremely small time step size, some unconditional stable
xplicit methods are proposed, such as Chang’s algorithm [16] and
R algorithm [17]. However, Chang’s algorithm is only explicit for
isplacement and becomes implicit for systems with velocity-dependent
onlinear responses [18], and CR algorithm will encounter adverse
vershoot response in high-frequency modes [19]. To avoid spuri-
us oscillations, methods with controllable numerical damping are
roposed, such as the Bathe method [20]. Bathe method adopted a sub-
teps technique and this technique can be applied to both explicit [20]
nd implicit algorithms [21–23]. Although Bathe’s explicit algorithm
chieved desired numerical damping to suppress spurious oscillations
f high frequencies and an extended stability limit compared to the
DM, it is still a conditionally stable algorithm. Recently, a set of
nconditionally stable explicit algorithms with controllable numerical
amping has been proposed [24–28]. The KR-𝛼 method is one such
family of algorithms which has been implemented in the FEM software
OpenSees. The method has been already used in various numerical
simulations, e.g., progressive collapse simulation of RC structures [29]
and in real-time hybrid simulations [30]. The KR-𝛼 method can be also
used in nonlinear static analysis involving extreme structural behavior,
which paves the way for this study.

The aim of this paper is to use the dynamic KR-𝛼 method in simu-
lation of static extreme structural behavior through the OpenSees plat-
form [31]. The formulation of the KR-𝛼 method is firstly derived, and
the application of the nodal displacement to any arbitrary set of nodes
through the multi-support excitation pattern in OpenSees
is then introduced. Three typical examples involving extreme behav-
iors and/or complex stress state are presented as they demonstrate
the superior of the explicit methods in overcoming non-convergence.
Meanwhile, the key algorithmic parameters are analyzed to investigate
their influence on the results, and setting recommendations are made
for practical applications.

2. Unconditionally stable explicit dynamic integration method

Without loss of generality, the dynamic motion equation of a multi-
DOF structure can be written as

𝐌𝐮̈ 𝑡 + 𝐂𝐮̇ 𝑡 + 𝐑 𝐮 𝑡 , 𝐮̇ 𝑡 = 𝐅 𝑡 (1)
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( ) ( ) [ ( ) ( )] ( )
where 𝐌 and 𝐂 are the mass and damping matrices, respectively; 𝐮 (𝑡),
𝐮̇ (𝑡), 𝐮̈ (𝑡) are the displacement, velocity and acceleration vectors of the
ynamic system; 𝐑 (𝑡) is the resisting force vector, which is usually
related to structural displacement and velocity; 𝐅(𝑡) is the applied
external force vector; and, 𝑡 is the time.

To solve the equations of motion, a discrete scheme is needed. In
the KR-𝛼 method [24], the equations are transformed into the following
form by constructing the corresponding updating equations for velocity
and displacement as follows:

𝐌
⌢
𝐗̈𝑖+1 + 𝐂𝐗̇𝑖+1−𝛼𝑓 + 𝐑𝑖+1−𝛼𝑓 = 𝐅𝑖+1−𝛼𝑓 (2)

with
𝐗̇𝑖+1 = 𝐗̇𝑖 + 𝜶1𝛥𝑡𝐗̈𝑖

𝑖+1 = 𝐗𝑖 + 𝛥𝑡𝐗̇𝑖 + 𝜶2𝛥𝑡
2𝐗̈𝑖

(3)

n which 𝐗𝑖, 𝐗̇𝑖, 𝐗̈𝑖 represent the displacement, velocity and acceleration
ectors at the 𝑖th time step, respectively; 𝛥𝑡 is the time step size; 𝜶1 and

2 are two integration parameter matrices; and,
⌢
𝐗̈𝑖+1, 𝐗𝑖+1−𝛼𝑓 , 𝐑𝑖+1−𝛼𝑓 ,

nd 𝐅𝑖+1−𝛼𝑓 are the intermediate acceleration, velocity, resisting force
nd applied force vectors, respectively, which are defined as follows:

⌢
𝐗̈𝑖+1 =

(

𝐈 − 𝜶𝟑
)

𝐗̈𝑖+1 + 𝜶𝟑𝐗̈𝑖
̇
𝑖+1−𝛼𝑓 =

(

1 − 𝛼𝑓
)

