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Abstract. The detection and localization of anomalies in backscatter
images of a person is a standard procedure in airport security screen-
ing. Detecting a concealed item on a person and localizing the item to a
specific body part requires the ability to recognize and segment distinct
body parts. This can be challenging for backscatter images compared
with RGB images due to lacking chromaticity cues and the limited avail-
ability of annotated backscatter images. To address this problem, we
propose a weakly-supervised method for anomaly detection on human
body parts which is based on an unsupervised body segmentation pro-
cedure that uses keypoints from a pretrained pose estimator to segment
backscatter images without significant performance degradation. The pa-
per presents a method for adapting a pretrained RGB pose estimator to
segment human body parts in millimeter-wave images. We then train a
body part-aware anomaly detection classifier to detect foreign objects on
the body part. Our work is applied to TSA’s passenger screening dataset
containing backscatter millimeter-wave scan images of airport travelers
with binary labels that indicate whether a concealed item is attached to
a body part. Our proposed approach significantly improves detection ac-
curacy on 2D images from the baseline approach with a state-of-the-art
performance of 97% F1-score and 0.0559 log-loss on TSA-PSD test set.

Keywords: Pose refinement - Body segmentation - Object detection.

1 Introduction

Backscatter images such as X-ray, MRI, and millimeter-wave scanner images are
predominantly used to examine internal organs or beneath the clothing of per-
sons. These images are generated by specialized scanners and are essential for
computer-aided medical diagnosis and security screening inspections. Backscat-
ter images are also characterized by very low chromaticity and illumination.
The low distinctive visibility makes human inspection difficult and also pose a
challenge for computer diagnostic software. In the US, the HIPAA Privacy Rule
considers these intrusive backscatter images of persons their personal data and
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protects it against unauthorized inspection. Hence, in the case of airport secu-
rity screening where full-body backscatter millimeter-wave scan (MWS) images
of persons must be inspected to make sure that they do not conceal prohibited
or harmful items under their garment, a computer vision algorithm is used to
analyze and detect anomalies in the images. When an anomaly is detected, the
algorithm must also localize it to a specific body part as it recommends a follow-
up pat-down search of the indicated body part. Therefore, localizing anomalies
to specific body parts is as important as high precision anomaly detection of con-
cealed items to streamline pat-down searches shorten airport security screening
queues. This requirement demands an algorithm capable of recognizing different
body parts in backscatter MWS images. Similarly, for medical imaging, there is
value in developing an anomaly detection algorithm that is body-organ aware to
assist physicians in diagnosis.

Fig. 1: Example of our refined 2D pose (2"?) and unsupervised body segmentation (4'") on MWS
images compared to SOTA HRNet 2D pose (1°%) [28] and DensePose body segmentation (374) [14].

Designing a body-aware anomaly detection algorithm for backscatter images
is challenging for two reasons. First, unlike RGB images, there are hardly suffi-
ciently large datasets of backscatter MWS images with body part bounding-box
or pixel-level annotations to supervise the training of a backscatter body part
segmentation deep neural network. Second, as demonstrated in Fig. 1, directly
applying pretrained RGB body segmentation models (e.g. DensePose [14]) to
MWS images fails to produce meaningful segmentation because of lacking chro-
matic and illumination cues.

This work makes the following contributions:

1. We introduce an unsupervised procedure for segmenting body parts in MWS
images by estimating bounding-polygons for each body part.

2. We then propose a weakly-supervised, Rol-attentive, dual-chain CNN classi-
fier that detects anomalies given multi-view images of a cropped body part.

Our approach leverages multi-view information to refine sub-optimal poses
generated by RGB-pretrained human pose estimators. The refined keypoints
are then used to estimate bounding-polygons that enclose each body part. Sub-
sequently, the bounding-polygons are used to crop regions of the images that
represent each body part and the images are fed to our body-aware anomaly
detection neural network.
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1.1 TSA Passenger Screening Dataset

Our unsupervised body segmentation method is evaluated on the Transportation
Security Administration Passenger Screening Dataset (TSA-PSD) [32] which
contains backscatter full-body scans of persons acquired by a High Definition
Advanced Imaging Technology (HD-AIT) millimeter wave scanner (MWS). The
dataset contains 2,635 scans of airport travelers. Each scan is encoded as a
Projected Image Angle Sequence File (.aps) and contains a sequence of
16 2D images captured from different viewpoints such that the person appears
to be spinning from left to right when the images are played back frame by
frame. 1,247 of the 2,635 scans are the annotated train-set with binary labels
that indicate whether an object is concealed in a body part of the scan subject.
TSA outlines 17 body parts of interests. They include right and left forearms,
biceps, abdomens, upper and lower thighs, calves, ankles, chest, upper back, and
groin. Hence, a scan with 16 images has 17 binary labels. There are no pixel-level
or image-level ground-truth annotation of concealed items or body parts. There
are also no binary labels per body part, per frame.

