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ABSTRACT
Serverless computing has increased in popularity as a programming
model for “Internet of Things” (IoT) applications that amalgamate
IoT devices, edge-deployed computers and systems, and the cloud
to interoperate. In this paper, we present L������ – a data�ow pro-
gram representation for distributed IoT application programming –
and describe its implementation based on a network-transparent,
event-driven, serverless computing infrastructure that uses append-
only log storage to store all program state. We describe the initial
implementation of L������, discuss some useful properties we
obtained by leveraging log-based data structures and triggered com-
putations of the underlying serverless runtime, and illustrate its
performance and reliability characteristics using a set of benchmark
applications.
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1 INTRODUCTION
Serverless computing has emerged as a model of application de-
ployment and execution that separates infrastructure con�guration
concerns from application logic. In a “serverful” model, the applica-
tion development and operations team (e.g., in a DevOps setting)
must “program” both the application and the infrastructure (e.g.,
provision resources, establish an operational con�guration) to meet
the requirements of the application. In a serverless context, the
infrastructure management is implemented via automation, leading
to greater application portability and more reliable functionality.
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Our work focuses on leveraging these bene�ts for “Internet of
Things” (IoT) applications and deployments. In an IoT context, the
infrastructure is more heterogeneous with respect to performance,
reliability, capacities, and trustworthiness than in a datacenter or
cloud computing context. Thus, a serverless approach to developing
and deploying IoT applications should accelerate IoT innovation in
the same way that it fosters innovation in the cloud.

Serverless IoT, however, requires a technological approach that
extends the typical serverless platform in several fundamental ways.
First, IoT is necessarily a distributed computing endeavor. Most
serverless infrastructures do not include distributed computing ab-
stractions. Secondly, IoT is multi-scale in terms of its infrastructure
requirements. An end-to-end IoT application must be able to amal-
gamate functionality from resource-restricted devices, edge-based
single-board computers, mobile devices, private clouds, and large-
scale public clouds. Thirdly, the infrastructure available for an IoT
deployment is typically bespoke both in terms of its architectural
makeup and also in terms of its trust topology. Two di�erent deploy-
ments of the same application may need to leverage vastly di�erent
resources with similarly heterogeneous trust characteristics.

Previous work has proposed a new serverless runtime system for
IoT, called CSPOT [31], which is speci�cally designed to support
multi-scale, distributed IoT applications as serverless microservices.
Optionally, CSPOT can use CAPLets [6] to secure cross-service
requests, and Ambience [2] for a set of common operating system
abstractions, but it can also operate as a stand-alone, distributed
language runtime system. Thus, using CSPOT, it is possible to
achieve secure “write-once-run-anywhere” functionality across
all devices, from the most resource restricted to the least, for IoT
applications that are structured as communicating microservices.

In this work, we describe L������ – a data�ow programming en-
vironment for developing these IoT applications. While CSPOT pro-
vides the fundamental runtime abstractions necessary to develop
and deploy multi-scale IoT applications, writing and deploying
these applications is laborious and error-prone. Thus, we propose
a programming methodology that is designed to allow developers
to code distributed IoT applications in a high-level functional lan-
guage that uses CSPOT as a distributed, multi-scale, and serverless
runtime system.
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2 RELATEDWORK
L������ has several antecedents. Early functional languages, such
as Id [19], FP [14], Haskell [15], ML [29], SISAL [10], and Lucid [30]
all demonstrated the feasibility of using data�ow as a runtime
system, either with hardware support such as i-structures [20]
or purely in software. Modern functional languages (including
Haskell), such as Miranda [28] and Purescript [24], can also use
data�ow as a runtime system, although they often compile to a
more imperative language variant, such as Javascript [13]. L���
����’s visual programming component is inspired by languages
such as Keysight VEE [1], KNIME [7], and Node-RED [8]. L���
���� is distinct from these antecedents in that it implements a
data�ow runtime using a log-based, append-only storage model
and triggered execution. Log-based storage provides L������ with
single-assignment variable semantics, and triggered execution is
the basis for �ring a node.

