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ABSTRACT There is an urgent need for strategies to discover secondary drugs to
prevent or disrupt antimicrobial resistance (AMR), which is causing >700,000
deaths annually. Here, we demonstrate that tetracycline-resistant (TetR) Escherichia
coli undergoes global transcriptional and metabolic remodeling, including down-
regulation of tricarboxylic acid cycle and disruption of redox homeostasis, to sup-
port consumption of the proton motive force for tetracycline efflux. Using a pooled
genome-wide library of single-gene deletion strains, at least 308 genes, including
four transcriptional regulators identified by our network analysis, were confirmed
as essential for restoring the fitness of TetR E. coli during treatment with tetracy-
cline. Targeted knockout of ArcA, identified by network analysis as a master regula-
tor of this new compensatory physiological state, significantly compromised fitness
of TetR E. coli during tetracycline treatment. A drug, sertraline, which generated a
similar metabolome profile as the arcA knockout strain, also resensitized TetR E. coli
to tetracycline. We discovered that the potentiating effect of sertraline was elimi-
nated upon knocking out arcA, demonstrating that the mechanism of potential
synergy was through action of sertraline on the tetracycline-induced ArcA network
in the TetR strain. Our findings demonstrate that therapies that target mechanistic
drivers of compensatory physiological states could resensitize AMR pathogens to
lost antibiotics.

IMPORTANCE Antimicrobial resistance (AMR) is projected to be the cause of >10 mil-
lion deaths annually by 2050. While efforts to find new potent antibiotics are effective,
they are expensive and outpaced by the rate at which new resistant strains emerge.
There is desperate need for a rational approach to accelerate the discovery of drugs
and drug combinations that effectively clear AMR pathogens and even prevent the
emergence of new resistant strains. Using tetracycline-resistant (TetR) Escherichia coli,
we demonstrate that gaining resistance is accompanied by loss of fitness, which is
restored by compensatory physiological changes. We demonstrate that transcriptional
regulators of the compensatory physiologic state are promising drug targets because
their disruption increases the susceptibility of TetR E. coli to tetracycline. Thus, we
describe a generalizable systems biology approach to identify new vulnerabilities within
AMR strains to rationally accelerate the discovery of therapeutics that extend the life
span of existing antibiotics.
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Antimicrobial resistance (AMR) is the ability of a bacterium to withstand growth in-
hibition and killing by high doses of an antibiotic (1, 2). The problem of AMR has

emerged from the overprescription and overuse of antibiotics (3–5), accumulation of
antibiotics in the natural environment (6), antibiotic-induced increased mutation rates
(7, 8), horizontal transfer of resistance-conferring genes (3), and poor infection-control
strategies (9). As a result, infections by pathogenic AMR strains are rapidly growing and
projected to cause ;10 million deaths/year by 2050 (4). Sadly, consistent with this pre-
diction, ;5 million deaths in 2019 were associated with infections caused by AMR
strains of bacterial pathogens (10). While health policies to regulate antibiotic use (11)
and programs to ensure patient compliance with completing prescribed antibiotic reg-
imens are effective (12), these efforts are expensive, laborious, and face implementa-
tion challenges around the world (13). Similarly, efforts to find new potent antibiotics
are effective (14) but also expensive and being outpaced by the rate at which new re-
sistant strains are emerging (15).

A solution to tackling AMR might be in the observation that gaining resistance to
an antibiotic is typically associated with loss of fitness (3), which can be restored
through compensatory mutations (3) that cause changes in regulation and metabolism
(16–18). For example, Pseudomonas aeruginosa upregulates anaerobic nitrate respiration
to quench intracellular protons and compensate for loss of fitness due to efflux-medi-
ated resistance (19). Similarly, Mycobacterium smegmatis transcriptionally upregulates
the rRNA methylase TlyA to restore fitness upon gaining resistance to capreomycin (20).
Molecules that target new vulnerabilities within compensatory mechanisms of antibiotic
resistance could enable the recovery of “lost” antibiotics and broaden the life span of
new antibiotics (21, 22). The ability of metabolite supplementation to resensitize resist-
ant pathogens to diverse antibiotics, including aminoglycosides (23), chloramphenicol,
and streptomycin (24), lends credibility to this idea. However, to implement such a strat-
egy at scale, we need to develop methodology to discover the mechanistic driver(s) of
fitness-restoring compensatory changes in AMR strains, confirm with targeted genetic
perturbations that these mechanistic drivers do indeed represent new vulnerabilities, and
use a rational approach to find molecules that could disrupt the compensatory mecha-
nism (25).

Here, we have developed a systems approach to discover and target mechanistic
drivers of the compensatory physiologic state of tetracycline-resistant (here called
TetR) Escherichia coli. Discovered in 1947, tetracyclines are protein synthesis inhibitors
that act by binding to the 30S ribosomal subunit (26, 27). Tetracyclines were rapidly
adopted in the clinic due to their broad spectrum efficacy (26, 27) and continue to be
used widely in animal farming (28). Resistance to tetracyclines emerged a few years
later in 1953 and progressively reduced their effectiveness (26, 27). The primary mecha-
nisms of tetracycline resistance are (i) through active extrusion by efflux pumps; (ii)
gain of mutations that disrupt interaction with the target; and (iii) enzymatic inactiva-
tion, e.g., by TetX (26, 27). Previous attempts to counteract tetracycline resistance in E.
coli have focused on potential efflux pump inhibitors (29, 30).

We have discovered that when E. coli gains resistance to tetracycline through
AcrAB-mediated efflux, a global shift in metabolism to a fermentative state is required
to restore fitness of the resistant strain in the presence of tetracycline. The regulatory
network that mechanistically drives this global metabolic reprogramming in the TetR

strain is comprised of at least 25 transcription factors (TFs) that directly regulate 279
genes. Interestingly, 209 of the 279 genes are differentially regulated by 15 TFs in the
presence of tetracycline, suggesting that increased activity of the AcrAB efflux pump
causally alters the activity of these regulators. Using a pooled barcoded library of
CRISPR-generated knockout strains, we performed a genome-wide fitness screen that
uncovered 308 genes essential for restoring fitness of TetR E. coli during treatment with
tetracycline. In fact, the fitness screen validated mechanistic predictions from our net-
work-based strategy that four TFs (ArcA, CytR, PhoP, and RpoS) contributed to the
compensatory physiologic state required for restoring the fitness of TetR E. coli in the
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presence of tetracycline. Further, the fitness screen also confirmed that, as predicted,
tetracycline treatment drove TetR E. coli from aerobic respiration toward a fermentative
physiologic state. Targeted knockout of arcA, a master regulator of this network, fur-
ther confirmed its role in restoring fitness of the TetR strain. We discovered that the
drug sertraline, which generated a similar metabolome profile as the arcA knockout,
potentiated the bacteriostatic effect of tetracycline on the TetR strain, but not the wild-
type strain, on which the effect was additive. We also show that deleting arcA abol-
ished the potentiating effect of sertraline, demonstrating that the mechanism of its
potential synergy with tetracycline was through its action on the tetracycline-induced
and ArcA-regulated network. We discuss these results from the perspective of formu-
lating a multidrug regimen using a network-based approach to recover lost antibiotics
and prolong the utility of new antibiotics.

RESULTS
A novel physiological state underlies tetracycline resistance in E. coli. To iden-

tify mutations that may contribute to the tetracycline resistance phenotype of TetR

E. coli, we resequenced and compared the genomes of the tetracycline-susceptible wild-
type (MG1655, here called “WT”) and laboratory-evolved TetR strains of E. coli (31, 32). We
discovered that gaining tetracycline resistance could be due to mutations in acrB and acrR
genes, which were independently reported by Hoeksema et al. (33) (complete list of muta-
tions shown in Table S1). AcrR is a transcriptional repressor of the acrAB operon, and muta-
tions in this gene are consistent with upregulation of the efflux pump (see below) (33).
Interestingly, we also identified an in-frame deletion inmlaA, which encodes a component
of the system for maintenance of lipid asymmetry (34). He et al. have recently associated
this deletion in the mlaA gene with resistance to tigecycline (a glycylcycline, a tetracy-
cline derivative [35]), even in the absence of acrAB (36). Thus, multiple mechanisms may
simultaneously contribute to the resistance phenotype.

