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We present the nonperturbatively renormalized nucleon gluon momentum fraction using ensembles with

2þ 1þ 1 flavors of highly improved staggered quarks (HISQ), generated by the MILC Collaboration. The

calculation is done using clover fermions for the valence action with three pion masses, 220, 310, and

690 MeV, and three lattice spacings, 0.09, 0.12, and 0.15 fm. The renormalization is done using RI/MOM

nonperturbative renormalization and using cluster-decomposition error reduction (CDER) to enhance the

signal-to-noise ratio of the renormalization constant. We find the CDER technique is particularly important

to improve the signal at the finer lattice ensembles where the lattice volume is larger. We extrapolate the

gluon momentum fraction to the continuum-physical limit and obtain hxig ¼ 0.502ð53ÞstatþNPRð50Þmixing in

the MS scheme at 2 GeV, where first error includes the statistical error and uncertainties in nonperturbative

renormalization, while the latter systematic error accounts for ignoring quark mixing. Our gluon

momentum fraction is consistent with other recent lattice-QCD results at physical pion mass.

DOI: 10.1103/PhysRevD.107.034505

I. INTRODUCTION

The gluon momentum fraction hxig of the nucleon is

important to particle and nuclear physics. It can be

measured as the momentum fraction carried by gluons in

the infinite momentum frame and must satisfy the momen-

tum sum rule hxig þ hxiq ¼ 1 with the sum of the quark

momentum fraction. These momentum fractions are key

inputs to understanding the proton mass and spin decom-

position, which are major outstanding questions in had-

ronic physics. The gluon momentum fraction is connected

to the unpolarized nucleon gluon parton distribution

function (PDF) gðxÞ via

hxig ¼

Z

1

0

dx xgðxÞ: ð1Þ

The gluon PDF is an important input to many theory

predictions used in the hadron colliders [1–8]. For example,

gðxÞ needs to be known precisely to calculate the cross

section for processes in pp collisions, including the cross

section for Higgs-boson production and jet production at

the Large Hadron Collider (LHC) [9,10]. Ongoing and

future experiments, such as new experiments at the

Jefferson Lab 12-GeV facility and the U.S.-based

Electron-Ion Collider (EIC) [11], planned to be built at

Brookhaven National Lab, will further our knowledge of

the gluon PDF [12–14].

Lattice quantum chromodynamics (lattice QCD or

LQCD) is a theoretical method that can provide full

systematic control in calculating QCD quantities in the

nonperturbative regime and can provide useful information

for improving our knowledge of the gluon structure of the

nucleon, independent from experiments. There have been

many lattice calculations of the nucleon quark momentum

fraction hxiq (see reviews in Refs. [15,16]), but still

relatively few attempts for the gluon counterpart [17–20].

This is mainly due to the fact that any gluon observable on

the lattice is extremely noisy. Furthermore, the renormal-

ization for even the gluon-only momentum fraction has

been difficult to calculate nonperturbatively (at large

volumes). Early lattice-QCD studies calculated hxig of

the nucleon on quenched lattices using heavy pion masses

and gave hxig ∈ ½0.3; 0.6� [17–20]. There have been a

number of dynamical calculations of the gluon momentum

fraction of the nucleon using 2-flavor (degenerate up and

down sea quarks), 2þ 1-flavor (including strange quark),

and 2þ 1þ 1-flavor (including charm quark) lattice cal-

culations by ETMC, χQCD, and MIT lattice groups

[21–25]; see the summary in Table I. Additional smearing

and large numbers of statistical measurements are typically
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needed to produce a usable gluon signal. Since 2018,

χQCD and MIT lattice groups have used nonperturbative

renormalization on the gluon operators. There has been an

attempt by χQCD to study the lattice-spacing dependence

using 2þ 1-flavor ensembles using partially quenched

mixed actions (where the valence pion masses are allowed

to be different from the sea pion masses). Although

progress has been made in recent years, there is still

disagreement between the lattice determination of the gluon

momentum fraction and those obtained from taking the

integral of the global-fit gluon PDF in Eq. (1).

Reference [15] quoted numbers from multiple gluon

PDF determinations (NNPDF3.1, CT14, MMHT14,

ABMP16, CJ15, and HERAPDF2.0), yielding a

weighted-average gluon momentum fraction of 0.411(8).

Since then, JAM19 and CT18 have published updated

values, 0.403(2) and 0.413(8), respectively. More lattice

studies are needed to understand the potential discrepancy

between lattice calculations and global-fit results.

The gluon momentum fraction remains an important

calculation target despite recent developments in pseudo-

PDF [28] and quasi-PDF [29,30] approaches, which have

opened up opportunities to calculate the full x dependence

of the gluon PDF. The first attempt to determine the

nucleon gluon PDF in a lattice-QCD calculation was done

based on a quasi-PDF approach [31], but it did not obtain a

sufficient signal to reconstruct the gluon PDF gðxÞ. Lattice
calculations to access the nucleon, pion, and kaon gluon

PDFs gðxÞ followed [32–35] using the pseudo-PDF

approach. However, the calculation of the gluon PDF via

the pseudo-PDF method gives the ratio of xgðxÞ=hxig, and

one still needs a direct lattice calculation of hxig to extract

the gluon PDF by itself. Therefore, the lattice gluon

momentum fraction remains an important input in the

era of x-dependent PDF lattice hadronic calculations.

