
                                                                                     IEEE CICC 2023                                                                   

 

iMCU: A 102-µJ, 61-ms Digital In-Memory Computing-
based Microcontroller Unit for Edge TinyML  

Chuan-Tung Lin, Paul Xuanyuanliang Huang, Jonghyun Oh,  

Dewei Wang, Mingoo Seok 

Columbia University 

TinyML envisions performing a deep neural network (DNN)-based 
inference on an edge device, which makes it paramount to create a 
neural microcontroller unit (MCU). Toward this vision, some of the 
recent MCUs integrated in-memory computing (IMC) based 
accelerators [1-3]. However, they employ analog-mixed-signal 
(AMS) versions, exhibiting limited robustness over process, voltage, 
and temperature (PVT) variations [1-2]. They also employ a large 
amount of IMC hardware, which increases silicon area and cost. 
Also, they do not support a practical software dev framework [1-3] 
such as TensorFlow Lite for Microcontrollers (TFLite-micro) [5]. 
Because of this, those MCUs did not present the performance for the 
standard benchmark MLPerf-Tiny [6], which makes it difficult to 
evaluate them against the state-of-the-art neural MCUs. In this 
paper, we present iMCU, the IMC-based MCU in 28nm, which 
outperforms the current best neural MCU (SiLab’s xG24-DK2601B 
[6]) by 88X in energy-delay product (EDP) while performing MLPerf-
Tiny. Also, iMCU integrates a digital version of IMC hardware for 
maximal robustness. We also optimize the acceleration targets and 
the computation flow to employ the least amount of IMC hardware 
yet still enable significant acceleration. Hence, iMCU’s total area is 
only 2.03 mm2 while integrating 433KB SRAM and 32KB IMC SRAM.   

Fig. 1 left illustrates the overall organization of iMCU, which consists 
of i) a 32b RISC-V CPU core (the host processor), ii) a digital IMC 
accelerator that contains the IMC cluster, iii) instruction memory 
(IMEM), iv) the main data memory (DMEM), v) direct memory access 
(DMA), vi) a universal asynchronous receiver-transmitter (UART), 
vii) a general-purpose IO (GPIO), and viii) a 32b ARM AHB/APB bus.  

Fig. 1 right shows the matching software dev framework for iMCU, 
which is based on TFLite-micro. It starts with the training of an 8-b 
DNN model via TensorFlow, which produces a TF file. Then, we 
convert the TF file into the TFLite file by fusing a batch norm layer 
into a convolution layer. This helps to avoid adding explicit hardware 
support for batch-norm-related computation. The next step is to 
convert the TFLite file to the C header file model.cc. Then, finally, we 
compile the header file with the input data file (input.cc) and the 
TFLite-micro library file. The compilation produces the instruction 
and data hexadecimal files, which we store in IMEM and DMEM, 
respectively. Using the framework, we develop the software for the 
following DNN models, tiny-conv, tiny-embedding-conv (from [5]), 
and ResNetv1 (from [6]) (Fig. 2 top left).  

We start our iMCU design by determining which layers are worth 
accelerating. The accelerator supports only those layers to reduce 
the area overhead. We profile the complexity of each layer using 
SPIKE [7]. The convolution layer is the most dominant, followed by 
the addition layer (Fig. 2 top right). If we accelerate convolution 
layers by 500X, we estimate the total cycle count will be reduced by 
119X. If we also accelerate the addition layers, we can gain an 
additional 3.6X speed-up (total 434X) (Fig.  2 bottom left). All the 
other layers (pooling, fully connected, softmax) are not worth 
accelerating since it provides only a negligible cycle count reduction.  

We then devise the computation flow (sequence) that requires the 
least amount of IMC hardware yet still provides a significant 
acceleration. Existing works employ arbitrarily large amounts of IMC 
hardware to store more than one (sometimes all) layers of weight 
data of a DNN model before starting computation [1-3]. Such 
architecture, however, severely increases area overhead. We devise 
an alternative computation flow where the main data memory 
(DMEM), implemented in dense foundry 6T bitcells, stores all the 
weights, and the IMC hardware buffers the weight data of only one 
layer right before the accelerator computes on the layer. While the 
proposed flow increases data movement cost between the main 
memory and the IMC accelerator, we found that the area savings 
largely outweigh: the IMC hardware’s area reduces by 5X while the 
cycle count increases by only 23% (Fig. 2 bottom right). This is 
because we perform 100-10,000 VMMs for each layer and thereby 
amortizing the data movement cost over many VMMs.  