While our work targets the CSPOT [31] runtime system, it is
possible to implement log-based storage and triggered execution
using other systems for multi-scale IoT such as CloudPath [17],
tinyFaaS [23], AWSGreengrass [4], and Azure IoT Edge [18]. Finally,
the use-case we envision for L������ is one in which the vast
heterogeneity and highly varying reliability of IoT devices and
software makes uni�cation with a single language that has good
robustness properties attractive. It should be possible, however, to
use L������ with cloud-based or heavier-weight FaaS systems
as well, including AWS Lambda [5], Azure Functions [9], Google
Functions [12], OpenWhisk [25], and OpenFaaS [22].

3 CSPOT, DATAFLOW, AND LAMINAR
The L������ prototype uses CSPOT as its language runtime sys-
tem, leaving CSPOT to manage the security and device interfaces.
Using CSPOT alone, the application must incorporate the use of
CAPLets as an application-level protocol. In this work, we do not
extend L������ to incorporate CAPLets capabilities in this way.
Thus, the current prototype relies on Ambience (and its use of
CAPLets), and Ambience manifests to implement security. How-
ever, based on experimentation, it is our understanding that the
CSPOT-Ambience integration is not yet ready for full-scale usage
by non-expert users [3]. We plan to extend L������ to permit the
use of CAPLets without an Ambience dependency as part of our
future work.

CSPOT implements an event-driven serverless computing model
using an append-only log storage abstraction for all program state.
The CSPOT developer writes stateless event handlers that can only
be triggered when a data item is appended to some CSPOT log
(called a WooF. CSPOT logs (WooFs) are persistent, so all program
state changes (up to a con�gurable history length) are saved. This
log-based approach makes it possible to write highly reliable ap-
plications [16], since the application’s state at the time of a failure
is recoverable from the logs. Also, because computation cannot be
triggered without �rst appending a datum to a log, the runtime
system tracks causal dependencies as a side e�ect, aiding debug-
ging. Finally, the program logs are named via URNs. If an append
operation refers to a locally hosted log, the runtime uses a fast path
to complete the append transaction. Otherwise, it serializes the data
for network transmission to a remote log.

The CSPOT API consists of a Create function to create a WooF,
a Put function to append a datum to a WooF (and trigger a han-
dler function if speci�ed), a Get function to extract a datum from
a WooF with a speci�c log sequence number, and a Delete func-
tion to remove a WooF. Because the semantics are a combination
of append-only state update and asynchronous event-driven pro-
gramming, writing CSPOT programs is notoriously challenging.
Handlers execute concurrently, the only transaction being the as-
signment of a sequence number to a log append event once the
append is stored. Because the storage abstraction is not random
access, handlers (which do not persist state) must often scan from
the current tail of the log to re-construct the internal state of their
logic on each invocation. Further, the only synchronization possible
between handlers is via the tail of some log. Thus, naïve versions of
CSPOT programs often scan their logs repeatedly and “spin” polling
the log tails when synchronizing.

However, from the perspective of an applicative functional lan-
guage, CSPOT’s logs and append-only semantics correspond to
single-assignment variables. Each append to a log is associated
with a unique sequence number, and the tuple of log name and
sequence number occurs only once in a CSPOT program. Thus, an
implementation of data�ow in which CSPOT handlers are stateless,
and all program state is stored in CSPOT logs, layers applicative
programming semantics atop CSPOT’s distributed log-based run-
time.

This correspondence provides three immediate bene�ts. First,
data�ow programs can be represented graphically. This bene�t has
proven invaluable in developing L������ itself (cf. Subsection 4.5).
Secondly, in an IoT setting, the deployment architecture often varies
substantially between di�erent deployments of the same service
mesh. The one-to-one correspondence between data�ow and ap-
plicative functional programming language semantics make it possi-
ble to “program” each deployment (of the same service mesh) using
L������. Lastly, and as a result, it will be possible to use L������
as an intermediate representation for higher-level applicative func-
tional languages such as Scala [21] and ML [29]. In this way, a user
of L������ can develop an IoT service mesh and its deployment
using either a graphical representation or a high-level applicative
functional language and execute that service mesh using CSPOT
as its runtime.