2 Related Work

2D pose estimation on RGB images is widely studied in [3, 4, 16, 24, 28, 30].
However, these models require keypoint annotations to learn proper pose en-
coding. Similarly, state-of-the-art human body segmentation neural networks
[8, 10,12, 14,15, 17,19, 20,22,27,33,34, 37] rely on bounding-box or pixel-level
annotations of body parts.

Anomaly object detection in persons, luggage, cargo containers, and scenes
are studied in [1,2,5,13,23,25,29]. A majority of the leading methods are based
on deep neural networks. Riffo and Mery [25] propose a shape implicit algorithm
for detecting specific threat objects (razor blades, shurikens, and guns) in x-
ray images of luggage. Although their method can be modified to detect threat
items on the human body, their object-specialized approach is not expected to
generalize to unknown objects that are not encountered during training because
their algorithm is designed to detect specific items, not general anomalies. A
popular approach for detecting threat objects uses AlexNet classifier [2] and
predefined fixed region-of-interest (Rol) bounding-boxes to segment body parts.
The fixed Rol bounding-boxes do not account for variations of body part size,
positioning, and orientation on a per person basis. This limitations makes this
approach more suitable for the less mobile torso body parts (e.g. chest, back) and
limited viewpoints. Another approach that uses AlexNet for anomaly detection
[13] combines 2D and 3D data to segment the body parts and generate threat
or benign labels for each cropped image. This enables supervised training of
the model using a set of cropped body parts with assigned threat labels. This
approach allows for a simpler neural network architecture because of the 1-
1 mapping of cropped images and labels. However, generating false labels for
cropped images can degrade to the accuracy of the classifier. Note, anomalies in
TSA-PSD body parts are typically visible in 6 frames or less.
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Other concealed item detection algorithms applied to TSA-PSD are either
designed to use 3D volumetric data, or a combination of 3D and 2D images. We
give a high-level description of the proprietary TSA-PSD classifiers as reported
by the Department of Homeland Security as details of the state-of-the-art clas-
sifiers are not released to the public. Jeremy Walthers (1%%) approach used an
array of deep learning models customized to process images from multiple views.
Sergei Fotin (2°¢) and Oleg Trott (5**) adopted an approach that fuses 2D (10-41
MB per file) and 3D (330 MB per file) data sources to make object and location
predictions. Despite their high accuracy, the 15 and 2°¢ approach may be less
suitable for real-time use because the inference time for an array of neural net-
works or very large files can be substantial. David Odaibo and Thomas Anthony
(3*1) developed an algorithm that uses specialized 3D image-level annotations to
train a 2-stage identification model. It is unclear whether the annotations were
automated or manually labeled. Location based models (4'"), automatic image
segmentation with a collection of specialized models trained on cropped body
part images (6'1'), separately trained models with image augmentation (8"), and
the use of synthetic data and cross-image analysis (7*") are other techniques used
to improve model detection accuracy.

3 Proposed Method

We approach concealed item detection and association to body parts as a two-
stage problem. First, we segment the human body parts in the frames of each
scan to generate 17 sequences of n < 16 cropped images (Sec. 3.1). Each sequence
corresponds to a body part and contains cropped images of that body part from
different viewpoints. Since the presence of a concealed item is often visible in 6
frames or less, never from all viewpoints, we must detect anomalies in body parts
on a per image-sequence basis. In the second stage (Sec. 3.2), we train a deep
CNN anomaly detector that processes a sequence of cropped images of a body
part and classifies it as benign or abnormal when a foreign object is detected
in any of the cropped images. Note, a single CNN detector is trained for all
body parts. This makes our detector simpler and lightweight compared to other
state-of-the-art classifiers that use an array of body part or gender specialized
networks. In contrast, our network uses a novel region-attentive architecture that
makes it body part aware.

