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Abstract—In this work, we investigate the integration of replicated versioned data structures and append-only distributed storage
systems. Doing so facilitates high availability and scalability while providing developer access to different versions of program data
structures across program executions. Modern distributed systems such as the Internet of Things (loT) often employ multi-tiered
(cloud/edge/sensors) architectures consisting of a wide array of heterogeneous devices generating data frequently. Hence system
availability is imperative to avoid data loss, while scalability is required for the efficient operation of the system not only within the same
tier but across different tiers as well. Our proposed approach replicates, persists, and versions program data structures such as binary
search trees and linked lists for use in distributed loT applications. The versioning and persistence of these structures aid failure
recovery and facilitate system debugging from its inception instead of making such considerations an afterthought. Moreover, our
experiments suggest versioned data structures can perform better in applications performing high volumes of temporal queries versus
traditional methods of persisting data (e.g., in a database). We empirically evaluate the overheads associated with versioning and
storage persistence of program data structures, present experimental results for multiple end-to-end applications, and demonstrate the

scalability of this approach.

Index Terms—Append-only logs, 10T, replication, versioning

1 INTRODUCTION

ISTRIBUTED systems have evolved over the years result-
Ding in new computing paradigms such as cloud
computing, edge computing, and the Internet of Things
(IoT) [1]. However, programming applications that leverage
the services provided by multi-tier deployments (i.e., cloud,
edge, and sensor combinations) are complex and error-
prone for several reasons. First, there is no unifying set
of programming abstractions that are designed to span
resource scales consisting of heterogeneous devices — from
resource-restricted IoT end devices (e.g., microcontrollers)
to the extensive resource pools available from public clouds.
Second, many multi-tier applications must tolerate frequent
communication disruptions, outages, and failures when
operating across tiers. Clouds mask and handle failures via
vast scale and infrastructure support, which are not avail-
able or feasible at the edge due to resource constraints, inter-
mittent connectivity to the cloud, and vast heterogeneity of
IoT devices and networks. Developers of multi-tier applica-
tions face significant failure management programming
challenges concerning both the number of devices to be
managed and their capabilities.
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Hence for the modern distributed system to revolutionize
the next era of computing, it must involve high-level program-
ming abstractions that reconcile the heterogeneity of devices
while exploiting the failure management approaches that
have emerged from large-scale cloud computing. Our work
addresses these dual challenges with new programming sup-
port (ie., high-level libraries) for commonly used program
data structures (e.g., linked lists and binary search trees) that
transparently facilitates versioning, replication, and eventual
consistency. By doing so, we attempt to solve the research
challenge of realizing systems that can reconcile the heteroge-
neity of modern distributed environments while making
applications capable of withstanding failure. In Section 3, we
present multiple IoT applications from existing literature
(urban traffic steering [2], inter-device task dispatch [3], smart
locks [4], and machine learning at the edge [5]) that can benefit
from our approach.

The combination of versioning, replication, and storage
persistence using logs provides us with a unique approach
to application development for failure-prone, heterogeneous
distributed environments. As versioned data structure pre-
serves its previous states, versioning allows us to organically
log every state an application goes through. This removes
the burden of explicit logging from the application developer
and facilitates debugging as previous versions can be
accessed to inquire what caused a failure. Unsurprisingly,
versioned data structures can be efficient for applications
with large volumes of temporal queries as well.

Replication makes program data structures durable,
highly available, and concurrently accessible in the presence
of resource failures. Strong consistency involves coordina-
tion overhead which can get compounded in failure-prone
environments due to frequent network failures. Hence we
opt for eventual consistency in this work. As it stands,
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TABLE 1
A Comparison Among Different Technologies/Platforms With PEDaLS
Technology/ Immutable/ Distributed/ Type of Supported Data Structures ~ Complexity =~ Primary Usage
Platform Versioned Replicated Consistency Guarantees
PEDaLS [8] Yes Yes Strong eventual Linked data structures with Constant/op Versioned and
constant in-degree step replicated
program data
PDS [10] Yes No N/A Linked data structures with Constant/op Versioned
constant in-degree step program data
CRDT [11] No Yes Strong eventual Data structures having join No Replicated data
semilattice or having
operation commutativity with
idempotence support from
communication layer
Append-only  Yes Yes Implementation Raw data N/A System logging,
logs [12] dependent data storage,
etc.
Paxos [13]/ N/A Yes Strong N/A N/A Replication
Raft [14] protocol
Git [15]/ Yes Yes Eventual Text, raw data N/A Source code
GitHub [16] management
Blockchain [17]  Yes Yes Eventual Raw data N/A Immutable
ledger

Only the immutability of blockchain is supported by cryptography, other technology’s immutability/versioning is supported by their exposed interfaces. PEDaLS
and PDS provide efficient space/time complexity for linked data structures with constant in-degree in a single machine. Similar mechanisms could potentially be
used for other data structures without the same space/time complexity guarantees. PEDaLS does not have the join semilattice or operation commutativity require-
ments as CRDTs. Note that to the best of our knowledge, PEDaLS is the first and only system to provide replication for storage persistent versioned program data

structures.

many multi-tier applications can sacrifice strong consis-
tency in favor of high availability and partition tolerance [4],
(6], [71.

Append-only logs provide immutability, which facili-
tates both availability and coordination avoidance. Both ver-
sioned data structures and append-only logs provide
versioning, the former from a program level and the latter
from a storage level. Our work uses logs to provide a
generic method of operation reversal as well. If we can
express an operation in terms of appends to logs, we can
express the reversal of the operation as log rollback. This
plays a vital role in conflict resolution during replication (cf.
Section 5.6).

Our work builds upon and extends an approach to make
versioned data structures log storage persistent called PED-
aLS [8]. In particular, we extend PEDaLS in the following
ways: We introduce a replication method for data structures
that ensures that any two replicas that observe the same set
of operations (possibly in a different order) will arrive at the
same state. This property is known as strong eventual con-
sistency [9]. Due to the append-only semantics of logs, PED-
alS requires novel and complex methods to efficiently
detect and resolve any temporary conflicts that may arise
during the replication process. We present an efficient con-
flict detection method that avoids full log scans in Section 5.5
and the subsequent conflict resolution method in Section 5.6.
Notably, the append-only semantics of logs facilitate the
rollback of arbitrary data structures that makes conflict reso-
lution feasible.

We demonstrate the scalability of our proposed replica-
tion method in Section 6.2, in which we consider different
numbers of replicas and workload composition (i.e., read/
write percentage). We also demonstrate how a wide range of

use cases can leverage our versioning support using multiple
real-life applications in Section 6.4. Our results show that
PEDaLS performs significantly better in regard to complex
temporal queries than popular SQL and NoSQL databases.

Finally, although conceptually, logs are unbounded, in
practice they are limited by the physical capacity of the
underlying storage. To address this challenge, we develop a
probabilistic model in Section 6.5 that determines the stor-
age required to retain a user-specified number of versions
in the face of failures. In the sections that follow, we over-
view related work and then describe each of these contribu-
tions in detail.

2 RELATED WORK

In this section, we discuss the foundations that underlie rep-
licated versioned data structures. We focus this section on
advances in data versioning, distributed logging, and data
replication, which are key for supporting failure-prone,
multi-tier applications. We summarize a comparative study
of these foundational concepts in Table 1.

2.1 Data Versioning

Versioned data structures maintain past program states that
can be accessed programmatically. Such data structures are
immutable — a new update operation creates a new version
that retains the previous states while recording the latest
state. Note that for immutable data structures, even deletion
operations logically append new information. Immutability
facilitates coordination avoidance as well as other robust-
ness features described below [18]. Versioned data struc-
tures are also referred to as persistent data structures [10] in
the literature. Note that the term “persistent” in this context
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does not mean “storage persistence” (i.e., in a system con-
text, the ability to persist data during a power-off state),
rather it means that the previous versions (i.e., states) of the
data structures are preserved. If all versions (past and pres-
ent) of a data structure can be both accessed and modified it
is fully persistent. If all versions of a data structure can be
accessed but only the latest one can be modified it is partially
persistent. A confluently persistent [19] data structure can
merge different versions into one. We focus on partially per-
sistent data structures in this paper, as the version history is
sufficient for our use cases. We refer to partially persistent
data structures in this paper as PDSs.

In our work, we use the node-copy method [10] proposed
by Driscoll, Sleator, Sarnak, and Tarjan for distributed,
linked data structures (e.g., trees and lists). Node-copy is a
single-machine, in-memory algorithm. In [8], we modify
this algorithm to be distributed and storage persistent
(through the use of append-only logs), while maintaining
the original constant per-node traversal time complexity of
the node-copy method. That is, the node-copy method
maintains a constant traversal cost between all nodes in a
PDS. We overview this approach (called PEDaLS) in Sec-
tion 4. Most past works on PDSs cover applications from
theoretical computer science [20], text editing [21], and com-
puter-aided design [22]. Our extension to distributed sys-
tems enables their use in providing application robustness,
distributed debugging and root cause analysis, and repair/
replay for IoT applications.

A technology related to data versioning is git [15]. Gitis a
version control system typically used for text documents
with some support for binary documents. GitHub [16] is an
online platform for hosting git repositories. A primary dif-
ference between persistent data structures and git is that the
former is used for program data, whereas the latter is used
mostly for source codes or files. Git provides support for
exploring the difference between two versions, working on
different versions (similar to fully persistent data struc-
tures), and merging different versions (similar to con-
fluently persistent data structures) among others.

2.2 Append-Only Logs
Due to a decline in storage costs, append-only logs are used
widely in distributed and cloud computing systems to facili-
tate immutability, robustness, and scalability. Examples of
log-based systems include cloud object stores [23], [24], event
systems [12], distributed databases and file systems [25], [26],
[27], [28], [29], log-based transaction systems [30], [31], [32],
and popular messaging and streaming services [33], [34], [35].
Immutability facilitates robustness and coordination
avoidance [18], [36] as well as high availability (through
eventual consistency) for cloud storage, gossip protocols,
collaborative editing, and revision control, among others [37],
[38], [39]. While data versioning provides immutability from
a software level, append-only logs provide immutability
from a storage level. Entries in a log are ordered and most
log storage systems provide a form of sequence number (e.g.,
Kafka [40] provides offsets, and Facebook LogDevice [41]
provides log sequence numbers) that reflects the log order.
Log storage systems typically provide a simple API for creat-
ing a log, appending to a log, and retrieving entries from
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specific sequence numbers in a log. This generic API facili-
tates communication among heterogeneous devices. Our
work is agnostic of the underlying log storage system as long
as it provides the aforementioned functions.