𝐗̈𝑖+1 + 𝛼𝑓 𝐗̈𝑖

𝑖+1−𝛼𝑓 =
(

1 − 𝛼𝑓
)

𝐑𝑖+1 + 𝛼𝑓𝐑𝑖

𝐅𝑖+1−𝛼𝑓 =
(

1 − 𝛼𝑓
)

𝐅𝑖+1 + 𝛼𝑓𝐅𝑖

(4)

here 𝐈 is the identity matrix; 𝜶𝟑 is an integration parameter matrix;
𝑓 is a scalar integration parameter; and, 𝐑𝑖 and 𝐅𝑖 are the resisting
orce and applied force vectors at the 𝑖th time step, respectively.
To obtain the integration matrices and parameters, the eigenvalues

f the amplification matrix of the KR-𝛼 method are set equal to that
f the generalized-𝛼 method [15], and then the integration parameter
atrices are determined as follows:

1 =
(

𝐌 + 𝛾𝛥𝑡𝐂 + 𝛽𝛥𝑡2𝐊0
)−1𝐌, 𝜶2 =

( 1
2
+ 𝛾

)

𝜶1

𝜶3 =
(

𝐌 + 𝛾𝛥𝑡𝐂 + 𝛽𝛥𝑡2𝐊0
)−1 (𝛼𝑚𝐌 + 𝛼𝑓 𝛾𝛥𝑡𝐂 + 𝛼𝑓 𝛽𝛥𝑡

2𝐊0
)

(5)

here 𝐊0 is the initial stiffness matrix; and, parameters 𝛾, 𝛽, 𝛼𝑚 and 𝛼𝑓
re functions of the high-frequency spectral radius 𝜌∞, given below in
q. (6).

= 1
2
− 𝛼𝑚 + 𝛼𝑓 , 𝛽 = 1

4
(1 − 𝛼𝑚 + 𝛼𝑓 )2,

𝛼𝑚 =
2𝜌∞ − 1
𝜌∞ + 1

, 𝛼𝑓 =
𝜌∞

𝜌∞ + 1

(6)

It can be seen that the spectral radius 𝜌∞ is the only user-defined
parameter in the KR-𝛼 method. 𝜌∞ is associated with the numerical
energy dissipation capacity of the algorithm and is in the range of
[0, 1]. 𝜌∞ = 1 means no numerical energy dissipation, where 𝜌∞ =
0 indicates the maximum numerical energy dissipation. The specific
value of 𝜌∞ should be determined by the problem and the time step
size. The developer [30] recommended that the users should start
with 𝜌∞ = 1 and then gradually reduce 𝜌∞ until a stable response
is achieved. It should also be noted that too much numerical energy
dissipation will influence the response of lower modes of interest, and
therefore 𝜌∞ should be selected with care.

The KR-𝛼 method is implemented in OpenSees by the co-authors,
and the command lines are provided in Appendix A. Note that a
nonsingular mass matrix must be adopted when the KR-𝛼 method is
used.

3. Finite element modeling for typical RC structures

In order to demonstrate the feasibility of the proposed analysis
scheme, the modeling strategy in the OpenSees should be introduced
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Fig. 1. Fiber beam–column element with nonlinear material.
Fig. 2. Multi-layered shell element.
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irstly since KR-𝛼 method has only been implemented in it. The two
ypes of elements employed in the numerical example parts and mod-
ling strategies for RC components will be briefly introduced here, that
s, the force-based fiber beam element for beam-like components and
he multi-layer shell element for wall-like components.

.1. Force-based fiber beam elements

In OpenSees, the force-based beam element with fiber section is usu-
lly employed to model beam/column members in structures, as shown
n Fig. 1. It usually has better performance than the displacement-based
lement since it strictly satisfies equilibrium at the element level even in
he highly nonlinear phase. Therefore, a more coarse mesh can be used
n the simulation, e.g., one element with four Gauss–Lobatto integration
oints is sufficient to model each beam/column member [32,33]. The
section of the element is divided into several fibers and different stress–
strain relations are assigned to different fibers to model materials
(e.g., concrete and steel). Many options are available for material
models in OpenSees, for example, the bilinear stress–strain model
Steel01 with isotropic hardening effect for reinforcement bars and the
60

a

plastic-damage mechanics-based model concreteD [34] for concrete.
The steel models are often used with Min–Max criterion in order to
reflect the reinforcement fracture [13,35]. Besides, the confinement
ffect provided by transverse reinforcement can be well-simulated by
odifying the material parameters of core concrete fibers based on the
ander’s model [36,37].

