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We present the nonperturbatively renormalized nucleon gluon momentum fraction using ensembles with
2 + 1 + 1 flavors of highly improved staggered quarks (HISQ), generated by the MILC Collaboration. The
calculation is done using clover fermions for the valence action with three pion masses, 220, 310, and
690 MeV, and three lattice spacings, 0.09, 0.12, and 0.15 fm. The renormalization is done using RI/MOM
nonperturbative renormalization and using cluster-decomposition error reduction (CDER) to enhance the
signal-to-noise ratio of the renormalization constant. We find the CDER technique is particularly important
to improve the signal at the finer lattice ensembles where the lattice volume is larger. We extrapolate the

gluon momentum fraction to the continuum-physical limit and obtain (x), = 0.502(53);xpr (50)

mixing m

the MS scheme at 2 GeV, where first error includes the statistical error and uncertainties in nonperturbative
renormalization, while the latter systematic error accounts for ignoring quark mixing. Our gluon
momentum fraction is consistent with other recent lattice-QCD results at physical pion mass.
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I. INTRODUCTION

The gluon momentum fraction (x), of the nucleon is
important to particle and nuclear physics. It can be
measured as the momentum fraction carried by gluons in
the infinite momentum frame and must satisfy the momen-
tum sum rule (x), + (x), = 1 with the sum of the quark
momentum fraction. These momentum fractions are key
inputs to understanding the proton mass and spin decom-
position, which are major outstanding questions in had-
ronic physics. The gluon momentum fraction is connected
to the unpolarized nucleon gluon parton distribution
function (PDF) g(x) via

(), = [ drxgla). (1)

The gluon PDF is an important input to many theory
predictions used in the hadron colliders [1-8]. For example,
g(x) needs to be known precisely to calculate the cross
section for processes in pp collisions, including the cross
section for Higgs-boson production and jet production at
the Large Hadron Collider (LHC) [9,10]. Ongoing and
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future experiments, such as new experiments at the
Jefferson Lab 12-GeV facility and the U.S.-based
Electron-lon Collider (EIC) [11], planned to be built at
Brookhaven National Lab, will further our knowledge of
the gluon PDF [12-14].

Lattice quantum chromodynamics (lattice QCD or
LQCD) is a theoretical method that can provide full
systematic control in calculating QCD quantities in the
nonperturbative regime and can provide useful information
for improving our knowledge of the gluon structure of the
nucleon, independent from experiments. There have been
many lattice calculations of the nucleon quark momentum
fraction (x), (see reviews in Refs. [15,16]), but still
relatively few attempts for the gluon counterpart [17-20].
This is mainly due to the fact that any gluon observable on
the lattice is extremely noisy. Furthermore, the renormal-
ization for even the gluon-only momentum fraction has
been difficult to calculate nonperturbatively (at large
volumes). Early lattice-QCD studies calculated (x), of
the nucleon on quenched lattices using heavy pion masses
and gave (x), € [0.3,0.6] [17-20]. There have been a
number of dynamical calculations of the gluon momentum
fraction of the nucleon using 2-flavor (degenerate up and
down sea quarks), 2 + I-flavor (including strange quark),
and 2 + 1 + 1-flavor (including charm quark) lattice cal-
culations by ETMC, yQCD, and MIT Ilattice groups
[21-25]; see the summary in Table I. Additional smearing
and large numbers of statistical measurements are typically
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TABLE I. Summary of lattice dynamical calculations of the nucleon gluon moment sorted by year. The columns from left to right
show for each calculation: the number of flavors of quarks in the QCD vacuum (Ny), the lattice spacing (a) in fm, the valence pion mass
(M) in MeV, the valence fermion action (“Fermion™), where “TM” stands for twisted-mass fermion action, the number of
measurements of the nucleon correlators (V¢4 ), the renormalization method (“Renorm.”) indicating 1-loop perturbative calculations or
RI-MOM nonperturbative renormalization, the smearing technique used to improve the gluon signals (“G smearing”), and the obtained
gluon momentum fraction ({x),) renormalized at 2-GeV scale in MS scheme. The lattice errors coming from different sources are
marked as “stat.” for statistical, “cont.” for continuum-extrapolation (or lack thereof), “ES” for excited state contamination (but later
calculations remove them, folding this error into the statistical), “PT” for perturbative renormalization, “NPR” for nonperturbative
renormalization, and “mixing” for the mixing with the quark sector.