To characterize direct and compensatory physiological changes triggered by the ac-
quisition of antibiotic resistance, we also reanalyzed transcriptomes of the TetR and WT
strains with and without tetracycline treatment (32). In the absence of tetracycline, the
TetR strain differentially expressed 197 genes (DEGs; adjusted P value , 0.05 and abso-
lute log2 fold change >1) relative to the WT strain, including 65 metabolic genes, seven
transcription factors (TFs) and four efflux pump (EP)-related genes (including the acrAB
operon) (Fig. 1A). Functional enrichment on the dysregulated gene set revealed that
13 functional terms were significantly perturbed in the TetR strain (Fig. 1B; Table S2). Of
note was differential regulation of 33 fermentation-related genes (randomized permu-
tation test P value , 0.01), including the frd operon, adhE, fumC, and ldhA (which had
P value , 0.05) (Fig. S1). Notably, upregulation of the acrAB operon and acrZ was con-
sistent with known mechanisms of resistance to tetracycline and other antibiotics
(Fig. S2A) (30, 37, 38). Disruption of the AcrAB efflux pump has been demonstrated to
reduce the MIC of tetracycline to 0.5 mg/mL, which was 4-fold lower than for wild-type
E. coli K-12 (reported as 2 mg/mL) (30), and also the overall fitness in the presence of
tetracycline (39) (Fig. S2B).

The TetR strain differentially expressed nearly 10 times as many genes as the WT
(with 896 versus 93 DEGs) in response to treatment with 0.25 and 16 mg/mL of tetracy-
cline for WT and TetR, respectively (Fig. 1A) (32). This differential regulation represented
reprogramming of multiple processes (based on enrichment of 67 functional terms per
the hypergeometric test), including the tricarboxylic acid (TCA) cycle (15 of 21 genes;
P value = 1.7e-6), the electron transport chain (ETC, 13 of 23 genes; P value = 3.2e-4),
and ATP synthase (four of eight genes; P value = 0.076) (Fig. 1B and C; Table S2).
While tetracycline treatment did not result in substantial upregulation of the acrAB
efflux pump in the TetR strain (i.e., variation in acrAB log2 fold change was less than
0.35; Fig. S2A), it induced the upregulation of at least four additional efflux pump
genes (Fig. 1A). This suggested that the large-scale transcriptional remodeling, which
was potentially mediated by 35 differentially expressed TFs (Fig. 1), might constitute
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FIG 1 Transcriptional and metabolic remodeling accompanying gain of tetracycline resistance in E. coli. (A) Comparison of transcriptomes of TetR and
parental WT (MG1655) strains in the presence (1) and absence of tetracycline (2). Tetracycline concentrations used for wild-type (WT) and TetR strains

(Continued on next page)
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a compensatory physiologic state that is triggered by increased efflux pump activity
in the presence of tetracycline to ameliorate the loss of fitness associated with the re-
sistance phenotype of the TetR strain (i.e., maximum growth rate and area under the
growth curve of the TetR strain were ;30% lower than the corresponding fitness esti-
mates of the WT strain; see below) (3). Specifically, repression of aerobic oxidative
phosphorylation and induction of fermentation pathways suggested that a shift to-
ward an anoxic physiologic state might be necessary to support the tetracycline re-
sistance phenotype.

A transcriptional program governed by 25 TFs underlies the physiological state
required for tetracycline resistance. We analyzed gene expression changes induced
by gain of tetracycline resistance in the context of the transcriptional regulatory net-
work to discover mechanisms responsible for regulatory and metabolic reprogram-
ming of the TetR strain. We compiled a signed transcriptional regulatory network of
E. coli based on curated positive or negative attributes to every TF-target gene interac-
tion in RegulonDB (40). We then used the NetSurgeon algorithm (41) to identify within
this transcriptional regulatory network the subset of TFs whose simulated overexpres-
sion and knockout explained the overall gene expression changes induced by gain of
mutations (e.g., the acrR mutation) and treatment with tetracycline in the TetR strain.
We hypothesized that the TF networks that were differentially active in the TetR strain
upon tetracycline treatment were likely to be the mechanistic drivers of the compensa-
tory physiologic state that was needed to support the resistance phenotype. Altogether,
the NetSurgeon-based analysis implicated 25 TFs in mechanistically driving the differen-
tial regulation of 279 genes in the TetR strain, of which 209 genes were regulated by a
subset of 15 TFs in response to tetracycline treatment (Table 1). Of the 25 TFs, 17 were
part of two TF-TF network modules, suggesting coordination across their regulatory net-
works (Fig. 2A). While one subnetwork included TFs that were previously linked to AMR
(MarA, SoxS, and Rob) (42), the other subnetwork was made up of TFs that control meta-
bolic pathways (Lrp, MalT, GatR, and ArcA).

In a second independent approach, we used network component analysis to esti-
mate the differential regulatory activity of TFs in TetR and WT with and without tetracy-
cline treatment (43) (see Materials and Methods). The estimated regulatory activities of
TFs were consistent with NetSurgeon predictions for 12 of the 25 TFs (indicated with
brown node border in Fig. 2A). Finally, in a third approach, we discovered that 287
DEGs were statistically over-represented across 29 gene modules regulated by 15 (of
the 25 TFs) within the previously developed Environment and Gene Regulatory
Influence Network (EGRIN) model for E. coli (44). In summary, of the 25 TFs identified
by NetSurgeon, 7 were also identified by the 2 orthogonal approaches. Altogether, the
15 TFs implicated in the response of TetR to tetracycline collectively regulated 23.3%
(209 genes, hypergeometric test P value , 1e-26) of all DEGs, including 6 additional
TFs, explaining how the response might have propagated to other genes in the ge-
nome. Notably, the predicted increased and decreased activity of TFs were consistent
with the changes in expression profiles of their corresponding regulons across strains
and treatments (Fig. 2B).

ArcA, a global transcriptional regulator that is typically induced under microaerobic
conditions (45), was implicated by all three approaches as a mechanistic driver of the
tetracycline response in the TetR strain. ArcA is a master regulator of one of the two TF-

FIG 1 Legend (Continued)
were 0.25 and 16 mg/mL, respectively. Transcriptomics data were sourced from Händel et al. (32). Differentially expressed genes (adjusted P value , 0.05
and absolute log2 fold change > 1) were classified as efflux pump-related (compiled from the EcoCyc database and available literature) (53, 102),
transcription factors (TFs) (based on the transcriptional regulatory network compiled from the RegulonDB database), or metabolism-related (based on the
iJO1366 metabolic model of E. coli) (40, 102, 103). Unassigned genes were grouped in the “Others” category. Differentially expressed TFs and efflux pump
genes are listed in green and red type, respectively. (B) Heat map with functional enrichment information of the set of genes significantly up- and
downregulated in the WT strain in the presence of tetracycline and the TetR strain without and with tetracycline with respect to the WT strain in antibiotic-
free condition. Due to space constraints and functional terms redundancy, only a subset of functional terms are displayed (full list on Table S2). (C) Fold
change profiles (with respect to the WT strain in antibiotic free condition) of genes related to the tricarboxylic acid (TCA) cycle, the electron transport chain
(i.e., NADH dehydrogenases [NADH deh.], and cytochromes), and ATP synthase. Pathways of interest and associated genes were compiled from the EcoCyc
database (102) and available literature (104). DEG, differentially expressed gene.
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TF subnetworks, directly regulating 66 DEGs and influencing regulation by at least four
downstream TFs (Fig. 2A; Table 1). There was significant overlap between DEGs in the
TetR response to tetracycline and DEGs in an arcA deletion strain in anaerobic condi-
tions (46) (hypergeometric test P value,1e-11). Importantly, ArcA is a known repressor
of most genes of the TCA cycle and ETC (47) (Fig. 2A), and both processes were signifi-
cantly downregulated in the TetR strain in the presence of tetracycline, which could
have potentially perturbed NADH/NAD ratio and disrupted energy production via aero-
bic respiration. ArcA directly coordinates repression of the TCA cycle with activation of
overflow metabolism (48), which is a fermentation mechanism to generate energy,
albeit at lower efficiency, to cope with changes in demand for protein, energy, and bio-
mass production under changing growth conditions (49, 50). Interestingly, fermenta-
tion genes were expressed at a higher level in the TetR strain even without tetracycline
treatment, although the expression of TCA genes was downregulated only in the pres-
ence of tetracycline (Fig. 1C; Fig. S1). Based on these observations, we hypothesized
that fitness loss associated with gain of efflux-mediated resistance to tetracycline in
the TetR strain is compensated by an ArcA-mediated shift toward energy production
by fermentation (48).