Finally, we chose CSPOT as a serverless target for L������
because it incorporates an append-only storage abstraction, and
because it is portable to microcontroller devices, edge computers,
and clouds (it uses Linux containers on systems where it does not
run natively). However, it should be possible to emulate CSPOT’s
functionality using cloud or edge-based FaaS systems and one or
more storage services that can implement a persistent log. Thus we
present L������ as a way to develop distributed data�ow programs
using serverless technologies as a runtime for IoT.
4 LAMINAR IMPLEMENTATION AND

PROGRAMMING CONSTRUCTS
At an abstract level, a L������ program comprises the following
elements:

• Sources, which are external computations that introduce
data into a L������ program. These include sensor read-
ings (in an IoT context), database reads, remote API calls,
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node_id (src)

list<subscriber>

node_id (dst)
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Figure 1: Data structures associated with a L������ registry.
The example indicates which program elements are refer-
enced when each data structure is queried for information
regarding node#4.

subscription {
  src_subgraph: 1,
  src_node_id: 1,
  ingress_port: 0

}

subscription {
  src_subgraph: 1,
  src_node_id: 2,
  ingress_port: 1

}

subscription {
  src_subgraph: 1,
  src_node_id: 3,
  ingress_port: 2

}

subscription {
  src_subgraph: 2,
  src_node_id: 4,
  ingress_port: 0

}

subscription {
  src_subgraph: 2,
  src_node_id: 4,
  ingress_port: 0

}

subscription {
  src_subgraph: 2,
  src_node_id: 4,
  ingress_port: 0

}

Figure 2: Detailed view of the Subscriptions structure of the
sample L������ program shown in Figure 1. Each consumer
node identi�er is mapped to a list of subscriptions. Each
subscription associates a consumer node input port with the
producer node’s output.

or arbitrary program functions from a program capable of
exercising L������’s API.

• Nodes, which perform operations on data.
• Edges, which express data �ow between nodes.
• Sinks, which transmit data outside of a L������ program.
These include database writes, remote API calls, or arbitrary
program functions which consume data from L������ ’s
API.

A node can have an arbitrary number of inputs and outputs
(represented by unique “ports” on each node). One directed edge
links each output to each input. Output ports can have fan-out, but
input ports receive data from a unique output. Note that sources
are a special case of nodes without incoming edges, as they pull
external data into a L������ program, and sinks are a special case
of nodes without outgoing edges, as they send data outside of a
L������ program. Input and output ports are implemented using
WooFs, which act as queues of data items passing between nodes.
A L������ edge is represented as a “subscription” by a node for an
input to receive the datum from a speci�c output of a predecessor
node.

An advent event is triggered for every input that arrives at a
node (that is, every time a data item is appended to the WooF

representing the advent event log of a node). The subscription
handler for the node checks if all inputs have arrived. If they have
not, the handler exits. Otherwise, when the last input has arrived,
the handler executes the computation associated with the node and
populates the output ports for the node. When a datum is appended
to the WooF implementing an output port, an advent event is sent
to each node subscribing to the output.

Note that L������ creates all required CSPOT resources (creates
the nodeWooFs, installs the handlers, etc.) statically before program
execution begins. In this way, a L������ application is “compiled”
statically to use the CSPOT runtime abstractions. This runtime
architecture can be categorized into two sections: a registry that is
global to the program and node-speci�c data structures. The global
registry stores indices of the program nodes, subscriptions, and
subscribers. This information is encoded to be stored in logs (each
implemented as a CSPOT WooF).