Group Ny a fm) M (MeV) Fermion Nineas Renorm. G smearing (),

ETMCI16 [21] 24141 008 370 ™ 34,470 ldoop  2-stout  0.284(27)yy (17)gs (24)pr
ETMCI16 [21] 2 0.09 131 ™ 209400  Idoop  2-stout  0.267(22)y (19)ps(24)py
ETMCI7 [22] 2 0.09 131 ™ 209,400  1doop  2-stout 0.267(12) 4, (10)j5
MIT18 [23] 2+1 0.12 450 Clover 572,663  RI-MOM Wilson flow 0.54(8) ga.
2#QCD18a [24] 241 0.114  [135,372]" Overlap 81 cfgs  RI-MOM  1-HYP  0.47(4)y (11)xpRomixing
2#QCDI8b [26] 241 [0.08,0.14] [140,400] Overlap [81, 309] cfgs REMOM  1-HYP 0.482(69),, (48) o
ETMC20 [25] 241+1 008 139.3 ™ 48,000 ldoop  10-stout 0.427(92),,,,
2QCD21 [27] 241 0.14  [171,391° Overlap 8200  RLMOM  1-HYP 0.509(20) s (23) oy
MSULat22 (this work) 2+ 1+1 [0.09,0.15] [220.700F Clover ~ 105-10° RI-MOM  5-HYP  0.502(53)yu0. ek (50) mixing

*Partially quenched calculation on domain-wall fermion M3 = 140-MeV lattice.
Partially quenched calculation on domain-wall fermion M = 171-MeV lattice.
“Clover-on-HISQ mixed action with valence pion masses tuned to lightest sea-quark ones.

needed to produce a usable gluon signal. Since 2018,
xQCD and MIT lattice groups have used nonperturbative
renormalization on the gluon operators. There has been an
attempt by yQCD to study the lattice-spacing dependence
using 2 + 1-flavor ensembles using partially quenched
mixed actions (where the valence pion masses are allowed
to be different from the sea pion masses). Although
progress has been made in recent years, there is still
disagreement between the lattice determination of the gluon
momentum fraction and those obtained from taking the
integral of the global-fit gluon PDF in Eq. (1).
Reference [15] quoted numbers from multiple gluon
PDF determinations (NNPDF3.1, CT14, MMHTI14,
ABMPI16, CJ15, and HERAPDF2.0), yielding a
weighted-average gluon momentum fraction of 0.411(8).
Since then, JAM19 and CT18 have published updated
values, 0.403(2) and 0.413(8), respectively. More lattice
studies are needed to understand the potential discrepancy
between lattice calculations and global-fit results.

The gluon momentum fraction remains an important
calculation target despite recent developments in pseudo-
PDF [28] and quasi-PDF [29,30] approaches, which have
opened up opportunities to calculate the full x dependence
of the gluon PDE. The first attempt to determine the
nucleon gluon PDF in a lattice-QCD calculation was done
based on a quasi-PDF approach [31], but it did not obtain a
sufficient signal to reconstruct the gluon PDF g(x). Lattice
calculations to access the nucleon, pion, and kaon gluon
PDFs g(x) followed [32-35] using the pseudo-PDF
approach. However, the calculation of the gluon PDF via
the pseudo-PDF method gives the ratio of xg(x)/(x),, and
one still needs a direct lattice calculation of (x), to extract

the gluon PDF by itself. Therefore, the lattice gluon
momentum fraction remains an important input in the
era of x-dependent PDF lattice hadronic calculations.

In this work, we present a lattice-QCD calculation of
gluon momentum fraction (x) , In the physical-continuum
limit using clover fermions on Ny =2+ 1+ 1 HISQ
lattices with three lattice spacings, 0.09, 0.12, and
0.15 fm, and three pion masses, 690, 310, and
220 MeV. The rest of the paper is organized as follows.
In Sec. 11, we present the lattice setup and examples of how
we extract the ground-state matrix elements from the lattice
correlators to obtain the bare gluon momentum fraction of
the nucleon. In Sec. III, the method and results of the
nonperturbative renormalization of the gluon momentum
fraction are discussed. In Sec. IV, we extrapolate the
renormalized gluon momentum fractions of different
ensembles to the physical pion mass and continuum limit
then compare our results with other lattice calculations and
global fits. We discuss possible systematics that may
contribute to additional uncertainties in our results. A
summary and the outlook for future calculations of the
nucleon gluon momentum fraction can be found in Sec. V.

II. LATTICE SETUP AND BARE GLUON MATRIX
ELEMENTS

We present our calculation of the nucleon gluon
PDFs using clover valence fermions on four ensembles
with Ny =2+ 1+ 1 highly improved staggered quarks
(HISQ) [36] generated by the MILC Collaboration [37]
with three different lattice spacings (a = 0.9, 0.12, and
0.15 fm) and three pion masses (220, 310, and 690 MeV),
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TABLE II. Lattice spacing a, valence pion mass M} and 7,
mass My", lattice size L? x T, number of configurations N,
number of total two-point correlator measurements Nﬁ%as, and
source-sink separation 7., used in the three-point correlator fits of
Ny =2+ 1+1 clover valence fermions on HISQ ensembles
generated by the MILC Collaboration and analyzed in this study.

