
Distributed Threshold-based Offloading for
Heterogeneous Mobile Edge Computing

Xudong Qin∗ Qiaomin Xie† Bin Li∗
∗Department of EECS, Pennsylvania State University, State College, Pennsylvania, USA
†Department of ISyE, University of Wisconsin-Madison, Madison, Wisconsin, USA

Abstract—In this paper, we consider a large-scale hetero-
geneous mobile edge computing system, where each device’s
mean computing task arrival rate, mean service rate, mean
energy consumption, and mean offloading latency are drawn
from different bounded continuous probability distributions to
reflect the diverse compute-intensive applications, mobile devices
with different computing capabilities and battery efficiencies,
and different types of wireless access networks (e.g., 4G/5G
cellular networks, WiFi). We consider a class of distributed
threshold-based randomized offloading policies and develop a
threshold update algorithm based on its computational load,
average offloading latency, average energy consumption, and
edge server processing time, depending on the server utilization.
We show that there always exists a unique Mean-Field Nash
Equilibrium (MFNE) in the large-system limit when the task
processing times of mobile devices follow an exponential distri-
bution. This is achieved by carefully partitioning the space of
mean arrival rates to account for the discrete structure of each
device’s optimal threshold. Moreover, we show that our proposed
threshold update algorithm converges to the MFNE. Finally, we
perform simulations to corroborate our theoretical results and
demonstrate that our proposed algorithm still performs well in
more general setups based on the collected real-world data and
outperforms the well-known probabilistic offloading policy.

I. INTRODUCTION

With the trend of pushing artificial intelligence to mobile

devices with constrained CPU/GPU capabilities, many appli-

cations leverage mobile edge computing schemes to enable

real-time compute-intensive machine learning tasks such as

Internet of Things (IoT) health monitoring systems (e.g.,

[1], [2]) and animals monitoring and tracking on farms with

IoT devices and edge computing systems (e.g., [3]). This is

achieved by offloading compute-intensive tasks to powerful

edge servers to reduce the task processing time and energy

consumption of mobile devices. However, users experience

offloading latency and processing latency at edge servers as

well as offloading energy consumption if they offload their

computing tasks to the edge servers. The processing delay at

edge servers depends on the edge server utilization. The larger

the server utilization, the larger the processing delay at edge

servers. As such, when more users offload their computing

tasks to the edge, they experience large processing delays at

edge servers. Therefore, a central question in mobile edge

computing systems is how each device offloads its computing

tasks to the edge to optimize the task processing delay and

energy consumption.

This work has been supported in part by NSF under the grants CNS-
2152657, CNS-2152658 and CNS-1955997.

While edge computing has received significant research

interest in recent years (see [4], [5] for a comprehensive

survey), much of the prior work on mobile edge computing

systems (e.g., [6], [7], [8], [9], [10]) focused on the static

model, where the profiles of all computing tasks (such as the

number of tasks, each task’s processing time) are available

before the algorithm operation. For example, [6] and [7]

developed offloading algorithms that minimize the average

energy consumption in mobile devices. [8] proposed offloading

strategies that minimize the average task processing latency.

[9] and [10] jointly optimized energy efficiency and task

processing latency in mobile devices. However, this line of

work fails to capture the dynamics of computing tasks, which

is ubiquitous in practical systems.

There have been some works on edge computing systems

(e.g., [11], [12], [13], [14]) considering the dynamic model,

where computing tasks dynamically arrive at the IoT devices

and are processed either by local devices or edge/cloud servers.

However, they focused on centralized solutions based on

a stochastic network optimization framework (see [15] for

an overview) and thus did not apply to large-scale edge

computing systems. Another line of research work (e.g., [16],

[17]) considered a distributed probabilistic offloading design

for the dynamic model, where each mobile device determines

its offloading probability that its computing tasks are uploaded

to edge servers to minimize the average cost. For example, the

authors in [17] formulated a game theory model to determine

the offloading probability.

On the other hand, the cost optimization for the dynamic

model can be formulated as a Markov decision process (MDP)

problem whose optimal solutions typically have threshold-

based structure (e.g., [18], [19]): an incoming task is processed

locally if the number of tasks in the local device is less

than some threshold, and offloaded to edge servers otherwise.

Indeed, the threshold-based policy typically outperforms the

well-studied probabilistic offloading policy (see Section IV-C).

Moreover, threshold-based policies have a distributed nature

and are easy to be deployed in large-scale mobile edge

computing systems.

As such, we are interested in the class of distributed

threshold-based offloading policies, where each user makes

its offloading decision based on its own threshold. In a recent

work [20], the authors considered a distributed threshold-based

algorithm design for large-scale homogeneous mobile edge

computing, where all mobile devices have the same task arrival

202

2023 IEEE 43rd International Conference on Distributed Computing Systems (ICDCS)

2575-8411/23/$31.00 ©2023 IEEE
DOI 10.1109/ICDCS57875.2023.00024

rate and service rate. However, mobile edge computing sys-

tems are heterogeneous, consisting of diverse IoT devices with

different CPU/GPU capabilities and battery efficiencies, dif-

ferent types of wireless access networks (e.g., 4G/5G cellular

networks, WiFi), and diverse compute-intensive applications.

The algorithm and analysis developed in [20] do not apply to

such a heterogeneous edge computing system.

In this paper, we consider a heterogeneous mobile edge

computing system, where each mobile device’s mean com-

puting task arrival rate, mean service rate, the average energy

consumption of processing and offloading a task, and mean

offloading latency are drawn from different bounded continu-

ous probability distributions to model the system heterogeneity

such as diverse compute-intensive applications, mobile devices

with different computing capabilities and energy consumption,

and various wireless access networks. We focus on the class of

distributed threshold-based algorithms. Given the distributed

nature of the threshold-based offloading policy, we are inter-

ested in investigating whether there exists a unique Mean-Field

Nash Equilibrium (MFNE) under which each device has no

incentive to deviate from its optimal threshold. If such a unique

MFNE exists, can we design a distributed threshold update

algorithm under which the system converges to equilibrium?

The main challenges to answering these questions are the fol-

lowing: (i) In contrast to the distributed probabilistic offloading

algorithms that optimize the offloading probability, the opti-

mal thresholds for the distributed threshold-based offloading

policies exhibit a discrete nature, which, together with the

heterogeneity of the system, makes it difficult to characterize

the MFNE; (ii) It is challenging to develop a distributed thresh-

old update algorithm that converges to the MFNE, since each

device only has its local task processing information, energy

consumption, edge server utilization, and offloading latency,

without the knowledge of any other devices’ information.

The main results and contributions of this paper are sum-

marized as follows:

• We propose a Distributed Threshold Update (DTU) Al-

gorithm that iteratively updates each device’s threshold based

on its average queue length, task offloading latency, energy

consumption, and edge server utilization (see Algorithm 1 in

Section III-A).

• We show that there always exists a unique Mean-Field

Nash Equilibrium (MFNE) in the large-system limit when the

task processing time in local devices follows an exponential

distribution (see Theorem 1 in Section III-B). The proof is

quite involved since the optimal threshold exhibits a discrete

nature for each individual device. It is non-trivial to establish

the continuity of the best response function with respect to

server utilization. We tackle this challenge by partitioning the

space of mean arrival rates in a novel way.

• We further show that our proposed DTU Algorithm

converges to the unique MFNE. This is achieved by exploring

the bisection property of the “estimated” server utilization,

i.e., it always increases or decreases towards the MFNE (see

Theorem 2 in Section III-B).

• In Section IV, we first perform simulations to validate

our theoretical findings. We then demonstrate that our pro-

posed DTU Algorithm still performs well in practical setups,

including real-world data for local processing time, offload-

ing latency, and asynchronous threshold updates. Finally, we

demonstrate the superior performance of our proposed algo-

rithm over the well-studied distributed probabilistic offloading

policy.

II. SYSTEM MODEL

We consider a mobile edge computing system with N IoT

devices (referred to as users), where users offload computing

tasks to edge servers via wireless networks, as shown in Fig.

1. Tasks arrive at each user n (n = 1, 2, · · · , N) according

to the Poisson process with the rate an. Each user n decides

whether the newly arriving task is offloaded to the edge or

processed in its local device. We assume that each user n is

able to process a newly arriving task in the local device with

mean service time 1/sn, and each user n maintains a queue in

its local device that holds incoming tasks and processes tasks

in the First-Come-First-Serve (FCFS) manner. We let qn(t) be

the queue length of user n at time t, denoting the number of

awaiting tasks. If a task is offloaded to edge servers, it can

be processed with the total service rate of Nc, where c is the

service capacity such that all the computing tasks of each user

can be processed at edge servers.