Genome-wide CRISPR screen corroborates network-predicted mechanisms under-
lying a compensatory physiologic state that supports tetracycline resistance. We
investigated how each gene in the E. coli genome contributed to the compensatory
physiologic state required to support the tetracycline resistance phenotype by perform-
ing an unbiased genome-wide CRISPR knockout (KO) screen. In brief, we constructed

TABLE 1 TFs implicated in reprogramming transcriptional response of the TetR straina

Transcription
factor

Locus
tag

Differential
activityb Responsec

Regulon
sized

Targets

Basale Adaptivef

RpoS b2741 Decreased Adaptive 207 20 69
ArcA b4401 Increased Adaptive 167 9 66
HNS b1237 Decreased Basal 146 18 33
Cra (FruR) b0080 Increased Adaptive 76 2 43
Lrp b0889 Increased Both 64 9 32
PhoP b1130 Decreased Basal 49 9 15
GadE b3512 Decreased Both 36 9 14
SoxS b4062 Increased Basal 33 7 13
MarA b1531 Increased Basal 33 11 11
RcsB b2217 Decreased Basal 33 7 10
PurR b1658 Increased Basal 31 10 10
Rob b4396 Increased Basal 22 8 7
FliZ b1921 Increased Basal 20 6 6
CytR b3934 Increased Adaptive 13 0 8
OmpR b3405 Increased Both 13 4 6
TorR b0995 Decreased Basal 12 3 4
MalT b3418 Decreased Adaptive 10 0 8
DgsA b1594 Increased Adaptive 10 0 7
NrdR b0413 Decreased Adaptive 9 1 4
AdiY b4116 Decreased Both 8 3 5
YbjK b0846 Increased Adaptive 8 1 5
PspF b1303 Increased Both 7 4 5
GatR b4498 Increased Adaptive 6 0 6
GlcC b2980 Increased Basal 6 3 3
BirA b3973 Decreased Adaptive 5 0 5
aDEG, differentially expressed gene; TF, transcription factor.
b“Increased” and “Decreased” indicate NetSurgeon-inferred change in the activity of each TF that explains the
observed transcriptional response in a given treatment.

c“Basal” indicates the role of a TF in reprogramming transcriptional response of the TetR strain in the absence of
tetracycline, whereas “Adaptive” indicates that the TF mediates transcriptional response of the TetR strain to
tetracycline.
dTotal number of genes directly regulated by each TF.
eNumber of DEGs regulated by a TF in the absence of tetracycline.
fNumber of DEGs regulated by a TF in the presence of tetracycline.
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genome-wide knockout libraries using the Onyx Digital Genome Engineering Platform.
The KO library consisted of 8,271 mutants, representing approximately two knockout
designs for each gene in the TetR and WT strain backgrounds. The libraries were inde-
pendently grown in quadruplicate over three rounds of sequential growth cycles (t0 to
t3) in batch cultures with and without tetracycline (see Materials and Methods for details).
To track the relative abundance of each KO strain in the population throughout the
experiment, we performed barcode sequencing of the starting cultures, as well as at the
end of each cycle. To account for the compositional nature of the data, we quantified
changes in barcode abundance as the interquartile log ratio (IQLR) using ALDEx2 (51).

FIG 2 Regulatory circuits differentially active in tetracycline-resistant E. coli. (A) Subnetwork of 25 TFs (displayed as circles) implicated in
driving transcriptional and metabolic reprogramming in the TetR strain (Table 1). TF autoregulation is not displayed. Functional enrichment
(due to space constraints, only the functional term with the lowest P value is displayed) within subsets of six or more genes differentially
expressed during TetR response to tetracycline and regulated by the same TF(s) implicated in TetR adaptive state (Table 1) are shown
within boxes. The numbers in parentheses indicate the number of genes used to perform the functional enrichment analyses with DAVID
(91) (not all genes may be associated with the shown functional term). The asterisk (*) indicates that the term was manually defined
taking into account the overlap among multiple over-represented terms. TFs implicated by network component analysis (NCA) in
regulatory and metabolic reprogramming of the TetR strain are indicated in nodes with a brown-colored border. Black font indicates TFs
that were implicated based on significant overlap of their differentially regulated targets (in the TetR background) within coregulated gene
modules in EGRIN (Environment and Gene Regulatory Influence Network) (44). The network was visualized using Cytoscape version 3.4.0
(105). (B) Fold change of the ArcA, MarA, and GadE regulons (transcriptional data from Händel et al. [32]) support their predicted
increased (for ArcA and MarA) and decreased (for GadE) activity in mediating transcriptional reprogramming of the TetR strain at baseline
and during adaptive response to tetracycline treatment. For dual regulators (i.e., activating and repressing different genes), the regulatory
activity on the majority of their differentially expressed target genes (;80%) is shown. Boxplots display fold change of differentially
expressed regulon members in the basal and/or adaptive states (number of regulated genes by each TF is indicated above each
corresponding boxplot). Boxes cover the 25th and 75th percentile ranges. Horizontal lines in boxes indicate median values. Absence and
presence of tetracycline treatment is indicated with “(2)” and “(1),” respectively. Statistical significance of the observed mean fold
changes was evaluated by determining the null distribution of mean fold change in 10,000 random samplings of gene sets of similar size.
P values are indicated with * (,0.05) and ** (,0.001).
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This allowed us to compare the barcode abundance for each gene KO at each growth
cycle relative to its starting abundance (t0) while controlling for changes in the overall
library composition (Fig. 3A).

Comparing across strain backgrounds (TetR and WT) and treatments (1/2 tetracy-
cline), the ALDEx2 analysis revealed a multitude of context-dependent effects. In the
presence of tetracycline, for example, KOs in 1,261 genes affected fitness in the TetR

background compared to only 363 genes in the WT background (Data Set S1). Strikingly,
we observed that KOs in 874 genes significantly improved fitness uniquely in the context
of tetracycline treatment in the TetR strain background (Fig. S3A). Genes that were dis-
pensable during tetracycline treatment in the TetR strain span a wide range of functions
and processes, including iron homeostasis (17 genes), cell adhesion (21 genes), and aero-
bic metabolism (12 TCA-related genes and 7 ETC-related genes and atpE, which encodes
a subunit of the ATP synthase) (Fig. S3B).