Ensemble a09m310 al2m220 al2m310  al5m310
a (fm) 0.0888(8) 0.1184(10) 0.1207(11) 0.1510(20)
L3xT 323x96  323x64 243 x 64 16 x 48

M@ (MeV) 313.1(13)  226.6(3)  309.0(11)  319.1(31)
M,;f“ (MeV) 698.0(7) N/A 684.1(6)  687.3(13)
Nego 1009 957 1013 900

N meas 387,456 1,466,944 324,160 259,200

foep [8,12] [7,11] [7,11] [5,9]

as shown in Table II. The masses of the clover quarks are
tuned to reproduce the lightest light and strange sea
pseudoscalar meson masses done by the PNDME
Collaboration [38-41]. PNDME calculated the nucleon
quark isovector, helicity, and transversity moments using
the clover-on-HISQ ensembles (“mixed action™) in
Ref. [42]; the quark momentum fraction results obtained
in Ref. [42] are consistent with the phenomenological
global-fit values. In this work, we use five HYP-smearing
[43] steps on the gluon loops to reduce the statistical
uncertainties, based on the study in Ref. [31]. Table II
shows the ensemble information, such as the lattice size
L3 x T and number of total two-point correlator measure-
ments N, ., in this calculation. The number of measure-
ments varies 10°—10° for different ensembles.

On the lattice, we calculate the two-point correlator for a
nucleon N via

CH(Pi1) = (O / Pye P4 (5. 07(6.0)[0). (2)

where P, is the boosted nucleon momentum along
the spatial z direction, ¢ is lattice Euclidean time, y(y) =
e u(y) Tiy,y,ysd™(y)u" (y) [where {l,m,n} are color
indices, u(y) and d(y) are the quark operators] is the
nucleon interpolation operator, and I' = 1 (1 4 y4) is the
projection operator. To minimize the autocorrelatrons of
observables on these ensembles, we use random source
locations at each time slice. We check each ensemble to see
how the correlators vary for Ny, € [1,10] and found
the variation to show signs of small autocorrelations.
We also calculate the three-point correlator to obtain the
matrix elements needed to extract the gluon momentum
fraction via

C?th(Pz;tsep’t) - /d3y€_iyzpz<)(<5;’ tsep)|09-ff(t>|)((6’ 0)).
3)

where 7, is the source-sink separation and 7 is the gluon-
operator insertion time. The operator for the gluon momen-
tum fraction O, (1) is

Opw= 3. F’“'F”"—% > FUFi, (4)

i=x,y,2,t i,j=x,y,2,t

where the field tensor F,, is

l
Fuw = gazg Pinst + Py + Py + Pros). - (5)

with the plaquette P,, = U,(x)U,(x + aﬂ)UZ(x +
ab)U}(x) and Py = Puy — Py, The same gluon oper-
ator was also used in the recent calculation of the gluon
momentum fraction by the yQCD, ETMC, and MIT Lattice
Collaborations [21-26].

Using the two- and three-point correlators, we can
extract the ground-state nucleon matrix elements that lead
to the gluon momentum fraction. We use Gaussian
momentum smearing for the quark fields [44] g(x)+
ad; Uj(x)e" kg (x + é;), so that we can calculate the
momentum fraction using P, # 0; these correlators have
been neglected in previous calculations due to their worse
signal-to-noise ratios relative to those obtained from
P, =0. We fit the two-point and three-point correlators
to the energy-eigenstate expansion,

Clz\?t(Pz,t) = |AN’0|€_EN’Ot + |AN’1|€_EN'lt —+ ..., (6)

C%pt(Z’PZ;tSEP’ t) = |ANO|2<0‘Og rt|0>e_EN‘°tse"

+ |AN0||AN 1[{0]O|1)e —En1(tep=1) p=En ot
+ |AN,0HAN,1|<1|O|0>€_EN-0 (tsep=1) p=En.11
+ Ay P(LO[1)e~Ertter + (7)

where the ground (first-excited) state amplitudes and
energies Ay, Eyo (Ay;, Ey;) are obtained from the
two-state fits of the two-point correlators. The parameters
(01010), (0lO[1) ((1]0[0) = (0]O[1)"), and (1]O[1) are
the ground-state, the ground—excited-state, and the excited-
state matrix elements, respectively. The matrix elements
can be extracted by using the two-state simultaneous fits
(“two-sim fits”) of the three-point correlators using multi-
ple 7y, inputs.

To visualize the quality of our fitted matrix-element
extraction, we use ratios composed of the three-point (Cy pt)

to the two-point (C N " correlator, RR°_ defined as

3pt (P sep> ) (8)

R%atio (P 3 t 2 :
: CN (P23 tiep)

sep?t) -

if the excited-state contamination were small, we would see
the midpoints of 7 — t.,/2 approach the true ground state,
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and these values would be independent of the 7,,. Figures 1
and 2 show the bare matrix element extracted at P, =2
lattice units (2zP,/(aL) in physical units) from three-point
and two-point correlators of strange- and light-quark
nucleons, respectively, for all four ensembles studied in
this paper. The leftmost column of the figures shows the
fitted ground-state gluon matrix elements (0|O]0) (grey
band) with multiple source-sink separations of RR* (red to
purple points) and the reconstruction of the fits to the ratio
plots (red to purple bands). We found that the RR*° has a

and toward the ground-state matrix elements obtained from
the “two-sim” fit in Eq. (7) (the grey band). The second
column of Figs. 1 and 2 shows two-sim fits by fixing 75" at
12,11, 11, and 9 for the a09m310, a12m220, al2m310, and
al5m310 ensembles, respectively, while varying the t;’;g‘.
We found that our ground-state matrix elements are
consistent among different choices of t;gg'. Similarly, we
check the dependence on 7 by fixing tgrgi; of two-sim fits
at 8, 7,7, and 5 for the a09m310, al2m220, al2m310, and
al5m310 ensembles, respectively. The ground-state matrix