To model the heterogeneity of computing applications and

mobile devices, we assume that both mean arrival rate an and

mean service rate sn are sampled from probability distribu-

tions of independent bounded non-negative continuous random

variables A and S, respectively. In particular, we assume that

0 < A ≤ Amax and Smin ≤ S ≤ Smax for some positive

constants Amax, Smin, and Smax. As such, users have different

mean task arrival rates and service rates, capturing the fact

that they might use different compute-intensive applications

and their devices have different processing capabilities. Here,

we assume that Amax < c (and hence an < c, ∀n) to ensure

that all incoming tasks can be processed by edge servers.

Fig. 1: A system with N = 5 users

On the one hand, computing tasks that are processed locally

will suffer from both queueing delays and large processing

delays in local devices due to constrained local processing

capabilities. On the other hand, offloading computing tasks to

high-performance edge servers can be processed much faster

while experiencing task offloading latency (including both

communication delay and processing time in edge servers).

203

In order to model the heterogeneity of each user’s network

conditions, we assume that offloading latency of each com-

puting task of user n follows a probability distribution with

mean τn, where τn is sampled from a probability distribution

of a bounded non-negative continuous random variable T , and

0 < T ≤ Tmax for some positive constant Tmax. We let

γ ∈ [0, 1] denote the edge server utilization and let function

g(γ) denote the delay experienced at edge servers when the

current server utilization is γ, where g : [0, 1] �→ [0, Gmax]
is an increasing and continuous function for some positive

constant Gmax. This is motivated by the fact that a larger

server utility typically results in a larger delay.

For each incoming task, each user n processes tasks locally

and offloads tasks to edge servers with the average energy

consumption of pn,L and pn,E per task1, respectively. To

capture the heterogeneity of users’ energy consumption, we

further assume that both pn,L and pn,E are sampled from the

probability distribution of two different bounded non-negative

continuous random variables PL and PE , respectively, where

0 < PL ≤ PL,max and 0 < PE ≤ PE,max for some positive

constants PL,max and PE,max, respectively.

To minimize both the computing delay of tasks and the

energy consumption of mobile devices, each user needs to

carefully decide whether a newly incoming computing task

will be processed locally or offloaded to edge servers. Note

that the offloading problem of each user shares a similar

structure with the optimal admission control of a single queue

whose solution has a threshold-based structure (see [21]).

In addition, threshold-based policies are easy to implement

in a distributed manner, especially when there are a lot of

IoT devices. Moreover, we demonstrate via simulations (see

Section IV-C) that the threshold-based policy outperforms

widely-studied probabilistic offloading policy (e.g., [22], [23],

[24] and [25]) under which each user offloads incoming

computing tasks with a certain probability.

To that end, we focus on the following threshold-based

offloading policy for each user. Let �y� denote the largest

integer that is not greater than y, and we recall that qn(t) is

the number of computing tasks in the user’s local device n
at time t. Then, we consider the following Threshold-based

Randomized Offloading (TRO) policy:

Threshold-based Randomized Offloading (TRO) Policy:

Each user n with a real-value threshold xn ≥ 0 makes the

following offloading decision when a new computing task

arrives:

(i) If qn(t) < �xn�, then the new task joins the local device;

(ii) If qn(t) = �xn�, then the new task joins the local device

with probability xn − �xn� and is uploaded to edge servers

with probability 1− (xn − �xn�);
(iii) If qn(t) ≥ �xn�+1, then the new task will be uploaded

to edge servers.

Under the TRO policy with a threshold xn, when xn =
0, user n will upload all its incoming tasks to edge servers;

1Our model can be easily adapted to the case with the average energy
consumption per time unit.

when xn = 2.5, user n will admit an incoming task locally

if its queue-length is less than 2, and upload the incoming

task with probability 0.5 if its queue-length is equal to 2, and

upload the incoming task if its queue-length is greater than or

equal to 3. Note that our TRO policy is a generalization of the

threshold-based offloading policy studied in [20], where the

threshold parameters are integers. We let Qn(xn) denote the

average queue-length of user n, and let αn(xn) be the average

task offloading probability of user n (i.e., the fraction of time

offloading tasks). While both the average queue length and the

average task offloading probability depend on the arrival rate,

service time distribution, and threshold decision, we explicitly

use Qn(xn) and αn(xn) to emphasize the dependence on the

threshold xn, which will be optimized to minimize the average

computing delay and average energy consumption.

For each incoming task at user n with threshold parameter

xn, if it is processed locally, then it experiences the average

delay
Qn(xn)

an(1−αn(xn))
by Little’s Law, and its average energy

consumption is pn,L, where an(1 − αn(xn)) denotes the

average arrival rate of computing tasks processed in the local

device. If it is offloaded to the edge servers with the utilization

γ, then it incurs the offloading latency of mean τn and the

processing delay g(γ) at the edge servers as well as the average

energy consumption pn,E for wireless transmissions. Noting

that the task is offloaded to the edge servers with probability

αn(xn), the average cost (including both average computing

delay and energy consumption) of user n with threshold xn

is defined as follows:

wn(1− αn(xn))pn,L +
Qn(xn)

an
+ (wnpn,E + g(γ) + τn)αn(xn), (1)

where 0 < wn ≤ wmax, ∀n are system weight parameters that

characterize the trade-off between task processing latency cost

and energy consumption, and wmax is some positive constant.

The larger the parameter wn, the more emphasis on the energy

consumption in the overall cost of user n (cf. (1)).

In this paper, we are interested in the large-scale mobile

edge computing system (i.e., N is sufficiently large). We aim

to develop a distributed offloading algorithm under which each

user updates its own threshold to minimize its cost function

without knowing all other users’ thresholds. This raises two

fundamental questions: 1) does such an algorithm converge?

2) If so, what does it converge to? We address these questions

from a mean field game perspective. In particular, we assume

our considered system operates in a Quasi-Stationary manner

as the number of users N → ∞, i.e., each user optimizes their

cost (1) in a slower time scale while the server utilization is

updated in a faster time scale. Therefore, the server utilization

is a constant from the users’ point of view whenever users

update their thresholds (see [26] and [27] for more detailed

explanations about the two different time scales).

Here, we consider two mappings that characterize server

utilization and users’ thresholds updating, respectively. We first

define J1 : (xn)
N
n=1 → γ, i.e., given all users’ thresholds

(xn)
N
n=1, we have a server utilization γ ∈ [0, 1], which

204

is updated in a faster time scale. Then, for the fixed edge

server utilization γ ∈ [0, 1], each user n minimizes its own

cost function (1) and obtains a new threshold xn based

on server utilization γ. We define this process as mapping

J2 : γ → (xn)
N
n=1, which occurs in a slower time scale.

Having characterized the two different mappings, we define

γ∗ to be the Mean Field Nash Equilibrium (MFNE) of the

system if and only if

γ∗ = J1(J2(γ
∗)). (2)

In the mapping J2, each user plays their best response,

minimizing the cost function (1), given the current server

utilization γ. The resulting average edge server utilization is∑N
n=1 anαn(x

∗
n(γ; an, θn, τn, pn,L, pn,E))/(Nc), which con-

verges to EA,Θ,T,PL,PE
[Aα(x∗(γ;A,Θ, T, PL, PE))/c] al-

most surely as N → ∞ according to the Strong Law of Large

Numbers, where Θ � A/S. Therefore, the MFNE γ∗ (cf. Eq.

(2)) can be rewritten as

γ∗ = EA,Θ,T,PL,PE

[
Aα(x∗(γ∗;A,Θ, T, PL, PE))

c

]
. (3)

Here, we study the problem in a large-system limit (i.e.,

N → ∞) where each user’s decision on the threshold has a

minimal impact on the server utilization γ and thus, each user

treats the server utilization as a fixed constant when optimizing

its own cost function. If the system reaches the MFNE (when

it exists), each user adopts the optimal threshold; thus, no user

has the incentive to change the current threshold unilaterally,

and the server utilization will remain the same.

We remark that our game formulation in the large-system

regime corresponds to the so-called mean field game (MFG)

[28], [29]). However, to the best of our knowledge, our

problem is not a special case of any existing work, and

their analysis of MFNE is not applicable to our setting. In

particular, the existing literature on MFG (e.g., [30], [31], [32],

[33]) primarily focused on either finite-time horizon or infinite

horizon with discounted cost. In contrast, our problem involves

infinite-horizon average cost—including average queue length,

average offloading cost, and average energy consumption.

Some recent work on MFG with infinite-horizon average cost

focuses on settings with homogeneous players/users (e.g.,

[34]), while we consider heterogeneous users (i.e., each user

has its own arrival rate, service rate, average offloading latency,

and average energy consumption). Furthermore, some work

(e.g., [32]) assumed the cost function to be continuously

differentiable, while the cost function in our problem is not

differentiable everywhere (i.e., it is not differentiable at all

integer points, as shown in Fig. 8 in Appendix A).

Next, we develop a distributed threshold update algorithm

and show that it converges to the unique MFNE, assuming

that the user’s local processing time follows an exponential

distribution.