.2. Multi-layered shell element

For wall-type structures, the multi-layered shell element is usually
dopted for simulation as it can reflect the in-plane and out-of-plane
ehaviors of the walls. The element formulation is implemented in
penSees using the four-node ‘‘ShellMITC4’’ element, which is divided
nto a number of layers of different thickness as indicated in Fig. 2, and
ach layer is assigned with different material properties. For concrete,
ulti-dimensional constitutive model is required to represent the multi-
imensional behavior, while for reinforcement steel, they are assumed
o be smeared over the layer according to the reinforcing ratio and
heir principal directions, and Menegotto and Pinto model [38] is often
dopted to simulate the behaviors of the steel bars.
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Fig. 3. Dynamic application of static displacements for structural analysis.
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In the multi-layer shell element, the axial strains and curvature
of the middle layer are firstly calculated, and the strains of other
layers are then computed according to the plane-section assumption.
By calling for the material constitutive laws, the stress resultants and
stiffness matrix can be obtained through integrating over each layer.
The element is proven to be an effective way that can well simulate
the coupled in-plane/out-of-plane bending as well as the in-plane direct
shear and coupled bending/shear behavior of the RC shear walls [39].

4. Static loading scheme in dynamic analysis procedure

In traditional static analysis, external excitation is applied through a
force-control scheme or a displacement-control scheme. In most cases,
the displacement-control scheme is preferred, because it can predict the
limit capacity and capture the structural behaviors under decreasing
process more accurately. In the displacement-control scheme, target
displacements are given to specific nodes, such as the top node of a
shear wall or the middle node of a beam as shown in Fig. 3, and then the
reaction of the system can be obtained for further analysis. An iteration
technique is usually employed to reach the target displacement, and
convergence issues may be encountered in this process.

However, in a dynamic analysis in OpenSees, external excitation is
applied using the Uniform Excitation Pattern or the Multi-
Support Excitation Pattern. For example, in a seismic analysis,
a ground motion is applied to the supports (base nodes of the model)
using one of these patterns. It is not straightforward to directly impose
static displacements at structural nodes. In this regard, the paper de-
velops a loading scheme to apply the displacement at any nodes in the
dynamic analysis in OpenSees.

The Multi-Support Excitation Pattern is employed to
apply the static displacements. The Multi-Support Excitation
Pattern in OpenSees allows similar or different prescribed ground
motions to be input at various supports in the structure. Unlike the
Uniform Excitation Pattern in which the prescribed ground
motions should be acceleration sequences and applied to the support
(base nodes) only, the Multi-Support Excitation Pattern also
allows displacement sequences with a target value as the prescribed
ground motions in the dynamic analysis. Therefore, displacement se-
quences are used as the inputs to the ‘supports’–the nodes where the
loads need to be applied, as shown in Fig. 3.

Different displacement sequences represent different loading sche-
mes, some of which may induce considerable dynamic effects. In this
paper, two typical loading schemes are studied. One is a linear loading
61

t

scheme shown in Fig. 3(a). It should be noted that cyclic loads can be
regarded as a combination of several monotonic loads, and the linear
loading scheme can be expressed as follows for the 𝑘th monotonic load:

𝑑 (𝑡) = 𝑑𝑖𝑛𝑖,𝑘 +
𝑡 − 𝑇𝑖𝑛𝑖,𝑘

𝑇𝑒𝑛𝑑,𝑘 − 𝑇𝑖𝑛𝑖,𝑘
⋅ (𝑑𝑒𝑛𝑑,𝑘 − 𝑑𝑖𝑛𝑖,𝑘) (7)