3.1 Body Part Segmentation from 2D Poses

Our approach for adapting an RGB Human Pose Estimation (HPE) network
to perform unsupervised body segmentation begins with correcting local-optima
keypoint locations in confidence map output of a RGB-pretrained 2D pose esti-
mator.The corrected keypoint positions in each frame are further optimized using
RANSAC bundle adjustment [35] to consolidate a global-optimum 3D pose. A
new set of coherent 2D poses are derived by projecting the global-optimum 3D
pose back to the 2D frames. The refined keypoints in each frame are then used
to estimate bounding-polygons that segments the body parts in each frame.
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Fig. 2: Outcome of our keypoint selection algorithm for Right Wrist. A-D from left-right. A depicts
the right wrist 2D confidence map. B is the histogram of the confidence map. The red lines indicate
the multi-Otsu thresholds used to segment A the confidence map to 3 layers; blue, orange, and brown
(detected blobs) in C. D shows our algorithm selects the correct position of the right wrist (green
circle) instead of the location of highest confidence (red circle).

Keypoint Selection from HPE Confidence Maps. Without keypoint an-
notations to train a pose estimator on the TSA dataset, we use a Deep-HRNet
2D pose estimator [28] pretrained on the COCO dataset [21] to estimate 15 key-
points of persons in MWS images. They include right and left wrists, elbows,
shoulders, hips, knees, ankles, head, neck, and pelvis keypoints. Deep-HRNet is
preferred to other 2D HPE networks [3,4,24] because of its high-resolution archi-
tecture. Compared to the others, it estimates more realistic poses of the subjects
in backscatter MWS images. Typically, the position of a keypoint is derived from
the corresponding 2D confidence map output of the pose estimator as the pixel
location with the highest confidence. We observed that this naive method often
produced incorrect keypoint estimates because the Deep-HRNet estimator often
generated confidence maps with more than one concentrations of high confidence
scores (i.e. blobs) for backscatter MWS images. In such cases, the naive selection
will default to the leftmost blob even when the correct keypoint position is in
one of the other blobs.

We implement a keypoint selection post-processing procedure that selects the
better-positioned blob and keypoint location given the occurrence of multiple
blobs in the confidence map. The premise of our keypoint selection algorithm
is that the relative positioning (left, center, or right) of joints in each frame is
consistent across all scans because subjects assume a standard posture (standing
erect with hands raised) when being scanned. And their pose is sustained while
each frame is captured from rotating viewpoints. We begin by segmenting the
confidence map into three layers using multi-Otsu binarization [36] to determine
the confidence threshold for each layer. Using a modified island-finder algorithm,
we traverse the segmented confidence map (now a 2D matrix with three unique
values; 0, 1, 2) to identify all blobs. The blobs are grouped into three clusters
by spatial proximity. The cluster nearest to the expected keypoint position (left,
center, or right) is selected. We then compute the argmax of confidence scores
in the chosen blob cluster to retrieve the pixel position of the keypoint. Fig. 2
illustrates the outcome of this procedure.
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Multi-view Coherent Pose Optimization. We observed that even after
refining the 2D pose in each MWS frame, some keypoints may still be sub-
optimally estimated in some frames. Subsequently, causing inaccurate segmen-
tation of body parts associated with the keypoint. Therefore, we ought to correct
incoherent poses across all frames for each scan. In Algorithm 1 we describe a
pose optimization procedure that takes advantage of the multiple viewpoints of
TSA-PSD MWS images to reconstruct consistent 2D poses across all frames.
The 2D position of each keypoint, across all frames of a scan, are optimized
independently using RANSAC bundle adjustment [6,9,11,31,35].

Algorithm 1 Per Keypoint RANSAC Bundle Adjustment

Input: P« {(z,y) :V frames fi... fi¢} > 2D pixel positions of keypoint in each frame
Output: P’ > 2D pixel positions of keypoint in each frame after bundle adjustment
1:n«0, I+ 0

2: while n < 100 do > iterate over subset of keypoints for 3D bundle adjustment
3: R+ {(z,y) :C P} > randomly selected subset, 1 every 4 consecutive frames
4: p3D — (z,y,2)Rr > 3D point is regressed from R via least squares optimization
5: j {(z/,yl) 1V frames} > 2D positions after projecting p>P to each frame
6: I« {(z,y) :C P} > note inlier points based on Euclidean dist. between P & P
7:  if [I'| > |I] then