Append-only logs also provide a convenient mechanism
for operation reversal. If we express update operations of
an arbitrary data structure as log appends, we can perform
a reversal of those operations via log rollback. This is help-
ful in cases where a data structure is erroneously updated
and later on it is found that the update should not have
been applied (or a different one should have been applied).
In these cases, logs enable us to rollback all operations start-
ing from the latest up to the undesired one, and to then
apply the correct operation if necessary via replay of the
operations that follow. This has the same final effect as the
undesired operation not being applied at all. Note that this
is different than applying a seemingly inverse operation to
a data structure, which may result in unwanted side effects.

Similar to append-only logs, blockchain [17] is a continu-
ously growing data storage. However, blockchain has crypto-
graphic backing to ensure the integrity of each added block,
whereas the append-only semantics of logs are only ensured
through their exposed interfaces. That is, if a malicious user
were to change data previously appended to a log through
some means, there is no feasible way to detect this anomaly.
On the other hand, any such attempt in a blockchain would
reveal this modification through cryptographic algorithms.
The downside is that in addition, blockchain is resource-inten-
sive. Blockchain is inherently decentralized with algorithms
that add to its integrity through this decentralization. Both dis-
tributed logs and blockchain are eventually consistent. Distrib-
uted logs used in conjunction with consensus protocols such
as Paxos [13] and Raft [14] can be strongly consistent as well.

2.3 Data Replication

Distributed systems replicate data to ensure the availability
and robustness of the system. However, multi-tier deploy-
ments pose unique challenges which make many existing
replication protocols inapplicable. First, these deployments
include a vast range of heterogeneous devices including
resource-constrained systems such as microcontrollers and
single-board computers. Thus, protocols which require sig-
nificant memory or complex computation are not suitable
for them. Second, these devices are commonly battery-pow-
ered and are connected via unstable networks.

Protocols that require frequent coordination among repli-
cas can experience repeated failure and restart of the replica-
tion procedure in such settings. Due to these reasons,
protocols such as Paxos [13] and Raft [14] that provide strong
consistency and require a quorum through multiple mes-
sages among the replicas are precluded for many IoT devices.
Multiple works in the literature suggest resorting to a weaker
consistency model in favor of availability [42], [43]. Fortu-
nately, many IoT use cases do not require strong consistency
semantics and instead can tolerate weaker consistency mod-
els (with lower coordination requirements) such as eventual
consistency [4], [6], [7]. Thus we can trade off strong
consistency for high availability (which many of these use
cases do require) in the face of network partitions [44]. Specif-

ically, our approach sugPorts strong eventual consistency for
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replicated data structures, similar to that used in collabora-
tive environments [45], [46], [47] via Conflict-Free Replicated
Data-Types (CRDTs) [11].

Motivated by the various limitations of Paxos, researchers
have proposed multiple variations over the years. In Paxos,
the leader performs a disproportionately large amount
of communication compared to followers. PigPaxos [48]
attempts to reduce the load of the leader by distributing
some communication responsibilities to follower nodes,
called relays. However, for write-heavy workloads (e.g., for
sensor-driven IoT applications), the communication load is
inherently distributed, limiting PigPaxos’ advantage. More-
over, PigPaxos only redistributes the communication work-
load among nodes; it does not necessarily reduce the total
amount of required communication (versus Paxos). Addi-
tionally, in failure-prone, heterogeneous environments such
as IoT, replicas running Paxos-based protocols often must
give up on current progress and start fresh if a quorum is not
met. A quorum might not be met for many reasons including
multiple contending writers, device/power failure, network
latency, etc. Hence the overhead of Paxos-based algorithms
is compounded in such scenarios. On the other hand, even-
tual consistency-based protocols can progress even in fail-
ure-prone environments in presence of multiple writers, as
each replica is able to execute its operation immediately and
incorporate the rest of the operations when the other devices
become reachable.

DPaxos [49] proposes a dynamic allocation of quorums
to avoid unnecessary wide-area communication. The com-
munication reduction of DPaxos is heavily dependent on
the premise that leader election is infrequent. However, if a
leader-based protocol is used for write-heavy workloads,
the leader election phase will be more frequent. Moreover,
in the case of multiple writes, the dynamic allocation of quo-
rums can be prolonged multiple times; effectively being
computationally more complex than Paxos without provid-
ing any additional advantage. Hence we employ strong
eventual consistency for the write-heavy edge deployments
to reduce overall communication overhead.

3 UsEe CASES

In this section, we describe the research question that PED-
aLS strives to answer and provide use cases from existing
literature that can benefit from the features we adopt in
PEDaLS. We also explain why eventually consistent replica-
tion is more effective than other forms of replication for
each of the use cases. In addition, we identify the advan-
tages of versioning in these settings. Note that the use of
append-only logs is a core design feature that is not neces-
sarily dependent on individual applications. Rather it is a
design principle that enhances the overall PEDaLS system,
as explained in Section 2.2.

Heterogeneous distributed systems such as the IoT are
inherently failure-prone due to the deployment environ-
ment (e.g.,, poor network connectivity, unstable power
source, devices with limited capacity, etc.). Moreover, in the
face of a failure, it is difficult, if not impossible, to debug the
system due to the loss of relevant data. PEDaLS provides an
approach to alleviate this problem by ensuring that relevant

data is preserved and available, possibly in multiple
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storages, along with a trace of state changes. PEDaLS
achieves this through three foundational design choices.
First, PEDaLS uses versioned data structures to capture the
historical trace of change in data. The immutability of ver-
sioned data structures ensures the previous versions are
always preserved and the last complete state is always
checkpointed. Thus it helps in system debugging in the face
of a failure.

Second, PEDaLS uses replication to ensure the availabil-
ity of data. As strong consistency involves coordination
overhead which can get worse in the presence of poor net-
work connectivity, PEDaLS opts for eventual consistency.
Eventual consistency is also useful in a decision support
context, where a specific decision does not depend on all
data items being present.

Third, PEDaLS uses append-only logs for storage.
Append-only logs provide robustness and scalability. The
immutability of append-only logs facilitates both coordina-
tion avoidance and high availability. While versioned data
structures provide versioning from a program level, append-
only logs provide versioning from a storage level. Next, we
present multiple existing use cases from the literature where
eventual consistency (as opposed to strong consistency) and
versioned programming are beneficial.

Urban Traffic Steering [2]: In smart cities, different sensors
are deployed along the streets to gather information regard-
ing crowding, pollution, traffic, etc. To supplement effective
decision making, other parameters such as events, attrac-
tions, and comments on an area are drawn from distributed
or cloud databases. From the collection of this information,
smart applications can guide pedestrians and vehicle traffic
in complex urban environments. This is a typical example
of interaction among heterogeneous devices in an environ-
ment which is inherently eventually consistent — numerous
devices are continuously updating the state which stabilizes
over time (e.g., the traffic in an area). As explained earlier,
this is an example of a decision support context where all
data points are not necessary to make a decision. Note that
strong consistency is not necessary for this application and
would only hinder and postpone decision-making due to
the communication overhead involved in such protocols.
On the other hand, eventual consistency allows each data
source to generate and propagate data throughout the sys-
tem without complex coordination, resulting in a smoother
user experience. Moreover, historical data preserved
through versioning can provide insightful details on pre-
dicting future traffic patterns. In [2], the authors describe
eventual consistency as a property of certain IoT applica-
tions. The authors further present that such applications not
only converge eventually but that the current state can be
used to approximate the future states of the environment.

Inter-Device Task Dispatch [3]: It is not uncommon for IoT
devices to interact with other nearby devices to complete an
objective. Inter-device apps can leverage resources from
multiple devices by sharing data and tasks among devices.
In [3], the authors point out that the prevalent practices in
inter-device app development for IoT are not disciplined
and that tasks are dispatched statically with strong consis-
tency. Static dispatch limits the range of interaction among
devices while strong consistency imposes restrictions on

inter-device agps due to synchronization overhead. Hence
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the authors propose Inter-Device Task Dispatch (IDTD), a
framework to construct and dispatch tasks into multiple
devices dynamically with eventual consistency in a system-
atic manner. Data versioning in such contexts can store the
execution history and as such can be used for system debug-
ging in later phases.

Smart Locks [4]: Smart locks replace traditional door locks
with deadbolts that can be electronically controlled by
mobile devices or remote servers. In [4] the authors show
that an eventual consistency design provides robust revoca-
tion and access logging mechanisms for smart locks. At the
same time, this design minimizes the system’s dependency
on external entities, maintains a high level of availability,
and reduces the system’s vulnerability to remote compro-
mise by allowing devices to forgo direct connections to the
internet. Due to lower dependencies on external entities,
these locks can be less prone to external attacks, resulting in
a more secure system. In smart lock systems, data version-
ing can provide an implicit log of access control, thus aiding
security checks and debugging in case of a breach.

Banking Queue Monitoring [50]: Queue monitoring is used
for multiple purposes, such as determining the current
load, resource requirement, and expected service time of
the system. In [50] authors provide a manually collected
dataset of service queues at different banks (cf. Section 6.4.1).
Such data collection can be automated by sensors placed at
the entrance and exit or even by indoor localization using
smartphones and WiFi access points [51]. Data versioning
in this application can facilitate predicting future queue
conditions. Moreover, as the exact number of occupants is
not required to be known at any instant of time, rather an
approximate value is sufficient to make relevant decisions,
an eventual consistency based-approach works well here as
well. Furthermore, adopting an eventual consistency-based
approach allows us to avoid coordination overhead, thus
ensuring the longevity of battery-powered sensors and bet-
ter utilization of in-house network bandwidth.