4.1 Global Registry
The L������ program registry consists of four data structures that
track Nodes, Subscriptions, Subscribers, and Hosts respectively, as
shown in Figure 1. The Nodes WooF stores the host ID to identify
the machine a node is running on (CSPOT uses RPC when a Put or
a Get operation is non-local) and an opcode that is used to dispatch
the node’s computation when all inputs are available.

The Subscriptions data structure maps node identi�ers to the
identi�ers of its incoming edge nodes, enabling fast access for a
consumer when determining whether or not all input data is avail-
able. Subscription information is stored as a hashmap implemented
using two WooFs, as shown in Figure 2. The data WooF stores all
subscriptions for each node contiguously in the sequence number
space of the the WooF. Each element of the data WooF contains a
C++ subscription structure that associates an input port of the
consumer node with the output of a producer node. Themap WooF
maps a range of sequence numbers in the data WooF to the node
to which those subscriptions pertain. Each node’s identi�er is used
as an index into the map WooF (CSPOT’s Get function takes a
sequence number indicating the speci�c log entry to return).

For the example in Figure 2, sequence number 4 in themapWooF
(which correspond to node #4 in Figure 1) contains (1, 3), indicating
that =>34#4’s input port edges can be found by scanning the data
WooF sequentially from sequence numbers 1 through 3. The input
ports for =>34#5 begin at sequence number 4 in the dataWooF, and
so on.

The Subscribers WooF hashmap uses the same two-level log en-
coding to access subscriber structures that represent the relationship
of the output ports of each node to the nodes that consume that
node’s outputs. The Hosts WooF stores the CSPOT information
necessary to locate a WooF remotely (e.g., the host network address
and path to the CSPOT container storage). The L������ runtime
uses this WooF for host discovery and data�ow across hosts.

4.2 Subgraphs
Nodes can be grouped to implement scoping and modular compo-
sition. A subgraph represents a functional “subprogram” that acts
as a node in any L������ program in which it is embedded. That
is, no node within a subgraph �res until all of the inputs to the
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subgraph are available, and no outputs from the subgraph can be
consumed as inputs by other nodes or subgraphs until all subgraph
outputs have been produced.

In L������, a subgraph implements scope for identi�ers and
states. Multiple L������ programs can be developed in isolation
and run together on the same cluster by grouping nodes into sub-
graphs. Moreover, subgraphs can encapsulate implementation de-
tails and provide communication interfaces between programs
without exposing graph internals (i.e., to support modular design).
Finally, L������ uses subgraphs to implement iteration (cf. Sub-
section 4.4).

4.3 Integrating Data Sources
A typical IoT application will need to consume data from various
sources. Data is produced by Source nodes, which may be de�ned
within the L������ high-level language or by a C/C++ program
on an IoT device. Typically, some native code is necessary in order
to access registers with sensor values on a particular embedded
device. L������ provides an API and a library to integrate existing
C and C++ programs as L������ sources. A user can use this API
to ingress data to a L������ program as the output of a Source, e.g.,
laminar::emit([SOURCE], [DATA]).

In principle, data can be passed to a L������ program from
nearly any source. However, the current L������ prototype sup-
ports arbitrary C and C++ functions.

4.4 L������ Structured Programming
Constructs

In addition to traditional data�ow, L������ supports several con-
structs that facilitate the development of more complex programs
with control �ow and iteration.

Conditionals. L������ supports two forms of conditional state-
ments: SELECT and FILTER. A SELECT node uses its �rst port as
a selector, whose value is used to index the remaining ports to
be forwarded as output. The second construct, FILTER, accepts a
boolean value on its �rst port, determining whether or not the data
on the second port is forwarded.

Iteration. The asynchronous and event-driven nature of L������
naturally supports powerful parallelism. Each node can operate
on data independently so that L������ can exploit the inherent
parallelism of many applications. However, some algorithms are
necessarily iterative, so L������ supports iterative looping con-
structs. One such loop is inspired by the IF1 speci�cation [27]. It
consists of four subgraphs: Initialization runs once before the loop
executes; Body performs the computation that typically resides
within a traditional loop body; Test calculates a boolean value that
determines whether or not to repeat the body, and �nally, Result
runs once after the loop �nishes.