In this work, we present a lattice-QCD calculation of

gluon momentum fraction hxig in the physical-continuum

limit using clover fermions on Nf ¼ 2þ 1þ 1 HISQ

lattices with three lattice spacings, 0.09, 0.12, and

0.15 fm, and three pion masses, 690, 310, and

220 MeV. The rest of the paper is organized as follows.

In Sec. II, we present the lattice setup and examples of how

we extract the ground-state matrix elements from the lattice

correlators to obtain the bare gluon momentum fraction of

the nucleon. In Sec. III, the method and results of the

nonperturbative renormalization of the gluon momentum

fraction are discussed. In Sec. IV, we extrapolate the

renormalized gluon momentum fractions of different

ensembles to the physical pion mass and continuum limit

then compare our results with other lattice calculations and

global fits. We discuss possible systematics that may

contribute to additional uncertainties in our results. A

summary and the outlook for future calculations of the

nucleon gluon momentum fraction can be found in Sec. V.

II. LATTICE SETUP AND BARE GLUON MATRIX

ELEMENTS

We present our calculation of the nucleon gluon

PDFs using clover valence fermions on four ensembles

with Nf ¼ 2þ 1þ 1 highly improved staggered quarks

(HISQ) [36] generated by the MILC Collaboration [37]

with three different lattice spacings (a ≈ 0.9, 0.12, and

0.15 fm) and three pion masses (220, 310, and 690 MeV),

TABLE I. Summary of lattice dynamical calculations of the nucleon gluon moment sorted by year. The columns from left to right

show for each calculation: the number of flavors of quarks in the QCD vacuum (Nf), the lattice spacing (a) in fm, the valence pion mass

(Mval
π ) in MeV, the valence fermion action (“Fermion”), where “TM” stands for twisted-mass fermion action, the number of

measurements of the nucleon correlators (Nmeas), the renormalization method (“Renorm.”) indicating 1-loop perturbative calculations or

RI-MOM nonperturbative renormalization, the smearing technique used to improve the gluon signals (“G smearing”), and the obtained

gluon momentum fraction (hxig) renormalized at 2-GeV scale in MS scheme. The lattice errors coming from different sources are

marked as “stat.” for statistical, “cont.” for continuum-extrapolation (or lack thereof), “ES” for excited state contamination (but later

calculations remove them, folding this error into the statistical), “PT” for perturbative renormalization, “NPR” for nonperturbative

renormalization, and “mixing” for the mixing with the quark sector.

Group Nf a (fm) Mval
π (MeV) Fermion Nmeas Renorm. G smearing hxig

ETMC16 [21] 2þ 1þ 1 0.08 370 TM 34,470 1-loop 2-stout 0.284ð27Þstat.ð17ÞESð24ÞPT
ETMC16 [21] 2 0.09 131 TM 209,400 1-loop 2-stout 0.267ð22Þstat.ð19ÞESð24ÞPT
ETMC17 [22] 2 0.09 131 TM 209,400 1-loop 2-stout 0.267ð12Þstat.ð10ÞES
MIT18 [23] 2þ 1 0.12 450 Clover 572,663 RI-MOM Wilson flow 0.54ð8Þstat.
χQCD18a [24] 2þ 1 0.114 [135, 372]

a
Overlap 81 cfgs RI-MOM 1-HYP 0.47ð4Þstat.ð11ÞNPRþmixing

χQCD18b [26] 2þ 1 [0.08, 0.14] [140,400] Overlap [81, 309] cfgs RI-MOM 1-HYP 0.482ð69Þstat.ð48Þcont.
ETMC20 [25] 2þ 1þ 1 0.08 139.3 TM 48,000 1-loop 10-stout 0.427ð92Þstat.
χQCD21 [27] 2þ 1 0.14 [171, 391]

b
Overlap 8,200 RI-MOM 1-HYP 0.509ð20Þstat.ð23Þcont.

MSULat22 (this work) 2þ 1þ 1 [0.09,0.15] [220,700]
c

Clover 105–106 RI-MOM 5-HYP 0.502ð53Þstat.þNPRð50Þmixing

a
Partially quenched calculation on domain-wall fermion Msea

π ¼ 140-MeV lattice.
b
Partially quenched calculation on domain-wall fermion Msea

π ¼ 171-MeV lattice.
c
Clover-on-HISQ mixed action with valence pion masses tuned to lightest sea-quark ones.
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as shown in Table II. The masses of the clover quarks are

tuned to reproduce the lightest light and strange sea

pseudoscalar meson masses done by the PNDME

Collaboration [38–41]. PNDME calculated the nucleon

quark isovector, helicity, and transversity moments using

the clover-on-HISQ ensembles (“mixed action”) in

Ref. [42]; the quark momentum fraction results obtained

in Ref. [42] are consistent with the phenomenological

global-fit values. In this work, we use five HYP-smearing

[43] steps on the gluon loops to reduce the statistical

uncertainties, based on the study in Ref. [31]. Table II

shows the ensemble information, such as the lattice size

L3 × T and number of total two-point correlator measure-

ments Nmeas in this calculation. The number of measure-

ments varies 105–106 for different ensembles.