where 𝑑 (𝑡) represents the displacement at time 𝑡; 𝑇𝑖𝑛𝑖,𝑘 and 𝑇𝑒𝑛𝑑,𝑘 are
he initial time and end time of the 𝑘th monotonic load, respectively;
𝑖𝑛𝑖,𝑘 and 𝑑𝑒𝑛𝑑,𝑘 are the initial displacement and target displacement of
he 𝑘th monotonic load, respectively; 𝑡 = 𝑇𝑖𝑛𝑖,𝑘+𝑛 ⋅𝑑𝑡, 𝑛 = 1, 2…𝑁𝑠𝑡𝑒𝑝,𝑘;
𝑡 is the time interval in the generated displacement sequence, and
𝑠𝑡𝑒𝑝,𝑘 = (𝑇𝑒𝑛𝑑,𝑘 − 𝑇𝑖𝑛𝑖,𝑘)∕𝑑𝑡 is the number of loading step in the 𝑘th
onotonic load.
The other is a smooth loading scheme shown in Fig. 3(b), which is

xpressed as [6]:

(𝑡) = 𝑑𝑖𝑛𝑖,𝑘 +
[

1 + cos
( 𝑡 − 𝑇𝑖𝑛𝑖,𝑘
𝑇𝑒𝑛𝑑,𝑘 − 𝑇𝑖𝑛𝑖,𝑘

⋅ 𝜋 + 𝜋
)

]

⋅ (𝑑𝑒𝑛𝑑,𝑘 − 𝑑𝑖𝑛𝑖,𝑘)∕2 (8)

he meaning of parameters in Eq. (8) are the same as those in Eq. (7). In
addition, in a pure monotonic loading case, i.e., 𝑑𝑖𝑛𝑖,𝑘 = 0, 𝑑𝑒𝑛𝑑,𝑘 = 𝑑𝑚𝑎𝑥,
𝑇𝑖𝑛𝑖,𝑘 = 0 and 𝑇𝑒𝑛𝑑,𝑘 = 𝑇0, where 𝑇0 is the total time of loading and 𝑑𝑚𝑎𝑥
is the target displacement as show in Fig. 3, then Eqs. (7) and (8) are
educed to

(𝑡) =

⎧

⎪

⎨

⎪

⎩

𝑡∕𝑇0 ⋅ 𝑑𝑚𝑎𝑥 for linear loading
[

1 + cos
(

𝑡∕𝑇0 ⋅ 𝜋 + 𝜋
)

]

⋅ 𝑑𝑚𝑎𝑥∕2 for smooth loading
(9)

It should be noted that there are many ways to produce the dis-
lacement sequences, but the object of this paper is not to find the best
ne but to propose a feasible way to overcome the convergence issues,
hus only these two loading schemes are studied.
A typical command line for applying the nodal displacement at a

elected node using the Multi-Support Excitation Pattern is
rovided in Appendix B.

. Numerical examples

In this section, three numerical examples in total are presented to
llustrate the effectiveness and advantages of the explicit dynamic ap-
roach in solving the static extreme behavior of structural components
nd systems. The first two examples are at component level while the

hird one is at structural level. Among the three examples, examples
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Fig. 4. Details of the column removal test on RC sub-assemblage by Lew et al. [40].
Fig. 5. Schematic of the FE model.
t
I
e

1 and 3 are RC structures under progressive collapse since this failure
involves both material and geometric nonlinearities, example 2 is a RC
shear wall under cyclic lateral displacement which produces significant
shear effect, so all three examples are with typical extreme behavior
and/or complex stress states.

5.1. RC sub-assemblage under column removal

The first example is a column removal analysis of an RC sub-
assemblage. The experiment is conducted by Lew et al. [40]. As shown
in Fig. 4, the beam span is 6069 mm with a section of 508 mm×
711 mm. The figure also gives the reinforcing details for the specimen.
The compressive strength of the concrete is 32 MPa. As for reinforce-
ment, the yielding strength and the fracture strain for the No. 8 bars
are 476 MPa and 21%, respectively, while they are 462 MPa and 18%
for No. 9 bars, respectively. More details about the experiment can be
found in the original reference.

Fig. 5 gives the schematic of the finite element (FE) model. Each
beam is simulated by one force-based fiber element with the ConcreteD
constitutive model for concrete and Hysteretic Material models for
steels. The columns are fixed with the floor, and springs are used to
simulate the constraints at the top of the columns. Besides, a density of
2500 kg/m3 is used to calculate the lumped masses, and the first-order
vibration period of the system is 0.07 s (s).