4 Nobpe-CopYy METHOD AND PEDALS

In this section, we present an overview of the node-copy
method [10] and PEDaLS [8]. Node-copy method is an effi-
cient single machine, in-memory algorithm to create ver-
sioned linked data structures having constant in-degree.
The time complexity of update/read operations in this
method is constant per operation step, where an operation
step is defined as the traversal from one data structure node
to the other. A data structure node of a PDS in the node-
copy method differs from that of an ephemeral (i.e., non-ver-
sioned) node in two ways: (i) Each information field and
pointer fields in a node are tagged with a version stamp.
Version stamps start with one and are monotonically
increasing. Every update operation is considered to gener-
ate a new version of the data structure, hence the version
stamp is increased during each update. (ii) Every data struc-
ture node has provisions for a fixed number (user-defined)
of extra pointers to accommodate future updates. Once
these extra pointers are filled, a copy of the node is made
with only the latest pointer fields, essentially freeing up
pointer fields for further update operations.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on

PEDaLS [8] converts the single machine, in-memory
node-copy method into a distributed, storage persistent one
while maintaining the time complexity of update/read
operations of the node-copy method. It exposes data struc-
ture versions to developers for use in dependency tracking
and program analysis [52], history-aware programming [53],
and repair and replay [54] in distributed settings. PEDaLS
consists of append-only logs at the storage level, which it
can internally interact with simple API calls. Similar to the
node-copy method, data structure nodes contain versioned
fields with provision for extra pointers. PEDaLS abstracts
away all of these complexities from the developers and pro-
vides them with functions to create, modify, and access the
data structures. PEDaLS does not allow multiple writes (i.e.,
update operations) at the same replica at the same time, as
semantically a new version is obtained by performing an
update operation on the latest version — thus requiring an
order over the update operations. However, it allows reads
during a write operation.

The in-memory node-copy method can reuse previous
data for the latter versions and can use extra pointers to
accommodate future updates. PEDaLS retains these design
choices to create versioned data structures. Implementing
the node-copy method using append-only logs has its own
challenges. To start with, every pointer manipulation must
be expressed as appends to one or more logs instead of
being executed in-place. Moreover, in order to maintain the
time complexity of the in-memory algorithm, expensive log
scans must be avoided. As logs can be remote, PEDaLS
must withstand network failures. Finally, atomicity across
logs must be guaranteed, i.e., an update operation should
either append to all the logs that it is supposed to append
to, or keep all of the logs unchanged.

In order to address all of these challenges, PEDaLS uses
three types of logs: (i) DataLog, (ii) LinkLogs, and (iii) APLog.
The DataLog stores the information field of data structure
nodes. A LinkLog stores the pointer fields of a specific data
structure node. Each node in a data structure has a dedi-
cated LinkLog. Therefore, a data structure node can be
uniquely expressed through a pair of sequence numbers,
one for the DatalLog and another for the corresponding
LinkLog. As each data structure node has a dedicated Link-
Log, any pointer modification of a node can be expressed as
an append to the corresponding LinkLog. Much like how
node-copy method has a fixed number of extra pointers for
a node, PEDaLS assumes a fixed number of entries for a
node in its LinkLog. As an example, the number of original
pointers o is 2 in a bst node (one left and one right). If the
number of extra pointers e is 1, the total number of pointers
p in a bst node is p = 0+ ¢ = 2 + 1 = 3. Therefore, the first
three entries in a LinkLog denote the original node, the next
three entries denote the copy of the node, the next three the
copy of the copy, so on and so forth. This is the ideal case
without any network failure. However, network failures
make the scenario complicated with remote logs. PEDaLS
considers two types of failures: (i) Type 1. An append to a
LinkLog fails. This does not change the above calculations.
(ii) Type 2. An append to a LinkLog succeeds, but the
acknowledgment is lost. In this case, PEDaLS retries up to a
certain user-defined number of times, which results in

apfending the same entry multiple times. In this case, the
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total number of entries allocated for a node becomes a func-
tion of the number of failures f (i.e., p =0+ e+ f). In order
to identify these sorts of repeated entries, each entry in a
LinkLog embeds the number of remaining pointers for the
node after the insertion of the current one. This essentially
turns every repeating append to the LinkLog idempotent,
barring the side-effect of using up space.

Similar to the in-memory node-copy method, PEDaLS
uses the access pointer log (APLog) to store the root node of
different versions of the data structure. APLog is always
written at the end of an update operation. An append to the
APLog denotes a successful completion of a version. If any
other log contains a version stamp vs’ that is not present in
the APLog (possibly due to a system crash), this implies
that the version is incomplete. To meet the atomicity
requirement of an operation, upon system recovery the tails
of all the logs are examined and any entry containing the
version vs’ is rolled back.

5 REPLICATING VERSIONED DATA STRUCTURES

In this section, we present how we extend PEDaLS to provide
replication of versioned data structures. Replication is used
to make systems fault-tolerant and to ensure the availability
of systems. As most multi-tier deployments have multiple
devices spread across different sites, most of which are gen-
erating data, we accommodate multi-writer replication.

5.1 System Model

We consider an IoT deployment of N replicas (devices) gen-
erating data, i.e, multiple writers can generate data at the
same time. Each replica is assigned a node ID from a set S.
We represent a replica as X5, s € S. The underlying network
is asynchronous and unreliable; messages may be dropped,
duplicated, or reordered. The network may partition and
eventually recover. Each replica has local durable storage.
We assume replicas may face non-byzantine failures; a rep-
lica may crash but will have access to the information
recorded in durable storage upon recovery.

5.2 Version Stamps
Although PEDaLS uses monotonically increasing integer
values to represent versions, we change the versioning
scheme to denote which replica originally executed an oper-
ation. Specifically, we use the concatenation of a counter
with a node (replica) ID to represent a version stamp
(Lamport timestamp [55]). We represent the counter and
node ID of a version stamp vs by vs.counter and vs.nodelD
respectively. We say version stamp vs, is less than version
stamp vs, (vs, < vsp) if and only if (i) the counter of vs, is
less than that of vs,, or (ii) both the counters are same but
node ID of vs, is less than that of vs,. When replica X, exe-
cutes a new operation in response to a client request, it tags
it with version stamp vs (vs.nodelD = s), which is greater
than all other version stamps it has observed so far (opera-
tions that happened before). Thus if operation op, happens
before op, at a replica, vs, < vs, where vs, and vs, are the
version stamps of operations op, and op;, respectively.
Version stamps of concurrent operations can be ordered
arbitrarily but deterministically. Throughout the rest of the
paper, we use version stamps to refer both to the version
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stamp itself and to the operation it tags. The intended use
will be clear from the context. We say vs is an operation of
X (alternatively, X is the originator of vs) if vs.nodelD = s.

5.3 Ordering Operations

Over time replicas may diverge from each other due to
update requests from clients (i.e., processes that can update
or query a data structure by sending a request to any rep-
lica). To reconcile this divergence each replica periodically
performs a round of merge steps with the other replicas. A
merge step is always between a pair of replicas. Therefore,
in a round, there are at most N — 1 merge steps. In a merge
step, one replica (known as the reader) reads entries in the
log of operation from another replica (known as the source).
The goal of the merge step is for the reader to identify and
incorporate operations “unknown” to it (i.e., not previously
executed at the reader) that the source has already executed.
The reader ensures that the causality relationship among
the operations is retained while creating this merged list of
operations and subsequently executing them.

One way to achieve consistency among replicas is to main-
tain a log of operations (OpLog) in each replica. Each entry in
an OpLog is the tuple (vs,op,val). vs is the version stamp of the
operation, op is the type of update operation, and wval is the
operand of op. We denote the OpLog of a replica X, as
OpLog(Xs). As long as all replicas execute the same set of
operations in the same log order, they will converge. In fact,
this is the same principle used in replication protocols such as
Raft [14]. However, in order to reduce communication among
replicas and latency experienced by clients, we allow tempo-
rary divergence of the OpLogs, which is reconciled later on
(eventual consistency instead of Raft’s strong consistency).
This means, at times, a replica must rollback operations in the
OpLog along with all other logs used by the underlying data
structure to record these rolled back operations, followed by
execution of new operations, finally followed by replay of
previously rolled back operations. In our work, we model the
history of operations (OpLog) as a list CRDT and use an adap-
tation of the method used in [56], as explained later. Using
logs to maintain order adds extra complexity, namely, avoid-
ing log scans. We propose new logs and algorithms to effi-
ciently maintain order in Sections 5.4, 5.5, and 5.6.

Although PEDaLS does not allow multiple concurrent
writes at the same replica to preserve the integrity of a ver-
sion (cf. Section 4), it still allows incoming write requests
during merge steps. To do so, the reader makes a backup
copy of the underlying data structure up to the version
which is certain to remain unchanged even after the merge.
A merge step potentially involves reordering and replay of
operations that take place on this backup copy. Meanwhile,
any direct write request to the reader is serviced by working
on the main copy with temporary version stamps. The
reader thus has to incorporate these writes on the backup
copy at the end of the merge step with updated version
stamps, during which new write requests are blocked. As
an optional optimization to increase write availability
(which we do not adopt in the experiments), the reader can
choose to block writes only if the number of new writes not
in the backup copy falls below a certain threshold set by the

application developer. Otherwise, it repeatedly checks for
estrictions apply.
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OpLog(X4)| [OpLog(Xp)]| | [OpLog(Xa)| [OpLog(Xp)]| | [OpLog(Xa)| [OpLog(Xp)
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2 | 2A 2 [2B] 1] 2 |28 2 |21 2 [ 2B 2 | 2B

3 ] 2A NIEEE 3 ] 2A

initial state after X4 syncs with Xp after Xp syncs with X4

(a) X4 merges with Xp then Xp merges with X 4.
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Fig. 1. Change in OpLogs as replicas merge with each other. We notice
the two different sequence of merge steps results in the same consistent
state at the end.

new local writes and incorporates these into the backup
copy without blocking. Finally, the reader updates the main
copy with the backup copy, which can be done efficiently
by simply swapping the references to the two copies.