On the lattice, we calculate the two-point correlator for a

nucleon N via

C
2pt
N ðPz; tÞ ¼ h0jΓ

Z

d3ye−iyzPzχðy⃗; tÞχð0⃗; 0Þj0i; ð2Þ

where Pz is the boosted nucleon momentum along

the spatial z direction, t is lattice Euclidean time, χðyÞ ¼
ϵlmn½uðyÞlTiγ4γ2γ5d

mðyÞ�unðyÞ [where fl; m; ng are color

indices, uðyÞ and dðyÞ are the quark operators] is the

nucleon interpolation operator, and Γ ¼ 1
2
ð1þ γ4Þ is the

projection operator. To minimize the autocorrelations of

observables on these ensembles, we use random source

locations at each time slice. We check each ensemble to see

how the correlators vary for Nbin ∈ ½1; 10� and found

the variation to show signs of small autocorrelations.

We also calculate the three-point correlator to obtain the

matrix elements needed to extract the gluon momentum

fraction via

C
3pt
N ðPz; tsep; tÞ ¼

Z

d3ye−iyzPzhχðy⃗; tsepÞjOg;ttðtÞjχð0⃗; 0Þi;

ð3Þ

where tsep is the source-sink separation and t is the gluon-

operator insertion time. The operator for the gluon momen-

tum fraction Og;ttðtÞ is

Og;μν ≡

X

i¼x;y;z;t

FμiFνi −
1

4

X

i;j¼x;y;z;t

FijFij; ð4Þ

where the field tensor Fμν is

Fμν ¼
i

8a2g
ðP½μ;ν� þ P½ν;−μ� þ P½−μ;−ν� þ P½−ν;μ�Þ; ð5Þ

with the plaquette Pμ;ν ¼ UμðxÞUνðxþ aμ̂ÞU†
μðxþ

aν̂ÞU†
νðxÞ and P½μ;ν� ¼ Pμ;ν − Pν;μ. The same gluon oper-

ator was also used in the recent calculation of the gluon

momentum fraction by the χQCD, ETMC, and MIT Lattice

Collaborations [21–26].

Using the two- and three-point correlators, we can

extract the ground-state nucleon matrix elements that lead

to the gluon momentum fraction. We use Gaussian

momentum smearing for the quark fields [44] qðxÞþ

α
P

j UjðxÞe
ið2π

L
Þkêjqðxþ êjÞ, so that we can calculate the

momentum fraction using Pz ≠ 0; these correlators have

been neglected in previous calculations due to their worse

signal-to-noise ratios relative to those obtained from

Pz ¼ 0. We fit the two-point and three-point correlators

to the energy-eigenstate expansion,

C
2pt
N ðPz; tÞ ¼ jAN;0je

−EN;0t þ jAN;1je
−EN;1t þ…; ð6Þ

C
3pt
N ðz;Pz; tsep; tÞ ¼ jAN;0j

2h0jOg;ttj0ie
−EN;0tsep

þ jAN;0jjAN;1jh0jOj1ie−EN;1ðtsep−tÞe−EN;0t

þ jAN;0jjAN;1jh1jOj0ie−EN;0ðtsep−tÞe−EN;1t

þ jAN;1j
2h1jOj1ie−EN;1tsep þ…; ð7Þ

where the ground (first-excited) state amplitudes and

energies AN;0, EN;0 (AN;1, EN;1) are obtained from the

two-state fits of the two-point correlators. The parameters

h0jOj0i, h0jOj1i (h1jOj0i ¼ h0jOj1i�), and h1jOj1i are

the ground-state, the ground–excited-state, and the excited-

state matrix elements, respectively. The matrix elements

can be extracted by using the two-state simultaneous fits

(“two-sim fits”) of the three-point correlators using multi-

ple tsep inputs.

To visualize the quality of our fitted matrix-element

extraction, we use ratios composed of the three-point (C
3pt
N )

to the two-point (C
2pt
N ) correlator, RRatio, defined as

RRatio
N ðPz; tsep; tÞ ¼

C
3pt
N ðPz; tsep; tÞ

C
2pt
N ðPz; tsepÞ

; ð8Þ

if the excited-state contamination were small, we would see

the midpoints of t − tsep=2 approach the true ground state,

TABLE II. Lattice spacing a, valence pion mass Mval
π and ηs

mass Mval
ηs
, lattice size L3 × T, number of configurations Ncfg,

number of total two-point correlator measurements N
2pt
meas, and

source-sink separation tsep used in the three-point correlator fits of

Nf ¼ 2þ 1þ 1 clover valence fermions on HISQ ensembles

generated by the MILC Collaboration and analyzed in this study.