This looping construct and its variants can be used to achieve
the same functionality as the typical for or while loop of tradi-
tional imperative programming languages; an example is shown in
Figure 3. The node diagram shows an implementation of Heron’s
Methon for estimating square roots. An equivalent C++ program is
provided in Listing 4.

4.5 Debugging
Distributed applications, particularly ones that use concurrent
append-only persistence semantics, are notoriously di�cult to de-
bug. One advantage of data�ow, in this regard, is that there is a
one-to-one correspondence between program elements (nodes and
edges) and the components of a directed, acyclic graph (DAG).

We exploit this relationship as a debugging aid. L������ in-
cludes the ability to autogenerate a graphical DAG representation of
a L������ program using DOT [11] to encode the graph, which can
be rendered in various formats. Figure 8 shows an example of an au-
togenerated diagram for the quadratic formula (�1 +

p
12 � 402/20)

implemented as a single L������ subgraph. This capability has
proved invaluable in developing and debugging tests and bench-
marking the applications used this paper (cf. Section 5).

Since every operation performed by L������ is stored in an
append-only log, extensive information for debugging is available.
Dependencies between nodes are explicit; thus, a causal ordering
can be reconstructed to analyze a program after execution. The
nature of append-only logs and preservation of causality could be
used to create powerful debugging tools which allow the program
to pause, roll back, and replay execution, even when distributed
across devices.

Finally, the combination of functional language semantics and a
high-level, device-independent program representation makes it
possible to use L������ as a �exible development environment
for IoT. Programs can be developed locally and then deployed in
a variety of distributed con�gurations by placing the WooFs on
di�erent resources in the network. Furthermore, functional compo-
sition provides a number of optimization opportunities that can be
exploited in conjunction with this deployment �exibility.

4.6 Fault Tolerance
L������ runtime supports recovery from network partitions by
retrying failed events with exponential backo�. L������ is con�g-
ured to retry at most 10 times with exponentially increased duration
(capped at 32s) between retries. The output handler maintains an
in-memory queue of failed events for retry. The handler that gener-
ates the node output ensures fault tolerance by generating advent
events at all subscriber nodes with retries during network partition.

5 EVALUATION
We believe that L������ a�ords the user with a high-level, �exible,
and convenient programmingmodality for distributed IoT programs
that must run in tiered deployments (device, edge, and cloud). Our
goal in this work is to understand the performance and reliability
properties that accompany these potential bene�ts.

For the following experiments, we run L������ in containers
hosted in virtual machines on a campus private cloud. The virtual
machines have 4 dedicated cores that share 16 GB of memory. The
underlying processor is an X86 architecture machine with a 2.8
GHz clock speed, the containers used by CSPOT are provisioned
by Docker CE, and the Linux distribution is CentOS 7.4.

To illustrate the performance pro�le associated with L������,
we have implemented a simple “online” linear regression program
in C++, and two di�erent L������ encodings. Figure 5 shows the
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Figure 3: Node diagram of a L������ program which implements Heron’s Method to estimate square roots.

1 # i n c l u d e <cmath >
2
3 doub le c a l c _ s q r t ( doub le x , doub le eps ) {
4 doub le r oo t = x / 2 . 0 ;
5 do {
6 r oo t = ( x / r oo t + r oo t ) / 2 . 0 ;
7 cou t << roo t << end l ;
8 } wh i l e ( abs ( x − r oo t ∗ r oo t ) >= eps ) ;
9 r e t u r n r oo t ;
10 }

Figure 4: Heron’s Method for square root estimation imple-
mented in C++.

core C++ algorithm that performs the update to the regression
coe�cients when each new data item (i.e., x-y pair) is input.