We also identified genes that became important for growth during tetracycline
treatment, particularly in the TetR strain background. This finding was supported by
two analyses: First, we observed many instances in which both KO designs for a gene
were undetectable by the end of the experiment following treatment with tetracycline
in the TetR background (“dropouts”; 82 genes in WT background compared to 726
genes in the TetR background [with 43 genes in common]) (Fig. 3A; Data Set S2). These
726 dropout genes included the AcrAB efflux pump-related genes acrB and acrR, both
carrying SNPs in the TetR genome (Table S1), and the arcA and arcB genes, which
encode the ArcB-ArcA two-component system (52). Translation-related genes encod-
ing ribosomal subunits, ribosome biogenesis, and rRNA binding were also among the
KOs not detected at the end of the experiment (Fig. 3B). Second, relative abundance
analysis with ALDEx2, which accounted for potential compositional bias in strain abun-
dance (see above), corroborated significant purifying selection of 308 single-gene KO
strains during tetracycline treatment of the TetR strain. Within this group, 234 single-
gene KO strains (including arcA) were under purifying selection only on the TetR strain
(Fig. S3A). Gene sets identified by both analyses were significantly similar (hypergeo-
metric test P value = 0.012). As expected, KOs identified with ALDEx2 as having a dele-
terious effect included genes associated with varied mechanisms of antimicrobial
resistance, for example, acrZ, a component of the AcrAB efflux pump (37); mdtA, a
member of a resistance-nodulation-division (RND) multidrug efflux pump (53); and
uvrA, an excision repair system protein (Fig. 3C) (54, 55). Notably, a significant number
of genes that contributed fitness to the TetR strain in the presence of tetracycline were
associated with anaerobic respiration, and included menaquinone biosynthesis genes
(menA, menB, menC, menE, and menH) (DAVID functional term adjusted P value = 5.8e-
2) (Fig. S3B), fumarate reductase (frdB and frdC), anaerobic glycerol-3-phosphate dehy-
drogenase (glpC), selenate reductase (ynfF), formate dehydrogenase-N subunit (fdnH),
hydrogenase 2 membrane subunit (hybB), and malate dehydrogenase (mdh) (56–63)
(Fig. S4). Together with the transcriptome analysis, these results strongly suggest that
a distinct anaerobic state supports tetracycline resistance in the TetR background.

To understand whether transcriptional regulatory mechanisms drive large-scale
physiological remodeling in the TetR background, we analyzed the fitness effects of
TFs in the high-throughput CRISPR KO screen. Fifteen TF KOs significantly reduced fit-
ness in the TetR background, but, interestingly, only following tetracycline treatment
(Fig. S3C). This finding underscores the importance of global transcriptional reprog-
ramming for the tetracycline resistance phenotype in the TetR background (Fig. 1 and
2A). Reassuringly, there was a high degree of overlap between the CRISPR screen in
the presence of tetracycline and our network-based approach (10 of 24 TFs identified
by the network-based approach and with KO designs, including arcA, cytR, phoP, and
rpoS) (Fig. 2A and 3C). Notably, arcA and phoP were among the most deleterious KOs
in the CRISPR screen after the first growth cycle. Together, these findings suggest that
the tetracycline resistance phenotype in TetR E. coli is associated with transcriptional
coordination of fermentative carbon metabolism by ArcA, acid stress response by

ArcA Mitigates the Cost of Tetracycline Resistance mSystems

January/February 2023 Volume 8 Issue 1 10.1128/msystems.00904-22 8

https://journals.asm.org/journal/msystems
https://doi.org/10.1128/msystems.00904-22


FIG 3 Gain of tetracycline resistance is associated with loss of robustness to genomic perturbations in the TetR strain. (A, left) Number of gene knockouts
(KOs) detected during competitive growth assay in TetR and WT backgrounds with and without tetracycline treatment. Genome-wide KO libraries included
on average two designs per gene, totaling 8,271 KOs. For a given time point, KOs that were not detected (i.e., ,10 reads) in any of the four biological
replicates were considered “dropouts.” (Right) Aggregation by gene. Genes were considered undetected if both KO designs were dropouts. (B) General
theme of functional term clusters identified by DAVID functional annotation clustering (91) in the set of 726 genes depleted in TetR due to tetracycline
treatment at the end of the competition assay (t3). (C) Changes in ALDEx2 (51) estimated interquartile log ratio (IQLR) transformed relative abundance
(each cycle normalized to the initial time point, t0) of selected KOs during growth assays of TetR and WT genome-wide single-gene deletion libraries. For
each selected gene, the profile of difference in abundance (i.e., the “diff.btw” scores computed by ALDEx2) of a single design KO is shown (design ID
indicated in parenthesis). KOs that were undetectable at t2 (,10 reads in any replicate) are indicated with an asterisk (*) next to the gene name. Relative
abundance was not estimated for undetected designs. The absence and presence of tetracycline in the experiments are indicated with the “(2)” and “(1)”
symbols next to the strain background labels, respectively. LPS, lipopolysaccharide.
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PhoP (64), generalized stress response by RpoS (65), and carbon and nucleotide metab-
olism by CytR (66, 67) (Fig. 3C). These findings also implicate ArcA as a key TF that
drives the physiological shift of the TetR strain to a fermentative state following treat-
ment with tetracycline.

ArcA activity ameliorates the fitness cost of tetracycline resistance. We further
investigated the importance of ArcA activity for tetracycline resistance by constructing
an in-frame knockout (DarcA) in the WT and TetR strain backgrounds and quantifying
the overall fitness of both sets of parental and DarcA strains by calculating the area
under the growth curve in batch cultures (68–70) (Fig. 4A to D). The fitness analysis
demonstrated that gain of tetracycline resistance had significantly increased the rela-
tive importance of ArcA in the TetR strain (Fig. 4A), especially in the presence of high
doses of tetracycline (16 to 24 mg/mL). In fact, in the presence of tetracycline, the TetR

FIG 4 ArcA restores fitness of tetracycline-resistant E. coli. (A) Representative growth curves in LB medium for 48h with and without tetracycline (TET). Six
replicates (Rep.) (i.e., three biological replicates with two replicates each) per strain were used. Points indicate average values and error bars indicate
standard deviation. Effect of arcA deletion on TetR fitness in LB broth cultures without (B) or with 20 mg/mL of tetracycline (C) over three growth cycles is
shown. In each cycle, cultures were started at an optical density at 600 nm (OD600) of 0.1 and grown to an OD600 of 1.0 (indicated by the gray dashed
lines) and thereafter diluted in fresh medium to OD600 of 0.1 to reinitiate a new cycle of growth. (D) Area under the growth curve (AUC) and lag phase
(approximated by Growthcurver-estimated time of inflection, the time required to achieve half of maximal OD600 [68]) for seven different concentrations of
tetracycline. The # symbol indicates samples in which Growthcurver-estimated time of inflection was longer than the actual duration of the experiment
and therefore adjusted to 48 h. (E) NADH/NAD ratio during log phase of the WT, WT DarcA, TetR, and TetR DarcA strains in the absence (indicated with
“(2)”) and presence (indicated with “(1)”) of tetracycline. NADH/NAD ratios in the absence of tetracycline were compared with respect to untreated WT
using a Welch’s t test. Similarly, ratios in the tetracycline-treated condition versus the untreated condition were compared for each strain; P values , 0.05
are indicated with the asterisk (*) symbol. TetR DarcA1pRB3, arcA deletion strain complemented with episomal copy of arcA.
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DarcA strain was unable to achieve half the overall carrying capacity of the parental
strain even after extended culturing (Fig. 4B and C). In stark contrast, the arcA deletion
had a more subtle effect in the parental WT strain (Fig. S5). The fitness defect of the
TetR DarcA strain during tetracycline treatment was completely reversed upon comple-
mentation with an episomal copy of arcA (Fig. 4D).

It has been demonstrated that increase in intracellular NADH/NAD ratio, such as
during fast growth (49), triggers ArcA (71, 72), which then mediates repression of the
TCA cycle and activation of overflow metabolism to prevent further redox imbalance
(49). Consistent with this sequence of events, we observed that tetracycline treatment
significantly increased the intracellular NADH/NAD ratio in the TetR strain, which
explains the increased activity of ArcA with gain of tetracycline resistance (Fig. 4E). As
expected, deletion of arcA resulted in constitutive dysregulation of NADH/NAD ratio
irrespective of tetracycline treatment, presumably due to disruption of the ArcA-medi-
ated feedback mechanism to manage redox balance (Fig. 4E). We propose based on
these results that ArcA plays a central role in modulating redox balance to support
increased efflux-mediated tetracycline resistance phenotype.