Ensemble a09m310 a12m220 a12m310 a15m310

a (fm) 0.0888(8) 0.1184(10) 0.1207(11) 0.1510(20)

L3 × T 323 × 96 323 × 64 243 × 64 163 × 48

Mval
π (MeV) 313.1(13) 226.6(3) 309.0(11) 319.1(31)

Mval
ηs

(MeV) 698.0(7) N/A 684.1(6) 687.3(13)

Ncfg 1009 957 1013 900

Nmeas 387,456 1,466,944 324,160 259,200

tsep [8,12] [7,11] [7,11] [5,9]
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and these values would be independent of the tsep. Figures 1

and 2 show the bare matrix element extracted at Pz ¼ 2

lattice units (2πPz=ðaLÞ in physical units) from three-point

and two-point correlators of strange- and light-quark

nucleons, respectively, for all four ensembles studied in

this paper. The leftmost column of the figures shows the

fitted ground-state gluon matrix elements h0jOj0i (grey

band) with multiple source-sink separations of RRatio (red to

purple points) and the reconstruction of the fits to the ratio

plots (red to purple bands). We found that the RRatio has a

tendency to increase with larger source-sink separation tsep

and toward the ground-state matrix elements obtained from

the “two-sim” fit in Eq. (7) (the grey band). The second

column of Figs. 1 and 2 shows two-sim fits by fixing tmax
sep at

12, 11, 11, and 9 for the a09m310, a12m220, a12m310, and

a15m310 ensembles, respectively, while varying the tmin
sep .

We found that our ground-state matrix elements are

consistent among different choices of tmin
sep . Similarly, we

check the dependence on tmax
sep by fixing tmin

sep of two-sim fits

at 8, 7, 7, and 5 for the a09m310, a12m220, a12m310, and

a15m310 ensembles, respectively. The ground-state matrix

elements are mostly consistent with different choices tmax
sep .

FIG. 1. Example ratio plots (left), two-sim fits (right two columns) from the a09m310, a12m310, and a15m310 ensembles (from top to

bottom) with pion massMπ ≈ 690 MeV, respectively. The gray bands show the extracted ground-state matrix element h0jOj0i obtained
from a two-sim fit using tsep ∈ ½8; 12�, [7, 11] and [5, 9] for the a09m310, a12m310, and a15m310 ensembles, respectively. The first

column shows the ratio of the three-point to two-point correlators with the reconstructed fit bands from the two-sim fit, shown as

functions of t − tsep=2. The second (third) column shows the two-sim ground-state matrix element h0jOj0i results with fixed tmax
sep (tmin

sep )

inputs as shown in Table II while varying tmin
sep (tmax

sep ) to see how stable the ground-state matrix elements are.
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FIG. 2. Example ratio plots (left-most column), and two-sim fits (right 2 columns) from the a12m220, a09m310, a12m310, a15m310

ensembles (from top to bottom) with pion masses Mπ ≈ f220; 310; 310; 310g MeV, respectively. The gray bands show the extracted

ground-state matrix element h0jOj0i obtained from the two-sim fit using the tsep ∈ ½7; 11�, [8, 12], [7, 11], and [5, 9] for the a12m220,

a09m310, a12m310, and a15m310 ensembles, respectively. The first column shows the ratio of the three-point to two-point correlators

with the reconstructed fit bands from the two-sim fit, shown as functions of t − tsep=2. The second (third) column shows the two-sim

ground-state matrix element h0jOj0i results with fixed tmax
sep (tmin

sep ) inputs as shown in Table II while varying t
min
sep (tmax

sep ) to see how stable

the ground-state matrix elements are.
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Based on the above procedure, we choose the final source-

sink separation tsep (listed in Table II in lattice units) used in

the “two-sim” fits for the rest of this work.

The majority of our two-sim fits to the three-point

correlators using the parameters listed in Table II have

reasonable fits with χ2=d:o:f: < 1. The 690-MeV

a12m310 nucleon matrix elements suffer from slightly worse

fits with χ2=d:o:f: ≈ 1.7. We have varied the parameters

without much improvement in the quality of fit; however, the

obtained matrix elements remain consistent as long as

tmax
sep > 8. In later sections, we will see the impact of these

twomatrix elements in the continuum-physical extrapolation.

We repeat the same analysis routine for Pz ∈ ½0; 4� 2π
L
a−1

to take advantage of the momentum-averaged results. The

above bare ground-state matrix elements h0jOj0i obtained
from two-sim fits in Eq. (7) contain a kinematic factor

E0
3
4
E2
0
þ1

4
P2
z
. After dividing out this kinematic factor, we obtain

the bare gluon momentum fraction hxig
bare (orange points)

for four ensembles and various boost momenta, as shown in

Figs. 3 and 4 for strange- and light-quark nucleons. We then
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FIG. 3. The bare gluon momentum fraction hxibareg and fitted

bands divided by kinematic factors as functions of momentum

Pz ¼ 2π × Nz=ðaLÞ for Mπ ≈ 690 MeV on a09m310, a12m310,

and a15m310 ensembles, respectively.
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FIG. 4. The bare gluon momentum fraction hxibareg and fitted

bands dividing by kinematic factors as functions of momentum

Pz ¼ 2π × Nz=ðaLÞ for Mπ ≈ f220; 310; 310; 310g MeV on

a12m220, a09m310, a12m310, and a15m310 ensembles,

respectively.
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fit the bare matrix elements of Pz ∈ ½0; 4� × 2π=ðaLÞ on

each ensemble to a constant, shown as a gray band in the

figures. The χ2=d:o:f: of the fits are smaller than 1.5 except

the a09m310 light nucleon fit, which is the noisiest dataset

and has χ2=d:o:f: ≈ 1.7. The final bare gluon momentum

fractions are listed in Table III.