8: 1«1 > retain the largest inlier set
9: end if

10: end while

11: p3D — (z,y,2)r1 > least squares bundle adjusted 3D point regressed from I 2D points
12: P" « {(x’ Ly )V frames} > final 2D positions after projecting p>P to each frame

Estimating Bounding-Polygons for Body Segmentation. After refining
the keypoints, we segment the body parts in each frame by defining an ori-
ented bounding-box around each body part. Vertices of the bounding-polygon
(a quadrilateral with 4 vertices) are estimated from a subset of keypoints asso-
ciated with a given body part. We define two types of body parts. Limb Body
Parts are segmented using a pair of keypoints. They include forearms, biceps,
upper and lower thighs, calves, and ankles. We refer to the pair of keypoints
used to segment limb body parts as anchor keypoints. Torso Body Parts are
segmented using a set of four keypoints. They include chest, back, abs, and groin.
We refer to the keypoints used to segment torso body parts as pillar keypoints.

Limb Body Part Segmentation. We begin by computing the angle between
the anchor keypoints and the y-axis. The image is then rotated by the computed
angle so that the limb is vertically aligned. We extract the luminance channel
of the rotated image and remove noise with a Gaussian filter. We then sum
the pixel intensity along the horizontal axis of a rectangular region enclosing
the limb. This produces a pixel intensity curve. The rectangular region is ver-
tically bounded by the y-coordinates of the rotated keypoints, and horizontally
bounded by a predefined width for each limb. Next, we fit a degree 6 polynomial
line to the computed pixel intensity curve and extract the x-coordinates of the
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rightmost and leftmost local minima of the polynomial line. The x-coordinates
of the local minima define the width of an axis-aligned bounding-box around the
limb. Similarly, the y-coordinates of the rotated keypoints define the height. The
bounding-box is transformed to an oriented bounding-polygon when its vertices
are inversely rotated.

&
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Fig. 3: Visualization of intermediate stages of limb segmentation for the Right Elbow. Black line in
A links the Right Elbow and Shoulder keypoints. The frame is rotated to vertically align the pillar
keypoints in B. C shows the computed pizel intensity curve (red line) and fitted polynomial (white)
line. D shows the estimated bounding-polygon. F are examples of (shift, zoom, rotate) cropped image
augmentation (with Rol mask) generated from E.

Torso Body Part Segmentation. Pillar keypoints of torso body parts typ-
ically outline a quadrilateral region containing two or more body parts. For
example, the right shoulder, neck, pelvis, and right hip keypoints segment the
right-Abdomen and half of the upper chest (see image A in Fig. 4). To precisely
capture the intended body part, we shift one or more edges of the quadrilateral.
The edges that are moved, the direction (horizontally or vertical), and the ex-
tent they are shifted is guided by a predefined configuration for each torso body
part. The new vertices of the bounding-polygon are computed as the points of
intersection of the adjusted quadrilateral edges. This procedure is illustrated in
Fig. 4 for the right abdomen.

D
E

Fig. 4: Visualization of torso segmentation for the Right Abdomen. Vertices of black quadrilateral in
A are the Pelvis, Neck, Right Shoulder and Hip keypoints. The top edge of the black quadrilateral in
B is shifted downwards, resulting in the blue polygon. The green polygon in C encloses the Rol for
the Right Abdomen. E shows examples of (shift, zoom, rotate) randomly generated cropped image
augmentation from D, overlaid with Rol mask.
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Each bounding-polygon defines the region-of-interest (Rol) of a body part.
The segmented body parts are cropped, in excess, by a standard 160x160 pixel
window such that the Rol is contained in the cropped image (see E and F in
Fig. 3 and Fig. 4) before down-sampling to 80x80 pixels. This approach preserves
the aspect ratio of the body parts in contrast to directly resizing the Rol to the
standard size. We found our network performed better at detecting concealed
items when the aspect ratio of images are not altered. We have chosen a generous
standard size of 160 sq. pixels to accommodate the sizes of all body parts and
all subjects, big and small. Another reason for cropping in excess of the Rol is
because the demarcation between neighboring body parts is not absolute and
when a concealed object spans the boundary of two body parts must only be
attributed to one. By over-cropping the Rol and incorporating the Rol mask
and our proposed Region Composite Vectors into the network, our model learns
to associate concealed objects to the dominant body part. We have designed our
network architecture to use the Rol mask to refocus attention on the Rol when
detecting anomalies, but only after extracting features from the entire cropped
images.