Molecules that mimic ArcA knockout phenotype disrupt efflux-mediated tetra-
cycline resistance. In order to identify drugs that would simulate an arcA knockout
phenotype, we leveraged available comparisons of metabolome profiles of drug-
treated and single-gene deletion strains of E. coli (25). Among the 1,279 Food and
Drug Administration (FDA)-approved compounds in this analysis, two compounds, ser-
traline (a serotonin reuptake inhibitor used as antidepressant) (73) and cefpiramide (a
third-generation cephalosporin), generated metabolome profiles that were most simi-
lar to the metabolome of the arcA deletion strain (74) (Fig. 5A). Reciprocally, of ;3,800
gene deletions, arcA deletion was among the top 20 strains whose metabolomes were
most similar to metabolome profiles generated by the two compounds. We reasoned that
for the metabolome similarities to be physiologically meaningful and clinically relevant,
the concentration of the drug needed to be equal to or less than the MIC for the TetR

strain. While the sertraline concentration used in the metabolomics study was within MIC
for TetR, the cefpiramide concentration in the metabolic profiling study (100 mM, 61.3 mg/
mL) (25) was higher than the estimated MIC (,20 mg/mL). Nonetheless, we performed a
DiaMOND assay to evaluate a potential interaction between cefpiramide and tetracycline.
An additive interaction was detected in the TetR strain (fractional inhibitory concentration
[FIC2] score of;1.2). Upon further exploration, we discovered that the metabolic pathways
targeted by cefpiramide treatment were different from those affected upon the deletion
of arcA (Fig. S6). Hence, this analysis demonstrated that while the metabolome similarity
analysis helps to shortlist compounds, further analysis at the metabolic pathway level may
be needed to ascertain whether the compounds might be synergistic due to a double hit
on the same pathways (Fig. S6). We excluded cefpiramide from further analysis and pro-
ceeded to test whether sertraline could resensitize TetR E. coli to tetracycline.

Next, we also analyzed metabolomes of E. coli upon treatment with sertraline and
deletion of arcA to discover that each perturbation individually resulted in the overacti-
vation of TCA cycle, pyruvate metabolism, pentose phosphate pathway, butanoate me-
tabolism, and inositol phosphate metabolism (Fig. S6). These findings suggested that
treatment of the TetR DarcA strain with sertraline would likely lead to accumulation of
toxic reactive oxygen species (ROS) due to overactivation of the TCA cycle (75).
Consistent with the increased importance of ArcA-induced response in tetracycline re-
sistance, sertraline (previously reported as bactericidal against E. coli [73]) was signifi-
cantly more potent on the TetR strain (MIC: 35 mg/mL), relative to the WT strain (MIC,
45 mg/mL). Notably, deletion of arcA slightly increased the MIC of sertraline on WT
(MIC, 50 mg/mL). In contrast, sertraline was twice as potent upon knocking out arcA in
the TetR background (MIC 17.5 mg/mL; Fig. 5B). In other words, sertraline may kill E. coli
by disrupting the ArcA network, and its increased activity on the TetR DarcA strain
might amount to a double hit on the same network, providing a mechanistic explana-
tion for why the two drugs are synergistic on TetR E. coli (73).

Finally, we performed a DiaMOND assay (76) to experimentally test the potential
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mechanism of synergy between tetracycline and sertraline by investigating dose-de-
pendent combinatorial effects of the two drugs on WT and TetR strains with and with-
out arcA deletion (Fig. 5C). The activity of the tetracycline-sertraline combination was
additive on the WT strain (FIC2 score, ;1.27), with minimal change upon deletion of
arcA (FIC2 score, ;1.23). In stark contrast, the drug combination was potentially syner-
gistic on the TetR strain (FIC2 score, ;0.67), in agreement with previous reports of syn-
ergy between sertraline and tetracycline (73). Remarkably, the drug combination was
additive on the TetR DarcA strain (FIC2 score, 1.2), demonstrating unequivocally that
the suggested synergy between tetracycline and sertraline emerges from disruption of
the compensatory physiologic state that is mechanistically generated by increased
ArcA activity.

DISCUSSION

We have discovered that global remodeling of transcription by a network of at least
25 TFs generates a novel metabolic state to compensate for loss of fitness that accom-
panies the gain of tetracycline resistance in E. coli. Interestingly, while the resistance
mutations resulted in constitutive overexpression of the acrAB operon in the TetR

strain, the global transcriptional remodeling manifested in a dramatic manner only
during tetracycline treatment, suggesting that it was a downstream consequence of
the increased activity of the AcrAB efflux pump. We propose a model to explain how
increased efflux triggers a compensatory physiologic state to support tetracycline re-
sistance in TetR E. coli (Fig. 6). AcrAB is an efflux pump of the RND superfamily that

FIG 5 ArcA plays a central role in the synergistic effect of the sertraline-tetracycline combination in
the tetracycline-resistant E. coli. (A) Analysis of similarity (estimated by pairwise comparison of Z-
score-normalized profiles) between metabolic profiles of E. coli treated with 1,279 Food and Drug
Administration (FDA)-approved compounds (25) and the metabolic profile of the arcA E. coli deletion
strain (74), computed by Campos and Zampieri (25), identified sertraline and cefpiramide as promising
candidate ArcA inhibitors. (B) Growth assays in a microdilution series (0 to 80 mg/mL) were performed
to assess dose response and susceptibility of different strains to sertraline (three biological replicates
each one with three replicates for a total of nine replicates per strain/concentration). “Growth”
indicates that for at least two replicates, the increase in OD600 was higher than two times the
maximum increase in OD600 of control wells (inoculated with LB medium) after 16-h incubation. Red
rectangles indicate the lowest concentration at which growth was not observed. (C) Results of
DiaMOND assays to estimate fractional inhibitory concentration (FIC2) for the sertraline-tetracycline
combinations in the four strains (76). The data for five biological replicates per strain (six for TetR) are
shown.
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consumes the proton motive force (PMF) to expel intracellular substrates, tetracycline
in this case (53). Hence, AcrAB competes with the ETC and ATP synthase both for space
in the membrane and for the PMF, which is required for ATP synthesis (49). This com-
petition may reduce oxidation of NADH molecules by the ETC, and the resulting
increase in NADH/NAD ratio triggers ArcA. ArcA acts by repressing the TCA cycle and
redirecting metabolic flux away from oxidative phosphorylation and toward overflow
metabolism, which serves as an alternative source of energy (48, 50, 71, 72). This hy-
pothesis is supported by two previously reported observations: (i) deleting either of
the two repressors (marR and acrR) of the acrAB operon resulted in the increased secre-
tion of acetate, a by-product of overflow metabolism (77); and (ii) mutations in acrB
significantly reduced the rate of oxygen uptake (77). The downregulation of the TCA
cycle may also serve to mitigate oxidative stress by preventing the production of ROS
(75, 78). The global remodeling of the respiration and energy production pathways
appears to be a generalized mechanism for restoring fitness across AMR pathogens,
including P. aeruginosa (19) and Chromobacterium violaceum (24), that also manifest
high intracellular NADH levels upon gaining resistance to diverse antibiotics through
the increased expression of RND efflux pumps.