III. NONPERTURBATIVELY RENORMALIZED

GLUON MOMENTUM FRACTION

After we determine the gluon bare momentum fraction

matrix element from lattice calculation, our next step is to

renormalize it. In this work, we will be using RI-MOM–

scheme NPR [45]. We then implement a perturbative

matching to convert the gluon momentum fraction into

the MS scheme as follows:

hxiMS
g ¼ ZMS

Og
ðμ2; μ2RÞhxig

bare

¼ RMSðμ2; μ2RÞZ
RI
Og
ðμ2RÞhxig

bare; ð9Þ

where ZMS
Og

ðμ2; μ2RÞ is the renormalization constant, and the

one-loop expression for the perturbative matching ratio

RMSðμ2; μ2RÞ, derived in Ref. [46], is

RMSðμ2; μ2RÞ ¼ 1 −
g2Nf

16π2

�

2

3
logðμ2=μ2RÞ þ

10

9

�

−
g2Nc

16π2

�

4

3
− 2ξþ

ξ2

4

�

; ð10Þ

where the number of flavors Nf ¼ 4, the number of colors

Nc ¼ 3, the parameter from the Riemann zeta function

ξ ¼ 0 in the Landau gauge, g2 is 4παðμÞ [47–49], and

μ ¼ 2 GeV are used in our calculation. The RI-MOM

renormalization factor ZRI
Og
ðμ2RÞ can be obtained with the

condition,

Zgðp
2ÞZRI

Og
ðp2ÞΛbare

Og
ðpÞðΛtree

Og
ðpÞÞ−1jp2¼μ2

R
¼ 1; ð11Þ

where Zgðp
2Þ is the gluon-field renormalization and

Λ
bare ðtreeÞ
Og

is the bare (tree-level) amputated Green function

for the operator Og in the Landau-gauge–fixed gluon state.

The NPR factor ZRI
Og
ðp2Þ of the operator in Eq. (4) is

derived in Refs. [23,24],

ðZRI
Og
Þ−1ðμ2RÞ

¼
p2hðOg;μμ −Og;ννÞTr½AτðpÞAτð−pÞ�i

2ðp2
μ−p2

νÞDg;ττðpÞ

�

�

�

�

p2¼μ2
R
;τ≠μ≠ν;pτ¼0

:

ð12Þ

Therefore, the gluon propagator Dg;μνðpÞ and bare gluon

amputated Green function Λ
bare
Og

ðpÞ need to be calculated

for the further calculation of the NPR factor,

Dg;μνðpÞ ¼ hTr½AμðpÞAνð−pÞ�i

Λ
bare
Og

ðpÞ ¼
hðOg;μμ −Og;ννÞTr½AτðpÞAτð−pÞ�iðN

2
c − 1Þ2

4D2
g;ττðpÞ

;

ð13Þ

where τ; μ; ν ∈ fx; y; z; tg and τ ≠ μ ≠ ν. Following the

above procedure, ZMS
Og

ðμ2 ¼ 4 GeV2; p2Þ is calculated and

shown in Fig. 5 in light gray points by using the full lattice

of all ensembles listed in Table II. The signal-to-noise ratios

of the light gray points are smaller than 100% in most

cases, which gives us a useless renormalized gluon

momentum fraction. The relative errors also become larger

as the lattice spacing becomes smaller. For example, the

relative errors of ZMS
Og

ðμ2 ¼ 4 GeV2; p2Þ for a09m310

ensemble are ≈ 1.5 on 347 configurations. To achieve a

comparable relative error as the bare matrix elements of the

light nucleon (0.10) shown in Table III, we need 152 ×

347 ¼ 78; 075 configurations for the a09m310 NPR cal-

culation alone, which is very expensive to do in dynamical

gauge generation. Therefore, we need some technique to

reduce the error of the NPR factor without requiring a huge

number of configurations in the calculation.