When a replica X, executes an operation as a direct
request from a client, it appends the operation at the end of
OpLog(X 4). Apart from direct client requests, replicas also
execute operations that are unknown to them from other rep-
licas” OpLogs (during merge steps). Assume vsy., is an oper-
ation in OpLog(X ) that X4 has not yet executed. We denote
the operation immediately preceding vsye, in OpLog(Xp) as
USpred- As the intention is to maintain a consistent order of
operations, X4 tries to place vs,., in its own OpLog after
USpreq as well. Therefore, to incorporate the unknown opera-
tion vsye,, X4 first locates vsy,cq in OpLog(X4). Let us denote
the operation in OpLog(X4) immediately succeeding vsyreq
as VSguee. That is, vSpe, and vsg,. are concurrent operations.
Now X, inserts vs,e, in OpLog(X 4) immediately after vs,.q
if VSpew > VSsuee. Otherwise, X4 skips over all contiguous
version stamps that are greater than vs,., and then places
VSpew- Of course, it might happen that vsy,.q is not present in
X4 to begin with. In that case vs),..q must be inserted first.
This implies that X4 should start reading OpLog(Xp) from
the earliest sequence number that contains an operation
unknown to it. We express this whole procedure of inserting
operation vSye, after vsy e as insert(vVsyey, Uspred)-

To illustrate how insert works, we refer to the OpLogs in
Fig. 1 (only the sequence numbers and version stamps are
shown for brevity). We consider two replicas in our system,
X4 and Xp. Let us assume X4 executed operation 14 that
Xp became aware of during the latter’s merge step. At this
point, both X4 and X5 executed one operation indepen-
dently but concurrently, operation 24 and 2B respectively.
Now we consider two different scenarios. (i) Fig. la. X4
(reader) merges with Xp (source). For now, we assume
readers start comparing the two OpLogs from the beginning
(we show in Section 5.5 how full log scans can be avoided).
Both OpLogs have 1A as the first entry, so no action is
needed. However, X has 2B in the second entry whereas
X4 has 2A. This is equivalent to the insert operation
insert(2B,1A) i.e., insert 2B after 14 in OpLog(X,) (as 2B
comes after 14 in OpLog(Xp)). We note how the insertion

operation is implicitly embedded in the log order. As X4
currently has 24 after 14 and 2B > 24, it can place 2B after
1A. “Placing 2B after 1A” is a multi-step process: X4 trims
its OpLog up to sequence number 1, append the entry con-
taining 2B, and finally re-append the entry containing 2A.
Additionally, it trims/(re-)appends to any logs used by the
underlying data type. When Xp (reader) merges with X4
(source) after this, X can simply append 24 after 2B in its
OpLog. (ii) Fig. 1b. Xp (reader) merges with X, (source).
Starting comparison from the top of the OpLogs as before
reveals different entries in the second entry: OpLog(X 4) has
2A as the second entry whereas OpLog(Xp) has 2B. This
translates to the operation insert(24,1A) to be executed in
OpLog of X . As the version stamp after 14 at Xp is 28 and
2A < 2B, 2Ais placed after 2B. Merging the other way fol-
lows the steps similar to the previous scenario. We see that
in both scenarios we end up with the same final state in
both the replicas.

Note that we could have forgone this relatively complex
ordering following [56] and instead chosen a strict ascend-
ing order of version stamp counters, breaking ties through
lexicographical order of node IDs. However, this approach
would have resulted in interleaving sequences of operations
made by different replicas concurrently. Our current choice
of the method in [56] on the other hand makes sure concur-
rent sequence of operations executed by different replicas
are not interleaved. In the chosen method, the contiguous
operations performed by a replica at a time are placed
together with minimal breaks. Also, note that to break tie
between concurrent operations we choose the greater ver-
sion stamp to take precedence over the smaller one (e.g., 2B
appears before 2A4) to maintain similarity with existing
work [56]. In practice, we could have chosen the reverse.

In a merge step between a reader X; and a source X, the
reader performs two tasks: (i) Conflict detection: The reader
detects whether it is in conflict with the source, i.e.,
whether the source has operations that the reader does not
know of. Note that we are concerned with unidirectional
conflict, i.e., if the reader has operations that are unknown
to the source no extra steps are taken (this is resolved dur-
ing some other merge step when the current source
becomes a reader). A simple way to detect conflict is to
scan the OpLogs of the reader and the source from the top
until a mismatch is found in the corresponding sequence
numbers. However, full log scans can get prohibitively
expensive. Hence we explain a mechanism to avoid log
scans in Section 5.5. (ii) Conflict resolution: In case of con-
flict, the reader resolves this conflict, possibly by reorder-
ing the operations which require rollback and replay of
some operations. The conflict detection stage finds the
sequence numbers of the two OpLogs from where the com-
parison should be started (readergq+ and sourcegq,: for
OpLog of the reader and the source respectively) to guar-
antee that the reader encounters all the operations it has
not seen that have been already executed by the source.
These two sequence numbers are used by the conflict reso-
lution stage to incorporate all the unknown operations in
the reader’s OpLog.

We next introduce a new log that helps us to avoid a full
log scan (Section 5.4). We show how the conflict detection
stage uses this log to detect the presence and point of
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OpLog(Xa) ! |OpLog(Xa) ! |OpLog(X4)
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X4 executes 1A I X 4 executes 24 ' X4 merges with Xp

Fig. 2. Mapping from version stamps to sequence number of OpLog in
KnowledgelLogs.

conflict (Section 5.5). Section 5.6 then describes how the con-
flict resolution stage takes this information and uses insert
operations to execute a list of ordered operations.

5.4 KnowledgelLogs

OpLogs grow over time and the merge steps become costly
if we must scan from the top. To avoid a full scan of the
OpLog of the source by the reader, a replica maintains a
map of the last observed version stamp from each replica to
a sequence number in its OpLog using one KnowledgeLog
for each replica. Each entry in a KnowledgeLog contains the
tuple (vs, op_seq). vs denotes the version stamp of the opera-
tion. op_seq denotes the sequence number of OpLog where
the operation with vs was first appended. More precisely,
each entry of KnowledgeLog K on host X; contains tuples
that map each version stamp vs whose node ID is j to a
sequence number in OpLog(X;). Although the position of a
version stamp might change due to later merge steps, note
that a version stamp can only be pushed down in order but
never pulled up due to the way insert works. Thus, the
sequence numbers stored in Knowledgelogs provide us a
starting point to search for a version stamp. The version
stamp might be at that sequence number, or at a later one,
but never at an earlier one. For improved performance, we
can also opt to cache a fixed number of entries from the end
of KnowledgeLog in memory, which must be a tunable
parameter depending on the device capabilities. As all the
information needed to maintain a KnowledgeLog are pres-
ent in the OpLog, KnowledgeLogs can be reconstructed
after a system crash.

We refer to Fig. 2 as an example of interactions among
OpLogs and KnowledgeLogs. Operation 1A is inserted in
OpLog(X,4) at sequence number 1. To record the mapping
from version stamp 1A to sequence number 1, X4 appends
(1A4,1) to K4. Similarly, X 4 appends (24, 2) to K4 to record
that the operation with version stamp 2A was inserted in
OpLog(X4) at sequence number 2. A merge step with Xp
results in the operation with version stamp 24 to be pushed
down in order i.e., at sequence number 3. As we have
already recorded 24 in K4 and we can reach 2A in
OpLog(X,4) even if we start scanning from the recorded
op-seq value (in this case 2), we can keep it unchanged. We

only append the entry (2B,2) to K. Now if X, (reader)
performs a merge step with an arbitrary replica X, (source)
and wants to know whether X, has any operation originat-
ing from replica X that the reader does not know of, it can
simply compare the tails of K§ and KPZ. If the last entry of
K% contains a version stamp that is less than that of the ver-
sion stamp contained in the last entry of K, then X; has
operation originating from X that X4 does not know of (as
two version stamps with same node ID follow happens-
before relationship and version stamps are written to
the KnowledgelLog in increasing order). This process is
explained in detail in the next section.

5.5 Conflict Detection

In the conflict detection stage during a merge step between
reader X; and source X, the reader X; compares the last
entries of K" and K", Vm € S. We represent the last entry
of a log L by tail(L) and a field f in entry e by e.f. If
tail(K}").vs < tail(K7").vs, this means X (source) has exe-
cuted operations that X; has not. This holds as the opera-
tions in a KnowledgeLog have the same node ID and are
executed in increasing order of their counter. The counter
captures the happens-before relationship between two ver-
sion stamps with the same node ID. We say X; lags behind
X; with respect to X, when tail(K}").vs < tail(K}").vs. X;
might lag behind X; with respect to more than one replica.
Let us represent the set of all replicas with respect to which
X; lags behind X as X,,.

We represent the set of node IDs of the replicas in X, as
Slag- We find the replica X, in Xj,, such that tazl(Kp ).op_seq
< tail(K!).op_seq,Vl € Smg Al # p. That is, X, is the replica
whose operation is at the earliest point of conﬂlct between
X; and X;. However, X; might not know about operations
of X, that have version stamps less than tail(K?).vs. To
ensure X; can detect all unknown operations, it scans back-
ward from the tail of K¥ until it finds the entry e such that
the entry before it has a version stamp equal to tail(K?).vs.
Then e.op_seq is the sequence number from which the
reader start scanning the source’s OpLog (i.e., sourcegq
= e.op_seq). In other words, e.vs is the earliest operation in
OpLog(Xp) that X 4 has not yet executed.

Let the version stamp of the sequence number sourcestqr —
1 in OpLog(X;) be vsy. To incorporate e.ws, X; executes
insert(e.vs, VSprey) In OpLog(X;). To do this, X; first finds the
sequence number of ews in OpLog(X;) — the value of
readers, s this sequence number plus one. Note that all
operations in OpLog(X;) from sequence number 1 to
sourcesq+ — 1 must be present in OpLog(X;), otherwise there
is some operation between these two sequence numbers in
OpLog(Xp) that X4 has not seen, and the value of sourcesq:
found by the previous steps would have been different. There-
fore, readersq,+ must be greater than or equal to sourcesiq. To
find the value of readersy, X; starts scanning OpLog(X4)
from the sequence number sourceg,+ — 1. It stops scanning if
the currently scanned entry’s version stamp is equal to vspre,.
The required value of readeryq. is the sequence number
where we stop scanning plus one.

