2023 IEEE Custom Integrated Circuits Conference (CICC) | 979-8-3503-9948-6/23/$31.00 ©2023 IEEE | DOI: 10.1109/CICC57935.2023.10121221

IEEE CICC 2023

iMCU: A 102-pJ, 61-ms Digital In-Memory Computing-
based Microcontroller Unit for Edge TinyML

Chuan-Tung Lin, Paul Xuanyuanliang Huang, Jonghyun Oh,
Dewei Wang, Mingoo Seok

Columbia University

TinyML envisions performing a deep neural network (DNN)-based
inference on an edge device, which makes it paramount to create a
neural microcontroller unit (MCU). Toward this vision, some of the
recent MCUs integrated in-memory computing (IMC) based
accelerators [1-3]. However, they employ analog-mixed-signal
(AMS) versions, exhibiting limited robustness over process, voltage,
and temperature (PVT) variations [1-2]. They also employ a large
amount of IMC hardware, which increases silicon area and cost.
Also, they do not support a practical software dev framework [1-3]
such as TensorFlow Lite for Microcontrollers (TFLite-micro) [5].
Because of this, those MCUs did not present the performance for the
standard benchmark MLPerf-Tiny [6], which makes it difficult to
evaluate them against the state-of-the-art neural MCUs. In this
paper, we present iMCU, the IMC-based MCU in 28nm, which
outperforms the current best neural MCU (SiLab’s xG24-DK2601B
[6]) by 88X in energy-delay product (EDP) while performing MLPerf-
Tiny. Also, iMCU integrates a digital version of IMC hardware for
maximal robustness. We also optimize the acceleration targets and
the computation flow to employ the least amount of IMC hardware
yet still enable significant acceleration. Hence, iMCU'’s total area is
only 2.03 mm? while integrating 433KB SRAM and 32KB IMC SRAM.

Fig. 1 left illustrates the overall organization of iIMCU, which consists
of i) a 32b RISC-V CPU core (the host processor), ii) a digital IMC
accelerator that contains the IMC cluster, iii) instruction memory
(IMEM), iv) the main data memory (DMEM), v) direct memory access
(DMA), vi) a universal asynchronous receiver-transmitter (UART),
vii) a general-purpose 10 (GPIO), and viii) a 32b ARM AHB/APB bus.

Fig. 1 right shows the matching software dev framework for iMCU,
which is based on TFLite-micro. It starts with the training of an 8-b
DNN model via TensorFlow, which produces a TF file. Then, we
convert the TF file into the TFLite file by fusing a batch norm layer
into a convolution layer. This helps to avoid adding explicit hardware
support for batch-norm-related computation. The next step is to
convert the TFLite file to the C header file model.cc. Then, finally, we
compile the header file with the input data file (input.cc) and the
TFLite-micro library file. The compilation produces the instruction
and data hexadecimal files, which we store in IMEM and DMEM,
respectively. Using the framework, we develop the software for the
following DNN models, tiny-conv, tiny-embedding-conv (from [5]),
and ResNetv1 (from [6]) (Fig. 2 top left).

We start our iMCU design by determining which layers are worth
accelerating. The accelerator supports only those layers to reduce
the area overhead. We profile the complexity of each layer using
SPIKE [7]. The convolution layer is the most dominant, followed by
the addition layer (Fig. 2 top right). If we accelerate convolution
layers by 500X, we estimate the total cycle count will be reduced by
119X. If we also accelerate the addition layers, we can gain an
additional 3.6X speed-up (total 434X) (Fig. 2 bottom left). All the
other layers (pooling, fully connected, softmax) are not worth
accelerating since it provides only a negligible cycle count reduction.

We then devise the computation flow (sequence) that requires the
least amount of IMC hardware yet still provides a significant
acceleration. Existing works employ arbitrarily large amounts of IMC
hardware to store more than one (sometimes all) layers of weight
data of a DNN model before starting computation [1-3]. Such
architecture, however, severely increases area overhead. We devise
an alternative computation flow where the main data memory
(DMEM), implemented in dense foundry 6T bitcells, stores all the
weights, and the IMC hardware buffers the weight data of only one
layer right before the accelerator computes on the layer. While the
proposed flow increases data movement cost between the main
memory and the IMC accelerator, we found that the area savings
largely outweigh: the IMC hardware’s area reduces by 5X while the
cycle count increases by only 23% (Fig. 2 bottom right). This is
because we perform 100-10,000 VMMs for each layer and thereby
amortizing the data movement cost over many VMMs.