Fig. 3 left shows the proposed flow for an 
end-to-end inference. The host starts the 
program, and as it reaches a convolution 
(or an addition) layer, it configures DMA to 
transfer the weight data of that layer from 
DMEM to the IMC cluster; and only for the 
input layer, DMA transfers the input data 
from DMEM to the scratchpad. Then, the 
host configures layer-related parameters 
such as dimensions of input, filter, and 
output, stride and padding sizes, input and 
output offsets, and the starting addresses 
of the input, weight, output data accesses, 
etc. Also, the host configures which digital IMC macros to use and 
clock-gate unused macros. Then, the accelerator starts to compute 
on the layer, which involves many iterations of three sub-tasks, 
namely input vector preparation, IMC operation, and output 
quantization. Finally, it stores the output of the layer in the scratchpad 
and then interrupts the host. The host resumes the program.  

Based on the computation flow, we determine the sizes of the 
memory blocks and create the memory map (Fig. 4 bottom right). 
Again, the IMC accelerator requires to buffer only one layer at a time. 
Therefore, we can set the IMC size to 32KB, roughly matched to the 
largest layer of the target models. Also, the largest model has a total 
of 179KB of weight data. Thus, we set the main data memory 
(DMEM) size to 256KB. We also want the scratch pad in the 
accelerator to fully buffer the output of one layer such that it can use 
it as the input of the next layer. Therefore, we set the scratchpad size 
to 48KB, matched to the largest output data size. Also, we set the 
IMEM to 128KB to store the largest program. (Fig. 3 right).  

We design the fully-pipelined IMC accelerator (Fig. 4 top). It has 
three stages, and each stage takes the same 64 cycles. The first 
stage (INVEC) prepares input vectors and feeds them to the next 
stage (IMC). It employs two 512B buffers operating in a ping-pong 
fashion to hide the latency. The second stage (IMC) performs VMM 
using the 4×4 IMC macro cluster. The cluster can complete one 
multiplication between an 8b 512d vector and an 8b 64×512d matrix 
in 64 cycles. The last stage (QUAN) performs the quantization. The 
IMC stage’s result can have up to 25 bits, but we need to quantize to 
8b before storing them in the scratchpad. Simply removing the LSBs 
is not optimal for inference accuracy. Instead, we support the 
quantization scheme of TFLite-micro [5], where the quantized value 
q is defined as Q=2n∙M0∙(r+Z), where n, M0, Z are offline-computed 
hyper-parameters and r is the IMC stage’s result. QUAN needs to 
quantize only one 64d vector in 64 cycles. Therefore, it employs only 
one 2-input 32b adder, one 2-input 64b multiplier, and one 32b 
shifter. Finally, the accelerator can still support a layer that is larger 
than the IMC cluster. It can produce partial sums with partial weight 
data and combine them to produce the final result.  

We designed a digital IMC macro to maximize the robustness while 
trying to reduce the area overhead of digital circuits (Fig. 4 bottom 
left). To do so, we adopt and improve a time-sharing architecture [4], 
where the macro employs 128×128 compact 6T bitcells. Every eight 
bitcells time-share one multiplier, and every 128×8 bitcells time-
share a set of compressors and an adder tree, which results in an 
excellent weight density of ~126 KB/mm2. The macro achieves the 
excellent compute density of 1.25 TOPS/mm2 at 1V and an energy 
efficiency of 40.16 TOPS/W at 0.6V with a 25% input toggle rate. 

We prototyped iMCU in a 28nm. To evaluate against the state-of-the-
art neural MCUs, we have iMCU to execute the standard benchmark, 
ResNetv1, from MLPerf-Tiny [6]. It takes 60.9 ms and consumes 
102.18 µJ per inference (Fig. 5 top left). This marks 88X EDP 
improvement (22X in E and 3.94X in D) over the best neural MCU 
(SiLab’s xG24-DK2601B [6]). Fig. 5 bottom shows the area, energy, 
and delay breakdown. iMCU is fully-digital hardware and always 
produces the correct computation results across PVT variations. The 
proposed optimizations reduce the silicon area of iMCU down to 2.73 
mm2. The on-chip 432KB foundry SRAM takes 0.678 mm2 and the 
32KB IMC SRAM takes 0.254 mm2 (Fig. 7).        

Acknowledgement: This work is supported by NSF (PFI-
RP1919147). The authors gratefully thank Manho Kim and Prof. 
Hyuk-jae Lee for their valuable support and discussions. 