To illustrate the conflict detection stage, we consider the
scenario in Fig. 3. Let us assume there are three replicas in
our system, X4, Xp, and X¢. The OpLog of X4 has 14 and
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OpLog(Xa)| |OpLog(Xg) K4 K3 ‘ sequence number. X; creates a second ordered list, R;, of
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P roB: 0 |1 2] 2 Kk IDs S
”””””””””” 2 | 3B 3 Ensure: earliest point of conflicts sourcesy,,« and reader g
1: Xlag — ¢
kS | kg | : form € S do
seq | vs [opseq| | seq | vs [opseq] if tail(K}").vs < tail(K}').vs then
L,—,,,E,,QQ,,E,,,Q,,J 1 4c 4 ‘ Xiag — Xiag U{Xm}

Fig. 3. OpLogs and KLogs of replicas X4 and X3 in a system with three
replicas. Dashed entries represent placeholders used during computa-
tion when a knowledge log is empty. During conflict detection, the reader
X 4 compares the same colored entries with each other to find the earli-
est possible point of conflict. The arrow from the second entry to the first
entry of KB, represents X 4’s backward scan to find the earliest version
stamp with node ID B that it does not know of.

2A, whereas the OpLog of X has 14, 2B, 3B, 4C, and 2A.
One possible sequence of actions that might lead to this
state: X4 executed operation 1A4. Xp merged with X4, and
then executed two operations 2B and 3B. X¢ (not shown in
the figure) merged with X5 and executed 4C. Xp merged
with X¢. X4 executed operation 2A. Finally, Xp merged
with X4 again. Now let us consider X4 performs a merge
step with Xp. Comparing the tails of K} and K}j, m €
{4, B,C}, we see that X, lags behind Xy with respect to
Xpand X¢, ie., Xy = {Xp, Xc} (we assume the absence of
entry in a KnowledgeLog to be equivalent to having a place-
holder entry with a version stamp with minimum possible
invalid counter value, in this case, 0). As the op_seq value of
tail(K¥5) (i.e., 3) is smaller than that of tail(K$) (i.e., 5), X, =
X 5. However, X4 is not yet certain tail(K5).vs is the earliest
unknown version stamp. X4 scans K5 backwards to find
the earliest unknown version stamp, which in this case
is 2B. The corresponding op_seq value is 2, therefore
sourcegsqrs = 2. The entry immediately preceding 2B in
OpLog(Xp) has the version stamp 1A4. X4 reads the entry at
sequence number source_start —1 =1 in OpLog(X,) and
finds that the entry contains 1A4. Therefore reader_start is
equal to 1 + 1 = 2 as well. The conflict detection algorithm
is presented in Algorithm 1.

5.6 Conflict Resolution

Conflict resolution is triggered when a conflict is detected,
to find and execute a merged order of operations between
the reader and the source. When there are one or more con-
flicts between the reader and the source, it rolls back the
OpLog of the reader to the earliest point where the reader
does not lag behind the source with respect to the version
stamps before it and then replays the operations at the
reader (adjusting the OpLog of the reader) to reflect the
merged order. At the start of conflict resolution, X; knows
both sources,+ and reader,,, i.e., the sequence number of
OpLog(X;) and the sequence number of OpLog(X;) at which
X; should start comparing the two OpLogs. X; creates an
ordered list, R;, of the operations in OrdLog(X;) starting
from the sequence number readers,: up to its latest

2
3
4
5: endif
6: end for
7: if X,y = ¢ then
8: return
9: end if
10: Sy — ¢
11: for X,, € X,y do
12: Sjag — Sigg U {m}
13: end for
14: p « argmin,, (tail(X}").op-seq),m € Sis,
15 idx « latest_seq(X7)
16: while idz > 0do

17:  if tail(K7).vs < Kf[idz].vs then

18: SOUTCCgqrt — Kf [idx].op-seq
19: idx «— idr — 1

20: else

21: break

22: endif

23: end while

24: VSprey < OpLog(X;)[sourcesian — 1].vs
25: idx «— sourceggs — 1

26: while idz < latest_seq(OpLog(X;)) do
27:  if OpLog(X;)[idx].vs = vSp, then

28: reader sqr — idr + 1
29: break

30: else

31: idx «— idr + 1

32: endif

33: end while
34: ResOLVECONFLICT(reader sy, SOUTCEs1art)

To incorporate the operations unknown to itself, X; first
includes those operations from R; to R; by invoking insert
procedures: for each entry e in R;, X; first finds the entry
epred IN R; which contains the version stamp immediately
preceding e in R;. If the version stamp of the entry following
epred IN R; is smaller than e.vs, X; inserts e immediately after
epred (provided e is not already present there). Otherwise, it
skips over all contiguous entries where the version stamp is
greater than e.vs, and then inserts e (provided that e is not
already present there). Once X, has all the operations in R;,
it rolls back, i.e., prunes, OpLog(X;) starting from readersq
and then replays all operations in R; at OpLog(X;). The con-
flict resolution algorithm is presented in Algorithm 2.

6 EXPERIMENTAL RESULTS

In this section, we evaluate multiple aspects of data version-
ing and PEDaLS. We start with an empirical evaluation of
the overhead associated with introducing versioning to in-
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Fig. 4. Average space and time requirement for bst and linked list. Both the space and the time requirements are linear with respect to the number of

operations for the two data structures.

memory ephemeral data structures and subsequent integra-
tion of in-memory logs to represent versioning. Note that
only this experiment is conducted completely in memory.
The rest of the experiments use memory-mapped files as
the log abstraction. To demonstrate the scalability of storage
persistent PEDaLS, we then show the effect of increasing
number of replicas on throughput for workloads with var-
ied composition, i.e., different percentage of read and write
operations. Next, we explore the effect of Knowledge logs
on the time to detect conflicts. Then, we describe a number
of end-to-end applications that leverages the efficiency of
PEDaLS in answering complex temporal queries. Finally,
we present a probabilistic study on bounding log sizes to
ensure a user provided minimum number of versions can
be fully recorded by PEDaLS. Unless otherwise specified,
we set the number of extra pointers to 1 for versioned data
structures in all cases. This captures the worst case scenario
in regard to the number of times nodes must be copied.

Algorithm 2. Conflict Resolution

Require:reader replica X;, source replica X, sourcegq and
reader o+ value obtained from Conflict Detection stage
Ensure: X; is not lagging behind X
1: procedure RESOLVECONFLICTSOUT CEstart, TEAAET start

2:  R; «— {OpLog(X;)[readergqy], . .. ,tail(OpLog(X;))}

3:  Rj — {OpLog(X;)[sourcesn), - - ., tail(OpLog(X;))}

4: foralle € R;do

5: epred — the entry before e in R; >fixed dummy value
assumed for first element

6: insert(e.vs, €preq.vs) in R;

7: end for

8: Prune OpLog(X;) starting from sequence number readerq

9: foralle € R; do
10:  Replay/Execute e.op and append e to OpLog(X;)
11: ¢ « sequence number of e in OpLog(X;)
12: k< e.vs.nodelD
13:  if e.vs > tail(KF).vs then

14: append (e.vs, q) to KF
15:  endif
16: end for

17: end procedure

We perform our experiments using virtual machine
instances in a private cloud running Eucalyptus [57]. Each
instance has two 2GHz CPUs and 2GB of memory. Unless
otherwise specified, we perform each experiment 100 times
and present the average values. We also present the standard
deviation when applicable along with the mean, either as
raw values (for tabular data) or as error bars (for bar charts).

6.1 Versioning Overhead

In this experiment, we investigate the overhead associated
with making in-memory ephemeral data structures ver-
sioned, i.e., in-memory persistent. We also investigate the
overhead associated with implementing versioned data
structures using in-memory logs (i.e., same as PEDaLS but
without storage persistence), which we term as log-persis-
tent. Note that in this experiment we are concerned exclu-
sively with the overhead in these two cases: (i) making data
structures versioned (i.e., persistent as described in [10])
and (ii) making data structures persistent using logs as
described in [8]. Hence we keep the storage (in this case,
main memory) the same for all three types of data struc-
tures: ephemeral, persistent, and log-persistent. Moreover,
we design the experiment to retain how a storage persistent
log implementation would perform — by making an extra
copy from a data structure node to the in-memory log. Our
results show that log-persistent algorithms preserve the
same time and space complexity as persistent algorithms.

We choose linked list and binary search tree (bst) as rep-
resentative linked data structures for this experiment since
both are used by developers as building blocks for more
complex structures, e.g., stacks, queues, ordered collections,
etc. Note that the original work on persistent data struc-
tures [10] provides space/time complexity guarantees only
for linked data structures having constant in-degree. Hence,
although a similar mechanism can be employed for other
data structures, a similar space/time complexity is not
guaranteed. We use CityPulse [58] temperature dataset con-
taining 12579 data points collected from the city of Aarhus
in Denmark between February-June 2014 for this experi-
ment. In case of bst, we use the UNIX timestamp at the time
of the collection of data point as the key and the tempera-
ture as the value, whereas linked list stores both as the
value.

We present the space requirements for storing these data
points in Figs. 4a and 4b. Note that this space is for the stor-
age of the data structure, i.e., any auxiliary storage used
(and subsequently freed) for intermediate computation is
not included.

As evident from the figures, the space complexity is lin-
ear in number of operations for all three types of data struc-
tures — and differ only in the value of the constant. This
signifies that log-persistent data structures are able to main-
tain a similar space complexity as persistent data structures.
As expected, log-persistent and persistent data structures
require more space than ephemeral data structures due to
their retainment of information regarding past versions. In
case of bst, persistent and log-persistent data structures
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require 6.55x and 4.60x space respectively of that of ephem-
eral data structure. In case of linked list, this overhead is
3.25x for both persistent and log-persistent data structures.

Interestingly, log-persistent bst requires less space than
persistent bst. This is because copying a node in persistent
data structures involves copying both the data field and
pointer fields [10]. On the other hand, copying a node in
log-persistent data structures (as in PEDaLS) involves copy-
ing only the pointer fields. In the case of linked list, both the
persistent and log-persistent versions require the same
amount of space. This is because in this experiment we are
only inserting values in our linked list at the head, which
never triggers copying of a node, thus keeping the storage
space the same for both persistent and log-persistent data
structures.