Fig. 3 left shows the proposed flow for an
end-to-end inference. The host starts the
program, and as it reaches a convolution

(or an addition) layer, it configures DMA to £ Ciacc
transfer the weight data of that layer from =

DMEM to the IMC cluster; and only forthe = =
input layer, DMA transfers the input data cPu

from DMEM to the scratchpad. Then, the 7 DM

host configures layer-related parameters
such as dimensions of input, filter, and
output, stride and padding sizes, input and
output offsets, and the starting addresses
of the input, weight, output data accesses,
etc. Also, the host configures which digital IMC macros to use and
clock-gate unused macros. Then, the accelerator starts to compute
on the layer, which involves many iterations of three sub-tasks,
namely input vector preparation, IMC operation, and output
quantization. Finally, it stores the output of the layer in the scratchpad
and then interrupts the host. The host resumes the program.

Based on the computation flow, we determine the sizes of the
memory blocks and create the memory map (Fig. 4 bottom right).
Again, the IMC accelerator requires to buffer only one layer at a time.
Therefore, we can set the IMC size to 32KB, roughly matched to the
largest layer of the target models. Also, the largest model has a total
of 179KB of weight data. Thus, we set the main data memory
(DMEM) size to 256KB. We also want the scratch pad in the
accelerator to fully buffer the output of one layer such that it can use
it as the input of the next layer. Therefore, we set the scratchpad size
to 48KB, matched to the largest output data size. Also, we set the
IMEM to 128KB to store the largest program. (Fig. 3 right).

We design the fully-pipelined IMC accelerator (Fig. 4 top). It has
three stages, and each stage takes the same 64 cycles. The first
stage (INVEC) prepares input vectors and feeds them to the next
stage (IMC). It employs two 512B buffers operating in a ping-pong
fashion to hide the latency. The second stage (IMC) performs VMM
using the 4x4 IMC macro cluster. The cluster can complete one
multiplication between an 8b 512d vector and an 8b 64x512d matrix
in 64 cycles. The last stage (QUAN) performs the quantization. The
IMC stage’s result can have up to 25 bits, but we need to quantize to
8b before storing them in the scratchpad. Simply removing the LSBs
is not optimal for inference accuracy. Instead, we support the
quantization scheme of TFLite-micro [5], where the quantized value
q is defined as Q=2"-Mo:(r+Z), where n, Mo, Z are offline-computed
hyper-parameters and r is the IMC stage’s result. QUAN needs to
quantize only one 64d vector in 64 cycles. Therefore, it employs only
one 2-input 32b adder, one 2-input 64b multiplier, and one 32b
shifter. Finally, the accelerator can still support a layer that is larger
than the IMC cluster. It can produce partial sums with partial weight
data and combine them to produce the final result.

We designed a digital IMC macro to maximize the robustness while
trying to reduce the area overhead of digital circuits (Fig. 4 bottom
left). To do so, we adopt and improve a time-sharing architecture [4],
where the macro employs 128x128 compact 6T bitcells. Every eight
bitcells time-share one multiplier, and every 128x8 bitcells time-
share a set of compressors and an adder tree, which results in an
excellent weight density of ~126 KB/mm2. The macro achieves the
excellent compute density of 1.25 TOPS/mm? at 1V and an energy
efficiency of 40.16 TOPS/W at 0.6V with a 25% input toggle rate.

We prototyped iMCU in a 28nm. To evaluate against the state-of-the-
art neural MCUs, we have iMCU to execute the standard benchmark,
ResNetv1, from MLPerf-Tiny [6]. It takes 60.9 ms and consumes
102.18 pd per inference (Fig. 5 top left). This marks 88X EDP
improvement (22X in E and 3.94X in D) over the best neural MCU
(SiLab’s xG24-DK2601B [6]). Fig. 5 bottom shows the area, energy,
and delay breakdown. iMCU is fully-digital hardware and always
produces the correct computation results across PVT variations. The
proposed optimizations reduce the silicon area of iMCU down to 2.73
mm?2. The on-chip 432KB foundry SRAM takes 0.678 mm? and the
32KB IMC SRAM takes 0.254 mm? (Fig. 7).

Acknowledgement: This work is supported by NSF (PFI-
RP1919147). The authors gratefully thank Manho Kim and Prof.
Hyuk-jae Lee for their valuable support and discussions.

Fig. 7. Die micrograph.