Amplification of the fitness cost of tetracycline resistance upon disrupting the master
regulator (ArcA) of the compensatory metabolic state demonstrated how a network-based
approach can rationally identify new vulnerabilities that emerge as a consequence of gain-
ing resistance, because knocking out ArcA had a minor fitness consequence in the WT
background (Fig. 3C and 4A). Having identified ArcA as a new vulnerability in the TetR

strain, we were able to identify secondary molecule(s) that could target the compensa-
tory physiologic state by leveraging the similarities between global metabolome
changes in E. coli across a library of single-gene deletion strains and a drug library screen
(25). By mining this publicly available metabolome comparison, we rank-prioritized the

FIG 6 Summary overview of the ArcA-driven compensatory mechanism for tetracycline resistance and
its connection with efflux pump mediated resistance. In the absence of tetracycline, TetR upregulates
the acrAB efflux pump (EP), which in turn causes upregulation of fermentation-related genes (Fig. S1
and S2). The activity of AcrAB increases in the presence of tetracycline (30) (edge 1), driving dramatic
changes in metabolism. We hypothesize that AcrAB disrupts the functions of other transporters by
crowding the membrane, consuming the proton motive force (PMF), causing an increase in NADH/
NAD ratio (edge 2) (Fig. 4E), which activates ArcA (71) (edge 3) (Fig. 2A). The potential toxic
consequence of higher NADH/NAD ratio (49) (edge 4) is alleviated by ArcA (edge 5) through
downregulation of the tricarboxylic acid (TCA) cycle (47) (edge 6). Finally, sertraline represses the
ArcA network (edge 7) (Fig. 5A; Fig. S6) and putatively inhibits the PMF (73) (edge 8) to
synergistically potentiate the bacteriostatic effect of tetracycline. Relative increases in abundance or
activity are indicated with an upward pointing arrowhead, next to the corresponding molecule.
Decreased concentration is indicated with a downward pointing arrowhead.
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most likely drugs in the screen that could disrupt the ArcA network to potentiate tetracy-
cline action. Sertraline, which was among the top ranking candidates, was proposed to
potentiate tetracycline action by blocking the PMF and indirectly inhibiting its efflux (73,
79, 80), albeit by a different plasmid-encoded TetA pump (27, 73). The loss of synergistic
action of tetracycline-sertraline combination upon deleting arcA demonstrated the
mechanism of synergy (Fig. 5C) but also revealed how TetR E. coli could (re)gain resist-
ance and tolerance to this drug combination through a single regulatory mutation or
transcriptional reprogramming of a single TF. Notably, the network analysis in this study
implicated at least 25 TFs and their networks as mechanistic drivers of the compensatory
physiologic state required to support the tetracycline resistance phenotype of TetR. This
finding was supported by the dramatically different landscape of genome-wide fitness in
the TetR strain background compared to the WT, which also illustrated how gaining re-
sistance, at least by an efflux mechanism, is associated with system-wide trade-offs
across multiple processes (Fig. 3). The complexity of this regulatory and metabolic net-
work reprogramming also suggests that there are multiple routes through which a
pathogen like E. coli could escape antibiotic treatment to gain resistance, explaining why
we need multidrug combinations to combat antibiotic tolerance and resistance (81–83).

Formulating a multidrug regimen is particularly challenging because the numbers
of combinations that need to be tested is too large, even for a high-throughput drug
screen (84). A network-based approach, like the one described in this study and pre-
viously (81), will prove valuable in this effort because it uses a mechanistic model of
a gene regulatory network underlying tolerance or resistance phenotypes to rank-
prioritize combinations of molecules that target multiple vulnerabilities within a
pathogen. We have demonstrated that this strategy could enable the recovery of
“lost” antibiotics by identifying new vulnerabilities that emerge within transcriptional
and metabolic networks to manage trade-off in fitness upon gain of resistance (3,
19). This approach can be combined with laboratory evolution experiments to delin-
eate trajectories of antibiotic resistance (85) and design drug combinations to pre-
emptively curtail the emergence and spread of AMR. For instance, antibiotic-tolerant
strains of E. coli gained resistance at a higher rate than the wild-type strain, suggest-
ing that drugs that target the tolerance networks within these strains could poten-
tially delay or block the emergence of resistance (85). Another high-throughput
screen of a library of TF deletion strains demonstrated that deletion of arcA sup-
presses gain of resistance to cefixime, ciprofloxacin, and chloramphenicol (78). We
posit that a multidrug regimen formulated based on vulnerabilities within networks
governed by ArcA and other TFs identified in this study could have generalized value
in extending the life spans of a broad range of existing antibiotics and supplement
the development of new antimicrobial compounds (5).

MATERIALS ANDMETHODS
E. coli strains and culturing conditions. E. coli MG1655 (WT) and a lab-evolved tetracycline-resistant

E. coli derived from the susceptible WT (TetR) were kindly provided by Benno ter Kuile (32). arcA mutants
were generated using the Red/ET recombination kit (Gene Bridges, Germany), following the manufac-
turer’s instructions. Using this approach, a kanamycin cassette was inserted between the 59 and 39
regions of arcA. arcA disruption was confirmed with PCR and Sanger sequencing. arcA deletion was com-
plemented with the pRB3-arcA plasmid (86) kindly provided by Sangwei Lu. E. coli strains were grown
on Luria-Bertani (LB) broth on agar and broth (with constant shaking) at 37°C and aerobic conditions.

Assessment of arcA deletion effect on fitness.Microdilution growth curves were performed in LB
broth using a Bioscreen C instrument (Growth Curves USA, Piscataway, NJ). First, frozen cells were
used to streak individual colonies in LB plates (without antibiotic for WT and WT DarcA, and with
4 mg/mL of tetracycline [Sigma-Aldrich] for TetR, TetR DarcA, and TetR arcA1 [episomal complemented
strain]). Isolated colonies were used to start tetracycline-free overnight cultures used as inoculum for
the growth assays. Overnight cultures were adjusted to 0.01 Optical density at 600 nm (OD600), and
200-mL cultures with different concentrations of tetracycline (and other used compounds) were run at
37°C with continuous shaking. OD600 was measured every 30 min. Wells inoculated only with LB were
included to measure background OD600 of the medium and as sterility controls. The Growthcurver R
package (68) was used to fit a logistic equation to the OD600 data for each well after subtracting its
minimum OD600 reading. Bacterial fitness was estimated in terms of the area under the growth curve
(AUC) empirically determined by Growthcurver (68). The AUC value integrates multiple properties of
the growth curve (69, 70).
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For broth macrodilution experiments, four isolated colonies (from antibiotic-free LB plates for WT
and WT DarcA and LB plates with 4 mg/mL of tetracycline for TetR and TetR DarcA) were used to start
overnight LB cultures. Three overnight LB cultures per strain were diluted to 0.1 OD600 in a final volume
of 10 mL (in disposable culture tubes; Fisherbrand) with tetracycline (0.75 mg/mL for WT and WT DarcA
and 19.9 mg/mL for TetR and TetR DarcA) and without tetracycline (i.e., with addition of ethanol, used as
solvent for tetracycline). As a control, the same volume of ethanol used for the tetracycline-treated sam-
ples was added to antibiotic-free cultures. These cultures were the starting point for the experiment.
OD600 was periodically measured using a SPECTRONIC 200E spectrophotometer (Thermo Scientific). To
maintain cultures in mid-log phase, the cultures were diluted back to 0.1 OD600 when they achieved an
OD600 of 1.0. Due to practical constraints, the cultures were considered in the target OD600 range when
they were in the 0.8 to 1.2 OD600 interval. Two sterile controls (containing only LB broth) were main-
tained throughout the experiments. All cultures were transferred after achieving the target OD600 range
for a total of three growth cycles (i.e., from 0.1 OD600 to ;1.0 OD600). The two controls were also trans-
ferred and followed for a total of three cycles until the end of the experiment. Sub-MIC tetracycline con-
centrations were selected based on moderate inhibition effects in Growthcurver-estimated maximum
growth rates of microdilution growth curves (;60% for WT and between 53% and 76% for TetR treated
with 0.75 and 20 mg/mL of tetracycline, respectively), as performed previously by others (87).

Sertraline inhibitory concentration determination. We performed Bioscreen growth assays to
assess the susceptibility of the different strains to sertraline (sertraline hydrochloride; Sigma-Aldrich).
Growth assays covered a wide range of concentrations (for each compound/strain, we initially per-
formed an exploratory experiment to define an optimal range including nine concentrations) for each
compound of interest using three biological replicates (each one with three replicates for a total of nine
replicates) per strain/concentration. Growth was defined as the instances in which two or more repli-
cates increased their OD600 more than twice the maximum OD600 increment of the control wells (inocu-
lated with sterile LB medium) after 16 h of incubation.