In Refs. [24,50], χQCD introduces a technique called

cluster-decomposition error reduction (CDER) in order to

increase the signal-to-noise ratio of NPR factor, which has

not been widely used by other lattice groups. The reason for

such error reduction is that, for the operator insertions, the

correlator signal falls off exponentially with the distance,

while the error remains constant. Beyond a certain corre-

lation length, it will only increase the noise without gaining

any signal. χQCD introduced two additional cutoffs in the

CDER technique [24] for calculating the gluon NPR: r1
(r2) for the upper bound of the distance between the glue

operator and one of the gauge fields (the gauge fields in the

gluon propagator DgðpÞ) in the gluon amputated Green

TABLE III. The renormalization constant ðZMS
Og

Þ
−1
, the bare

gluon momentum fraction hxig
bare, and the renormalized gluon

momentum fraction hxiMS
g for the four ensembles used in this

calculation. We use the a12m310 NPR factors for a12m220 hxiMS
g

calculation since the mass dependence is weak for the NPR

factors. In the final column, the first error is the statistical error

from the matrix element and the second error is due to the

NPR factor.

Ensemble Mval
π (MeV) hxig

bare ðZMS
Og

Þ
−1

hxiMS
g

a12m220 226.6(3) 0.710(45) 1.512(65) 0.470(30)(25)

a09m310
313.1(13) 0.622(63) 1.336(106) 0.466(46)(37)

698.0(7) 0.592(48) 1.336(106) 0.443(37)(35)

a12m310
309.0(11) 0.651(53) 1.512(65) 0.430(35)(19)

684.1(6) 0.637(41) 1.512(65) 0.421(27)(18)

a15m310
319.1(31) 0.475(38) 1.024(61) 0.464(37)(27)

687.3(13) 0.447(23) 1.024(61) 0.436(22)(26)
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function ΛOg
ðpÞ definition. With these two cutoffs, the

correlators in the gluon propagator and gluon amputated

Green function become

hTr½AμðpÞAνð−pÞ�i

≈

�
Z

jr0j<r2

d4r0
Z

d4xeip·r
0
Tr½AμðxÞAνðxþ r0Þ�

�

; ð14Þ

hðOg;μμ −Og;ννÞTr½AτðpÞAτð−pÞ�i

≈

�
Z

jrj<r1

d4r

Z

jr0j<r2

d4r0
Z

d4xeip·r
0

× ½Og;μμ −Og;νν�ðxþ rÞTr½AτðxÞAτðxþ r0Þ�

�

: ð15Þ

Reference [24] studies the gluon nonperturbative

renormalization on different types of gauge configurations:

2þ 1-flavor RBC/UKQCD domain-wall fermion (DWF)

with lattice spacing a ¼ 0.114 fm, mπ ¼ 140 MeV, a

quenched Wilson gauge ensemble of 0.098 fm, and two

volumes of 0.117 fm 450-MeV two-flavor clover fermion

as well. In their quenched and two-flavor clover fermion

studies, they compare the NPR-factor ZRI
Og

results using the

CDER technique and 100× statistics and show that they are

consistent within one sigma. They find that the CDER

technique provides improvements on the lattice with their

final choices of r1 ≈ 0.9 fm and r2 ≈ 1.3 fm, and such

improvements are insensitive to the lattice definition of

operators and the HYP smearing steps within their uncer-

tainties. In our work, instead of using the CDER radius

cutoffs from Ref. [51], we use 16 L4
c truncated lattices to

calculate the NPR factor ZMS
Og

ðμ2; μ2RÞ for each lattice

spacing, which means using a 4-D cubic cutoff instead

of a spherical cutoff and Lc ≈ 2r1 and 2r2. The details of

the number of measurements for each lattice spacing and Lc

can be found in Table IV.

The smallest cutoffs Lc we use are 8 lattice units, which

correspond to 0.72, 0.96, and 1.2 fm for the a09m310,

a12m310, and a15m310 ensembles, respectively; this

corresponds to 2r1 with similar smallest cutoff ≈ 0.8 fm

used in Ref. [24]. Figure 5 shows the ðZMS
Og

ðμ2 ¼

4 GeV2; p2ÞÞ−1 as a function of p2 for different cutoffs

Lc for three ensembles (also the full lattices in grey points).

The error of ZMS
Og

ðμ2 ¼ 4 GeV2; p2Þ becomes smaller as Lc

decreases, which is expected as per the χQCD results [24].

Different Lc results are consistent within a one sigma error

range except for the Lc ¼ 8 in a09m310 ensemble, likely

suffering from finite-volume effects. Our final choice of the

cutoffs are Lc ¼ f1.44; 1.44; 1.5g fm for a09m310,

a12m310, and a15m310 ensembles, respectively, where

L is the full lattice size. These cutoff lengths of

FIG. 5. The renormalization constants ðZMS
Og

Þ
−1

(μ ¼
4 GeV2; p2) as a function of p2ðGeV2Þ for the a09m310,

a12m310, and a15m310 ensembles are shown in the first second,

and last rows, respectively. Different color points represent

different cutoffs Lc and the lighter gray large error bar points

are from the full lattice calculations.

TABLE IV. The truncation length Lc in lattice units and the

number of configurations Ncfg and measurements Nmeas used for

different lattice-spacing ensembles. We used 16 sources for the

truncation on each configuration; thus, Nmeas is 16 × Ncfg.