tendency to increase with larger source-sink separation z,

elements are mostly consistent with different choices

max
i,

o8l ae9m310 ' two_sim fit ' two_sim fit '
_os i ; N S S S T B S
S :
< 04) [ i } Ly l ! Lf 1 ]
3 ATt 11 b { ]

x 0.2r / } { k. ]
s il
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o tsep=9 o tsep=11 two-sim 1 two-sim two-sim
-6 -4 -2 0 2 4 6 6 7 8 9 9 10 11 12 13
t teep/2 ton toep
' ' "al2m310 ' two_sim fit two-sim fit
10 b 1 ;
08 L ] I . I I S S
N o06f ]
1, r ]
L o04f ]
% 02f ]
it ]
0.0E{ ! o tsep=7 - teep=9 . tsep!:1i i }A
-0z ¢ tsep=8 o tsep=10 [ two-sim two-sim T two-sim
) 2 0 2 4 5 6 7 8 8 9 10 11 12
t- tsep/2 tg;g th“eE:)X
1.0 7 " a15m310 i ' two_sim fit two-sim fit
08¢ ] I i i SR S S S
— 06F} ]
N r ]
1} b 4
Q' 04Ff 74 ]
g R By SR
ooff 15 0 P
Tr N tsep=5 . tsep=7 . tsep=9 4
-02F - tsep=6 o toep=8 [ two-sim ] two-sim{  two-sim]
” -2 0 2 4 3 4 5 6 6 7 8 9 10
t-toep/2 G tep
FIG. 1. Example ratio plots (left), two-sim fits (right two columns) from the a09m310, a12m310, and al5m310 ensembles (from top to

bottom) with pion mass M, ~ 690 MeV, respectively. The gray bands show the extracted ground-state matrix element (0|O|0) obtained
from a two-sim fit using foep € [8,12], [7, 11] and [35, 9] for the a09m310, a12m310, and al5m310 ensembles, respectively. The first
column shows the ratio of the three-point to two-point correlators with the reconstructed fit bands from the two-sim fit, shown as
functions of 7 — 7, /2. The second (third) column shows the two-sim ground-state matrix element (0|O|0) results with fixed 75a* (soi

inputs as shown in Table II while varying [15211;1 (tiep’) to see how stable the ground-state matrix elements are.
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FIG. 2. Example ratio plots (left-most column), and two-sim fits (right 2 columns) from the a12m220, a09m310, al12m310, alSm310
ensembles (from top to bottom) with pion masses M, ~ {220,310,310,310} MeV, respectively. The gray bands show the extracted
ground-state matrix element (0|O|0) obtained from the two-sim fit using the 1., € [7,11], [8, 12], [7, 111, and [5, 9] for the al2m220,
a09m310, a12m310, and al5m310 ensembles, respectively. The first column shows the ratio of the three-point to two-point correlators
with the reconstructed fit bands from the two-sim fit, shown as functions of ¢ — t,,/2. The second (third) column shows the two-sim
ground-state matrix element (0|O|0) results with fixed /22 (/%) inputs as shown in Table II while varying 25 (12%) to see how stable
the ground-state matrix elements are.
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Based on the above procedure, we choose the final source-
sink separation 7, (listed in Table Il in lattice units) used in
the “two-sim” fits for the rest of this work.

The majority of our two-sim fits to the three-point
correlators using the parameters listed in Table II have
reasonable fits with y?/d.o.f. <1. The 690-MeV
a12m310 nucleon matrix elements suffer from slightly worse
fits with y?/d.o.f. ~ 1.7. We have varied the parameters
without much improvement in the quality of fit; however, the
obtained matrix elements remain consistent as long as
fsey: > 8. In later sections, we will see the impact of these
two matrix elements in the continuum-physical extrapolation.

We repeat the same analysis routine for P, € [0,4]%a~!
to take advantage of the momentum-averaged results. The
above bare ground-state matrix elements (0|O]0) obtained
from two-sim fits in Eq. (7) contain a kinematic factor

0.8

209m310

0.0 0.5 1.0 1.5
P, (GeV)

a12m310

bare

),

°05 L — L — _+_ — = — —

0.0 0.5 1.0 1.5
P, (GeV)

al5m310

0.0 0.5 1.0 1.5 2.0
P, (GeV)

FIG. 3. The bare gluon momentum fraction (x)5** and fitted
bands divided by kinematic factors as functions of momentum
P. =2z xN_/(aL) for M, ~ 690 MeV on a09m310, al2m310,
and al5m310 ensembles, respectively.