To summarize, given each scan, we compile 17 sequences of cropped images
for each body part (from multiple viewpoints). Each sequence contains 12 images
because we observed that the maximum number of frames where a body part
is visible is 12. Cropped images are re-sampled and augmented to compensate
for body parts that are visible in less than 12 frames (as low as 3 for chest and
back). Finally, images are downsampled by a factor of 2.

3.2 RaadNet: Rol Attentive Anomaly Detection Network

We design an anomaly object detection network that classifies a sequence of
cropped images of a segmented body part as benign or abnormal. Indicating the
presence of a concealed item in one or more of the cropped images. The network,
illustrated in Fig. 5, takes an input sequence of n=12 cropped images for each
body part, their corresponding Rol binary masks, and Region Composite Vectors
(RCVs). The RCYV of a cropped image is a vector of size 17 defined in Eq. (1)
as the intersect-over-union (IoU) between the body part’s Rol I; and the Rol
of all body parts in the given frame I.

RCV;(I) = <IOU(I(),IZ‘), ey IOU(IH;,IZ‘)), ) S 16 (1)

RCVs numerically summarize the proportion contribution of the body parts
captured in a cropped image. We expect most of the IoU components of the
vector will be 0, with only a few having values greater than 0 (as is the case for
adjacent body parts). The component corresponding to dominant body part will
have the highest value. We found RCVs provide cues to the network that helps
it better resolve overlap conflict when a concealed item is partially contained
in the Rol. The cropped images pass through feature extraction blocks and
the masks are downsampled to match the dimensions of the extracted features.
We use the first 5 blocks of MobileNetV2 [20] (pretrained on ImageNet [7]) for
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Fig.5: An instance of RaadNet, our 2-phase, dual-pipeline (indicated by the blue and red lines)
anomaly detection network that takes as input cropped images of a body part, their Rol masks and
RCVs, and outputs the probability that a concealed item is in either of the cropped images. We
use n=12 cropped images per body part. h,w=80 are the height and width of the cropped images.
*h,* w=10, p=8, m=4. Each sub-sequence of images p is passed through the same sub-network
(enclosed in large rectangle). Residual convolution blocks (in dark-blue) contains two 3D convolution
layers with kernel=38 and f filters. Convolutions are accompanied by batch normalization and Re-LU
activation. The fully connected block (in light-blue) contains 5 dense layers of sizes 128,64,64,16,1
followed by a sigmoid activation. ® and @ are element-wise multiplication and addition operations.
Notice that a deeper network can be created by increasing the number of phases.
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feature extraction. The extracted features, downsampled masks, and RCVs are
separated into m=4 sub-sequences. Each containing p=n/m contiguous temporal
components that are fed to a dual-pipeline, multi-phase sub-network. During
each phase, the Image-pipeline (blue path in Fig. 5) encodes textures of the
entire cropped images, while the Rol-pipeline (red path in Fig. 5) is designed to
extract textures precisely from the Rols in the cropped images. This is achieved
by computing the element-wise multiplication of the residual convolution block
output of the Image-pipeline and the convoluted Rol masks. The resulting tensor
is passed to the residual block of the Rol-pipeline. The dual pipelines ensures
the network can detect anomalies that partially appear on the boundary of the
body part’s Rol and aids the network to decide whether to attribute the detected
anomaly to the Rol. This is especially useful when an object is not fully contained
in the Rol but well captured in the cropped image. The output of the residual
block in the Rol-pipeline of the final phase and the RCVs are fed to a fully
connected block which outputs the probability that a concealed item is present
in one or more of the cropped images in the sub-sequence. The final classification
of the body part is the max probability aggregate of the sub-sequences.

Training and Inference with Ensemble Classifiers. Our 2-phase, dual-
pipeline network has about 2.47M parameters (5.19M flops). We train 3 classi-
fiers on overlapping, equal-sized, subsets of the training set. This is done with
a 3-folds stratified learning scheme where each classifier is trained on 2 subsets
and validated on the other subset. Each classifier is trained for 80 epochs with a
batch size of 64 using Adam optimizer [18] and a dynamic learning rate starting
at le—3 and decreased to 5e—5 between the 9" and 72°¢ epoch by a non-linear
cosine function. During training, we re-sample sequences of cropped images with
concealed items and augment all images by moving the cropped window about
the Rol, zooming, horizontal flipping, and adjusting image contrast. At inference,
the verdict is aggregated as the mean probability of the ensemble classifiers.
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4 Experiments and Results

We evaluate the correctness of our 2D-pose refinement procedure in Tab. 1,
the accuracy of our anomaly detection network in Tab. 2, and compare the
performance of our state-of-the-art ensemble classifier to proprietary algorithms
and other top detectors applied to TSA-PSD in Fig. 6.