Digital IMC accelerator

RISC-V 

CPU

DMEM

IMEM

1.545 mm
1.76

4 m
m

 

Fig. 7. Die micrograph. 

979-8-3503-9948-6/23/$31.00 ©2023 IEEE

2
0
2
3
 I

E
E

E
 C

u
st

o
m

 I
n
te

g
ra

te
d
 C

ir
cu

it
s 

C
o
n
fe

re
n
ce

 (
C

IC
C

) 
| 9

7
9
-8

-3
5
0
3
-9

9
4
8
-6

/2
3
/$

3
1
.0

0
 ©

2
0
2
3
 I

E
E

E
 | 

D
O

I:
 1

0
.1

1
0
9
/C

IC
C

5
7
9
3
5
.2

0
2
3
.1

0
1
2
1
2
2
1

Authorized licensed use limited to: Sogang University Loyola Library. Downloaded on July 28,2023 at 00:25:56 UTC from IEEE Xplore.  Restrictions apply. 



                                                                                       IEEE CICC 2023                                                                                   

 

References: [1] Jia et al., JSSC, 2020. [2] Chang et al., ISSCC, 
2022. [3] Wang et al., ISSCC, 2019. [4] B. Yan et al., ISSCC, 2022. 

[5] R. David et al., arXiv:2010.08678. [6] C. Banbury et al., 
arXiv:2106.07597. [7] Spike RISC-V ISA Simulator (link)

DMEM

256 KB

DMA

IMEM

128 KB

GPIOUART

RISC-V

CPU

(host) 

Debug

ARM AHB bus

Digital IMC accelerator

Scratch 

pad

48 KB

Input 

buffer

Adder 

tree

Config

tx rx
8

ARM APB bus

Weight 

buffer

clk

...

IMC 

cluster

32 KB 
Clock

generator

32

32

Quantization aware 

training: 

TensorFlow/Keras

TFLite model 

converter

Convert to a C array

RISC-V g++ compile

Deploy to iMCU

TFLite-micro 

C++ lib
input.cc

model.cc

TFLite file

TF file

binary file

Training 

data

NN 

algorithm

 

 

Fig. 1. Proposed iMCU chip architecture. The proposed software 
development framework for iMCU. 

16
C

3

B
at

ch
N

or
m

R
el

u

1
6C

3

B
at

ch
n

or
m

32
C

3

B
at

ch
N

or
m

6
4C

3S
2

B
at

ch
N

or
m

R
el

u

6
4C

3

B
at

ch
N

or
m

A
dd

R
el

u

1
6C

3

B
at

ch
N

or
m

R
el

u

3
2C

3S
2

B
at

ch
N

or
m

R
el

u

A
dd

R
el

u

A
dd

R
el

u

F
C

10

A
P

8

3
2C

1S
2

64
C

1S
2

S
o

ft
m

ax

8C
10

x8

R
e

lu

F
C

4

S
o

ft
m

ax

8C
10

x8

R
e

lu

F
C

4

S
o

ft
m

ax

8C
10

x8

R
e

lu

Softmax: 0.2%

Fully-connected: 1.33%

tiny-conv

Convolution

98.46%

Softmax: 0.01%

Fully-connected: 0.01%

Average pooling: 0.02%

Addition: 0.61%

ResNetv1

Convolution

99.36%

0 50 100 150 200
0

40k

80k

120k

160k

200k

23% increase

5X reduction

Weight size of 

the largest layer  

L
a

te
n

c
y

 (
c

y
c

le
s
)

IMC size (KB)

Weight size of 

the entire model

ResNetv1 

tiny-embedding-conv tiny-conv

100k

1M

10M

100M

Accelerate 

convolution

and add

Accelerate 

convolution

 
Baseline

C
y

c
le

s

 Convolution

 Add

 Others

434X

119X

  16C3: 16 features 3x3 
convolution

  AP8: 8x8 average pooling

  FC10: 10 fully-connected

 
Fig. 2. Neural network models: ResNetv1, tiny-embedding-conv, 
and tiny-conv. Workload profiling results using SPIKE. The latency 
improvement estimation. The proposed computation flow enables 
5X area reduction at the 23% latency penalty. 