Both static and dynamic approaches are adopted for comparison. In
62

the static approach, the vertical displacement of 1100 mm is imposed a
directly at the middle column node using displacement-control scheme,
and the Newton–Raphson algorithm is used as the solution method.
The displacement increment is set as 0.1 mm, and the convergence
tolerance is set as 10−6 on the energy norm. In the dynamic approach,
the KR-𝛼 method is used and the smooth loading scheme is selected
to generate the displacement sequence. The total time of loading is
set as 𝑇0 = 1 s; the time interval in the generated excitation is set as
𝑑𝑡 = 0.01 s. The analysis time step size is set as 𝛥𝑡 = 0.007 s, which
is about 1/10 of the first-order vibration period. Rayleigh proportional
damping based on mass and tangent stiffness corresponding to 5% of
critical damping in the first and third modes is used.

Figs. 6(a) and 6(b) present the comparisons of the experimental
and numerical load–displacement curves of the specimen in both the
vertical and horizontal directions, respectively. A typical resistance
force curve of RC sub-assemblage under column-removal scenario can
be divided into three stage. In the beginning, the behaviors of the beams
are similar to three-point bending, called the beam stage. After that,
cracks occur in the bottom of the middle section and the top of the
beam-end, resulting in the compressive arch action (CAA) and reaching
the first peak in Fig. 6(a). With load increasing, concrete is crushed and
the load is mainly resisted by the reinforcement, and this is called the
tensile catenary action (TCA). The second peak in Fig. 6(a) represents
he capacity of the TCA, and the structure fails after the second peak.
t is seen that the numerical results are in good agreement with the
xperimental ones, for both the static and dynamic approaches. The

ctual CAA capacity by the test is 296.2 kN, while predicted CAA
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Fig. 6. Load–displacement curves of the RC sub-assemblage under column removal scenario.
apacity by static and dynamic approaches are the same, 310.4 kN,
ith an error of 4.79%. For TCA capacity, experimental result is 541.2
N and the calculated one is 544.6 kN in the static approach and
38.5kN in the dynamic approach. The errors for the two approaches
re 0.63% and −0.5%, respectively, which indicates that both the static
nd dynamic approaches can predict the TCA capacity well. Similarly,
or the horizontal resistance force, the dynamic approach also shows
he same accuracy as the static one. Thus, it is fair to say that the
roposed dynamic approach can effectively model the column-removal
cenario.

.2. RC shear wall under cyclic lateral load

For better validation of the proposed method, a numerical example
f shear wall under cyclic lateral load is also presented here. The
hear wall specimen RW-A20-P10-S38 that is presented in the Ph.D.
issertation by Tran [41] is employed. As shown in Fig. 7(a), the
pecimen is 152.4 mm in thickness and 1219.2 mm in width, with
ateral load applied at 2438.4 mm above the wall-foundation block
nterface, which means the wall’s aspect ratio is only 2.0. The axial
oad level of the specimen is 0.1𝐴𝑔𝑓𝑐 , where 𝐴𝑔 is the cross-sectional
rea of the wall and 𝑓𝑐 is the specified concrete compressive strength.
Evidently, the wall is a typical squat wall so it will have obvious

hear effect. The finite element model is established based on the multi-
ayered shell mentioned before. Totally 32 shell elements is employed
n the model, as shown in Fig. 7(b). The wall foundation is fixed
ith the floor. The Menegotto and Pinto model is used to describe
he behaviors of the reinforcing steel bars, and the multi-dimension
oncrete model in OpenSees is used to describe the behaviors of the
oncrete. The compressive strength of the concrete is 47.1 MPa, and
he tensile strength is set as 2.0 MPa. The yield strength of 𝜙6.35, 𝜙9.53
nd 𝜙12.7 steel bars are 423 MPa, 472 Mpa and 450 MPa, respectively.
density of 2500 kg/m3 is adopted to calculate the lumped masses,
nd the first-order vibration period of the system is 0.065 s.
Four ways are adopted to simulate the shear wall for compar-