III. ALGORITHM DESIGN AND MAIN RESULTS

In this section, we present a distributed threshold update

algorithm under which each user iteratively updates its thresh-

old based on server utilization information of the edge servers

without knowing any other users’ threshold information. Then,

under the assumption of exponential processing time in the

local devices, we show that a unique MFNE always exists,

and our proposed algorithm converges to this MFNE.

A. Algorithm Description

In this subsection, we present a Distributed Threshold

Update (DTU) Algorithm under which each user iteratively

updates its threshold based on edge server utilization. Let

ε ∈ (0, 1) be a given parameter that controls the convergence

accuracy of the DTU Algorithm. We use γt ∈ (0, 1) and

γ̂t ∈ [0, 1] to denote the true server utilization and the

“estimated” server utilization in the tth iteration, respectively.

We use ηt to denote the non-increasing step size in the tth

iteration. We introduce a counter L to control the step size ηt.

Let x̂
(t)
n be the optimal threshold of user n at the tth iteration

given the estimated server utilization γ̂t.

Algorithm 1 Distributed Threshold Update (DTU) Algorithm

1: Given any 0 < η0 ≤ 1, γ̂0 = 0, γ̂−1 = 1, 0 < ε < 1, and

L = 1, t = 1, performs the following:

2: while |γ̂t−1 − γ̂t−2| > ε, the edge servers do
3:

γ̂t ← min

{
1, γ̂t−1 + ηt−1 ·

γt − γ̂t−1

|γt − γ̂t−1|

}
, (4)

4: and broadcasts γ̂t to all users.

5: for each user n = 1, 2, · · · , N do
6:

x̂(t+1)
n ∈ argmin

xn≥0

{
wnpn,L(1− αn(xn)) +

Qn(xn)

an

+ (wnpn,E + g(γ̂t) + τn)αn(xn)

}
. (5)

7: end for
8: The edge servers perform:

9: if t ≥ 2 and γ̂t = γ̂t−2 then
10: L ← L+ 1,

11: ηt ← η0

L ,

12: else
13: ηt ← ηt−1.

14: end if
15:

γt+1 ← 1

N

N∑
n=1

anαn

(
x̂
(t+1)
n

)
c

. (6)

16: t ← t+ 1.

17: end while

While the server utilization information γt is available at

the beginning of each iteration t, we introduce the “estimated”

server utilization γ̂t to facilitate each user to control its own

threshold decision. The motivation comes from the observation

that the server utilization γt−1 in the previous iteration for

205

the threshold decision-making in (5) in the tth iteration is

out of the system’s control since γt−1 depends on all users’

thresholds, and users do not share their threshold updates

information with edge servers. Moreover, directly using actual

server utilization in (5) does not have a theoretical guarantee

that the algorithm will converge. Therefore, we choose to use

“estimated” server utilization γ̂t rather than the actual server

utilization γt.
According to (4), if the server utilization is underestimated

(i.e., γ̂t−1 < γt), then the “estimated” server utilization will

increase (i.e., γ̂t > γ̂t−1). Otherwise, it will decrease. In

addition, if the “estimated” server utilization oscillates (i.e.,

γ̂t = γ̂t−2), then it implies that the convergence point is

between γ̂t and γ̂t−2 and thus we need to reduce the step

size to make sure that the “estimated” server utilization is

closer to the convergence point. As such, the “estimated”

server utilization gets closer and closer to the desired value

and eventually converges.

Next, we are interested in understanding whether our pro-

posed DTU Algorithm can converge, and if it does, will it con-

verge to the MFNE of the system? To answer these questions,

we assume that the processing time of each task for each user

follows an exponential distribution. Under this assumption,

the number of tasks of each user forms a Continuous-Time

Markov Chain (CTMC) under the TRO policy with threshold

x, and thus we can explicitly calculate the average queue-

length Q(x) and offloading probability α(x) given its arrival

rate a and service rate s, i.e.,

Q(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
π0

(
θ(1−θ�x�)
(1−θ)2 + (�x�+ 1)(x− �x�)θ�x�+1

− �x�θ�x�+1

1−θ

)
, if θ �= 1,

(�x�+1)(2x−�x�)
2(x+1) , if θ = 1,

(7)

α(x) =

{
(1−θ)θ�x�(1−(1−θ)(x−�x�))

1−θ�x�+1+(x−�x�)(1−θ)θ�x�+1 , if θ �= 1,
1

x+1 , if θ = 1,
(8)

where we recall that θ = a/s denotes the arrival intensity, and

π0 =
1− θ

1− θ�x�+1 + (x− �x�)(1− θ)θ�x�+1

represents the probability of no tasks in the local device.

It is easy to verify via basic calculus that for any fixed

arrival intensity θ, both Q(x) and α(x) are continuous with

respect to the threshold x. Fig. 2a and Fig. 2b show Q(x) and

α(x) with respect to x with arrival intensity θ = 4, illustrating

that both of them are indeed continuous with respect to x.

We remark that our distributed threshold update algorithm

is different from the algorithm developed in [20] for a homo-
geneous mobile cloud computing, where all mobile devices

have the same arrival rate and service rate. In particular, we

introduce the “estimated” server utilization to facilitate each

user to control its own threshold decision. Moreover, under

our proposed threshold updating algorithm, the best response

function with respect to (w.r.t.) the server utilization first maps

interval [0, 1] to a non-negative integer space and then maps

(a) Q(x) with respect to x (b) α(x) with respective x

Fig. 2: α(x) and Q(x) when θ = 4.

it back to the interval [0, 1]. Such a mapping introduces a

significant challenge in proving the continuity of the best

response function w.r.t. the server utilization, which is the key

to establishing the existence and uniqueness of the MFNE.

B. Main Results

In this subsection, we study the convergence property of

our proposed DTU Algorithm in the large-system limit (i.e.,

N → ∞) under the assumption that the processing time of

computing tasks in local devices follows an exponential distri-

bution. In particular, we first prove that the considered large-

scale heterogeneous mobile edge computing system always

has a unique MFNE and then show that our proposed DTU

Algorithm converges to this unique MFNE.

Theorem 1: There always exists a unique MFNE γ∗ ∈ (0, 1)
under the assumption that the local processing time of each

task for each user follows an exponential distribution.

Proof: Here, we provide a proof sketch. We first charac-

terize the optimal solution x∗(γ; a, θ, τ, pL, pE) that minimizes

the individual user’s average cost, given her arrival rate a,

arrival intensity θ (i.e., the service rate is equal to aθ),

mean offloading latency τ , average local processing energy

consumption pL, and offloading energy consumption pE as

well as the edge server utilization γ. Based on the structure

of the optimal solution, we are able to capture the server

utilization after users’ threshold decision update given the

current server utilization γ (called the best response), i.e.,

V (γ) � EA,Θ,T,PL,PE

[
Aα(x∗(γ;A,Θ, T, PL, PE))

c

]
. (9)

Then, we show that V (γ) is continuous and non-increasing.

Finally, noting that V (0) < 1 under the assumption that

Amax < c (guaranteeing all tasks can be processed by the

edge) and the fact that the offloading probability α(·) is always

not greater than 1, we conclude that there always exists the

unique solution γ∗ to the equation V (γ) = γ and γ∗ ∈ (0, 1).
The detailed proof is available in Appendix A.

Remarks 1: The proof is highly non-trivial since the optimal

threshold x∗(γ; a, θ, τ, pL, pE) is a non-negative integer, thus

the best response function V (·) (cf. Eq. (9)) is a composition

of the mapping from γ ∈ [0, 1] to non-negative integers

x∗(γ; a, θ, τ, pL, pE) and the mapping from non-negative in-

tegers to a multi-dimensional integral. As such, it is not

obvious that V (γ) is continuous with respect to γ, which is

crucial to establish the uniqueness and existence of MFNE.

As illustrated in Fig. 3, the offloading probability of each

206

user is discontinuous with respect to the server utilization

γ. Nevertheless, we can establish the continuity of V (γ) by

carefully partitioning the space of mean arrival rates with the

following two nice properties: (i) the total number of partitions

is almost continuous with respect to the server utilization γ; (ii)

all users have the same optimal threshold within each partition

and hence V (γ) is continuous within each partition.

Fig. 3: User’s offloading prob. w.r.t. server utilization γ.

Theorem 1 indicates that there always exists a unique MFNE

such that all users in the system have no incentive to deviate

from their current optimal thresholds. The next theorem shows

that our proposed DTU Algorithm converges to the unique NE

γ∗ ∈ (0, 1).
Theorem 2: The proposed DTU Algorithm eventually con-

verges to the unique MFNE γ∗.

Proof: The proof is based on the bisection property of

“estimated” server utilization γ̂t under the DTU Algorithm,

i.e., γ̂t always increases or decreases towards the MFNE γ∗.