We present the time requirements of storing the tempera-
ture data in Figs. 4c and 4d. We see that the time complexity
is also linear in the number of operations, signifying that
log-persistent data structures are able to maintain a similar
time complexity as their in-memory counterparts (persistent
data structures). Log-persistent and persistent data struc-
tures require more time than ephemeral data structures due
to their relatively complex traversal rules. In the case of bst,
persistent and log-persistent data structures require 5.17x
and 13.44x times that of ephemeral data structure, respec-
tively. In the case of linked list, these overheads are 1.42x
and 9.38x for persistent and log-persistent data structures,
respectively. The greater time required by log-persistent
data structures is expected, as it involves additional non-
trivial steps in its operations, such as complex methods to
find boundaries among copies of nodes instead of having
direct pointers to those copies.

6.2 Scalability

To evaluate the scalability of PEDaLS, we use a subset of the
CityPulse temperature dataset used in Section 6.1. As
updates are more expensive than reads in general, we aug-
ment the subset with random reads to capture the perfor-
mance of PEDaLS under diverse workloads consisting of
different percentages of update and read operations. We
consider update percentages (read % is in parenthesis) of 1
(99), 25(75), and 50(50) to observe the impact of workloads
with different update/read compositions on scalability over
10000 operations (update+read). We also vary the number
of replicas the client sends requests to among 1, 5, and 10.
The round trip latency among the instances (replicas+client)
as determined through the ping utility varies between
0.53ms to 0.93ms asymmetrically on average. The network
bandwidth among the instances is approximately 1Gbits/
second. To simulate the effect of horizontal scaling where
clients located in different regions access different replicas,
a client process evenly distributes operations across replicas
using round-robin without delay.

Fig. 5 shows the throughput of the system in operations
per second for PEDaLS bst. As evident from the figure,
throughput decreases with the increase in write percentage.
This is expected, as update operations involve appends to
multiple logs in addition to searching for a value. Moreover,
we observe that although throughput of PEDaLS increases
with an increase in the number of instances, this increase is

7000 1 Hl 1 replica
6000 5 replicas
BN 10 replicas

5000+

rations/second

@ 4000

1(99)

25(75)
update(read) percentage

50(50)
Fig. 5. Scalability of PEDaLS.

not linear. This is due to the processing required for back-
ground merge steps.

6.3 Effect of Knowledge Logs in Conflict Detection

To reduce the time required for conflict detection, PEDaLS
uses Knowledge logs. In this section, we explore the time
benefit provided by Knowledge logs by isolating the time to
detect conflict between two replicas. Specifically, we run
two different sets of experiments. In one set of experiments,
as has the case been so far, PEDaLS uses Knowledge logs to
optimize conflict detection. In the other set of experiments,
PEDaLS performs naive conflict detection, i.e., reads the
OpLogs of the reader and the source from the top until a
point of mismatch is found or one of the logs is exhausted.

For this experiment, we vary the number of update oper-
ations among 100, 200, and 300. We send half of the opera-
tions to one replica X4 and the other half to another replica
X, both chosen from the pool of replicas used in Section 6.2.
As the execution time of conflict detection can depend on
the role (source or reader) of a replica, we calculate the time
for conflict detection in both ways and take the average. The
number of operations already present in a replica can affect
the time for conflict detection as well. Hence, we consider
four cases: (i) both X4 and Xp each have half of the opera-
tions, (ii) X 4 has half of the operations and X has all of the
operations (due to a merge step), (iii) X4 has all of the oper-
ations and Xp has half of the operations, and finally (iv)
both X 4 and X have all of the operations.

We show the total time taken for conflict detection for
different workloads in Fig. 6. Our results show that conflict
detection with Knowledge log can be 11.34x as fast as con-
flict detection without Knowledge log for 300 update opera-
tions. In general, irrespective of whether Knowledge log is
used or not, the time for conflict detection increases with
the number of update operations. This is expected, as more
update operations result in more entries in both OpLog and
Knowledge log, which in turn leads to more log scans.

6.4 End-to-End Applications

In this section, we evaluate the performance of PEDaLS for
three different applications: (i) banking queue monitoring,
(if) room occupancy detection, and (iii) livestock tracking.
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Fig. 6. Conflict detection with and without Knowledge logs.

We compare the performance of PEDaLS with a relational
database (PostgreSQL) and a NoSQL database (MongoDB)
for each of the above-mentioned applications. We summa-
rize these results in Table 2 and provide a visual representa-
tion of the results in Fig. 7.

Our results show that PEDaLS outperforms the other two
storage systems when it comes to answering complex tempo-
ral queries for all applications. Although PEDaLS is outper-
formed by the other two storage systems for update
operations in two applications, the speedup provided by
PEDaLS in executing temporal queries far outweighs the
slowdown in updates. Moreover, PEDaLS provides program-
matic access to versioned data, while other systems do not. In
essence, PEDaLS makes a tradeoff between update perfor-
mance and version accessibility in the favor of the latter.

6.4.1  Banking Queue Monitoring

In mathematics, queuing theory involves the analysis of
several related events such as arriving at a queue, the wait
time at a queue, and departure from the queue. The models
created through such analysis can be used to make deci-
sions regarding increasing servers, optimizing queue
length, and approximating heavy and light traffic [50].
One practical example of the application of these mathe-
matical concepts is to determine the efficiency of a system
as indicated by the average wait time of a request/person
in a queue. Data related to physical queues can also help in
providing location information for individuals (e.g., was a
person in the queue at a certain time) and describing indi-
vidual behavior (e.g., when does a person generally show
up for a service).

In [50], authors provide a queue dataset for three banks
in Ogun State of Nigeria collected over four weeks for each
bank. The dataset contains the wall-clock time when a user
enters the bank and the time in minutes for the user to reach
the front of the queue. The dataset assigns a monotonically
increasing integer as a user ID to every user entering the
bank each day (starting with 1) but does not contain the
information whether a user ID x of one day corresponds to
the same person having user ID y on some other day. Hence,
for the purpose of this experiment, we assume every user is
assigned a new ID upon each entry. We select the data for
one bank and augment it by calculating the timestamp of
departure by adding the wait time in queue to the time-
stamp of arrival. Thus each data point contains three infor-
mation: a user id, a timestamp, and an operation (enqueue
or dequeue). This information is recorded in a storage sys-
tem every time a user enters and leaves the queue. The final
dataset contains 35534 data points.

We assume we want to answer the query (Q: “which
users are present in the queue at time X”? This is an exam-
ple of a temporal query that can be efficiently answered
using a versioned queue. Although the storage of the data is
simple for both of the databases under consideration (i.e., a
single insertion for both PostgreSQL and MongoDB) and
PEDaLS queue (i.e., a single enqueue or dequeue operation
with the timestamp as the version and user ID as the value),
answering ()1 requires complex queries on part of the data-
bases as shown in Fig. 8. On the other hand, PEDaLS only
requires a versioned traversal of the queue to answer Q).

Our results show that the average update times for Post-
greSQL, MongoDB, and PEDaLS are 0.335ms, 0.357ms, and
0.092ms respectively. That is, PEDaLS is 3.64x as fast as Post-
greSQL and 3.88x as fast as MongoDB in regard to updates
for the application under consideration. Our results further
reveal that the average query time for PostgreSQL, Mon-
goDB, and PEDaLS are 8.734ms, 45.184ms, and 1.078ms
respectively. That is, PEDaLS is 8.10x as fast as PostgreSQL
and 41.91x as fast as MongoDB in regard to queries for the
application under consideration.

Several works in the literature suggest that NoSQL data-
bases can outperform SQL databases in the case of a high
volume of unstructured data [59], [60]. SQL databases need
complex design and multiple writes at different tables for
unstructured data, making the updates slower. On a similar
note, NoSQL databases can store denormalized data result-
ing in many cases in a simple single query to retrieve rele-
vant information. However, the data under consideration is
structured and the query, although complex, does not
involve reading from multiple tables. Hence we do not

TABLE 2
The Mean Update and Query Execution Time for Different End-to-End Applications

Banking Queue

Room Occupancy

Livestock Tracking

update in ms query in ms

update in ms

query in ms update in ms query in ms

PostgreSQL 0.335 (0.026) 8.734 (0.045) 0.354 (0.039) 0.460 (0.003) 0.342 (0.022) 5.186 (0.141)
MongoDB 0.357 (0.006) 45.184 (0.295) 0.359 (0.007) 2.255 (0.019) 0.355 (0.007) 11.687 (0.222)
PEDaLS 0.092 (0.002) 1.078 (0.022) 0.468 (0.017) 0.124 (0.003) 0.553 (0.014) 2.333 (0.083)

The standard deviation is shown in parentheses. The best (fastest) execution time for each type of operation for each application is presented in bold. PEDaLS out-
performs the other two storage systems in regard to query execution time for all applications.
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Fig. 7. The mean update and query execution time for different end-to-end applications as presented in Table 2. As the execution time varies in order
of magnitude among the different applications, we present the execution time in log scale for a better and uniform visualization.

observe the advantages generally associated with NoSQL
databases over SQL databases for the application under
consideration. This is supported by the similar update time
for both PostgreSQL and MongoDB. However, the query
time for MongoDB is higher than PostgreSQL. This is
expected, as the MongoDB aggregation pipeline [61] (i.e., the
pipeline responsible for processing documents in stages
such as matching, grouping, projection, etc.) is still rela-
tively immature and thus is not as well performant as the
query engine of PostgreSQL. In fact, the aggregation pipe-
line is not as expressive as SQL queries either, which is
apparent from the complex query of Fig. 8. PEDaLS on the
other hand is the fastest for both update and query. During
update, PEDaLS must either add a node to the end of the
queue or delete a node from the head of the queue. As the
queue records both the head and the tail, both of the above
operations can be performed efficiently. Moreover, none of
these operations result in copying of a node, as a node can
have at most one child which can be deleted at most once.
As a result, the update performance of PEDaLS is better
than both PostgreSQL and MongoDB. To answer @, PED-
aLS must perform versioned traversal of the queue, which
is inherently fast due to the node-copy method. In contrast,
both PostgreSQL and MongoDB has to perform complex
queries (cf. Fig. 8). Hence PEDaLS outperforms the others in
regard to read as well.