Interrupt 

Cycle 

100~10,000

Cycle 1

Cycle 0

Configure the IMC 

accelerator to perform 

the convolution layer

Continue executing 

remaining layers

256 KB 

DMEM

48KB IMC accelerator 

scratch pad

IMC accelerator 

config registers 

128 KB 

IMEM

DMA

32KB IMC cluster

RISC-V CPUDMA IMC accelerator

Configure DMA to 

transfer activation/weight

Transfer the data 

from DMEM to the 

IMC accelerator

Interrupt

0x0012_0000

0x0020_0000

0x0020_C000

0x0021_8000

0x0020_807F

0x0010_0000

0x0018_0000

0x001C_0000

0x0030_0000

0x0040_0000

0x0050_0000

GPIO

0x0060_0000
UART

Address

0x0023_FFFF

0x0023_8000

Start the program and

run until a 

convolution layer

INVEC IMC QUAN

T
im

e

Space

 
 

Fig. 3. The proposed computation flow and the memory map of 
iMCU. 

 
Fig. 4. IMC accelerator microarchitecture. A 128x128 digital IMC 
macro. Based on the proposed computation flow, we set the sizes 
of the IMC macro cluster, the in-accelerator scratch pad, and the 
DMEM to support the target workloads. 

1.11%

11.75%

6.94%

4.35%58.46%

17.39%

 RISC-V CPU and bus

 Digital IMC accelerator

 DMA

 IMEM

 DMEM

 UART and GPIO

Energy breakdownArea breakdown

0.9%

23.43%

11.51%

1.69%
56.71%

5.76%

 RISC-V CPU and bus

 Digital IMC accelerator

 DMA

 IMEM

 DMEM

 UART and GPIO

0.6 0.7 0.8 0.9 1.0
0

20

40

60

80

100

120

140

 End-to-end latency

 Energy consumption

VDD (V)

E
n

d
-t

o
-e

n
d

 l
a
te

n
c
y
 (

m
s
)

0

50

100

150

200

250

300
Measurement

 E
n

e
rg

y
 c

o
n

s
u

m
p

ti
o

n
 (

u
J
)

0.6 0.7 0.8 0.9 1.0

4

6

8

10

 Energy efficiency

 Throughput

VDD (V)A
c
c
e

le
ra

to
r 

e
n

e
rg

y
 e

ff
ic

ie
n

c
y
 (

T
O

P
S

/W
)

0

50

100

150

200

250

300

350

400Measurement

A
c

c
e

le
ra

to
r 

th
ro

u
g

h
p

u
t 

(G
O

P
S

)

Latency breakdown

13.22%

2.61%

84.16%

 Convolution

 Addition

 Pooling + fully-connected + softmax

 
Fig. 5. Measurement results. Latency and energy consumption of 
iMCU over supply voltages. Energy efficiency and throughput of 
the IMC accelerator over supply voltages. Latency, area and 
energy consumption breakdowns. 

Technology [nm] 28 65 28

Accelerator Digital IMC Analog IMC

IMEM size 128KB 128KB

IMC size 32KB 73.75KB 96KB

In-accelerator scratch pad size 48KB 0KB

Supply voltage [V] 0.6-1 0.85-1.2 0.6-1.1

Activation precision [bit] 8 1-8 1-32

Weight precision [bit] 8 1-8

Operating frequency [MHz]
6-35 (host)

29-310 (accelerator)
40-100 114-475

Accelerator throughput [TOPS] 0.0341 (1.2V,8b,8b)2) 

ISSCC19 [3]This work JSSC20 [1]

0.0327 (1.1V,8b,8b)

RX65N-Cloud-Kit

Renesas [6]

Digital IMC

16KB

1-32

0KB

n/a

n/a

2MB5)

n/a

n/a

n/a

32

32

120

n/a

Macro compute density 

[TOPS/mm2]
1.25 (1V,8b,8b) 0.0094 (1.2V,8b,8b)2) 0.0287 (1.1V,8b,8b)n/a

A
rc

h
it

ec
tu

ra
l f

ea
tu

re
s

Host processor RISC-V 32b RISC-V 32b Cortex-M0 32bRenesas RXv2 32b

H
a

rd
w

a
re

 p
e

rf
o

rm
an

ce

Latency [ms] 60.9 n/a n/a

Energy consumption 

[uJ]
102.18 n/a n/a

289.35

14350.89

MLPerf-tiny:

ResNetv1

on CIFAR104) 

DMEM size 256KB 128KB 16KB640KB

40.16 (0.6V,8b,8b)1) 0.56-5.27 (0.6V,8b,8b)
Macro energy  efficiency 

[TOPS/W]
6.25 (0.85V,8b,8b)2) n/a

xG24-DK2601B

Silicon Labs [6]

n/a

Digital accelerator

1.5MB5)

n/a

n/a

n/a

8

8

40-78

n/a

n/a

Cortex-M33 32b

239.98

2248.02

256KB

n/a

NUCLEO-H7A3ZI-Q

STMicroelectronics [6]

n/a

n/a

2.06MB5)

n/a

n/a

0.74-1.3

32

32

280

n/a

n/a

Cortex-M7 32b

158.13

4151.13

1.4MB

n/a

Cannot performCan perform the standard CNN benchmark

1) Simulated.    2) Normalized to 8b weights and 8b activations.    3) n/a: not available.    4) The top-1 accuracy of all systems are above 85%, meeting the quality target in the benchmark suite.