In particular, we show that there exist the following two cases:

(i) If γ̂t < γ∗, then γ̂t will increase until γ̂t+t1 > γ∗ for some

t1 > 0, as demonstrated in Fig. 4a; (ii) If γ̂t > γ∗, then γ̂t
will decrease until γ̂t+t2 < γ∗ for some t2 > 0, as shown in

Fig. 4b. In both cases, γ̂t gets closer and closer to γ∗ under

our step size update rule. The detailed proof is provided in

Appendix D.

(a) Case γ̂t < γ∗ (b) Case γ̂t > γ∗

Fig. 4: Dynamics of γ̂t
While the existence and uniqueness of the MFNE and the

convergence of our proposed DTU Algorithm are established

under the assumption that the task processing time of each

user follows an exponential distribution. Our simulations (cf.

Section IV-B) demonstrate that the results still hold under

general scenarios, such as real-world tasks’ local processing

time and offloading latency distributions and asynchronous

threshold updates.

IV. SIMULATIONS

In this section, we first perform simulations to validate our

theoretical results (cf. Theorem 1 and 2) and then demonstrate

that our proposed algorithm works well in practical setups, in-

cluding real-world local processing time and offloading latency

distributions, and asynchronous threshold updates. Finally,

we demonstrate the superior performance of the proposed

DTU Algorithm over the well-studied probabilistic offloading

algorithm counterpart.

A. Validation of Theoretical Results

In this subsection, we first perform simulations to validate

the existence and uniqueness of the MFNE (cf. Theorem 1),

where the processing times of computing tasks in local devices

follow an exponential distribution. Then, we run simulations to

validate the convergence of the DTU Algorithm (cf. Theorem

2). We consider N = 104 users and the cost of using edge

servers given by g(γ) = 1/(1.1 − γ). Mean arrival rate A,

mean service rate S, and offloading latency T follow different

uniform distributions. In particular, we consider S ∼ U(1, 5),
T ∼ U(0, 1), PL ∼ U(0, 3), PE ∼ U(0, 1) and wn = 1, ∀n
for all simulation setups, while we consider three different

uniform distributions for A: (i) A ∼ U(0, 4) under which

E[A] < E[S]; (ii) A ∼ U(0, 6) under which E[A] = E[S];
(iii) A ∼ U(0, 8) under which E[A] > E[S].

We first run numerical simulations using the Monte Carlo

method to obtain the unique MFNE under our theoretical

settings with different distributions for the mean arrival rate.

Table I summarizes the unique MFNE under three different

setups in our numerical simulation. From Table I, we can

see that the unique MFNE is 0.13, 0.21 and 0.28 when

E[A] < E[S],E[A] = E[S] and E[A] > E[S], respectively.

System Setup NE

E[A] < E[S] γ∗ = 0.13

E[A] = E[S] γ∗ = 0.21

E[A] > E[S] γ∗ = 0.28

TABLE I: MFNE under theoretical settings.

Fig. 5 demonstrates the convergence of the DTU Algorithm.

We can see from Fig. 5a that both server utilization γt and

“estimated” server utilization γ̂t converge to the unique MFNE

γ∗ = 0.13 (in the case with E[A] < E[S]) within 20 iterations.

Moreover, “estimated” server utilization also exhibits a bisec-

tion property, i.e., always increasing or decreasing towards the

MFNE. Similarly, we can observe from Fig. 5b and Fig. 5c that

our proposed algorithm converges to the corresponding MFNE

γ∗ = 0.21 (in the case with E[A] = E[S]) and γ∗ = 0.28 (in

the case with E[A] > E[S]), respectively, around 20 iterations.

B. Convergence under Practical Scenarios

In this subsection, we consider a variety of practical simula-

tion setups: each user’s local processing time is measured from

image recognition applications; offloading latency of each user

is measured using a mobile device in a wireless network

environment; each user updates its threshold asynchronously.

The probability distributions for the mean arrival rate A,

the average energy consumption of the local device, and the

average offloading energy consumption remain the same as in

Section IV-A.

In particular, we first implement YOLOv3 (see [35] and

[36] for more details about the YOLOv3 framework), which

207

(a) E[A] < E[S] (b) E[A] = E[S] (c) E[A] > E[S]

Fig. 5: Convergence of DTU Algorithm under theoretical settings.

is a real-time object detection framework on a Raspberry Pi

4 microcontroller board to emulate task processing process

on mobile devices. We then perform object detection tasks

using 1000 different images (see VOC2012 [37] for the details

of the image dataset) on the Raspberry Pi 4 microcontroller

board with the YOLOv3 framework implemented, and we

measure the object detection time for each image, respectively.

Furthermore, we use the Raspberry Pi 4 to upload the same

1000 images to Google Drive via WiFi network and collect the

offloading latency for each image, respectively. Fig. 6 shows

the normalized histogram of the real-world data we collected.

(a) Local processing time (b) Offloading latency

Fig. 6: Statistics of the data we have collected.

Moreover, in each iteration of the DTU Algorithm, each

user updates its threshold with probability 0.8 to model

asynchronous updates. Recall from Section IV-A, we set the

cost of using edge servers g(γ) = 1/(1.1 − γ) and let

PL ∼ U(0, 3), PE ∼ U(0, 1) and wn = 1, ∀n. We consider

N = 103 users in different simulation setups. We also consider

three different uniform distributions for the arrival rate A:

(i) E[A] = 8 < E[S] = 8.9437 for A ∼ U(4, 12); (ii)

E[A] = E[S] = 8.9437 for A ∼ U(7.3474, 10.54); (iii)

E[A] = 10 > E[S] = 8.9437 for A ∼ U(8, 12).
System Setup NE

E[A] < E[S] γ∗ = 0.43

E[A] = E[S] γ∗ = 0.44

E[A] > E[S] γ∗ = 0.46

TABLE II: MFNE under practical settings.

Similar to Section IV-A, we summarize the unique NE

under three different setups in Table II. We can observe from

Table II that there exists the unique MFNE γ∗ = 0.43 (in

the case with E[A] < E[S]), γ∗ = 0.44 (in the case with

E[A] = E[S]) and γ∗ = 0.46 (in the case with E[A] > E[S]),
respectively. Moreover, Fig.7 demonstrates that our proposed

DTU Algorithm converges to the corresponding unique NE

within 20 iterations.

C. Comparison with Probabilistic Counterpart

In this subsection, we demonstrate the superior perfor-

mance of the DTU Algorithm compared to the well-studied

Distributed Probabilistic Offloading (DPO) policy (e.g., [22],

[23] and [25]) under which each user selects the offloading

probability to minimize its own cost. We consider N = 103

users, T ∼ U(0, 5), PL ∼ U(0, 3) and PE ∼ U(0, 1)
for theoretical settings. As for practical settings, we use the

same settings as in Section IV-B and the real-world data we

have collected. For the DPO policy, we perform repeated

simulations under the same setting 5×103 times and calculate

98% confidence interval for the mean cost.

In particular, we perform simulations in two different

scenarios: (i) theoretical settings: S ∼ U(1, 5) and A ∼
U(0, Amax) for Amax = 4, 6 and 8, respectively; (ii) Practical

settings: we let E[A] = 8, 8.9437 and 10, respectively. Both

mean local processing time S and offloading latency T are

sampled from the real-world data we have collected in Section

IV-B. We can see from Table III that the average cost under

our proposed DTU algorithm for both theoretical and practical

settings reduces cost up to 30.76% and 20.07% compared to

the DPO policy, respectively.

Policies and Costs
Cost under

DTU algorithm

Mean cost under DPO Policy

(98% Confidence Interval)

Cost

reduction (%)

Theoretical

settings

E[A] < E[S] 2.33 3.04 ± 0.0018 30.76

E[A] = E[S] 2.58 3.18 ± 0.0015 23.26

E[A] > E[S] 2.84 3.27± 0.0014 15.14

Practical

settings

E[A] < E[S] 11.56 13.88 ± 0.0004 20.07

E[A] = E[S] 11.46 13.59 ± 0.0005 18.50

E[A] > E[S] 11.42 13.42 ± 0.0005 17.51

TABLE III: DTU Algorithm vs. DPO Policy.

V. CONCLUSION

In this paper, we considered large-scale heterogeneous mo-

bile edge computing systems for IoT applications, where each

user’s mean arrival rate, mean service rate, mean offload-

ing latency, and mean energy consumption are drawn from

different bounded continuous probability distributions. We

focused on a class of distributed threshold-based randomized

offloading policies and developed a distributed threshold up-

date algorithm under which each user updates its threshold to

minimize its average cost, consisting of local processing delay,

offloading latency, edge server processing delay, and average

energy consumption, without any information from other users

thresholds. We showed that there always exists a unique Mean-

Field Nash Equilibrium (MFNE) in the large-system limit

208

(a) E[A] < E[S] (b) E[A] = E[S] (c) E[A] > E[S]

Fig. 7: Convergence of DTU Algorithm under practical settings

such that all users’ thresholds and server utilization remain

unchanged if the system reaches NE under the assumption

that users’ task processing time in local devices follows an

exponential distribution. We further showed that our proposed

algorithm converges to the unique MFNE. Finally, we per-

formed simulations to corroborate our theoretical findings and

demonstrated that our proposed algorithm can still work well

in practical setups and significantly outperforms the well-

known distributed probabilistic offloading algorithm.