6.4.2 Room Occupancy Detection

Indoor positioning systems are used to locate, track, and iden-
tify individuals/objects in indoor settings where technologies

SELECT userid db.bankingqueue.find({

FROM bankingqueue 'ts": {'$ite”: X},

WHERE ts <= X 'op': 1,

AND op =1 ‘userid": {

AND userid NOT IN ( '$nin': db.bankingqueue.distinct(
SELECT userid 'userid’,

FROM bankingqueue ! {'ts": {'$Ite": X}, 'op": 0}

WHERE ts <= X P

AND op =0) : {'userid: 1,"_id: 0})

Fig. 8. SQL (left) and NoSQL (right) queries to find the set of users in the
queue at time X. Here ts stands for timestamp and op stands for
enqueue/dequeue operation. Note that distinct is not necessary for the
NoSQL query to get the correct result as a user is issued a unique 1D
during each entrance to the queue. However, it is faster than the alterna-
tive which involves converting the subquery result into an array and sub-
sequently mapping it to a function that picks out each user ID in the
array from the JSON object enclosing it. The distinct function extracts
the value from the JSON object automatically and presents an array

like GPS cannot perform with desired precision. A common
application of such a system is to detect the occupancy of a
room at different times of the day. Apart from eliciting infor-
mation pertinent to security (e.g., was user  present in room
y during some event z), it can also provide historical data to
aid in scheduling of events depending on the occupancy of
different rooms throughout different times of the day.

SmartBench [62] is a benchmark focusing on queries
resulting from (near) real-time applications and longer-term
analysis of IoT data. For this experiment, we use the data
generation tool of SmartBench to generate room occupancy
dataset based on seed data collected from a real system. The
generated dataset contains periodic location data including
the room in which a user is. However, the data does not
contain the explicit timestamp at which a user leaves a
room. Hence, we augment the data with information that
denote a user has left the old room by inserting a new
record with a timestamp that falls between the timestamp
when the user was last seen in the old room and the time-
stamp when the user was first seen in the new room. We
assign an invalid room number for such records, which
essentially denotes the user is on its way from the old room
to the new room. The preprocessed dataset contains 4002
timestamped data points with information regarding the
location (i.e., room numbers) of users at different times of
the day.

The storage of this data for databases involves the inser-
tion of a single row containing the timestamp, user ID, and
the location of the user at that timestamp. For PEDaLS, we
maintain a bst with user IDs as the keys and room numbers
as the values. We treat the timestamp as the version stamp
for the bst. A record in the dataset containing an invalid
room number corresponds to a deletion from the bst and an
insertion into the bst otherwise. We assume we want to
answer the query @)»: “what is the location of user with ID
uid at time X”? PEDaLS bst performs a simple versioned
search with X as the timestamp and wuid as the key to
answer this query. However, PostgreSQL and MongoDB
require complex queries as shown in Fig. 9.

Our results show that the average query time for Post-
greSQL, MongoDB, and PEDaLS are 0.460ms, 2.255ms, and
0.124ms respectively. That is, PEDaLS is 3.71x as fast as
PostgreSQL and 18.19x as fast as MongoDB in regard to
queries for the application under consideration. As in the
banking queue application of Section 6.4.1, MongoDB does
not demonstrate any advantage over PostgreSQL for struc-
tured data of the application under consideration. PEDaLS
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SELECT room

FROM roomoccupancy
WHERE ts <= X AND
userid = uid

ORDER BY ts

DESC LIMIT 1

db.roomoccupancy.find(

{'ts": { '$lte": X}, 'userid": uid },
{'room" 1,'_id: 0}

).sort('ts', -1).limit(1)

Fig. 9. SQL (left) and NoSQL (right) queries to find the room at which
user with ID uid is at time X. Here ts stands for timestamp.

must perform a versioned search of a key in the bst to
answer (). This is relatively simpler than the complex
queries required by PostgreSQL and MongoDB as pre-
sented in Fig. 9. Hence PEDaLS outperforms both Post-
greSQL and MongoDB in regard to read for this application
as well. Our results also indicate that both PostgreSQL
(0.354ms) and MongoDB (0.359ms) perform better than
PEDaLS (0.468ms) for update operations (approximately
1.32x times). This is expected, as the databases need only to
insert a single entry to record an update, whereas PEDaLS
has to search the tree for the appropriate position of a new
node to be inserted or an old node to be deleted. In contrast,
PEDaLS queue for Section 6.4.1 did not require an extra
read per update operation to find the existence and/or posi-
tion of a data structure node. This explains the superior
performance of PEDaLS update in the banking queue moni-
toring application.

6.4.3 Livestock Tracking

Livestock tracking is a popular application of IoT in smart
farms to study animal behavior and animal-ecosystem inter-
action [63], [64]. In a livestock tracking system, each animal
is fitted with a tracking device (e.g., a GPS collar) that
records the location information at a pre-defined regular
interval. This information can then be used to analyze dif-
ferent behavior of the cattle, such as grazing patterns. As
the tracking and data processing devices are typically bat-
tery-powered in these deployments, we must minimize the
number of times a location is recorded /communicated over
the network; without losing valuable information.

In [63], the authors provide a dataset containing daytime
(approx. 8 hours per day) grazing locations of cattle col-
lected from 6 Alpine farms in the summer of 2011. 2 to 4
cows from each of these farms (in total 15) were equipped
with a GPS collar and a logger box. Although data were col-
lected at 20 seconds interval in this work, an analysis of the
dataset shows that even a larger interval of 3 minutes shows
an average movement (i.e., distance between the locations
at the beginning and at the end of the interval) of 12 meters
for a cow (cf. Table 3). Depending on the use case, this might
be an acceptable distance.

We consider a scenario where a new patch of land B is
opened up for grazing beside an old patch of land A. We
want to know which are the cows that prefer the new patch
of land B, along with at what time of the day. Specifically,
we want to answer the query @3: “which cows are present
in B at time X”? This is an example of a temporal query
that can be efficiently answered using a versioned bst. As
the dataset in [63] contains data for at most 4 cows from any
one farm, we use synthetic data generated using random
walk for 100 cows. The one-dimensional random walk starts
from 0. Whenever the random variable has a value >=0,

TABLE 3
Average Distance Between the Loca-
tions at the Start and the End of an
Interval for an Individual Cow

interval (seconds) distance (meters)

20 1.62
60 4.31
100 6.81
140 9.22
180 11.56

we assume the location is in land B, otherwise land A. As
in [63], we assume each cow is equipped with a GPS collar.

From Table 3, we see that the point-to-point distance cov-
ered by a cow on average is approximately only 12 meters
for a 3 minute interval. Hence, for energy-efficiency we
assume the GPS collar collects location information at 3
minutes (180 seconds) interval instead of 20 seconds over
the duration of 8 hours (8 x 60/3 = 160 data points for each
cow). We further assume the timestamped location data is
sent to a nearby edge server for storage in two methods. In
the first method, as common to many IoT deployments, the
server stores each location data into a database upon recep-
tion. Each data point contains a cattle id and its position at
the time the data was collected. Note that in this kind of
setup, the collection of data is fast as it involves only a single
insertion to a database table. However, retrieving answers
to complex queries such as ()3 can be time-consuming. We
present the SQL and NoSQL queries to answer ()3 in Fig. 10.

In the second method, the server maintains a PEDaLS bst to
store the IDs of cows that are in land B using timestamps as
the version stamps. Although this requires some preprocess-
ing during insertion to determine whether a cow is already in
land B, this makes query )3 faster compared to the former
method; as we can now perform a tree traversal at version X
in the bst to retrieve the full set of cows present in land B. This
also removes the onus on part of the developer to write com-
plex queries, as the relevant information is readily available
through a versioned access operation (in this case, tree tra-
versal) in PEDaLS bst.

As described above, there are 160 data points for each
cow, ie., 160 unique timestamps. We perform 160 x 100
insertions and 160 queries (one for each unique timestamp)
in one iteration of the experiment. The average update times
for PEDaLS and PostgreSQL are 0.553ms and 0.342ms
respectively, whereas the average query times are 2.333ms

SELECT It1.cattle_id
FROM livestocktracking AS It1

db.livestocktracking.aggregate([
{'$match": {'ts": {'$ite": X}}},

JOIN {'$sort": {'ts": -1}},

(SELECT cattle_id, MAX(ts) as {'$group'{

maxts ' id": '$cattle_id',

FROM livestocktracking 'maxTS": {"$max’: '$ts'},
WHERE ts <= X ‘currentPos": {'$first": '$pos'}

GROUP BY cattle_id) AS It2 I3

ON It1.cattle_id = It2.cattle_id {'$match": {'currentPos': {'$gte": 0}}},
AND It1.ts = It2.maxts : {'$project": {"_id" 1}}

WHERE It1.pos >= 0 )

Fig. 10. SQL (left) and NoSQL (right) queries to find the set of cows pres-
entin plot B at time X. Here ts and pos stand for timestamp and position
respectively.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on July 27,2023 at 23:19:08 UTC from IEEE Xplore. Restrictions apply.



SAQUIB ETAL.: REPLICATED VERSIONED DATA STRUCTURES FOR WIDE-AREA DISTRIBUTED SYSTEMS 221

and 5.186ms respectively. That is, although for insertion
PostgreSQL is 1.62x as fast as PEDaLS, for query PEDaLS is
2.22x as fast as PostgreSQL. From a power consumption
perspective, as long as the number of updates to the number
of queries ratio is less than (5.186 — 2.333)/(0.553 — 0.342) =
13.52, PEDaLS is more efficient than PostgreSQL. The
higher time requirement for PEDaLS update is expected, as
every update operation involves searching for a node in the
bst as well. On the other hand, the databases only have to
insert a single row for an update. However, due to the effi-
cient versioning scheme of PEDaLS bst, answering query Qs
simply amounts to traversing a particular version of the bst.
In contrast, the databases have to perform complex queries
as presented in Fig. 10. Hence PEDaLS outperforms both
PostgreSQL and MongoDB in regard to read. Although the
update time (0.355ms) for MongoDB is comparable to that
of PostgreSQL, much like Sections 6.4.1 and 6.4.2, MongoDB
requires significantly more time for reads (11.687ms). This
is again due to the inefficient aggregation pipeline of
MongoDB.