In the �rst L������ representation, we encode the regression
as a single L������ node embedded in a single L������ subgraph
(termed Uninode). Comparing this encoding to the native C++ im-
plementation shows the minimum overhead incurred by L������
when using CSPOT as a local runtime. The second implementation
(termed Multinode) represents the linear regression algorithm as a
DAG of 43 L������ nodes. The CSPOT runtime will implement the
computations concurrently (up to the number of cores available to
the container). However, in this representation, the nodes represent
computations at the �nest level of granularity (i.e., with the maxi-
mal L������ and CSPOT overhead). The third implementation is
a deployment of the second implementation across machines that
results from changing the host identi�ers in the Host WooF (i.e., one
that does not require a recoding, but rather, a redeployment). The
nodes responsible for slope and intercept calculation are placed in
another machine. This application con�guration allows the usage
of more computation and e�cient pipelining of the data�ow.

As expected, the Uninode performance (which incurs the mini-
mal CSPOT overhead) achieves the lowest latency and the highest
throughput. The average observed L������ latency for this bench-
mark is comparable to the CSPOT NULL function dispatch latency
reported in [31], leading us to believe that L������ is performant.

1 vo id update ( doub le new_x , doub le new_y ) {
2 doub le d t = 1e −2 ; / / Time s t e p ( d e l t a t )
3 doub le T = 5e −2 ; / / Time con s t a n t
4 doub le d e c a y _ f a c t o r = exp ( − d t / T ) ;
5
6 / / Decay v a l u e s
7 num ∗= d e c a y _ f a c t o r ;
8 x ∗= d e c a y _ f a c t o r ;
9 y ∗= d e c a y _ f a c t o r ;
10 xx ∗= d e c a y _ f a c t o r ;
11 xy ∗= d e c a y _ f a c t o r ;
12
13 / / Add new da t a p o i n t
14 num += 1 ;
15 x += new_x ;
16 y += new_y ;
17 xx += new_x ∗ new_x ;
18 xy += new_x ∗ new_y ;
19
20 / / C a l c u l a t e de t e rm inan t and new s l o p e / i n t e r c e p t
21 doub le de t = num ∗ xx − pow ( x , 2 ) ;
22 i f ( d e t > 1e −10 ) {
23 i n t e r c e p t = ( xx ∗ y − xy ∗ x ) / d e t ;
24 s l o p e = ( xy ∗ num − x ∗ y ) / d e t ;
25 }
26 }

Figure 5: Online linear regression coe�cient update routine

In the Multinode encoding, every operation shown in Figure 5 is
executed as a separate L������ node. This maximal overhead case
clearly decomposes the program to a degree in which the overheads
for executing each operation dominate the execution latency. The
optimal decomposition that balances the cost of sequential over-
head with the bene�t of concurrency is between these extremes. As
part of our future work, we plan to investigate automatic program
partitioning and scheduling approaches (such as those discussed
in [26]) that seek this balance.

Note that the Multimachine deployment of the Multinode encod-
ing shows better throughput than for the same encoding on a single
machine. This di�erence is due to the default CSPOT con�guration
for the 2.0 release and the number of available cores. CSPOT, by



SESAME ’23, May 8, 2023, Rome, Italy T. Ekaireb et al.

Uni
Node

Multi
Node

Multi
Machine

0
20
40
60
80

100
120
140
160

m
ill

ise
co

nd
s

8.59

136.29

165.43
Latency

Uni
Node

Multi
Node

Multi
Machine

0

50

100

150

200

250

300

350

ou
tp

ut
s 

/ s
ec

on
d

364.06

11.86

49.43

Th oughput

Figure 6: Benchmark result of linear regression example

Figure 7: Benchmark result for Latency of Execution with
Network Partition and Duplicates

default, sets a limit of 15 on the number of concurrently active
handlers, and does not direct Docker to use all of the available
cores. Thus, the Multinode execution on a single machine is over-
sequentialized and experiences resource contention, but when two
machines are used, the application achieves a modicum of pipeline
parallelism. We plan a thorough performance analysis of the inter-
action between CSPOT and L������, and we anticipate potential
performance improvements will result compared to those observed
in this early prototype.