APPENDIX A

PROOF OF THEOREM 1

Our proof starts with characterizing the optimal solution

x∗(γ; a, θ, τ, pL, pE) that minimizes the user’s cost function

(cf. (1)) given his/her arrival rate a, arrival intensity θ, and

mean offloading latency τ as well as the edge server utilization

γ. To that end, we consider the following function:

f(m|θ) �
{
0, if m = 0,∑m

i=1(m− i+ 1)θi, ∀m ∈ N+,
(10)

where N+ denotes the set of natural numbers, i.e., N+ �
{1, 2, 3, · · · }. It is easy to see that f(m|θ) is strictly increasing

with respect to m given any θ > 0.

Next, we have the following lemma that characterizes the

solution to the minimization of the user’s cost function.

Lemma 1: Given the user’s arrival rate a > 0, arrival

intensity θ > 0, server utilization γ ∈ [0, 1], mean of-

floading latency τ > 0, wireless transmission energy con-

sumption pE and local processing energy consumption pL, if

−wmaxAmaxPL,max < a(g(γ) + τ + w(pE − pL)) < f(1|θ),
then x∗(γ; a, θ, τ, pL, pE) = 0; if f(m|θ) ≤ a(g(γ) + τ +
w(pE − pL)) < f(m+1|θ) for some positive integer m, then

x∗(γ; a, θ, τ, pL, pE) = m.

The proof of Lemma 1 is available in Appendix B. Based

on Lemma 1, we are ready to investigate the properties of

V (γ) � EA,Θ,T,PL,PE
[Aα(x∗(γ;A,Θ, T, PL, PE))/c].

Lemma 2: V (γ) is continuous and non-increasing with

respect to γ ∈ [0, 1].
The proof of Lemma 2 is available in Appendix C. Lemma

2, together with V (0) < 1 under the assumption that Amax < c
(ensuring that all computing tasks can be processed by edge

servers, which is typically true in practice.) and the fact that

the offloading probability α(·) is always not greater than 1,

implies that there always exists the unique solution γ∗ to the

equation V (γ) = γ and γ∗ ∈ (0, 1).

APPENDIX B

PROOF OF LEMMA 1

To facilitate our proof, we use T (x|γ) to denote the indi-

vidual user’s cost function when the threshold is x ≥ 0 given

his/her arrival rate a > 0, offloading latency τ > 0, arrival

intensity θ > 0, and the edge server utilization γ ∈ [0, 1], i.e.,

T (x|γ) � wpL(1− α(x)) +
Q(x)

a
+ (g(γ) + τ + wpE)α(x),

where we recall that Q(x) and α(x) are the average queue

length and the offloading probability, respectively, when the

threshold is x, and their expressions are given in (7) and

(8), respectively. We can easily verify via basic calculus that

given any system parameters a, θ, τ , pL, pE and γ, T (x|γ) is

continuous with respect to x ≥ 0, and is differentiable at any

non-integer value x. Fig. 8a and Fig. 8b show the function

T (x|γ =
√

3/10) when the arrival intensity θ = 2 and θ = 4,

respectively, where the function is continuous with respect to

x and differentiable at non-integer values in both cases.

(a) Arrival intensity θ = 2 (b) Arrival intensity θ = 4

Fig. 8: Cost function T (x|γ =
√
3/10) when τ = 1, pL = 3,

pE = 1 and w = 1.

Next, we would like to study the monotonicity of the cost

function T (x|γ) with respect to x. We first take the derivative

of T (x|γ) with respect to x when l − 1 < x < l for some

l = 1, 2, · · · , i.e.,

T ′(x|γ) = θl−1 (f(l|θ)− a(g(γ) + τ + w(pE − pL)))

a
(∑l−1

j=0 θ
j + (x− l + 1)θl

)2 .

Noting that θl−1

a(
∑l−1

j=0 θj+(x−l+1)θl)
2 > 0, ∀l = 1, 2, 3, · · · ,

we only need to consider the sign of f(l|θ) − a(g(γ) + τ +
w(pE−pL)) in T ′(x|γ). Then, we consider the following two

different cases:

209

(i) If −wmaxAmaxPL,max < a(g(γ) + τ + w(pE − pL)) <
f(1|θ), then we have f(l|θ) − a(g(γ) + τ + w(pE − pL)) >
0, ∀l ∈ N+ (recall that N+ denotes the set of natural numbers),

since f(l|θ) is non-decreasing with respect to l. Therefore, we

have T ′(x|γ) > 0, ∀x ∈ (l−1, l), ∀l ∈ N+, which implies that

T (x|γ) is increasing when x > 0. Since T (x|γ) is increasing

and continuous, we have x∗(γ; a, θ, τ, pL, pE) = 0.

(ii) If f(m|θ) ≤ a(g(γ) + τ + w(pE − pL)) < f(m+ 1|θ)
for some positive integer m, then by the monotone increasing

property of function f(l|θ), we have f(l|θ) − a(g(γ) + τ +
w(pE − pL)) ≤ 0, ∀0 ≤ l ≤ m and f(l|θ) − a(g(γ) + τ +
w(pE − pL)) > 0, ∀l > m. Therefore, we have T ′(x|γ) ≤
0, ∀x ≤ m and T ′(x|γ) > 0, ∀x > m. Hence T (x|γ) is non-

increasing and non-decreasing when x ≤ m and x > m,

respectively. Thus, we have x∗(γ; a, θ, τ, pL, pE) = m is the

optimal threshold.

Note that x∗(γ; a, θ, τ, pL, pE) is not necessarily unique.

For example, given a, θ, k, γ, τ , pL, pE and w, if f(m|θ) =
a(g(γ)+τ+w(pE−pL)) for some positive integer m, then the

optimal threshold could be any value between m and m+ 1,

i.e., x∗(γ; a, θ, τ, pL, pE) ∈ [m,m+ 1). As shown in Fig. 8a,

the optimal threshold can be any value between 1 and 2.

APPENDIX C

PROOF OF LEMMA 2

In this section, we will show that V (γ) =
EA,Θ,T,PL,PE

[Aα(x∗(γ;A,Θ, T, PL, PE))/c] is non-

increasing and continuous with respect to γ ∈ [0, 1].

The non-increasing property of V (γ) is proved

by showing that for each individual sample path,

aα(x∗(γ; a, θ, τ, pL, pE))/c is non-increasing with respect to

γ given any arrival rate a, arrival intensity θ, offloading latency

τ , local processing energy consumption pL and offloading

energy consumption pE . Indeed, by Lemma 1, we have

x∗(γ; a, θ, τ, pL, pE) = 0 if −wmaxAmaxPL,max < a(g(γ) +
τ + w(pE − pL)) < f(0|θ), and x∗(γ; a, θ, τ, pL, pE) = m
if f(m|θ) ≤ a(g(γ) + τ + w(pE − pL)) < f(m + 1|θ).
Hence, x∗(γ; a, θ, τ, pL, pE) is non-decreasing with respect

to γ. This together with the fact that α(x) is non-increasing

with respect to x, implies that aα(x∗(γ; a, θ, τ, pL, pE))/c
is non-increasing with respect to γ and hence V (γ) is

non-increasing.

Next, we show that V (γ) is continuous with respect to γ.

We will expand V (γ) by leveraging Lemma 1. To facilitate

our proof, we let A � (0, Amax], I � (0, Amax/Smin], T �
(0, Tmax], PL � (0, PL,max] and PE � (0, PE,max].

Note that we can rewrite V (γ) as follows:

V (γ) = EΘ,T,PL,PE

[
Ṽ (γ|θ, τ, pL, pE)

]
,

where

Ṽ (γ|θ, τ, pL, pE) � EA[Aα(x∗(γ;A,Θ, T, PL, PE))/c

|Θ = θ, T = τ, PL = pL, PE = pE].

Note that ∀θ ∈ I and ∀τ ∈ T , the function

Ṽ (γ|θ, τ, pL, pE) is bounded:

Ṽ (γ|θ, τ, pL, pE)
≤ EA [A/c|Θ = θ, T = τ, PL = pL, PE = pE] ≤ Amax/c.