4.1 Evaluation of 2D Pose Refinement for MWS Images

We evaluate our proposed keypoint correction process to show the relevance of
our approach that adapts a RGB pretrained pose encoder to estimate more ac-
curate poses on backscatter MWS images without supervision. Tab. 1 shows the
Mean Per Joint Position Error (MPJPE) computed between predicted keypoint
positions and manually labeled ground-truth positions. The final stage of our
pose refinement (Coherent-Pose) decreases the error of estimated keypoints by
68%. We go on to show that this boost in accuracy is carried over to the anomaly
detection network when trained with better segmented images. Note, however,
that the consolidation of globally optimum coherent poses can sometimes come
at the expense of local optima keypoint positions. We observe this consequence
in the right and left hip and right knee keypoints where the coherent poses de-
grade the accuracy of the refined poses. This is because the pixel location of
these keypoints are particularly volatile from frame to frame as the viewpoint of
the person changes.

mm R.Sh R.Eb R-Wr L.Sh L.Eb L.Wr R.Hp R.Ke R.Ak L.Hp L.Ke L.Ak| Avg.
Generic Pose [115.7 191.5 119.1 100.4 173.4 117.6 88.49 115.3 137.3 79.91 105.8 134.5/123.2
Refined Pose |55.2 36.9 35.2 52.3 44.4 42.6 65.1 38.5 42.9 61.6 36.9 43.6|46.3

Coherent Pose|40.2 32.5 19.9 38.1 31.4 23.6 82.8 38.9 22.4 78.1 35.8 21.0|38.7

Table 1: Accuracy of 2D-poses derived by the naive keypoint selection (Generic Pose), our proposed
method for guided keypoint selection (Refined Pose of Sec. 3.1) and correcting incoherent pose
estimation (Coherent Pose of Sec. 3.1). Evaluated on the mean L2-norm between manually labelled
keypoint locations and estimated keypoint locations of 50 scans (800 images). R.Sh refers to Right
Shoulder, L.Ke Left Knee. Avg. is the mean over all keypoints.

4.2 Concealed Item Detection with RaadNet.

We conduct ablation experiments on our anomaly detection network trained on
different types of segmented body part images and varying inputs. We present a
comprehensive evaluation of our methods in comparison to published works on
concealed item detection on the TSA dataset in Tab. 2. Our proposed method
of using refined 2D keypoints to segment the human body parts consistently
outperforms other published work on 2D concealed item detection in TSA-PSD
in all metrics. Our RaadNet detector, trained on body part images segmented
by coherent keypoints, Rol masks, and RCVs, performs at an average F1-Score
of 98.6% on a disjoint validation-set and 0.0751 log-loss on the test-set. The
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Validation Test
Body Part Anomaly Detection Methods Avg.F1 F1-Sc. Preci. Recall Acc.  L.loss |L.loss
T T T T T 4 4
FastNet (*) [23] .8890 - - - - - -
AlexNet-1 (*) [2] - - - - - .0088 | -
AlexNet-2 (*) [13] .9828 .0913

RaadNet +Fixed Rol Seg. in [2]+Mask+RCV (Bsl-1) [.9761 .9555 .9628 .9487 .9723 .0201 |.1384
RaadNet +Unrefined-Pose Seg.+Mask+RCV (Bsl-2) |.9184 .7526 .8652 .6659 .9108 .1282 |.1608
Ours RaadNet +Coherent-Pose Seg. (Abl-1) 9775 .9581 .9655 .9505 .9766 .0143 |.0934
Ours RaadNet +Coherent-Pose Seg.+Mask (Abl-2) 9637 .9540 .9550 .9531 .9687 .0131 |.0886
Ours RaadNet +Coherent-Pose Seg.+Mask+RCV (Opt.)[.9859 .9738 .9941 .9544 .9946 .0097 |.0751