6.5 Bounding Log Size

One challenge with PEDaLS is that the underlying append-
only, persistent backing storage abstraction may have a
size limit due to host resource constraints or storage service
design. For example, CSPOT implements logs of fixed size
as a circular buffer [65]. Although this approach provides
fast and automatic garbage collection of log entries, if a
PEDaLS log “wraps” it may lose entries that it requires to
maintain a particular version in the version history. A PED-
aLS user specifies the maximum number of data structure
versions (i.e., the version history) she wishes to maintain.
PEDaLS ensures that at least this length of version history is
available.

To do so, PEDaLS provides a probabilistic guarantee that
a program never accesses a version for which only partial
information is available due to log wrap. It uses the proba-
bility that it must maintain a given history length to com-
pute the log sizes that are necessary to ensure that this
guarantee is met. In the case where this size is attempted to
be exceeded due to an update operation performing a log
append, PEDaLS refuses further update operations. This
practice of refusing update requests in absence of adequate
space is not uncommon (e.g., Redis [66]). However, read
requests can still be serviced.

Our failure model assumes that storage failures occur
only during log-append operations and these failures take
two forms. Either the data is not written at all, or it is written
but the sequence number associated with the write is not
returned. In both cases, PEDaLS assumes that the failure
can occur silently and thus must be remediated by a timeout
and a retry. As stated in Section 4, we term the first type of
failure as a Type 1 failure and the second a Type 2.

As node copy is most frequent when the number of extra
pointers e is one, we consider the required log size for the
different logs when e = 1. Then for any case where e > 1,
the required log sizes will not be greater than the ones calcu-
lated for e =1. We begin by determining the log sizes
assuming a fault-free system and then consider a distrib-
uted system with failures. Let K be the maximum number

of versions in the version history specified by the PEDaLS
user, K; the number of inserts, and K, the number of dele-
tions (K = K; + K;). The APLog which tracks all operations
(each one creating a version) thus requires K entries while
the DatalLog only grows as a result of insert operations and
thus it must minimally contain K, entries. However, worst
case, all of the operations are inserts so the DataLog must
contain K entries.

We consider the required size of the LinkLog separately
for linked list and BST. In the case of linked list insert or
delete, PEDaLS requires one new link. As linked list has
only one type of pointer, even if PEDaLS must copy a node,
it only introduces one new link. Therefore, we require the
log size for the LinkLog for linked list to be at most K. Even
in the worst-case scenario when we are inserting to and
deleting from the end of the same node K times, a LinkLog
of size K will not experience rollover and wrap.

In the case of BST insert, PEDaLS adds one new link to a
node. However, this might result in node copying. Unlike
linked list, for BST, PEDaLS must copy both pointers in a
node during node copy. That is, if we are changing the left
(or right) pointer, PEDaLS must copy over the old right (or
left) pointer apart from introducing the new left (or right)
pointer. Thus every second modification of a node forces it
to make one extra entry into the LinkLog. Aside from the
fact that the first version of a node requires two entries in
the LinkLog, the number of links in the LinkLog is at most
1.67 times that of the number of versions K when all oper-
ations are inserts. In practice, this factor is much lower. As
an example, over 100 iterations of 12579 insertions (differ-
ent order for each iteration) for the CityPulse temperature
dataset used in Section 6.1 revealed the maximum links
required by any LinkLog is only 26, i.e., 0.002 times of
K(12579).

However, in the case of BST delete, PEDaLS might have to
introduce at most two entries to the same node when the
deleted node has two children. If node copying is necessary
(the additional node pointer is occupied), the total number of
new links to be introduced is three. Therefore, assuming the
worst-case scenario where every operation is a deletion and
where the target node has both of its children present, we can
say that the number of entries at each LinkLog will not exceed
3K. Thus PEDaLS can preserve K versions of BST when the
LinkLog is set to 3K in the absence of Type 2 log failures.

Now that we have set a baseline for the size of the history
of each log in absence of failures, we next consider how this
changes with the introduction of our failure modes. We are
specifically concerned about Type 2 failures where an entry
is appended but the resulting log sequence number is lost
(since a Type 1 failure does not grow any log).

Let us assume that a log append fails with probability ¢
and that the probability of any such failure is independent
of any other. Given that we need to insert i entries into a log
(¢ = K for APLog, i = K for DataLog, i = K for linked list
LinkLog, and 7 = 3K for BST LinkLog) and we must tolerate
at most F' failures (i.e., ' additional entries are needed in
each log), the total number appends that we can make is i +
F. As an append either fails or succeeds, we can model the
probability of failure of f failures in at most ¢ + F' appends
as a binomial distribution having a probability mass func-
tion A parameterized by the failures f:
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TABLE 4
Required Log Size to Keep the Probability of Roll Over Below
0.000001
i q i+ F overhead
1000 0.1 1168 1.168
0.2 1339 1.339
0.3 1553 1.553
0.4 1834 1.834
0.5 2223 2.223
2000 0.1 2301 1.151
0.2 2624 1.312
0.3 3030 1.515
0.4 3566 1.783
0.5 4311 2.155
3000 0.1 3429 1.143
0.2 3901 1.300
0.3 4496 1.499
0.4 5283 1.761
0.5 6379 2.126

i denotes the required number of successful appends, F' denotes the maximum
allowable number of unsuccessful appends, and q denotes the probability of
failure of an append. The overhead is calculated as “£X .

i

A(f) = (Z ?F> ¢'(1—q) (1)

Given that we set the log size to ¢ + F, rollover happens
only when f > F. Thus, the probability of rollover is 1.0
minus the probability that f < F' expressed as:

f=F
Pmllm;er =1- Z )\(f) (2)
f=0

Given probability ¢ that any append fails and a history
version size i, we can programmatically find the number of
additional entries F' (in turn the size of a log) required to
make the probability of rollover arbitrarily low. As a worst-
case example, for an append failure probability ¢ = 0.5 and
a version history of K = 1000 versions, the APLog and
DataLog for BST would need to contain 2223 entries each
and the LinkLog would require 6379 entries to make the
rollover probability for any of these logs < 0.0000001. That
is, with a failure probability of 0.5 the APLog, DataLog, and
LinkLog are approximately 2.2 times as large as they would
be without failures.

This overhead decreases with failure probability. For
example, when the append failure probability is ¢ = 0.1
this overhead reduces to a factor of 1.2 compared to the
failure-free case, and when ¢ = 0.001 the overhead factor
is 1.009 (9 extra entries in APLog and DataLog and 14
extra entries in the LinkLog). As a practical matter, the
failure probability ¢ for any given append is almost cer-
tainly well below 0.001 (e.g., we observed no failures in
tens of millions of distributed logging events over the
several months this paper has been in preparation) mak-
ing the additional space required to tolerate failures in a
real-world setting negligible. Table 4 shows the log size
required to keep the probability of rollover below
0.000001 for different values of q.

7 CONCLUSION AND FUTURE DIRECTIONS

Partially persistent data structures (PDSs) provide data
structure immutability by implementing versioning. The
original works on PDSs are in-memory only, use mutable
data structures internally, and work only on a single system.
PEDaLS presents a PDS implementation that is crash-resis-
tant, provides immutability from both storage level (.e.,
append-only logs) and software level, and works in a dis-
tributed environment. It is the first system to provide ver-
sioned program linked data structures in a distributed
setting that can facilitate system debugging.

In this work, we extend PEDaLS by introducing data rep-
lication, thus ensuring availability and fault tolerance. Our
results show that program data structures replicated by
PEDaLS are scalable. Moreover, we explore multiple end-
to-end applications to demonstrate use cases for PEDaLS
data structures. Finally, we show how to determine the
maximum needed log size as a function of stored history
length. These contributions make PDSs utilitarian in a mod-
ern, distributed computing context while preserving their
original low algorithmic complexities.

Currently, PEDaLS guarantees convergence of an arbi-
trary linked data structure with constant in-degree. How-
ever, convergence itself does not ensure the satisfaction of
the user expectations on the semantics of the underlying
data structure, e.g., add-wins set [11], [67] instead of con-
ventional set. A possible future direction is to introduce
mechanisms to satisfy such user expected semantics.

Although the current design of PEDaLS allows it to
maintain the same space/time complexity of the node-copy
method, this design also makes the retention of the latest K
versions of the underlying data structure impossible in the
face of scarcity of space. This is due to the simple fact that
even the Kth version might require information that are
present at the beginning of the DataLog or a LinkLog, e.g.,
an element inserted during the first version is still present
during the Kth version. In the future, we can conduct stud-
ies to explore a new design that would potentially have to
make a trade-off between space/time complexity and the
possibility of retaining a specified number of the latest
versions.

One possible way to extend the current work is to
employ Artificial Intelligence (AI)/ Machine Learning (ML)
to discover patterns in the data [68] stored in the underlying
data structures. PEDaLS stores historical data and provides
programmatic approach to retrieve versioned data. This can
be convenient to perform time-series analysis and explore
different trends in data.

Similar to trend analysis, PEDaLS can be used in conjunc-
tion with AI/ML to predict potential configuration options
for autonomic systems [69]. In fact, AI/ML can be used to
analyze a typical workload under consideration and to pre-
dict parameters of PEDaLS itself, such as the size of a Link-
Log (cf. Section 6.5).

As PEDaLS maintains an efficient space/time complexity
and stores historical data, it is a good candidate for a storage
layer for real-time anomaly detection [68]. While the previ-
ous versions of data can help in exploring underlying
trends, the efficiency in storing and accessing data can meet
the fast response requirements of real-time systems. On a
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similar note, AI/ML can be used for efficient adaptive
resource scheduling [70] among replicas of PEDaLS. For
example, if a resource-constrained replica tends to receive a
higher volume of write requests at a particular time of day,
it can decide to proactively delegate some work to nearby
replica(s).

In general, PEDaLS can be extended and used as an inte-
gral part of the monitor, analyze, plan, and execute (MAPE)
loop of autonomic systems [68], [71] with the help of AI/ML.
As PEDaLS records all updates as separate versions of the
underlying data structure, it facilitates monitoring of data.
The historical data efficiently preserved by PEDaLS can then
be analyzed with the help of AI/ML techniques. The analysis
can lead to a possible actionable plan, upon the execution of
which we enter the next iteration of MAPE loop.
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