By the Bounded Convergence Theorem, it is sufficient to

prove the continuity of function Ṽ (γ|θ, τ, pL, pE) with respect

to γ ∈ [0, 1] for any given θ ∈ I, τ ∈ T , pL ∈ PL and

pE ∈ PE . In the rest of the proof, we fix θ ∈ I, τ ∈ T ,

pL ∈ PL and pE ∈ PE . Noting that f(0|θ) = 0 and f(m|θ)
is non-decreasing with respect to m, and f(m|θ) ≥ mθ (from

(10)), there exists a non-negative integer M(γ) such that one

of the following inequalities holds:

U(Amax, γ, τ, pL, pE) ∈ (−wmaxAmaxPL,max, f(0|θ)),
U(Amax, γ, τ, pL, pE) ∈ [f(M(γ)|θ), f(M(γ) + 1|θ)),

where U(y, γ, τ, pL, pE) � y(g(γ) + τ + w(pE − pL)) for

some y > 0.

As such, we can partition the space of arrival rate A by

defining the following events:

F−1(γ)

�{a ∈ A : −ωmaxAmaxPL,max < U(a, γ, τ, pL, pE) < f(0|θ)},
Fm(γ)

�{a ∈ A : f(m|θ) ≤ U(a, γ, τ, pL, pE) < f(m+ 1|θ)},
where m = 0, 1, · · · ,M(γ).

If the event F−1(γ) happens, then we have

Ṽ (γ|θ, τ, pL, pE) = Ṽ−1(γ|θ, τ, pL, pE) according to

Lemma 1, where

Ṽ−1(γ|θ, τ, pL, pE) �
∫ Amax

0

ah(a|θ)α(0)
c

da.

Note that Ṽ−1(γ|θ, τ, pL, pE) is continuous since both a and

s are sampled from continuous random variables A and S,

respectively, and therefore h(a|θ) is a continuous conditional

probability density function for A given Θ = θ with θ = a/s,

which indicates that the integral is also continuous.

If the event ∪M(γ)
m=0 Fm(γ) happens, then we have

Ṽ (γ|θ, τ, pL, pE) =

EA[

M(γ)∑
m=0

Aα(m)/c · 1Fm(γ)|Θ = θ, T = τ, PL = pL, PE = pE]

=

M(γ)∑
m=0

Ṽm(γ|θ, τ, pL, pE), (11)

where the first step follows from Lemma 1 (i.e., if the event

Fm(γ) happens (m = 0, 1, · · · ,M(γ)), then the event F−1(γ)
can not happen, and x∗(γ; a, θ, τ, pL, pE) = m according to

Lemma 1.) and the second step is true for

Ṽm(γ|θ, τ, pL, pE) �
∫ f(m+1|θ)

g(γ)+τ+w(pE−pL)

f(m|θ)
g(γ)+τ+w(pE−pL)

ah(a|θ)α(m)

c
da,

210

when m = 0, · · · ,M(γ) − 1, h(a|θ) is the conditional

probability density function for A given Θ = θ, and

ṼM(γ)(γ|θ, τ, pL, pE) �
∫ Amax

f(M(γ)|θ)
g(γ)+τ+w(pE−pL)

ah(a|θ)α(M(γ))

c
da.

Note that if g(γ) + τ + w(pE − pL) ≤ f(1|θ)
(x∗(γ; a, θ, τ, pL, pE) = 0 according to Lemma 1), then

Ṽ (γ|θ, τ, pL, pE) is continuous, which follows directly from

the same argument if event F−1(γ) happens. Therefore, we

need to consider the case when g(γ) + τ + w(pE − pL) >
f(1|θ). In order to prove the continuity of Ṽ (γ|θ, τ, pL, pE)
when g(γ) + τ + w(pE − pL) > f(1|θ), we need to show

that limΔγ→0 Ṽ (γ+Δγ|θ, τ, pL, pE) = Ṽ (γ|θ, τ, pL, pE). By

the definition of M(γ), M(γ) is a non-negative integer M∗

satisfying the following equality
f(M∗|θ)

g(γ)+τ+w(pE−pL) ≤ Amax <
f(M∗+1|θ)

g(γ)+τ+w(pE−pL) . We have two cases: (i)
f(M∗|θ)

g(γ)+τ+w(pE−pL) <

Amax < f(M∗+1|θ)
g(γ)+τ+w(pE−pL) ; (ii)

f(M∗|θ)
g(γ)+τ+w(pE−pL) = Amax.

Case (i):
f(M∗|θ)

g(γ)+τ+w(pE−pL) < Amax < f(M∗+1|θ)
g(γ)+τ+w(pE−pL) .

We will first show that there exists a small δ > 0 such that

for any |Δγ| < δ, M(γ +Δγ) = M(γ) = M∗. Define ε1 �
Amax− f(M∗|θ)

g(γ)+τ+w(pE−pL) and ε2 � f(M∗+1|θ)
g(γ)+τ+w(pE−pL)−Amax.

Note that both ε1 and ε2 are strictly positive. By the continuity

of function 1
g(γ)+τ+w(pE−pL) with respect to γ, for a given

ε1 > 0, there exists δ1 > 0 such that for any |Δγ| < δ1,

we have
∣∣∣ f(M∗|θ)
g(γ+Δγ)+τ+w(pE−pL) −

f(M∗|θ)
g(γ)+τ+w(pE−pL)

∣∣∣ < ε1/2.

Similarly, there exists δ2 > 0, such that for any |Δγ| < δ2,

we have
∣∣∣ f(M∗+1|θ)
g(γ+Δγ)+τ+w(pE−pL) −

f(M∗+1|θ)
g(γ)+τ+w(pE−pL)

∣∣∣ < ε2/2.

Let δ = min{δ1, δ2}. For each Δγ ∈ [0, δ), by the increasing

property of g(·) with respect to γ, we have

f(M∗|θ)
g(γ +Δγ) + τ + w(pE − pL)

≤ f(M∗|θ)
g(γ) + τ + w(pE − pL)

< Amax,

f(M∗ + 1|θ)
g(γ +Δγ) + τ + w(pE − pL)

≥ f(M∗ + 1|θ)
g(γ) + τ + w(pE − pL)

− ε2/2 > Amax,

implying M(γ + Δγ) = M∗ = M(γ). Similarly, for each

Δγ ∈ (−δ, 0], we have

f(M∗|θ)
g(γ +Δγ) + τ + w(pE − pL)

≤ f(M∗|θ)
g(γ) + τ + w(pE − pL)

+ ε1/2 < Amax,

f(M∗ + 1|θ)
g(γ +Δγ) + τ + w(pE − pL)

≥ f(M∗ + 1|θ)
g(γ) + τ + w(pE − pL)

> Amax,

implying M(γ +Δγ) = M∗ = M(γ). Therefore, for |Δγ| <
δ, we have M(γ + Δγ) = M∗ = M(γ). From Eq. (11), we

have

Ṽ (γ +Δγ|θ, τ, pL, pE)− Ṽ (γ|θ, τ, pL, pE)

=

M(γ)∑
m=0

[
Ṽm(γ +Δγ|θ, τ, pL, pE)− Ṽm(γ|θ, τ, pL, pE)

]
.

For each m ∈ {1, . . . ,M(γ)− 1}, we have

lim
Δγ→0

Ṽm(γ +Δγ|θ, τ, pL, pE)

= lim
Δγ→0

∫ f(m+1|θ)
g(γ+Δγ)+τ+w(pE−pL)

f(m|θ)
g(γ+Δγ)+τ+w(pE−pL)

ah(a|θ)α(m)

c
da

=

∫ f(m+1|θ)
g(γ)+τ+w(pE−pL)

f(m|θ)
g(γ)+τ+w(pE−pL)

ah(a|θ)α(m)

c
da

=Ṽm(γ|θ, τ, pL, pE).
Additionally, we have

lim
Δγ→0

ṼM(γ)(γ +Δγ|θ, τ, pL, pE)

= lim
Δγ→0

∫ Amax

f(M(γ)|θ)
g(γ+Δγ)+τ+w(pE−pL)

ah(a|θ)α(m)

c
da

=

∫ Amax

f(M(γ)|θ)
g(γ)+τ+w(pE−pL)

ah(a|θ)α(m)

c
da

=ṼM(γ)(γ|θ, τ, pL, pE).

Therefore, we have limΔγ→0 Ṽ (γ + Δγ|θ, τ, pL, pE) =

Ṽ (γ|θ, τ, pL, pE), which implies the continuity of function

function V (γ).