sons, first is the traditional static approach, second we used the im-
licit Newmark-𝛽 dynamic approach with Newton–Krylov algorithm
o enhance the convergence performance, third one we used explicit
ynamic approach with CDM, and last one is the explicit KR-𝛼 dy-
namic approach, i.e, the proposed approach. In the static approach,
displacement-control scheme is employed with the Newton–Raphson
algorithm. The displacement step size is 0.01 mm and the convergence
tolerance is set as 10−5 on energy norm. In the dynamic approach, the
total loading time 𝑇0 is set as 𝑇0=10 s, and the time interval in the
isplacement excitation is set as 𝑑𝑡=0.005 s. For implicit Newmark-𝛽
method, a convergence tolerance of 10−5 on the energy norm and a
maximum number 800 of iteration is employed, and the analysis time
step is set as 𝛥𝑡=0.001 s. For explicit CDM, the analysis time step is
63
set as 𝛥𝑡 = 5 × 10−7s. For explicit KR-𝛼 method, 𝜌∞ = 0.8 is employed
according to the procedure mentioned in Section 2, and the analysis
time step is set as 𝛥𝑡=0.001 s. Furthermore, Rayleigh damping ratio
proportional to mass and tangent stiffness is set as 0.05.

Fig. 8 gives the lateral displacement–load curves that are obtained
through the three approaches. It can be seen that the traditional static
approach diverges at an early stage, thus it is impossible to obtain the
limit capacity of the shear wall. Dynamic approach with Newmark-𝛽
algorithm has a better performance than the traditional static approach
but still encounters with divergence issue. Dynamic approach with
CDM will not encounter convergence issues in theory. However it can
be seen from Fig. 8(c) that even though a extreme small analysis
time step of 5 × 10−7s is adopted, the stability requirement of CDM
is not satisfied thus no reliable structural responses is obtained. By
contrast, the dynamic approach with the KR-𝛼 method can simulate
the structural response by adopting a much larger analysis time step
and therefore is much more efficient than the dynamic approach with
traditional CDM. It can predict the whole process accurately without
any divergence issue, thus sufficient data can be acquired for further
performance assessment of the shear wall.

5.3. RC frame under progressive collapse

The performance of the proposed dynamic approach is demon-
strated at the component-level modeling examples above. Here a
structural-level is also studied to show the feasibility of the proposed
method. A five-story planar RC frame is designed in accordance with
the Chinese design code [42]. The frame is assumed to be located in
Nanjing, China, where the seismic intensity is VII, which means the
peak ground acceleration that is used for designing structures is 0.1
gal with a 10% exceedance probability in 50 years. The geometric
dimensions and the reinforcing details are given in Fig. 9. The dead load
is 5 kN/m2 for the floor and 7 kN/m2 for the roof, while the live load
is 2 kN/m2 for both floor and roof. The concrete compressive strength
is 20 MPa and reinforcement elastic modulus, yielding strength and
hardening ratio are 2×105 MPa, 400 MPa and 0.01, respectively.

The gravity loads are combined as 1.2×dead load+0.5×live load
according to [43] and then applied to the structure. Two scenarios
of pushdown analysis are performed, one is the removal of interior
column B and the other is the removal of the exterior column A.
The target pushdown displacement of the removed column node is
determined through the collapse criterion in [43] as follows: if the
vertical displacement of the node exceeds 1/5 of the shortest span
of the connecting beams, the structure fails. Thus, the target vertical
displacement is determined as 1200 mm. Four approaches that are
mentioned in the last shear wall example are adopted to solve the
problem for comparisons.



Structures 49 (2023) 58–69S.-C. Xie et al.
Fig. 7. Schematic of the shear wall specimen by Tran [41] and the corresponding FE model.
Fig. 8. Load–displacement curve of the shear wall under cyclic lateral load.
The first-order natural vibration period of the RC frame is 0.935 s.
For the static approach, the displacement increment is set as 0.1 mm,
and the tolerance for convergence is set as 10−6 on the energy norm.
For the dynamic approaches, the total loading time is set as 𝑇0=10 s
with time interval 𝑑𝑡 = 0.02s. The Rayleigh damping ratio proportional
to mass and tangent stiffness is 0.05. Furthermore, for the implicit
Newmark-𝛽 algorithm, a convergence tolerance of 10−6 on the energy
norm and a maximum number 200 of iterations is employed, and the
analysis time step is set as 𝛥𝑡=0.005 s. For the explicit CDM, the
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analysis time step is set as 𝛥𝑡 = 5 × 10−6s. For the explicit KR-𝛼
algorithm, 𝜌∞ = 0.5 is used according to the procedure mentioned in
Section 2, and the analysis time step is set as 𝛥𝑡=0.005 s.