Ensemble a09m310 a12m310 a15m310

Lc f8; 12; 16; 20; 24g f8; 12; 16; 20g f8; 10; 12g
Ncfg 347 409 394

Nmeas 5552 6544 6304
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Lc ∈ ½1.44; 1.5� fm which correspond to r1 ≈ 0.7 fm are

shown to be consistent with the full lattice NPR factors in

the χQCD work [24].

We fit the p2-dependent renormalization factor accord-

ing to the form,

ðZMS
Og

Þ
−1
ðμ2 ¼ 4 GeV2; p2Þ ¼ ðZMS

Og
Þ
−1

þ c1p
2 þ c2p

4;

ð16Þ

where ðZMS
Og

Þ
−1

on the right-hand side of the equation is

the renormalization factor at μ2 ¼ 4 GeV2 and p2 ¼ 0.

Figure 6 shows examples with our choice of Lc for all three

lattice spacings and the corresponding fit bands using

Eq. (16) with (c2 ≠ 0) and without (c2 ¼ 0) the quadratic

term for large and small p2 ranges used in the fit. We only

use p larger than 1.5, 2.0, and 2.4 GeV for a ≈ 0.15, 0.12,

and 0.09 fm, respectively, based on the pmin used in quark

momentum fractions on the same mixed-action study by

PNDME [42]. (PNDME only used constant fits to deter-

mine the renormalization constants.) For the largest lattice

spacing (a15m310 ensemble), the renormalization con-

stants ðZMS
Og

Þ
−1
ðμ2 ¼ 4 GeV2; p2Þ are quite linear as a

function of p2. Therefore, different fit bands are consistent

for different fit ranges of p2 with (c2 ≠ 0) and without the

(c2 ¼ 0) the quadratic term. The fit bands of ðZMS
Og

Þ
−1
ðμ2 ¼

4 GeV2; p2Þ of the a12m310 ensemble are still consistent

with each other within the one-sigma error despite the large

error for the smallest p2 range p ∈ ½2; 5.2� GeV. The fit

bands of ðZMS
Og

Þ
−1
ðμ2 ¼ 4 GeV2; p2Þ of the a12m310

ensemble deviate at large p2, because the ðZMS
Og

Þ
−1
ðμ2 ¼

4 GeV2; p2Þ points increase and then decrease from small

to large p2, which shows that ðZMS
Og

Þ
−1
ðμ2 ¼ 4 GeV2; p2Þ is

not so linear as a function of p2. Finally, the fit results of

a09m310 ðZMS
Og

Þ
−1
ðμ2 ¼ 4GeV2; p2Þ at p2 ¼ 0 start to

converge at ranges with larger maximum p2 chosen for

the fit. Thus, we can choose p ∈ ½2.4; 7� GeV as the fit

range for later calculations. To summarize, we use the

quadratic fits with p ranges [1.5, 6], [2, 6.5], and

[2.4, 7] GeV for each Lc to extract the renormalization

constants. The renormalization constants ðZMS
Og

Þ
−1

for the

three ensembles are listed in Table III. Using Eq. (9), we

obtain the renormalized gluon momentum fraction hxiMS
g

results on four ensembles for both light and strange

nucleons, listed in Table III.

IV. RESULTS AND DISCUSSION

Combining the results from Secs. II and III, we obtain

renormalized gluon momentum fractions hxiMS
g at three

lattice spacings and three pion masses as shown in Fig. 7.

The points in Fig. 7 have two kinds of error bars; the darker

smaller bars include only the statistical error for the gluon

momentum fraction, while the lighter larger bars include

both the statistical errors and the errors from the gluon NPR

factor. Our renormalized hxiMS
g shows weak pion-mass and

lattice-spacing dependence. Therefore, we use a simple

quadratic ansatz for Mπ and a in the physical-continuum

extrapolation to the physical pion mass M
phys
π ¼ 135 MeV

and continuum limit a ¼ 0,

FIG. 6. The renormalization constants ðZMS
Og

Þ
−1
ðμ2¼4GeV2;p2Þ

as a function of p2 for the a09m310 Lc ¼ 16, a12m310 Lc ¼ 12,

and a15m310 Lc ¼ 8 with various fit momentum ranges are

shown from top to bottom, respectively. The lower limits of the fit

range of the momentum are chosen to be the same as in Ref. [42].
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hxiMS
g ðMπ; aÞ ¼ hxiMS;cont

g þ kMðM
2
π − ðMphys

π Þ2Þ þ kaa
2:

ð17Þ

In the fits depending on Mπ and a, both the statistical errors

and the NPR errors are considered. With the a15m310,

a12m310, and a09m310 ensembles, since we have the same

number of measurements for both strange and light quarks,

within each ensemble, we bootstrap the light and strange

renormalized matrix elements in the same way to keep the

correlations. Across different ensembles, the data are inde-

pendent. The physical-continuum limit gluon momentum

fraction hxiMS;cont
g fit result is 0.502(53). The fitted parameters

kM ¼ −8.1ð5.2Þ × 10−5 GeV−2 and ka ¼ −0.034ð31Þfm−2

are very small, consistent with zero within two sigma.