DiaMOND assay to evaluate synergy of two-drug combinations. We used the diagonal measure-
ment of n-way drug interactions (DiaMOND) assay (76) (as described by Cokol-Cakmak et al. [88]) to eval-
uate the predicted ArcA-mediated synergy between tetracycline and selected compounds. Briefly, we
first determined the single drug concentrations that reduced OD600 (measured after 16 h of growth) by
half with respect to the drug-free condition (corresponding to the drug IC50), using a BioTek Epoch 2
instrument (BioTek, USA). Spline fitting and the R Stats package were used to interpolate the IC50 values
in the analyzed dose-response curves. Then, the IC50 values of the two-drug combinations (between tet-
racycline and selected compounds in a 1:1 volume using the IC50 concentrations defined in the previous
step) were determined. The fractional inhibitory concentration for the two-drug combinations (FIC2)
under the Loewe additivity model was defined (76). Culture inoculums were prepared as described
before. As the last step of the DiaMOND assay, five biological replicates (from independent colonies)
were used to start five overnight cultures to measure the effect of the tetracycline-sertraline interaction.
The raw data were visually inspected, and replicates with more than one potential IC50 or that grew bet-
ter than expected (i.e., higher OD600) in concentrations above the estimated IC50 were removed due to
low confidence on the IC50 estimation.

NADH/NAD ratio measurements. NADH and NAD ratios were measured using the Enzychrom
NAD/NADH assay kit (Bioassay Systems), following the manufacturer’s instructions (and adding a sonica-
tion step of 20 s [89], before heating at 60°C for 5 min to lyse the bacterial cells). The equivalent of 1 mL
of a 1.0 OD600 bacterial culture was used to measure NAD and NADH concentrations. To simultaneously
capture all bacterial cultures in log phase, overnight LB cultures (started from isolated colonies as previ-
ously explained for growth experiments) were adjusted to slightly different OD600 values to correct for
differences in fitness among strains. Specifically, in the absence of tetracycline, the initial OD600 values
for WT, WT DarcA, TetR, and TetR DarcA were 0.015, 0.025, 0.04, and 0.07, respectively. In the presence of
tetracycline (0.75mg/mL for WT and WT DarcA and 4mg/mL for TetR and TetRDarcA), the initial OD600 val-
ues were 0.02 (WT), 0.04 (WT DarcA), and 0.05 (TetR and TetRDarcA). A tetracycline concentration of
0.75 mg/mL for WT and WT DarcA was selected based on its inhibitory effect (see above). For TetR and
TetRDarcA, a tetracycline concentration of 4 mg/mL was chosen based on the observation that fitness of
both TetR and TetRDarcA was similar at the selected concentration (Fig. 4D). The selection was intended
to minimize the impact of fitness differences (already detectable in the antibiotic-free condition; Fig. 4A)
in the measured NADH/NAD ratio. NADH and NAD concentrations were measured after ;2.25 h (for cul-
tures without tetracycline) and ;5.25 h (for cultures with tetracycline) of growth at 37°C. Final results
included three to six replicates per strain.

Differential expression analysis of E. coli MG1655 and tetracycline-resistant MG1655 microar-
ray data. To characterize the adaptation of the TetR strain to tetracycline, we analyzed publicly available
normalized microarray data for the WT and TetR strains in the presence and absence of tetracycline
(Gene Expression Omnibus accession number GSE57084) reported by Händel et al. (32). Differential
expression analysis of microarray data was performed using a Bayesian t test with the Cyber-T tool (90).
Genes with adjusted P values , 0.05 and absolute log2 fold change >1 were considered differentially
expressed. Transcriptional profiles of arcA deletion strains (GEO accession numbers GSE1121 and
GSE46415) (46, 47) were analyzed using the same thresholds.

Functional enrichment analysis. Enrichment analyses of significantly up- and downregulated set of
genes were independently performed using DAVID (91). Only functional terms with adjusted P values
(Benjamini-Hochberg) , 0.05 were considered enriched. When using DAVID functional term clustering
results, general themes were manually defined for significant term clusters (i.e., with scores > 1.3 as rec-
ommended by DAVID developers).
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Identification of differentially active regulatory circuits associated with the gain of tetracycline
resistance. We identified differentially active TFs using the NetSurgeon algorithm (41), as previously
applied for Mycobacterium tuberculosis (92). Briefly, NetSurgeon ranks TFs based on their potential influ-
ence in the observed transcriptional changes between two states of interest (estimated according to the
change in expression of their known target genes) (41). A total of 192 TF regulons were extracted from a
transcriptional network (containing 5,517 signed TF-gene interactions) compiled from the RegulonDB
version 9.0 database (40). Of the 192 TFs, 68 had less than 5 target genes and were not included in the
analysis to reduce false positives due to overlap between regulons. We focused on the transcriptional
changes between the TetR strain and the parental WT strain in the absence of tetracycline and the
response of the TetR strain to tetracycline. TFs ranked (using the highest score between the independ-
ently computed scores for increased activity and decreased activity) in the top 15 of each comparison
were considered differentially active. To complement the NetSurgeon analysis, a network component
analysis (43) was applied to estimate the TF activity (TFA) using the transcriptional profile of their known
targets. The RegulonDB-derived transcriptional network mentioned above and the microarray data
reported by Händel et al. were used to estimate the TFA as previously described (32, 93). Statistical dif-
ferences in TF activity were determined using a Welch’s t test. Only TFs with adjusted P values of ,0.05
for basal and adaptive response that agreed with NetSurgeon-based predictions (Table 1) were consid-
ered differentially active. Finally, we mined the EGRIN model previously developed for E. coli (44) to iden-
tify clusters of coregulated genes statistically enriched (with adjusted hypergeometric test P
values# 0.05 and containing >9 DEGs) with genes whose expression was altered by gain of tetracycline
resistance. The association between clusters with differentially expressed genes and TF regulons was
used as an indicator of differential activity of the relevant TFs.

Characterization of metabolic response of E. coli to drug treatment and arcA deletion.We used
the MetaboAnalyst 5.0 website (94) to analyze publicly available Z-score-normalized metabolic profiles
of sertraline- and cefpiramide-treated E. coli (25) and arcA deletion E. coli (74). For each condition, the
affected metabolites were defined as the ones within the highest 10% of absolute Z scores. To identify
metabolically altered pathways due to drug treatments, we used the “pathway analysis” module avail-
able in the MetaboAnalyst platform using the hypergeometric test, relative-betweenness centrality, and
the E. coli KEGG pathway library options. The input for this analysis was the KEGG IDs associated with
perturbed metabolites. Only metabolic pathways with false discovery rate-adjusted hypergeometric test
P values # 0.25 were considered altered, following the threshold suggested by MetaboAnalyst develop-
ers. Similarly, we used the “joint-pathway analysis” module to identify metabolic pathways affected by
the arcA deletion. This analysis integrated a list of DEGs due to arcA deletion (47) and a list of metabo-
lites responding to arcA deletion (defined as described above) using the “metabolic pathways (inte-
grated),” “hypergeometric test,” “relative-betweenness centrality,” and “combine queries” options for E.
coli. Altered pathways were defined with the same adjusted P value threshold described above.

Genome sequencing. Late-log phase WT broth cultures were spun down, and the cells were lysed
with lysis buffer (0.1% SDS, 0.1 M dithiothreitol [DTT], 10 mg/mL lysozyme in 0.1 M Tris-EDTA [TE] buffer).
DNA was isolated from cell lysate using phenol-chloroform-isoamyl alcohol extraction method.
Overnight TetR broth cultures were spun down. Cell pellets were resuspended in TE buffer. 10% SDS and
proteinase K were added. DNA was precipitated with 100% ethanol added in a 3:1 volume ratio. The
genomic DNA precipitate was washed with 70% ethanol and later dried out. Libraries for sequencing
were prepared with the Nextera XT DNA library preparation kit (Illumina, San Diego, CA) for paired-end
sequencing in a NextSeq instrument.