Fig. 10 shows the results for the two column removal scenarios, i.e
exterior column removal and interior column removal. The vertical re-
sistance forces of the remaining structure is plotted against the vertical
displacement. It can be found that the pushdown curves have three
typical stages: (1) the load is mainly resisted by the beam-end moments,
and the total resistance force increases with the displacement; (2) the
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Fig. 9. Layout of the five-story planar RC frame.
Fig. 10. Pushdown curves for the frame under different column removal scenarios.
Fig. 11. Stresses of the reinforcement under different column removal scenarios.
lastic hinges are fully developed at the beam ends, the state of sections
f the beam transfers from compression to tension, causing the TCA,
hich continues to improve the capacity; (3) the longitudinal rebars
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fracture as the vertical displacement continues to increase, leading to a
drop of the curves, indicating the failure of the structure. The static
analysis approach encounters a convergence problem in the second
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Fig. 12. Effect of loading scheme.
tage and stops before it reaches the maximum capacity (the second
eak value), for both scenarios. For the implicit dynamic approach with
ewmark-𝛽 algorithm, it can capture the whole process of the interior
olumn removal scenario, but for the exterior column removal scenario,
t can only obtain the behavior of the structure before the occurrence
f the second rebar fracture. Two explicit dynamic approaches perform
ell for both removal scenario. Fig. 11 gives the stresses of the rein-

forcements located in the bottom of the middle of the damaged span. It
proves that the proposed method can obtained responses as accurately
as the traditional CDM from both global level and local level with a
much large analysis step size.

Overall, the explicit dynamic approach with the KR-𝛼 method can
attain the entire collapse behavior for both scenarios, exhibiting a obvi-
ous superiority in the pushdown analysis (extreme behavior modeling)
without any convergence problem.

6. Factors affecting the accuracy of the dynamic approach

Though the effectiveness of the proposed dynamic method is proved
through the simulations of the above examples, there are many param-
eters in the dynamic algorithm settings, e.g., the loading scheme, the
total loading time, the time interval in the displacement excitation, the
analysis step size, and the damping ratio, etc., that can effect the result.
To this end, a parametric analysis is performed on the first example
(i.e., the RC sub-assemblage under column removal) to investigate the
influence of these factors on the result for better understanding and
application of the proposed approach. The reference values for the
parameters are set as follows unless otherwise specified: (1) smooth
loading scheme with a prescribed displacement of 1100 mm at the
loading points; (2) total loading time 𝑇0 = 1 s; (3) the time interval
of the displacement excitation 𝑑𝑡 = 0.01 s; (4) analysis time step size
𝛥𝑡 = 0.007 s; and (5) damping ratio 𝜉 = 0.05.

The effect of the loading scheme is firstly studied and the simulated
results by the smooth loading scheme and linear loading scheme are
indicated in Fig. 12. As shown in the figure, the results of the two
loading schemes are almost the same, but the smooth loading scheme
can predict the TCA capacity more accurately than the linear loading
scheme, since the smooth loading scheme uses a more gentle way to
apply the displacement in the final stage. Thus the smooth loading
scheme is recommended in the dynamic approach. Fig. 13 shows the
effect of the total loading time on the displacement–load curves. The
total loading time determines the speed of applying the displacement.
It can be found that a too short total loading time will lead to an
inaccurate simulation, since a considerable dynamic effect may be
induced. It can also be observed that a too long loading time can result
in an underestimation of the TCA. Thus, choosing a proper loading
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time is necessary, and it is recommended to set it to a small value
(e.g., 1 s) firstly and then prolong it step by step until the dynamic
effect disappears.

