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TinyML envisions performing a deep neural network (DNN)-based 
inference on an edge device, which makes it paramount to create a 
neural microcontroller unit (MCU). Toward this vision, some of the 
recent MCUs integrated in-memory computing (IMC) based 
accelerators [1-3]. However, they employ analog-mixed-signal 
(AMS) versions, exhibiting limited robustness over process, voltage, 
and temperature (PVT) variations [1-2]. They also employ a large 
amount of IMC hardware, which increases silicon area and cost. 
Also, they do not support a practical software dev framework [1-3] 
such as TensorFlow Lite for Microcontrollers (TFLite-micro) [5]. 
Because of this, those MCUs did not present the performance for the 
standard benchmark MLPerf-Tiny [6], which makes it difficult to 
evaluate them against the state-of-the-art neural MCUs. In this 
paper, we present iMCU, the IMC-based MCU in 28nm, which 
outperforms the current best neural MCU (SiLab’s xG24-DK2601B 
[6]) by 88X in energy-delay product (EDP) while performing MLPerf-
Tiny. Also, iMCU integrates a digital version of IMC hardware for 
maximal robustness. We also optimize the acceleration targets and 
the computation flow to employ the least amount of IMC hardware 
yet still enable significant acceleration. Hence, iMCU’s total area is 
only 2.03 mm2 while integrating 433KB SRAM and 32KB IMC SRAM.   

Fig. 1 left illustrates the overall organization of iMCU, which consists 
of i) a 32b RISC-V CPU core (the host processor), ii) a digital IMC 
accelerator that contains the IMC cluster, iii) instruction memory 
(IMEM), iv) the main data memory (DMEM), v) direct memory access 
(DMA), vi) a universal asynchronous receiver-transmitter (UART), 
vii) a general-purpose IO (GPIO), and viii) a 32b ARM AHB/APB bus.  

Fig. 1 right shows the matching software dev framework for iMCU, 
which is based on TFLite-micro. It starts with the training of an 8-b 
DNN model via TensorFlow, which produces a TF file. Then, we 
convert the TF file into the TFLite file by fusing a batch norm layer 
into a convolution layer. This helps to avoid adding explicit hardware 
support for batch-norm-related computation. The next step is to 
convert the TFLite file to the C header file model.cc. Then, finally, we 
compile the header file with the input data file (input.cc) and the 
TFLite-micro library file. The compilation produces the instruction 
and data hexadecimal files, which we store in IMEM and DMEM, 
respectively. Using the framework, we develop the software for the 
following DNN models, tiny-conv, tiny-embedding-conv (from [5]), 
and ResNetv1 (from [6]) (Fig. 2 top left).  

We start our iMCU design by determining which layers are worth 
accelerating. The accelerator supports only those layers to reduce 
the area overhead. We profile the complexity of each layer using 
SPIKE [7]. The convolution layer is the most dominant, followed by 
the addition layer (Fig. 2 top right). If we accelerate convolution 
layers by 500X, we estimate the total cycle count will be reduced by 
119X. If we also accelerate the addition layers, we can gain an 
additional 3.6X speed-up (total 434X) (Fig.  2 bottom left). All the 
other layers (pooling, fully connected, softmax) are not worth 
accelerating since it provides only a negligible cycle count reduction.  

We then devise the computation flow (sequence) that requires the 
least amount of IMC hardware yet still provides a significant 
acceleration. Existing works employ arbitrarily large amounts of IMC 
hardware to store more than one (sometimes all) layers of weight 
data of a DNN model before starting computation [1-3]. Such 
architecture, however, severely increases area overhead. We devise 
an alternative computation flow where the main data memory 
(DMEM), implemented in dense foundry 6T bitcells, stores all the 
weights, and the IMC hardware buffers the weight data of only one 
layer right before the accelerator computes on the layer. While the 
proposed flow increases data movement cost between the main 
memory and the IMC accelerator, we found that the area savings 
largely outweigh: the IMC hardware’s area reduces by 5X while the 
cycle count increases by only 23% (Fig. 2 bottom right). This is 
because we perform 100-10,000 VMMs for each layer and thereby 
amortizing the data movement cost over many VMMs.  

Fig. 3 left shows the proposed flow for an 
end-to-end inference. The host starts the 
program, and as it reaches a convolution 
(or an addition) layer, it configures DMA to 
transfer the weight data of that layer from 
DMEM to the IMC cluster; and only for the 
input layer, DMA transfers the input data 
from DMEM to the scratchpad. Then, the 
host configures layer-related parameters 
such as dimensions of input, filter, and 
output, stride and padding sizes, input and 
output offsets, and the starting addresses 
of the input, weight, output data accesses, 
etc. Also, the host configures which digital IMC macros to use and 
clock-gate unused macros. Then, the accelerator starts to compute 
on the layer, which involves many iterations of three sub-tasks, 
namely input vector preparation, IMC operation, and output 
quantization. Finally, it stores the output of the layer in the scratchpad 
and then interrupts the host. The host resumes the program.  