Case (ii):
f(M∗|θ)

g(γ)+τ+w(pE−pL) = Amax. Note that Amax > 0,

so M∗ > 0. Let ε3 � f(M∗+1|θ)
g(γ)+τ+w(pE−pL) −

f(M∗|θ)
g(γ)+τ+w(pE−pL)

and ε4 � f(M∗|θ)
g(γ)+τ+w(pE−pL)−

f(M∗−1|θ)
g(γ)+τ+w(pE−pL) . Again, by the

continuity of function 1
g(γ)+τ+w(pE−pL) , there exists δ3 > 0,

such that
∣∣∣ f(M∗+1|θ)
g(γ+Δγ)+τ+w(pE−pL) −

f(M∗+1|θ)
g(γ)+τ+w(pE−pL)

∣∣∣ < ε3/2

holds for all |Δγ| < δ3. Similarly, there exists δ4 > 0,

such that
∣∣∣ f(M∗−1|θ)
g(γ+Δγ)+τ+w(pE−pL) −

f(M∗−1|θ)
g(γ)+τ+w(pE−pL)

∣∣∣ < ε4/2

holds for all |Δγ| < δ4. Let δ = min{δ3, δ4}.
For each Δγ ∈ [0, δ), we have

f(M∗|θ)
g(γ +Δγ) + τ + w(pE − pL)

≤ f(M∗|θ)
g(γ) + τ + w(pE − pL)

= Amax,

f(M∗ + 1|θ)
g(γ +Δγ) + τ + w(pE − pL)

≥ f(M∗ + 1|θ)
g(γ) + τ + w(pE − pL)

− ε3/2 > Amax,

implying M(γ + Δγ) = M∗ = M(γ). Following the same

line of argument for case (i), we have

lim
Δγ↓0

Ṽ (γ +Δγ|θ, τ, pL, pE) = Ṽ (γ|θ, τ, pL, pE). (12)

211

For each Δγ ∈ (−δ, 0), we have

f(M∗|θ)
g(γ +Δγ) + τ + w(pE − pL)

>
f(M∗|θ)

g(γ) + τ + w(pE − pL)
= Amax,

f(M∗ − 1|θ)
g(γ +Δγ) + τ + w(pE − pL)

≤ f(M∗ − 1|θ)
g(γ) + τ + w(pE − pL)

+ ε4/2 < Amax,

implying M(γ +Δγ) = M∗ − 1 = M(γ)− 1. Note that

ṼM(γ)(γ|θ, τ, pL, pE)

=

∫ Amax

f(M(γ)|θ)
g(γ)+τ+w(pE−pL)

ah(a|θ)α(M(γ))

c
da = 0,

where we utilize our condition that
f(M∗|θ)

g(γ)+τ+w(pE−pL) = Amax,

and M∗ = M(γ). From Eq. (11), we then have

Ṽ (γ +Δγ|θ, τ, pL, pE)− Ṽ (γ|θ, τ, pL, pE)

=

M(γ)−1∑
m=0

[
Ṽm(γ +Δγ|θ, τ, pL, pE)− Ṽm(γ|θ, τ, pL, pE)

]
.

Following the same line of argument for case (i), for each

m ∈ {0, 1, . . . ,M(γ)− 2}, we have

lim
Δγ↑0

Ṽm(γ +Δγ|θ, τ, pL, pE) = Ṽm(γ|θ, τ, pL, pE).

Additionally, we have

lim
Δγ↑0

ṼM(γ)−1(γ +Δγ|θ, τ, pL, pE)

= lim
Δγ↑0

∫ Amax

f(M(γ)−1|θ)
g(γ+Δγ)+τ+w(pE−pL)

ah(a|θ)α(m)

c
da

=

∫ Amax

f(M(γ)−1|θ)
g(γ)+τ+w(pE−pL)

ah(a|θ)α(m)

c
da

=ṼM(γ)−1(γ|θ, τ, pL, pE).
Together, we have

lim
Δγ↑0

Ṽ (γ +Δγ|θ, τ, pL, pE) = Ṽ (γ|θ, τ, pL, pE). (13)

Equations (12) - (13) imply that limΔγ→0 Ṽ (γ +

Δγ|θ, τ, pL, pE) = Ṽ (γ|θ, τ, pL, pE).
We complete the proof for the continuity of function

Ṽ (γ|θ, τ, pL, pE), which implies the continuity of function

function V (γ).

APPENDIX D

PROOF OF THEOREM 2

Under our proposed DTU Algorithm, when the “estimated”

server utilization γ̂t reaches the MFNE γ∗, then it will stay at

γ∗ afterward. As such, we focus on the case when γ̂t �= γ∗ in

the rest of the proof. Next, we exhibit the monotone properties

of γ̂t in two different cases, i.e., γ̂t < γ∗ and γ̂t > γ∗. Then,

by comparing |γ̂t − γ∗| with a convergent sequence {ηt} in

our proposed DTU Algorithm, we obtain the desired results.

We recall that x∗(γ∗; a, θ, τ, pL, pE) is the optimal threshold

for the system with the arrival rate a, the arrival intensity θ,

local processing energy consumption pL, offloading energy

consumption pE , the mean offloading latency τ , and the server

utilization γ∗. We consider two different cases, i.e., (i) γ̂t >
γ∗; (ii) γ̂t < γ∗.

(i) If γ̂t > γ∗, then we have a(g(γ̂t) + τ +w(pE − pL)) >
a(g(γ∗) + τ + w(pE − pL)). By Lemma 1 and our DTU

Algorithm (cf. (5)), we have x̂(t+1) ≥ x∗(γ∗; a, θ, τ, pL, pE).
Therefore, by the non-increasing property of offloading prob-

ability α(x), we have α(x̂(t+1)) ≤ α(x∗(γ∗; a, θ, τ, pL, pE)),
which implies that the next server utilization γt+1 ≤ γ∗ and

hence γt+1 < γ̂t. Thus, we have γ̂t+1 = γ̂t − ηt (cf. (4)). In

this case, γ̂t will decrease in each iteration until it is less than

γ∗. Therefore, there exists a t1 > 0 such that γ̂t+t1 < γ∗.

(ii) If γ̂t < γ∗, then we have a(g(γ̂t) + τ + w(pE −
pL)) < a(g(γ∗) + τ + w(pE − pL)). Similar to the first

case, we have x̂(t+1) ≤ x∗(γ∗; a, θ, τ, pL, pE), which implies

that α(x̂(t+1)) ≥ α(x∗(γ∗; a, θ, τ, pL, pE)). Then, we have

γt+1 ≥ γ∗ and hence γt+1 > γ̂t. Then according to (4), we

have γ̂t+1 = min{γ̂t + ηt, 1}. In this case, γ̂t will increase

after this iteration until it is greater than γ∗. Therefore, there

exists a t2 > 0 such that γt+t2 > γ∗.

Hence, under our proposed DTU Algorithm, we have

γ̂t+1 =

{
γ̂t − ηt, if γ̂t > γ∗;
min{γ̂t + ηt, 1}, if γ̂t < γ∗.

Moreover, we have |γ̂t+ti − γ∗| < |γ̂t+ti−1 − γ̂t+ti | ≤
ηt+ti , ∀i = 1, 2. Since sequence {ηt} is non-increasing and

bounded, then by Monotone Convergence Theorem, {ηt} is

convergent. Indeed, we will show below that ηt → 0 as t → ∞
by contradiction.

Suppose that {ηt} converges to a constant d > 0. According

to the update rule of ηt, there exists a constant t0 such that

∀t ≥ t0, ηt = d. Let us focus on t ≥ t0 and consider the

following two cases: (i) γ̂t > γ∗; (ii) γ̂t < γ∗.

(i) If γ̂t > γ∗: Note that γ̂t+t1 < γ∗, so we have γ̂t+t1+1 =
min{γ̂t+t1 +d, 1}. Suppose that γ̂t+t1 +d > 1. Since γ̂t+t1 =
γ̂t+t1−1−d, we have γ̂t+t1−1 = γ̂t+t1+d > 1, which contracts

with the fact that γ̂t+t1−1 ≤ 1. Thus γ̂t+t1 + d > 1 does not

hold. Therefore, γ̂t+t1 + d ≤ 1, and thus we have γ̂t+t1+1 =
γ̂t+t1 + d = γ̂t+t1−1 − d + d = γ̂t+t1−1. According to the

update rule for the counter L (line 5 - 6 in DTU algorithm),

L is increased by 1 at t+t1+1. Thus ηt+t1+1 is updated with

a value smaller than d, which contracts with the assumption

that ηt = d for all t ≥ t0.

(ii) If γ̂t < γ∗: Recall that γ̂t+t2 = min{γ̂t+t2−1 + d, 1} >
γ∗, we have γ̂t+t2+1 = γ̂t+t2 −d. Suppose that γ̂t+t2−1+d <
1, we have

γ̂t+t2+1 = γ̂t+t2 − d = γ̂t+t2−1 + d− d = γ̂t+t2−1.

Following the same line of argument as the case of (i), we

can show that ηt+t2+1 is updated with a value smaller than d,

212

which again contracts with our assumption of ηt = d for all

t ≥ t0.
Now let us consider the case γ̂t+t2−1 + d ≥ 1. We then

have γ̂t+t2 = 1 > γ∗. Thus

γ̂t+t2+1 = γ̂t+t2 − d = 1− d < γ∗,

where the inequality follows from the fact that γ∗ >
γ̂t+t2−1 ≥ 1− d. By the update rule, we have

γ̂t+t2+2 = min{γ̂t+t2+1 + d, 1} = min{1− d+ d, 1}
= 1 = γ̂t+t2 .