Fig. 14 shows the effect of the time interval 𝑑𝑡 in the displace-
ment excitation, which seems to have no effect on the simulation. In
other words, the ratio 𝑑𝑡∕𝛥𝑡 may not influence the performance of
the dynamic approach. Fig. 15 shows the effect of the analysis time
step size. In traditional seismic analyses, the analysis time step size
should be smaller than the time interval 𝑑𝑡 in the earthquake record
as well as 1/10 of the system’s first-order natural vibration period 𝑇1.
Here five different ratios (i.e. 𝛥𝑡∕𝑇1=1, 1/2, 1/10, 1/20, 1/50) are
investigated. As can be seen from the figure, an accurate prediction
cannot be obtained when the ratio 𝛥𝑡∕𝑇1 is large than 1/10, and there
is no obvious difference between the three predictions when the ratio
𝛥𝑡∕𝑇1 is less than 1/10. Thus, the analysis step size 𝛥𝑡 is recommended
to be less than 1/10 of the system’s first-order natural vibration period
𝑇1. Fig. 16 displays the effect of damping ratio on the simulation, and
the damping ratio seems to have no effect on the simulation.

7. Concluding remarks

This paper presents a dynamic approach to simulate static structural
extreme behaviors by using the explicit KR-alpha method which is
implanted in OpenSees by the co-authors. Compared with traditional
explicit algorithms requiring a small analysis time step for stability, the
KR-𝛼 algorithm is unconditionally stable and allows analysis adopting
a large analysis time step. The Multi-Support Excitation Pat-
tern in OpenSees is used to apply the static loadings dynamically,
and three numerical examples are employed to demonstrate the ad-
vantages of the proposed method over the traditional static analysis,
dynamic approach with implicit algorithms, and dynamic approach
with conditionally stable explicit algorithms. A parametrical study is
also conducted to investigate the effect of different parameter settings,
and recommendations for the parameter settings are given. Based on
the results, the following collusion can be drawn.

(1) Static analysis involving high nonlinearity can be conducted in a
dynamic way with the KR-𝛼 method, and the responses obtained
through the proposed approach exhibit the same accuracy as
other approaches from both global level and local level;

(2) Compared with the traditional static approach and the dynamic
approach with implicit Newmark-𝛽 algorithm, the proposed met-
hod can overcome the convergence issue when simulating ex-
treme structural behaviors.

(3) The CDM will not encounter convergence issues in theory. How-
ever, it requires a small, even unacceptable step size to maintain
stability. Compared with the dynamic approach with CDM, the
proposed method can overcome the convergence issues with a
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Fig. 13. Effect of total loading time.
Fig. 14. Effect of the time interval in the generated displacement excitation.
Fig. 15. Effect of time step size.
much larger time step size. The proposed method owns the same
accuracy but is much more efficient than the dynamic approach
with the CDM.

(4) The results of the parametrical analysis show that the time in-
terval 𝑑𝑡 in the generated excitation and the damping ratio 𝜉
seems to have no effect on the performance of the proposed
dynamic approach; both smooth and linear loading scheme can
simulate the extreme behavior efficiently and accurately, but the
smooth one is more recommended; the total loading time 𝑇0 is
recommended to set a small value (e.g., 1 s) at first, and then
prolong it until the dynamic effect disappear; the analysis time
step size 𝛥𝑡 should be less than 1/10 of the system’s first-order
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vibration period.
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Fig. 16. Effect of damping ratio.
Appendix A. Code lines for KR-𝜶 method

The command lines for employing the KR-𝛼 method in OpenSees are
provided as follows:

- integrator KRAlphaExplicit $𝜌∞
- algorithm Linear
- system FullGeneral
- analysis Transient

where $𝜌∞ represents the value of the high-frequency spectral radius
which is mentioned in Section 2.

Appendix B. Code lines for applying the nodal displacement

A typical command line for applying the nodal displacement at a
selected node using the Multi-Support Excitation Pattern is
given as follows:

pattern MultipleSupport $patternTag {
groundMotion $gMotionTag Plain -disp $tsTag;
imposedMotion $nodeTag $dirn $gMotionTag; }

where groundMotion and imposedMotion are respectively used
to generate a ground motion and apply it to the structural model;
$gMotionTag is the tag of the predefined ground motion, which is
a displacement-type sequence indicated by -disp; $tsTag is the tag
of displacement sequence generated by Eqs. 7 or 8; $nodeTag is the
tag of the node where the displacement should be imposed; $dirn is
the target DOF of the node along with the displacement is imposed.
More details can be found in the user’s manual of OpenSees.
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