Based on the computation flow, we determine the sizes of the 
memory blocks and create the memory map (Fig. 4 bottom right). 
Again, the IMC accelerator requires to buffer only one layer at a time. 
Therefore, we can set the IMC size to 32KB, roughly matched to the 
largest layer of the target models. Also, the largest model has a total 
of 179KB of weight data. Thus, we set the main data memory 
(DMEM) size to 256KB. We also want the scratch pad in the 
accelerator to fully buffer the output of one layer such that it can use 
it as the input of the next layer. Therefore, we set the scratchpad size 
to 48KB, matched to the largest output data size. Also, we set the 
IMEM to 128KB to store the largest program. (Fig. 3 right).  

We design the fully-pipelined IMC accelerator (Fig. 4 top). It has 
three stages, and each stage takes the same 64 cycles. The first 
stage (INVEC) prepares input vectors and feeds them to the next 
stage (IMC). It employs two 512B buffers operating in a ping-pong 
fashion to hide the latency. The second stage (IMC) performs VMM 
using the 4×4 IMC macro cluster. The cluster can complete one 
multiplication between an 8b 512d vector and an 8b 64×512d matrix 
in 64 cycles. The last stage (QUAN) performs the quantization. The 
IMC stage’s result can have up to 25 bits, but we need to quantize to 
8b before storing them in the scratchpad. Simply removing the LSBs 
is not optimal for inference accuracy. Instead, we support the 
quantization scheme of TFLite-micro [5], where the quantized value 
q is defined as Q=2n∙M0∙(r+Z), where n, M0, Z are offline-computed 
hyper-parameters and r is the IMC stage’s result. QUAN needs to 
quantize only one 64d vector in 64 cycles. Therefore, it employs only 
one 2-input 32b adder, one 2-input 64b multiplier, and one 32b 
shifter. Finally, the accelerator can still support a layer that is larger 
than the IMC cluster. It can produce partial sums with partial weight 
data and combine them to produce the final result.  

We designed a digital IMC macro to maximize the robustness while 
trying to reduce the area overhead of digital circuits (Fig. 4 bottom 
left). To do so, we adopt and improve a time-sharing architecture [4], 
where the macro employs 128×128 compact 6T bitcells. Every eight 
bitcells time-share one multiplier, and every 128×8 bitcells time-
share a set of compressors and an adder tree, which results in an 
excellent weight density of ~126 KB/mm2. The macro achieves the 
excellent compute density of 1.25 TOPS/mm2 at 1V and an energy 
efficiency of 40.16 TOPS/W at 0.6V with a 25% input toggle rate. 

We prototyped iMCU in a 28nm. To evaluate against the state-of-the-
art neural MCUs, we have iMCU to execute the standard benchmark, 
ResNetv1, from MLPerf-Tiny [6]. It takes 60.9 ms and consumes 
102.18 µJ per inference (Fig. 5 top left). This marks 88X EDP 
improvement (22X in E and 3.94X in D) over the best neural MCU 
(SiLab’s xG24-DK2601B [6]). Fig. 5 bottom shows the area, energy, 
and delay breakdown. iMCU is fully-digital hardware and always 
produces the correct computation results across PVT variations. The 
proposed optimizations reduce the silicon area of iMCU down to 2.73 
mm2. The on-chip 432KB foundry SRAM takes 0.678 mm2 and the 
32KB IMC SRAM takes 0.254 mm2 (Fig. 7).        
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Fig. 7. Die micrograph. 
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Fig. 1. Proposed iMCU chip architecture. The proposed software 
development framework for iMCU. 
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Fig. 2. Neural network models: ResNetv1, tiny-embedding-conv, 
and tiny-conv. Workload profiling results using SPIKE. The latency 
improvement estimation. The proposed computation flow enables 
5X area reduction at the 23% latency penalty. 
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Fig. 3. The proposed computation flow and the memory map of 
iMCU. 

 
Fig. 4. IMC accelerator microarchitecture. A 128x128 digital IMC 
macro. Based on the proposed computation flow, we set the sizes 
of the IMC macro cluster, the in-accelerator scratch pad, and the 
DMEM to support the target workloads. 
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Fig. 5. Measurement results. Latency and energy consumption of 
iMCU over supply voltages. Energy efficiency and throughput of 
the IMC accelerator over supply voltages. Latency, area and 
energy consumption breakdowns. 
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Fig. 6. Comparison table. 
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