The reconstructed fit bands at selected Mπ ∈

f135; 310; 690g MeV as functions of a are shown in the

left plot of Fig. 7. There is a slight trend toward higher gluon

momentum fractions as one approaches the physical pion

mass. TheMπ ¼ 690 MeV band deviates from the other two

bands, while the Mπ ¼ 135 and 310 MeV bands almost

coincide. One can also see that the fit form well describes the

data since these bands go through the Mπ ¼ 220- and

310-MeV data points. On the right-hand side of Fig. 7, we

show reconstructed results at a ∈ f0; 0.09; 0.12; 0.15g fm as

functions ofMπ . Each color band representingdifferent lattice

spacings agrees well with the same-color data points. The

central values of continuum extrapolation favor higher gluon

momentum fractions but remain within one sigma of the

bands from all three lattice spacings.

So far, we have been missing a systematic error

associated with the mixing from the quark sector. The

bare operator in Eq. (4) can mix with the singlet quark

operators Obare
q and couple with the renormalized gluon

operator via Og ¼ ZggO
bare
g þ Zgq

P

i¼u;d;sO
bare
q;i . The mix-

ing for quark operators is expected to be small, based on

past lattice works. The ETM Collaboration [21,22,25] used

one-loop perturbative renormalization and estimated the

mixing coefficients to be a fraction of their statistical errors.

The effect of the mixing of the quark operator into the

gluon operator is about 2%–10%, as shown in Ref. [21].

An MIT group also ignored the quark mixing because

it is assumed to be smaller than the statistical uncertain-

ties [23]. We conservatively estimate a 10% systematic

error from quark mixing for this calculation; thus, our final

hxiMS;cont
g at physical pion mass and continuum limit

is 0.502ð53ÞstatþNPRð50Þmixing.

We compare our results with prior dynamical lattice

work and global fits. As shown in Table I, the majority of

nucleon gluon momentum fractions hxig from lattice

dynamical calculations were done using a single lattice

spacing. These results range from 0.4 to 0.55 for the most

recent calculations (except the ETMC16 and ETMC17

results) and have statistical errors varying from 5%–20%.

The χQCD Collaboration studied the systematic errors

from continuum extrapolation and assigned it a 10%

relative error in Ref. [26] and a 5% relative error in their

most recent paper [27]. Overall, we find good consistency

with lattice determinations from the last four years. We

summarize the dynamical lattice-QCD results extrapolated

to or directly calculated at physical pion mass, along with

the global-fit results since 2014, in Fig. 8. The lattice results

currently are much larger than with those from global fits,

with central values closer to 0.5, rather than around 0.4,

where global fits prefer. Higher-precision lattice

FIG. 7. The renormalized gluon momentum fraction hxiMS
g obtained from each ensemble along with the physical-continuum

extrapolation as functions of lattice spacing a (left) and pion massM2
π (right). Each data point in the plot has two errors: the darker inner

bar indicates the statistical error, while the lighter outer bar includes combined errors from both the statistical and renormalization error.

The vertical dashed line in the right plot goes through M2
π ¼ ð0.135 GeVÞ2, and the different color points near this line represent the

extrapolated values at different lattice spacings a at physical pion mass. To increase visibility, we plot theMπ ∈ f220; 310g-MeV points

shifted by þ0.001 fm in the left plot. The reconstructed fit bands at selected Mπ ∈ f135; 310; 690g MeV as functions of a and at

selected a ∈ f0; 0.09; 0.12; 0.15g fm as functions of Mπ are also shown in the left- and right-side plots, respectively.
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calculations are needed with order-of-magnitude increases

in computational resources to reduce the errors to be

comparable with those from global fits (using more than

60 years of experimental data).

V. CONCLUSION AND OUTLOOK

We present the first Nf ¼ 2þ 1þ 1 continuum-limit

lattice calculation of the gluon momentum fraction. We use

high-statistics nucleon two-point correlators ranging from

0.26–1.5 million measurements with three lattice spacings

and the lightest pion mass being 220 MeV. We apply a two-

state fit to multiple source-sink separations to extract

ground-state matrix elements. We nonperturbatively calcu-

late renormalization factors for these operators in the RI/

MOM scheme, following the traditional NPR approach.

For the ensembles at pion mass 310 MeV, even though the

spatial volumes are roughly the same among our three

lattice spacings, the finest lattice spacing, a ≈ 0.09 fm,

yields much noisier results. To improve this, we apply

cluster-decomposition error reduction (CDER). The renor-

malized gluon momentum fractions show mild lattice-

spacing and pion-mass dependence (within our statistical

and NPR errors); thus, we use a simple ansatz to extra-

polate to the physical-continuum limit. Our final gluon

momentum fraction is 0.502ð53ÞstatþNPRð50Þmixing, where

the mixing systematic is estimated from upper bounds

determined in previous lattice work. Our lattice results are

consistent with lattice work from the last four years using

single lattice spacings and Nf ¼ 2þ 1 mixed action, and

they are consistent with those from global fits within two

sigma. Future calculations will include ensembles at the

physical pion mass and lattice calculations of the quark

moments.
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