Again we reach the contradiction.
Therefore, the assumption that ηt → d with d > 0 does

not hold. That is, ηt → 0 as t → ∞. Then, for any ε > 0
there exists t̃ > 0 such that ηt+ti+t̃ < ε, which implies that

|γ̂t+ti+t̃ − γ∗| < ε. Therefore, our proposed DTU Algorithm

can eventually converge to the MFNE γ∗.

REFERENCES

[1] K. N. Swaroop, K. Chandu, R. Gorrepotu, and S. Deb, “A health
monitoring system for vital signs using iot,” Internet of Things, vol. 5,
pp. 116–129, 2019.

[2] P. Verma and S. K. Sood, “Fog assisted-iot enabled patient health
monitoring in smart homes,” IEEE Internet of Things Journal, vol. 5,
no. 3, pp. 1789–1796, 2018.

[3] A. Sengupta, S. S. Gill, A. Das, and D. De, “Mobile edge computing
based internet of agricultural things: A systematic review and future
directions,” Mobile Edge Computing, pp. 415–441, 2021.

[4] B. Omoniwa, R. Hussain, M. A. Javed, S. H. Bouk, and S. A. Malik,
“Fog/edge computing-based iot (feciot): Architecture, applications, and
research issues,” IEEE Internet of Things Journal, vol. 6, no. 3, pp.
4118–4149, 2018.

[5] L. Kong, J. Tan, J. Huang, G. Chen, S. Wang, X. Jin, P. Zeng, M. K.
Khan, and S. K. Das, “Edge-computing-driven internet of things: A
survey,” ACM Computing Surveys (CSUR), 2022.

[6] S. Guo, J. Liu, Y. Yang, B. Xiao, and Z. Li, “Energy-efficient dynamic
computation offloading and cooperative task scheduling in mobile cloud
computing,” IEEE Transactions on Mobile Computing, vol. 18, no. 2,
pp. 319–333, 2018.

[7] H. Wu, Y. Sun, and K. Wolter, “Energy-efficient decision making for
mobile cloud offloading,” IEEE Transactions on Cloud Computing,
vol. 8, no. 2, pp. 570–584, 2018.

[8] X. Sun and N. Ansari, “Latency aware workload offloading in the
cloudlet network,” IEEE Communications Letters, vol. 21, no. 7, pp.
1481–1484, 2017.

[9] X. Hu, L. Wang, K.-K. Wong, M. Tao, Y. Zhang, and Z. Zheng, “Edge
and central cloud computing: A perfect pairing for high energy efficiency
and low-latency,” IEEE Transactions on Wireless Communications,
vol. 19, no. 2, pp. 1070–1083, 2019.

[10] X. Tao, K. Ota, M. Dong, H. Qi, and K. Li, “Performance guaranteed
computation offloading for mobile-edge cloud computing,” IEEE Wire-
less Communications Letters, vol. 6, no. 6, pp. 774–777, 2017.

[11] Y. Chen, N. Zhang, Y. Zhang, X. Chen, W. Wu, and X. S. Shen, “Energy
efficient dynamic offloading in mobile edge computing for internet of
things,” IEEE Transactions on Cloud Computing, 2019.

[12] Q. Chen, X. Xu, H. Jiang, and X. Liu, “An energy-aware approach for
industrial internet of things in 5g pervasive edge computing environ-
ment,” IEEE Transactions on Industrial Informatics, vol. 17, no. 7, pp.
5087–5097, 2020.

[13] H. Wu, X. Lyu, and H. Tian, “Online optimization of wireless powered
mobile-edge computing for heterogeneous industrial internet of things,”
IEEE Internet of Things Journal, vol. 6, no. 6, pp. 9880–9892, 2019.

[14] R. Lin, T. Xie, S. Luo, X. Zhang, Y. Xiao, B. Moran, and M. Zuk-
erman, “Energy-efficient computation offloading in collaborative edge
computing,” IEEE Internet of Things Journal, 2022.

[15] M. J. Neely, “Stochastic network optimization with application to
communication and queueing systems,” Synthesis Lectures on Commu-
nication Networks, vol. 3, no. 1, pp. 1–211, 2010.

[16] Z. Liao, J. Peng, J. Huang, J. Wang, J. Wang, P. K. Sharma, and
U. Ghosh, “Distributed probabilistic offloading in edge computing for
6g-enabled massive internet of things,” IEEE Internet of Things Journal,
vol. 8, no. 7, pp. 5298–5308, 2020.

[17] Y. Wang, P. Lang, D. Tian, J. Zhou, X. Duan, Y. Cao, and D. Zhao,
“A game-based computation offloading method in vehicular multiaccess
edge computing networks,” IEEE Internet of Things Journal, vol. 7,
no. 6, pp. 4987–4996, 2020.

[18] M. Shifrin, R. Atar, and I. Cidon, “Optimal scheduling in the hybrid-
cloud,” in 2013 IFIP/IEEE International Symposium on Integrated
Network Management (IM 2013). IEEE, 2013, pp. 51–59.

[19] W. Lin and P. Kumar, “Optimal control of a queueing system with
two heterogeneous servers,” IEEE Transactions on Automatic control,
vol. 29, no. 8, pp. 696–703, 1984.

[20] X. Qin, B. Li, and L. Ying, “Distributed threshold-based offloading for
large-scale mobile cloud computing,” in IEEE INFOCOM 2021-IEEE
Conference on Computer Communications. IEEE, 2021, pp. 1–10.

[21] S. Stidham, “Optimal control of admission to a queueing system,” IEEE
Transactions on Automatic Control, vol. 30, no. 8, pp. 705–713, 1985.

[22] Y. Wang, J. Yang, X. Guo, and Z. Qu, “A game-theoretic approach
to computation offloading in satellite edge computing,” IEEE Access,
vol. 8, pp. 12 510–12 520, 2019.

[23] R. Dong, C. She, W. Hardjawana, Y. Li, and B. Vucetic, “Deep learning
for hybrid 5g services in mobile edge computing systems: Learn from a
digital twin,” IEEE Transactions on Wireless Communications, vol. 18,
no. 10, pp. 4692–4707, 2019.

[24] S.-W. Ko, K. Han, and K. Huang, “Wireless networks for mobile edge
computing: Spatial modeling and latency analysis,” IEEE Transactions
on Wireless Communications, vol. 17, no. 8, pp. 5225–5240, 2018.

[25] L. Liu, Z. Chang, X. Guo, and T. Ristaniemi, “Multi-objective opti-
mization for computation offloading in mobile-edge computing,” in2017
IEEE Symposium on Computers and Communications (ISCC). IEEE,
2017, pp. 832–837.

[26] C. Mouzouni, “On quasi-stationary mean field games models,” Applied
Mathematics & Optimization, vol. 81, no. 3, pp. 655–684, 2020.

[27] D. Narasimha, S. Shakkottai, and L. Ying, “Age-dependent distributed
mac for ultra-dense wireless networks,” IEEE/ACM Transactions on
Networking, 2023.

[28] M. Huang, R. P. Malhamé, and P. E. Caines, “Large population
stochastic dynamic games: closed-loop mckean-vlasov systems and the
nash certainty equivalence principle,” Communications in Information
& Systems, vol. 6, no. 3, pp. 221–252, 2006.

[29] J.-M. Lasry and P.-L. Lions, “Mean field games,” Japanese journal of
mathematics, vol. 2, no. 1, pp. 229–260, 2007.

[30] J. Doncel, N. Gast, and B. Gaujal, “Discrete mean field games: Existence
of equilibria and convergence,” arXiv preprint arXiv:1909.01209, 2019.

[31] A. Cecchin, P. D. Pra, M. Fischer, and G. Pelino, “On the convergence
problem in mean field games: a two state model without uniqueness,”
SIAM Journal on Control and Optimization, vol. 57, no. 4, pp. 2443–
2466, 2019.

[32] M. Laurière and L. Tangpi, “Convergence of large population games to
mean field games with interaction through the controls,” arXiv preprint
arXiv:2004.08351, 2020.

[33] Q. Xie, Z. Yang, Z. Wang, and A. Minca, “Learning while playing
in mean-field games: Convergence and optimality,” in International
Conference on Machine Learning. PMLR, 2021, pp. 11 436–11 447.

[34] D. Narasimha, S. Shakkottai, and L. Ying, “A mean field game analysis
of distributed mac in ultra-dense multichannel wireless networks,”
IEEE/ACM Transactions on Networking, vol. 28, no. 5, pp. 1939–1952,
2020.

[35] “YOLO: Real-Time Object Detection.” [Online]. Available: https:
//pjreddie.com/darknet/yolo/

[36] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,”
arXiv, 2018.

[37] “The PASCAL Visual Object Classes Challenge 2012 (VOC2012).”
[Online]. Available: http://host.robots.ox.ac.uk/pascal/VOC/voc2012/
index.html

213