Identification of mutations in the TetR strain. Initial quality check and trimming of raw FASTQ files
was performed using Trimmomatic 0.39 (95), with the following parameters: ILLUMINACLIP:NexteraPE-
PE.fa:2:30:10, LEADING:3, TRAILING:3, SLIDINGWINDOW:4:15, and MINLEN:36. Reads that survived this fil-
tering step were used for identifying mutations in the TetR strain, while taking into account background
mutations present in the parental WT strain. Variant calling was performed with Snippy version 4.6.0
(https://github.com/tseemann/snippy) using default parameters and E. coli K-12 MG1655 genome
(NC_000913.3) as a reference. Genomic coverage and identified variants are listed in Table S1.

Genome-wide CRISPR KO library construction on Onyx. Genome-wide KO libraries in WT and TetR

background E. coli strains were generated on the Onyx Digital Genome Engineering Platform, a commer-
cial benchtop instrument sold by Inscripta, Inc. Onyx (catalog number 1001176) is an automated platform
that uses the MAD7 nuclease, a type V CRISPR nuclease from Eubacterium rectale, to generate multiplexed
genome engineered libraries. All consumables, assays, and software used in this study are available at
https://portal.inscriptacp.com/.

Compatibility of genome-wide libraries designed for WT E. coli with the TetR strain was confirmed by
de novo genome assembly using short read polishing of Nanopore-based long reads using Raven (96) and
Racon (97). Inscripta’s Onyx microbial strain analyzer (OMSA) tool was used to confirm that 99.9% of
designs in the library are predicted to function in the TetR strain background. The genome-wide KO library
included 8,271 intended edits representing approximately two deletion mutants per gene: a triple-stop
(TAATAATAA) substitution at amino acid position 10 and a triple-stop insertion at amino acid position 15.

Single E. coli WT or TetR colonies were isolated from an LB agar plate and grown overnight in LB to
saturation and diluted to optical density at 600 nm (OD600) of 2.5 before subsequent processing. 1 mL of
cell suspension was subsequently prepared using the Onyx E. coli edit competency kit (GEN-EC-1004).
1 mL of E. coli cells (approximately 6 � 108 cells) prepared using the edit competency kit were placed
into the Onyx instrument. The OnyxWare program K-strain version 1.1 was selected, and the Onyx run
was initiated. Briefly, the instrument transferred the cells to a cell growth cuvette (reference number
1001155/catalog number GEN-EC-1007) for growth to 0.5 OD600, as measured on the instrument. After
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an initial outgrowth, the instrument transferred cells to the microfluidic cell controller (reference num-
ber 1001152/catalog number GEN-EC-1007). There, the cells were prepared for electroporation using
media exchange. Once they were rendered competent, the instrument moved the cells to the micro-
fluidic cell transformer (reference number 1001152/catalog number GEN-EC-1007), which controls
introduction of the MAD7-containing “engine” plasmid, as well as the gRNA/repair template/barcode-
containing plasmid into cells by electroporation. Following electroporation, the cells were placed by
the instrument into a second cell growth cuvette (reference number 1002161/catalog number GEN-
EC-1007) for recovery. The cells were then transferred to the digital engineering processor (reference
number 1001153/catalog number GEN-EC-1007) for abundance normalization. The resulting normal-
ized pool of cells was collected as multiple tubes from the instrument. Per library, 5 mL of cells were
collected at an OD600 ranging from 3.2 to 3.7. The cells were immediately stored frozen at 280°C in
15.5% glycerol. Depending on cell growth, the total run time on the instrument for E. coli lasted
around 48 h.

Following editing, the pooled libraries were grown off-instrument for approximately 8 h in TB sup-
plemented with 1,000 mg/mL carbenicillin and 68 mg/mL chloramphenicol. Library edit fractions were
estimated using pooled whole-genome sequencing (pWGS) and ranged from 45.3 to 50.8% (98). Based
on statistical approaches described by Cawley et al. (98), we expect to observe 96.9 to 97.1% of all
designs in selections using these libraries, assuming the selections start with $1 � 106 cells.

Competitive assays of pooled mutant libraries. To evaluate the impact of single-gene deletions in
the fitness of the TetR strain, we performed broth macrodilution growth experiments as described before.
Notably, instead of using overnight cultures as inocula, we grew five aliquots (each with 0.2 mL, previously
stored at280°C) of the relevant library in LB with 99.9mg/mL of carbenicillin for 4 to 6 h (we refer to these
cultures as the library acclimatization cultures, or “t0”). Carbenicillin was added along all experiments to
maintain the plasmid harboring DNA barcodes for each gene edit. For each library, four acclimatization
cultures were used to start four 0.1 OD600 10-mL LB cultures with tetracycline (0.75 mg/mL for WT libraries
and 20 mg/mL for TetR libraries) and without tetracycline (i.e., adding ethanol as a control as previously
explained). Sub-MIC tetracycline concentrations were selected as explained before. Pooled library cultures
were maintained in mid-log phase during three growth cycles (i.e., from 0.1 OD600 to ;1.0 OD600). At the
end of each growth cycle (i.e., when cultures were in the 0.8 to 1.2 OD600 interval), culture aliquots were
used to create cell pellets stored at 280°C. Cell pellets of the acclimatization cultures were also stored. As
in previous experiments, two control LB cultures were included in each experiment.

Barcode sequencing fitness estimation. Cell pellets from the competition assays described in the
previous section were used for DNA extraction following Inscripta protocol with the Wizard SV genomic
DNA purification system (Promega). DNA libraries of previously extracted DNA were prepared using the
48-sample Onyx barcode diversity assay kit (Inscripta, Boulder, CO) following the manufacturer’s instruc-
tions. Four available replicates of each analyzed mutant library were sequenced. Prepared libraries were
sequenced (as single-end 100-bp reads) in a NextSeq instrument. An average of 972 (6 321) reads per
design for each replicate was observed.

Raw sequencing data were processed on Illumina BaseSpace suite. The resulting FASTQ files were
processed with the InscriptaResolver software to estimate read counts for each gene deletion (Data Set
S1). We used the number of reads for each unique gene edit barcode sequence as a proxy for mutant
frequency in the genome-wide single-gene deletion competition assays in order to identify mutants
over- and under-represented in the population. In this way, we were able to identify mutations that
were deleterious (under-represented) or beneficial (over-represented). The ALDEx2 R package (51) was
used to identify differentially abundant gene deletion designs. Briefly, we used ALDEx2 interquartile log
ratio transformation to estimate relative abundance of each mutant with 1,000 Monte Carlo instances.
Before each comparison, we removed all deletion mutants with less than 10 reads in all four replicates
(referred to as ‘dropouts’) of any of the two time points being compared. We define differentially abun-
dant mutants at ‘t1’ and ‘t2’ with respect to ‘t0’ as those constructs with Benjamini-Hochberg adjusted
(Welch’s and Wilcoxon) t test P values , 0.1 and absolute ALDEx2-estimated effect >2, as suggested by
ALDEx2 developers and others (99, 100). Changes in abundance for each KO design at each time point
(with respect to t0) correspond to ALDEx2-computed “diff.btw” scores. Data for the last time point (t3)
was not used in this analysis due to the high number of depleted mutants at the end of the experiment
(due to tetracycline selection pressure) (Fig. 3A) and the challenge this may represent for ALDEx2 poste-
rior relative abundance estimation (51). To focus on the genes most likely affecting fitness, a gene was
only considered to affect fitness if all of its deletion mutants (excluding any dropout) were differentially
abundant and had the same effect (deleterious or beneficial).

Code availability. An R notebook (101) with all necessary scripts and input files to generate all figures
of this article are publicly available in the following GitHub repository: https://github.com/marioluisao/
Compensatory-mechanisms-for-Antimicrobial-Resistance.

Materials availability. Material requests may be directed to the corresponding author, Nitin S.
Baliga (nitin.baliga@isbscience.org).

Data availability. The data generated in this study are available in the following GitHub repository:
https://github.com/marioluisao/Compensatory-mechanisms-for-Antimicrobial-Resistance.
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