o0 After dividing out this kinematic factor, we obtain

0
R
the bare gluon momentum fraction (x) gbare (orange points)
for four ensembles and various boost momenta, as shown in

Figs. 3 and 4 for strange- and light-quark nucleons. We then

1.0 al2m220
0.8 I
== = == = = — —
o 06
Zo
=04
0.2
0.0 : : : : : :
00 02 04 06 08 10 1.2
P, (GeV)
1.0 a09m310
0.8
Ill
5 0.6 { I
=04
0.2
0.0 : : :
0.0 0.5 1.0 1.5
Pz(GeV)
1.0 al2m316
0.8
o 06[] " ]
L | e ———
<04 1 ]
0.2
0.0k : : :
0.0 0.5 1.0 15
Pz(GeV)
1.0 alsm310
0.8
o 06 i
E/E" - - - — §J— — — — —
= 04
0.2
0.0

00 02 04 06 08 10 12 14
P (GeV)

FIG. 4. The bare gluon momentum fraction (x)7** and fitted
bands dividing by kinematic factors as functions of momentum
P,=2xxN_/(aL) for M, =~ {220,310,310,310} MeV on
al2m220, a09m310, al2m310, and al5m310 ensembles,

respectively.
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TABLE III. The renormalization constant (ZI‘O/I_’/S)_I, the bare
gluon momentum fraction (x) g"‘“e, and the renormalized gluon

momentum fraction <x>lg‘4_s for the four ensembles used in this

calculation. We use the a12m310 NPR factors for al2m220 (x)g’TS
calculation since the mass dependence is weak for the NPR
factors. In the final column, the first error is the statistical error

from the matrix element and the second error is due to the
NPR factor.

Ensemble My (MeV)  (x) (Z%Igs )" (x))s
al2m220  226.6(3)  0.710(45) 1.512(65) 0.470(30)(25)
209m310 313.1(13)  0.622(63) 1.336(106) 0.466(46)(37)
698.0(7)  0.592(48) 1.336(106) 0.443(37)(35)
al2m310 309.0(11) 0.651(53) 1.512(65) 0.430(35)(19)
684.1(6)  0.637(41) 1.512(65) 0.421(27)(18)
al15m310 319.131) 0.475(38) 1.024(61) 0.464(37)(27)
687.3(13) 0.447(23) 1.024(61) 0.436(22)(26)

fit the bare matrix elements of P, € [0,4] x 2z/(aL) on
each ensemble to a constant, shown as a gray band in the
figures. The y?/d.o.f. of the fits are smaller than 1.5 except
the a09m310 light nucleon fit, which is the noisiest dataset
and has y?/d.o.f. % 1.7. The final bare gluon momentum
fractions are listed in Table III.

III. NONPERTURBATIVELY RENORMALIZED
GLUON MOMENTUM FRACTION

After we determine the gluon bare momentum fraction
matrix element from lattice calculation, our next step is to
renormalize it. In this work, we will be using RI-MOM-
scheme NPR [45]. We then implement a perturbative
matching to convert the gluon momentum fraction into
the MS scheme as follows:

(x)yS = Z> (2. ug) (x) >
= RS(RRZE () 0, O)
where Zl(\)/l_gS (42, u%) is the renormalization constant, and the

one-loop expression for the perturbative matching ratio
RMS (1%, %), derived in Ref. [46], is

2
— @N; (2 10
RMS (2, ) = 1 — ﬂf (log(/ﬂ/ﬂ%Hg)

167> \3
2 2
g'N: (4 ¢
G2 h) 10)

where the number of flavors N = 4, the number of colors
N. =3, the parameter from the Riemann zeta function
£=0 in the Landau gauge, ¢* is 4rma(u) [47-49], and
u =72 GeV are used in our calculation. The RI-MOM
renormalization factor Z§! (uz) can be obtained with the

condition,

Z,(P)Z (PN (p) (NS (p)) ey = 1. (1)

where Z,(p?) is the gluon-field renormalization and
Alglqre (ee) i< the bare (tree-level) amputated Green function
for the operator O, in the Landau-gauge—fixed gluon state.
The NPR factor Z%Ig(pz) of the operator in Eq. (4) is

derived in Refs. [23,24],
(Z8)71 ()
_ P2 <(Og,ﬂu - Og,w)Tr[Ar(p>Ar(_p)}>
2([7,24 - pzzz)Dg,TT(p)

PP =Hy TEuFY,p:=0
(12)

Therefore, the gluon propagator D, (p) and bare gluon
amputated Green function Atg‘qre( p) need to be calculated
for the further calculation of the NPR factor,

Dg,/w(p) = <Tr[A/4(p>Au(_p)}>
Abare( ) = <<09W — Og,vv)Tr[Ar(P)Ar(_P)D(Ng - 1)2
%P7 4D, (p) ’
(13)

where 7,u,v € {x,y,z,t} and 7 # u # v. Following the

above procedure, Z%Igs (1u*> = 4 GeV?, p?) is calculated and

shown in Fig. 5 in light gray points by using the full lattice
of all ensembles listed in Table II. The signal-to-noise ratios
of the light gray points are smaller than 100% in most
cases, which gives us a useless renormalized gluon
momentum fraction. The relative errors also become larger
as the lattice spacing becomes smaller. For example, the

relative errors of Z%Tgs(/ﬂ =4 GeV?, p?) for a09m310

ensemble are =~ 1.5 on 347 configurations. To achieve a
comparable relative error as the bare matrix elements of the
light nucleon (0.10) shown in Table III, we need 152 x
347 = 78,075 configurations for the a09m310 NPR cal-
culation alone, which is very expensive to do in dynamical
gauge generation. Therefore, we need some technique to
reduce the error of the NPR factor without requiring a huge
number of configurations in the calculation.