Table 2: Comparison of RaadNet and our proposed body segmentation to relevant published work
on TSA-PSD. Bsl-1 is our baseline network trained with fixed Rol segmented body parts with Rol
masks and RCVs. Bsl-2 is our baseline RaadNet trained with images segmented using original Deep-
HRNet keypoints (without refinement), masks, and RCVs. Abl-1, Abl-2 and Opt. are our networks
trained with body parts segmented using refined keypoints (Sec. 3.1). Abl-1 is without Rol masks
and RCVs, Abl-2 is without RCVs, and Opt is with all three inputs; cropped images of body parts,
Rol masks, and RCVs.

log-loss €, on the test-set of TSA-PSD is defined in Eq. (2) between predicted
threat probabilities § and the ground-truth binary label y of all N=17 x 1338
body parts and scan subjects in the test-set. "In" is natural logarithm.

1 N
€= Sl @) + (1 - ) (1 — 1) (2)

By performing more precise body part segmentation on MWS images using
refined 2D keypoints, we improved our network’s ability to accurately detect
concealed items by 53% (0.0751 test-set log-loss). Outperforming the published
state-of-the-art method [13] (at 0.0913 test log-loss) by 17%. This is further
extended to a 38% decrease in log-loss by our 3-ensemble classifiers. Note that the
methods in the top 3 rows of Tab. 2 do not directly compare to our results because
those works detect anomalies in a small subset of body parts (e.g. chest, thigh,
arm, back). Whereas, our method detects concealed items on all body parts and
the reported values reflect the cumulative performance on all body parts. To aid
comparison with previous works, we show their best results reported for a single
body part. Our ablation study highlights the importance of RCV and Rol mask.
As expected, the use of masks improves the confidence of classification in Abl-2
(decrease in log-loss). Although, at the expense of classification accuracy which
is recovered by supplying RCVs. This is because Rol masks may exclude parts of
objects on the boundary of body parts, whereas, RCVs inform the network how
much of the objects are contained in the Rol. Hence, allowing the network to
make a better decision of attributing detected concealed objects to body parts.

4.3 Comparison to TSA-PSD Proprietary Classifiers

The anomaly detection accuracy of RaadNet is further improved with 3-ensemble
classifiers. Achieving up to 0.05592 mean log-loss on the test-set (7" overall in
Fig. 6). Note, mean log-loss is the only evaluation metric reported for the test-set
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Fig. 6: Top-ranked TSA-PSD algorithms on the Kaggle Leaderboard. (*) indicates algorithms re-
ported to have used 3D image files. Our ensemble RaadNet ranks 7*", placing at topmost proprietary
category. Making our method the only published, comprehensive work that places in the top-8.

because the ground-truth labels are private to TSA. This makes our proposed
method the only comprehensive, fully-disclosed work that places at the top-8
proprietary category on the TSA Leaderboard. Details of the top-11 algorithms
are proprietary and undisclosed to the public. Most of the top-8 methods are
reported to use a combination 3D volumetric data (330 MB per file) and 2D
(10-41 MB) image data (15%). Whereas, we use only the smallest 2D image data
available (10 MB, .aps files). RaadNet may be directly compared to the 6%
which use 2D data and multiple classifiers specialized for each body part. In
contrast, we use only 3-ensemble classifiers, each component classifier trained on
a disjoint subset of all body parts. We observed that all our baseline classifiers
have a higher rate of false-negatives than false-positives. In other words, Raad-
Net is more likely to miss a concealed item than to generate false alarms. The
difference narrows and false-negative rates decreases as more precise body part
segmentation is used in Ours-Ens and Ours-Opt. Highlighting the importance
of accurate body segmentation in backscatter MWS images.

5 Conclusion

We have shown how improved 2D human pose estimation, and the consequent
improvement of body part segmentation can lead to a significant performance
boost on body part anomaly detection task. Adapting 2D pose encoders trained
on RGB images to estimate the keypoints of persons in backscatter MWS images
is non-trivial without ground-truth annotations but, as we show, can be very
rewarding when done well. Our keypoint refinement procedure and unsupervised
body part segmentation algorithm described in Sec. 3.1 enables us to accurately
segment the body parts of persons in MWS images. Subsequently, this allows us
to train our anomaly detection network on cropped images of segmented body
parts. With precise segmentation of body parts in backscatter MWS, we design
a simple and effective body-part-aware neural network architecture that can be
trained with weak supervision on all body parts in tandem.
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