Authorized licensed use limited to: Sogang University Loyola Library. Downloaded on July 28,2023 at 00:25:56 UTC from IEEE Xplore. Restrictions apply.

979-8-3503-9948-6/23/$31.00 ©2023 IEEE

IEEE CICC 2023

References: [1] Jia et al., JSSC, 2020. [2] Chang et al., ISSCC,
2022. [3] Wang et al., ISSCC, 2019. [4] B. Yan et al., ISSCC, 2022.

[5] R. David et al.,, arXiv:2010.08678. [6] C. Banbury et
arXiv:2106.07597. [7] Spike RISC-V ISA Simulator (link)

al.,

i tx i nLﬁ Training NN
= 8 data algorithm
DMA UART GPIO | clki] 7
DMEM [Quantization aware
256 KB 1[training:
3,2 TensorFlow/Keras
1 ARM APB bus 2 TF file
* TFLite model
t ARM AHB bus convertar
Seratch Weight Tnput TFLite file
pad buffer || buffer Convert to a C array
IMEM RISC-V 48 KB IMC model.cc
128 KB <+ CPU Adder TFLite-micro| .
(host) Clock tree cluster Ci+lib input.cc
generator 32KB
Digital IMC accelerator RISC-V g++ compile
t t binary file
| Debug | l Deploy to iMCU I

Fig. 1. Proposed iMCU chip architecture. The proposed software
development framework for iMCU.

ResNetv1 tiny-conv

S
W
Relu 32C152

tiny-embedding-conv tiny-conv < 16c3:
y g y c;ﬁgl.‘lﬁbfrturu 3 ResNetv1

« APS: 8x8 average pooling
« FC10: 10 fully-connected

Average pooli
Fully-connected: 0.01%
Softmax: 0.01%

Convolution
Add
others 200k)
it d - :
1 1 .
100M+ I i _ 160k :
1 119X 1 g” H
1 1 434X E‘ i 5X reduction
5 10M+ : : 8 120k] 23% increase\.“
S ' oy H
G] B ! S 80k !
1M - ! ® !
. 5 i
40k :
. i Weight size of Weight size of
100ky | @0 R ! the largest layer the entire model
. Accelerate Accelerate 50 100 150 200
Baseline convolution convolution IMC size (KB)
and add

Fig. 2. Neural network models: ResNetv1, tiny-embedding-conv,
and tiny-conv. Workload profiling results using SPIKE. The latency
improvement estimation. The proposed computation flow enables
5X area reduction at the 23% latency penalty.

I I
DMA | RISC-V CPU | IMC accelerator Address
| | el
} Start the program and 1 Space 0x0010_0000 1|2N3|3E|;|E
1 run until a | 0x0012_0000
| convolution layer | _
| | 0x0018_0000
| Configure DMA to | 256 KB
I |transfer activation/weight } DMEM
Transfer the data [Ji ! 0x001C_0000 _
from DMEM to the } } 0x0020_0000
IMC accelerator ! ' 48KB IMC accelerator
Interrupt} Configure the IMC ! scratch pad
[l accelerator to perform I 0x0020_C000 _
} the convolution layer I 0%0021_8000
' | IMC accelerator
1 1 config registers
! % P 0x0020_807F
I [
' o 0x0023_8000
| | . 32KB IMC cluster
! | : 0x0023_FFFF
I ! H
i i) 0x0030_0000
! | 0 DMA
@ A
E } remaining layers } 0x0050_0000
= i s | UART
¥ : ' 0x0060_0000

Fig. 3. The proposed computation flow and the memory map of
iMCU.

INVEC IMmC QUAN
A A A

r N 2 Xa

J

Scratch pad (48KB) Weight buffer (128b)

Bank =
0 B

D

Tothe scratch pad

IMC cluster 512b x 512b $b 2
D

Latch 64x25b

Input ping-pong buffer
2x512B

LR R

From the AHB bus —————————p{

iMCU design point

iMCU design point

3

Module 128~2047
Adder trees & compressors
Scratch pad size (KB)
DMEM size (KB) -
3

2, 2 3 3. : 3 3. 2 3
$: I % ST 23: ¢ 3
S S $3: F 3
£ES ¢ z £88 ¢ 2 £88 ¢ H
#T g & e @ *ToE @

Fig. 4. IMC accelerator microarchitecture. A 128x128 digital IMC
macro. Based on the proposed computation flow, we set the sizes
of the IMC macro cluster, the in-accelerator scratch pad, and the
DMEM to support the target workloads.

the IMC accelerator over supply voltages. Latency, area and
energy consumption breakdowns.