In Refs. [24,50], yQCD introduces a technique called
cluster-decomposition error reduction (CDER) in order to
increase the signal-to-noise ratio of NPR factor, which has
not been widely used by other lattice groups. The reason for
such error reduction is that, for the operator insertions, the
correlator signal falls off exponentially with the distance,
while the error remains constant. Beyond a certain corre-
lation length, it will only increase the noise without gaining
any signal. yQCD introduced two additional cutoffs in the
CDER technique [24] for calculating the gluon NPR: ry
(r,) for the upper bound of the distance between the glue
operator and one of the gauge fields (the gauge fields in the
gluon propagator D (p)) in the gluon amputated Green
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FIG. 5. The renormalization constants (ZMS) (u=
4 GeV2, p?) as a function of p?(GeV?) for the a09m310,

a12m310, and al15m310 ensembles are shown in the first second,
and last rows, respectively. Different color points represent
different cutoffs L. and the lighter gray large error bar points
are from the full lattice calculations.

function Ay (p) definition. With these two cutoffs, the

correlators in the gluon propagator and gluon amputated
Green function become

(Tr[A,(p)A,(=p)])

~ < / o a*r / d*xe'?" Tr[A, (x)A, (x + r’)]>, (14)

<<Og;m Ogvb TrA (p)A ( p)]>

</ d*r / /d“xe”’"l
[r|<ry |F|<ry

X [0y — O]+ ATHA (DA x + r’>}>. (15)

Reference [24] studies the gluon nonperturbative
renormalization on different types of gauge configurations:
2 + 1-flavor RBC/UKQCD domain-wall fermion (DWF)
with lattice spacing a = 0.114 fm, m, = 140 MeV, a
quenched Wilson gauge ensemble of 0.098 fm, and two
volumes of 0.117 fm 450-MeV two-flavor clover fermion
as well. In their quenched and two-flavor clover fermion
studies, they compare the NPR-factor Z‘gg results using the

CDER technique and 100x statistics and show that they are
consistent within one sigma. They find that the CDER
technique provides improvements on the lattice with their
final choices of r; ~# 0.9 fm and r, ~ 1.3 fm, and such
improvements are insensitive to the lattice definition of
operators and the HYP smearing steps within their uncer-
tainties. In our work, instead of using the CDER radius
cutoffs from Ref. [51], we use 16 L# truncated lattices to

calculate the NPR factor Zg_f(uz,ﬂ%) for each lattice

spacing, which means using a 4-D cubic cutoff instead
of a spherical cutoff and L, ~ 2r; and 2r,. The details of
the number of measurements for each lattice spacing and L.
can be found in Table IV.

The smallest cutoffs L, we use are 8 lattice units, which
correspond to 0.72, 0.96, and 1.2 fm for the a09m310,
al2m310, and al5m310 ensembles, respectively; this
corresponds to 2r; with similar smallest cutoff ~ 0.8 fm

used in Ref. [24]. Figure 5 shows the (Z%'qs(/z2 =

4 GeV?, p?))~! as a function of p? for different cutoffs
L, for three ensembles (also the full lattices in grey points).

The error of ZI‘O/I_QS(,M2 =4 GeV?, p?

decreases, which is expected as per the yQCD results [24].
Different L. results are consistent within a one sigma error
range except for the L. = 8 in a09m310 ensemble, likely
suffering from finite-volume effects. Our final choice of the
cutoffs are L.={1.44,1.44,1.5} fm for a09m310,
al2m310, and al5m310 ensembles, respectively, where
L is the full lattice size. These cutoff lengths of

) becomes smaller as L.

TABLE IV. The truncation length L. in lattice units and the
number of configurations N, and measurements Ny, used for
different lattice-spacing ensembles. We used 16 sources for the
truncation on each configuration; thus, Nyeq i8S 16 X N .

Ensemble a09m310 al2m310 al5Sm310
L. {8,12,16,20,24}  {8,12,16,20}  {8,10,12}
N, 347 409 394
N meas 5552 6544 6304
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FIG. 6. The renormalization constants (Z¥5) ™' (12=4GeV?, p?)
as a function of p? for the a09m310 L. = lé, al2m310 L, = 12,
and al5m310 L. =8 with various fit momentum ranges are
shown from top to bottom, respectively. The lower limits of the fit
range of the momentum are chosen to be the same as in Ref. [42].

L. €[1.44,1.5] fm which correspond to r; 0.7 fm are
shown to be consistent with the full lattice NPR factors in
the yQCD work [24].