5) Mostly implemented in embedded flash memory.

0.301 (1V,8b,8b)
Accelerator compute density 

[TOPS/mm2]

Accelerator energy  efficiency 

[TOPS/W]
8.86 (0.6V,8b,8b) n/an/a n/a

n/an/a n/a 0.0094 (1.2V,8b,8b)2) 0.0287 (1.1V,8b,8b)

0.318 (1V,8b,8b)

6.25 (0.85V,8b,8b)2) 0.56-5.27 (0.6V,8b,8b)

Total area [mm2] 2.03 8.56 1.85n/an/a n/a

SRAM density [KB/mm2]

(Total SRAM size/total SRAM area) 
497.42 71.28 104.49n/an/a n/a

IMC density [KB/mm2]

(IMC size/IMC area)
125.8 25.2 104.5n/an/a n/a

Total SRAM size 464KB 329.75KB 128KB640KB256KB 1.4MB

Total SRAM area [mm2] 0.933 4.626 1.225n/an/a n/a

 
Fig. 6. Comparison table. 

 

Adder 

tree

23

...

L
at

ch
 6

4x
2

5b

25

25

25

25

0

63

shifter

In
p

u
t 

p
in

g
-p

o
n

g
 b

u
ff

er
 

2x
51

2B

Bank 

0

Weight buffer (128b)

64

IMC 
macro

0

IMC
macro

1

IMC
macro

2

IMC
macro

3

IMC
macro

4

IMC
macro

7

IMC
macro

6

IMC
macro

5

IMC
macro

8

IMC
macro

9

IMC
macro

10

IMC
macro

11

IMC
macro

12

IMC
macro

15

IMC
macro

14

IMC
macro

13

IMC cluster 512b x 512b

Bank 

1

Bank 

2

INVEC IMC QUAN

32

Bias 

memory

64 x 32b

32

128

32 64

8

Shift 

memory

64 x 32b

Multiplier memory

64 x 32b

32

32

23

...

23

...

...

1

10

100

1000

R
e
s
N

e
tv

1

ti
n

y
-c

o
n

v

IM
C

 s
iz

e
 (

K
B

)

ti
n

y

-e
m

b
e
d

-c
o

n
v

iMCU design point

1

10

100

1000

R
e
s
N

e
tv

1

ti
n

y
-c

o
n

v

S
c
ra

tc
h

 p
a

d
 s

iz
e

 (
K

B
)

ti
n

y

-e
m

b
e
d

-c
o

n
v

iMCU design point

1

10

100

1000

R
e
s
N

e
tv

1

ti
n

y
-c

o
n

v

D
M

E
M

 s
iz

e
 (

K
B

)

ti
n

y

-e
m

b
e
d

-c
o

n
v

iMCU design point

T
o 

th
e 

sc
ra

tc
h

 p
a

dScratch pad (48KB)

23

F
ro

m
 t

h
e 

A
H

B
 b

u
s

BL BLB

Shift-accumulator

16
 x

 2
3b

InVec

WtVec

6T 

6T 

6T 

Module 0

Module 15

MWL[0]

WL[0]

MWL[1]

WL[1]

W
L

 d
ri

ve
r 

&
 in

p
ut

 c
o

n
tr

o
lle

r

MWL[7]

WL[7]

Read/write controller

6T 

6T 

6T 

Module 112

A
d

de
r 

tr
ee

 &
 c

om
p

re
ss

o
r

Module 127

M
o

du
le

 1
28

~2
04

7

A
d

de
r 

tr
ee

s 
&

 c
om

p
re

ss
o

rs

M
u

lti
pl

ie
r

M
u

lti
pl

ie
r

MWL
[127:112]

WL
[127:112]

Authorized licensed use limited to: Sogang University Loyola Library. Downloaded on July 28,2023 at 00:25:56 UTC from IEEE Xplore.  Restrictions apply. 