Can perform the standard CNN benchmark Cannot perform
g This work ’;ﬁﬁfﬁ::;s? sﬁUCLEo’HmZ"‘[)e] Rxsgrégz\igim JssC20(1] 1SSCC19 3]
Measurement —@— End-to-end latency —@— Energy -
s —O— Energy consumption 300 _ g O Throughput 4002 Technology [nm] 28 nla nla nla 65 28
g 140 3 Qo 3500 Host processor RISCV32b | Cortex:M3332b | CortexM732 |RenesasRXv232b| RISC-V32b Cortex-M0 320
‘; 120 250: - 3009 Accelerator Digital IMC Digital accelerator} nla nla Analog IMC Digital IMC
-
8 100 200.2 g ES ‘Activation precision [bit] 8 8 2 2 18 132
Q
% g- G 8 2505, Weight precision [bit] 8 8 32 32 18 132
> 80 150 3 5 200 § " IMEM size 128KB 1.5MBS) 2.06MBS) 2MB?) 128KB 16KB
14
5 60 g 3 6 1505 ? DMEM size 256KB 256KB 14MB 640KB 128KB 16KB
8 100 : ‘g s = IMC size 328 nia nla nla 73.75KB 96KB
3 4 3 o 100 g § [maccelerator scrtch pad size 48KB na nia nia 0KB 0KB
i~ - o =
w 20 50 2 L 4 50 @ E Total SRAM size 464KB 256KB 14MB 640KB 329.75KB 128KB
[
0 oou 5 0 & Total SRAM area [mm?] 0.933 nfa na n/a 4626 1225
o 0
06 07 08 09 1.0 2 0.6 0.7 0.8 0.9 1.0 Total area [mm?] 203 nla nla nla 856 185
VDD (V]) TNC density [KB/mm?]
V) < VDD (V) CET 125.8 nla nfa nia 252 1045
'SRAM density [KB/mm?]
Latency breakd Area breakd S CPU g e o oo and o . 497.42 nfa na nia 7128 104.49
atency breakdown rea breakdown - Boigil e sccsertor nergy R 0l 1M accel Supply voltage V] 061 na 07413 nia 08512 0611
onvolution 2 i e 6-35 (host)
::::::1“;‘ uly-comectod + sofmas = uA::‘ma . = m‘srﬂw oPio s Operating frequency [MHz] 29-310 (accelerator) 40-78 280 120 40-100 114-475
£ M: tte densit
84.16% 60% E ”’“n%;";‘,‘“m,]”“y 1.25 (1V,8b,8b) nla nia nia 0.0094 (1.2V,80,86)2| 00287 (1.1V,8b,8b)
\11.51% H ““”ﬁggg,;],““"w 4016 (0.6V,8b,8b)" nla nla nla 6.25 (0.85V,8b,8b)2 | 0.56-5.27 (0.6V,8,8b)
e
Accelerator te der
g oce! ’m;;‘;,"r‘n"r“" "Y1 0,301 (1V,8b,8b) nla nla nla 0.0094 (1.2V,8b,80)2)| 0.0287 (1.1V,8b,8b)
£ -
“*"’a“’r’,;':s’%]""”’"‘y 8.86 (0.6V,8b,8b) nla nla nla 6.25 (0.85V,8b,8b)?) [0.56-5.27 (0.6V,8b,8b)
2.61%
13.22% 5.76% 0.99% Accelerator throughput [TOPS] | 0.318 (1V,8b,8b) nfa na nla 0.0341(1.2V,80,8b)2)| 0.0327 (1.1V,8b,8b)
A . MLPerf-tiny: Latency [ms] 60.9 239.98 158.13 289.35 nla nla
Fig. 5. Measurement results. Latency and energy consumption of Reshan [-
. . . on CIFAR104 | Eneray consumpfion 102.18 2248.02 415113 14350.89 nla nia
iMCU over supply voltages. Energy efficiency and throughput of 1w

1) Simulated. - 2) Normalized to 8 weighs and 8b activations. ~3) /a: not avalable.~4) The top-1 accuracy of all systems are above 85°%, meeting the quaity target in the benchmark sulte.
5) Mostly implemented in embedded flash memory.

Fig. 6. Comparison table.

Authorized licensed use limited to: Sogang University Loyola Library. Downloaded on July 28,2023 at 00:25:56 UTC from IEEE Xplore. Restrictions apply.