We fit the p?-dependent renormalization factor accord-
ing to the form,

VS, —1 NS\ —1
(Z9)" (0 =4 GeV2, p?) = (Z§°)" +c1p® + cop™,
(16)

where (ZI\O/I_US)_1 on the right-hand side of the equation is

the renormalization factor at y?> = 4 GeV? and p? = 0.
Figure 6 shows examples with our choice of L, for all three
lattice spacings and the corresponding fit bands using
Eq. (16) with (¢, # 0) and without (¢, = 0) the quadratic
term for large and small p? ranges used in the fit. We only
use p larger than 1.5, 2.0, and 2.4 GeV for a ~ 0.15, 0.12,
and 0.09 fm, respectively, based on the p,;, used in quark
momentum fractions on the same mixed-action study by
PNDME [42]. (PNDME only used constant fits to deter-
mine the renormalization constants.) For the largest lattice
spacing (al5m310 ensemble), the renormalization con-

stants (ZI‘O/IQS)_I(,u2 =4 GeV?, p?) are quite linear as a
function of p2. Therefore, different fit bands are consistent
for different fit ranges of p? with (c, # 0) and without the
(¢, = 0) the quadratic term. The fit bands of (Z%[gs)_1 (W* =
4 GeV?, p?) of the al2m310 ensemble are still consistent
with each other within the one-sigma error despite the large
error for the smallest p? range p € [2,5.2] GeV. The fit
bands of (ZI‘O’IyS)_l(,u2 =4 GeV?,p?) of the al2m310
ensemble deviate at large p?, because the (Zl(‘)’[gs)_l(#2 =
4 GeV?, p?) points increase and then decrease from small
to large p?, which shows that (Zl‘o’lgs)_] (1* =4 GeV?, p?)is
not so linear as a function of pZ. Finally, the fit results of
a09m310 (Z¥5)™' (42 = 4GeV?, p?) at p* =0 start to
converge at ranges with larger maximum p> chosen for
the fit. Thus, we can choose p € [2.4,7] GeV as the fit
range for later calculations. To summarize, we use the
quadratic fits with p ranges [l.5, 6], [2, 6.5], and
[2.4, 7] GeV for each L, to extract the renormalization
constants. The renormalization constants (Zl(‘)’[gs)_1 for the

three ensembles are listed in Table III. Using Eq. (9), we

obtain the renormalized gluon momentum fraction <x>245

results on four ensembles for both light and strange
nucleons, listed in Table III.

IV. RESULTS AND DISCUSSION

Combining the results from Secs. II and III, we obtain
renormalized gluon momentum fractions (x)MS at three
lattice spacings and three pion masses as shown in Fig. 7.
The points in Fig. 7 have two kinds of error bars; the darker
smaller bars include only the statistical error for the gluon
momentum fraction, while the lighter larger bars include
both the statistical errors and the errors from the gluon NPR

factor. Our renormalized <x>1;Ts shows weak pion-mass and
lattice-spacing dependence. Therefore, we use a simple
quadratic ansatz for M, and «a in the physical-continuum

extrapolation to the physical pion mass ME™* = 135 MeV
and continuum limit a = 0,
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(NS (M @) = (x5 + ey (M7 = (M) + k.
(17)

In the fits depending on M, and a, both the statistical errors
and the NPR errors are considered. With the al5m310,
al2m310, and a09m310 ensembles, since we have the same
number of measurements for both strange and light quarks,
within each ensemble, we bootstrap the light and strange
renormalized matrix elements in the same way to keep the
correlations. Across different ensembles, the data are inde-
pendent. The physical-continuum limit gluon momentum
fraction (x)YS-<ont fit result is 0.502(53). The fitted parameters
ky = —8.1(5.2) x 107 GeV~2 and k, = —0.034(31)fm~2
are very small, consistent with zero within two sigma.
The reconstructed fit bands at selected M, €
{135,310,690} MeV as functions of a are shown in the
left plot of Fig. 7. There is a slight trend toward higher gluon
momentum fractions as one approaches the physical pion
mass. The M, = 690 MeV band deviates from the other two
bands, while the M, = 135 and 310 MeV bands almost
coincide. One can also see that the fit form well describes the
data since these bands go through the M, =220- and
310-MeV data points. On the right-hand side of Fig. 7, we
show reconstructed results at a € {0,0.09,0.12,0.15} fmas
functions of M ,. Each color band representing different lattice
spacings agrees well with the same-color data points. The
central values of continuum extrapolation favor higher gluon
momentum fractions but remain within one sigma of the
bands from all three lattice spacings.