Since L������ stores all program state in persistent CSPOT
WooFs, it should be possible in principle to halt the L������ pro-
gram at any point in its execution and to resume it from where it
halted, even when distributed across an arbitrary number of ma-
chines. That is, L������ is continually checkpointing the program
state through its use of persistent logs, so resumption should be
possible from the last logged state.

We have yet to explore the full crash consistency and recovery
properties of L������, however, we have begun to study its re-
sistance to network partitioning. CSPOT appends an element to a
WooF and assigns it a sequence number as a transaction.

Thus, two possible failure conditions exist when appending a
datum to a WooF using RPC across a network interface. Either
the append fails because the network could not fully transmit the
RPC request, or it succeeds, but the response carrying the sequence
number back to the requester as a return value is lost. The former

case is addressed by a timeout and retry mechanism, while the
latter requires duplicate suppression.

To demonstrate the robustness of L������ in the face of network
partitions, we set up the previously described Multinode Linear
Regression application across two machines, then induce network
partitions for varying time periods, measure the response time,
and verify the correctness of the application execution. We run the
Multinode Linear Regression with 100 inputs and feed the inputs to
the nodes at 1 input per second. We introduce a network partition
at inputs 5, 20, 50 and 90 for 2, 3, 4 and 5 seconds, respectively.
Figure 7 shows the latency of execution instance for each input. In
this experiment, we also simulate the loss of a response by having
L������ issue each CSPOT Put function twice, back-to-back, to
create duplicates (as if the response were lost and a retry succeeded).

The results show that the system is fault-tolerant and resumes
execution without severely impacting the latency of subsequent it-
erations. L������ ensures the execution is sequential even though
events can arrive at the destination node after the network is back
up in random order due to randomness in the backo� times between
retries. The result shows that the system takes 0.5s on average after
the network recovery to continue processing inputs. The recovery
time after a network partition is a function of the input data rate,
proportional to the number of handlers trying to send the events
and the network downtime, leading to various back-o� times for
retry. In addition, recovery time is a�ected by the overall applica-
tion design. Unsurprisingly, we found that the resulting latency
graph looks identical in the scenario when we do not simulate
the duplicate suppression mechanism, which is implemented by
L������ checking the internally generated sequence number and
discarding data with the identical execution number, i.e., a very
simple operation.

6 CONCLUSIONS AND FUTUREWORK
In this paper, we described L������ – a data�ow program represen-
tation for distributed IoT application programming, and evaluated
its initial implementation using CSPOT, a distributed serverless
infrastructure for IoT. We showed that the high-level data�ow se-
mantics of L������ are performant, increase programmer conve-
nience, and improve application reliability thereby simplifying the
development of distributed heterogeneous IoT systems. Our evalu-
ation of L������ demonstrates the �exibility of its programming
model, the ease with which it can be deployed across devices, and
resilience in the face of network failures.

Currently, L������ exploits append-only logs to checkpoint
every operation and preserve causal dependencies. In future work,
L������ will be augmented to utilize this information for pause,
rollback, and replay functionality to debug distributed applications
and increase fault tolerance. It will also serve as the compile target
for a high-level language, o�ering users even greater programming
ease. In addition, we plan on performing more detailed studies to
understand better the possible performance optimizations and exact
reliability properties the underlying serverless log-based infrastruc-
ture a�ords.
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Figure 8: L������ Autogenerated Graphical Data�ow Rep-
resentation of the Quadratic Formula. The inputs to the for-
mula 0, 1, 2 are represented by node#9, node#10, and node#11,
respectively. Node#12 transmits the constant 4, node#13
transmits the constant �1, and node#14 transmits the con-
stant 2. Each operation is marked, and numbers at the top of
each node enumerate input ports. Output ports can connect
to multiple input ports, implementing fan-out.
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