So far, we have been missing a systematic error
associated with the mixing from the quark sector. The
bare operator in Eq. (4) can mix with the singlet quark

0.8

06r

(X)g
I
§
|
i
+
|

E=2 M= 135MeV

0.2 |+ a12m220, M,.~220 Mev “ My= 310MeV
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Et M= 690MeV

o a12m310, M,~690 MeV
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L

+ a12m310, M,~310 MeV
4 a15m310, M,~310 MeV
|

0.0
0.00

0.05 0.10

a (fm)

Ms

FIG. 7. The renormalized gluon momentum fraction (x),

operators 02'&‘6 and couple with the renormalized gluon
operator via Oy = Z,,00% +Z ;> 4 OFF°. The mix-
ing for quark operators is expected to be small, based on
past lattice works. The ETM Collaboration [21,22,25] used
one-loop perturbative renormalization and estimated the
mixing coefficients to be a fraction of their statistical errors.
The effect of the mixing of the quark operator into the
gluon operator is about 2%-10%, as shown in Ref. [21].
An MIT group also ignored the quark mixing because
it is assumed to be smaller than the statistical uncertain-
ties [23]. We conservatively estimate a 10% systematic
error from quark mixing for this calculation; thus, our final

<x>gﬁ'°°‘“ at physical pion mass and continuum limit

is 0‘502(53)stat+NPR(So)mixing'

We compare our results with prior dynamical lattice
work and global fits. As shown in Table I, the majority of
nucleon gluon momentum fractions (x), from lattice
dynamical calculations were done using a single lattice
spacing. These results range from 0.4 to 0.55 for the most
recent calculations (except the ETMC16 and ETMC17
results) and have statistical errors varying from 5%-20%.
The yQCD Collaboration studied the systematic errors
from continuum extrapolation and assigned it a 10%
relative error in Ref. [26] and a 5% relative error in their
most recent paper [27]. Overall, we find good consistency
with lattice determinations from the last four years. We
summarize the dynamical lattice-QCD results extrapolated
to or directly calculated at physical pion mass, along with
the global-fit results since 2014, in Fig. 8. The lattice results
currently are much larger than with those from global fits,
with central values closer to 0.5, rather than around 0.4,

where global fits prefer. Higher-precision lattice
0.8
F=2 a=0fm

02k « a12m220, M,~220 MeV = a=0.9 fm 4

= a09m310, M,~310 MeV o a09m310, M, ~690 MeV

a=0.12 fm

+ a12m310, M,~310 MeV < a12m310, M;~690 MeV

4 a15m310, M,~310 MeV 4 a15m310, M;~690 MeV = a=0.15 fm
0.0 s L n n |

0.0 0.1 0.2 0.3 0.4 0.5

M2 (GeV?)

obtained from each ensemble along with the physical-continuum

extrapolation as functions of lattice spacing a (left) and pion mass M2 (right). Each data point in the plot has two errors: the darker inner
bar indicates the statistical error, while the lighter outer bar includes combined errors from both the statistical and renormalization error.
The vertical dashed line in the right plot goes through M2 = (0.135 GeV)?2, and the different color points near this line represent the
extrapolated values at different lattice spacings a at physical pion mass. To increase visibility, we plot the M, € {220,310}-MeV points
shifted by +0.001 fm in the left plot. The reconstructed fit bands at selected M, € {135,310,690} MeV as functions of a and at
selected a € {0,0.09,0.12,0.15} fm as functions of M, are also shown in the left- and right-side plots, respectively.
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FIG. 8. Comparisons of lattice-QCD and global fit determina-

tions of the gluon moments of unpolarized PDFs at 4 = 2 GeV.
On the lattice side, we only show those results at or extrapolated to
physical pion mass by this work (MSULat’22), ETMC’20 [25],
¥QCD’18a [24], yQCD’18b [26], and ETMC’17 [22], com-
pared with global fit results from JAM19 [52], CT18 [53],
NNPDF3.1 [3], CT14 [1], MMHT14 [2], ABMP16 [4], CJ15 [5],
and HERAPDF2.0 [54] analyses. Some lattice-QCD calculations
include systematic errors and some do not; we refer readers to
Table 1 for more details on the difference in the errors. Overall, the
lattice calculations prefer higher central values of the gluon
momentum fraction than the global fits.

calculations are needed with order-of-magnitude increases
in computational resources to reduce the errors to be
comparable with those from global fits (using more than
60 years of experimental data).

V. CONCLUSION AND OUTLOOK

We present the first Ny =2+ 1+ 1 continuum-limit
lattice calculation of the gluon momentum fraction. We use
high-statistics nucleon two-point correlators ranging from
0.26—-1.5 million measurements with three lattice spacings
and the lightest pion mass being 220 MeV. We apply a two-
state fit to multiple source-sink separations to extract

ground-state matrix elements. We nonperturbatively calcu-
late renormalization factors for these operators in the RI/
MOM scheme, following the traditional NPR approach.
For the ensembles at pion mass 310 MeV, even though the
spatial volumes are roughly the same among our three
lattice spacings, the finest lattice spacing, a = 0.09 fm,
yields much noisier results. To improve this, we apply
cluster-decomposition error reduction (CDER). The renor-
malized gluon momentum fractions show mild lattice-
spacing and pion-mass dependence (within our statistical
and NPR errors); thus, we use a simple ansatz to extra-
polate to the physical-continuum limit. Our final gluon
momentum fraction is 0.502(53 )4 npR (50) mixings Where
the mixing systematic is estimated from upper bounds
determined in previous lattice work. Our lattice results are
consistent with lattice work from the last four years using
single lattice spacings and Ny = 2 + 1 mixed action, and
they are consistent with those from global fits within two
sigma. Future calculations will include ensembles at the
physical pion mass and lattice calculations of the quark
moments.
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