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Abstract—This paper considers the design and decoding of
polar codes for general classical-quantum (CQ) channels. It fo-
cuses on decoding via belief-propagation with quantum messages
(BPQM) and, in particular, the idea of paired-measurement
BPQM (PM-BPQM) decoding. Since the PM-BPQM decoder
admits a classical density evolution (DE) analysis, one can use
DE to design a polar code for any CQ channel and then
efficiently compute the trade-off between code rate and error
probability. We have also implemented and tested a classical
simulation of our PM-BPQM decoder for polar codes. While the
decoder can be implemented efficiently on a quantum computer,
simulating the decoder on a classical computer actually has
exponential complexity. Thus, simulation results for the decoder
are somewhat limited and are included primarily to validate our
theoretical results.

I. INTRODUCTION

The study of channel coding for CQ channels dates back
to Holevo, Schumacher, and Westmoreland [1] and [2]. For a
comprehensive introduction, see [3], [4]. This paper provides a
detailed description of how to efficiently design (on a classical
computer) and decode (on a quantum computer) polar codes
for classical-quantum (CQ) channels. Practical applications
motivating coding for CQ channels can be found in [5]-[7].

Polar codes for CQ channels were first introduced in
2012 [8]. A variety of follow-up papers were able to extend
and improve these results [5], [9]-[11]. Although these papers
describe a design and decoding process for polar codes on CQ
channels in theory, efficient algorithms (e.g., polynomial time
in the block length) are not described for either of these tasks.

In 2017, Renes describes a belief-propagation with quantum
messages (BPQM) algorithm that provides an optimal decod-
ing method for binary linear codes with tree factor graphs
on the pure-state channel (PSC) [12]. That work notes that
BPQM could allow efficient decoding of polar codes on the
PSC. BPQM is further explored in [13] and extended to be
more efficient by Renes and Piveteau in [14]. Recently, an
extension of BPQM for general CQ channels was introduced
and called paired-measurement BPQM (PM-BPQM) [15]. This
algorithm can be applied to any symmetric binary-input CQ
channel and is equipped with a classical DE analysis of its
decoding performance. In [15], this DE analysis is used to
compute noise thresholds for PM-BPQM decoding of low-
density parity-check (LDPC) codes [16] on CQ channels.

This research was supported in part by the National Science Foundation
(NSF) under Grants 1908730, 2106213, and 2212437. Any opinions, findings,
and conclusions or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the NSF.

In this paper, we use DE to design polar codes for PM-
BPQM decoding and determine their achievable rates. We
also report results for the classical simulation of our PM-
BPQM decoder for polar codes. Although this decoder can
be implemented efficiently on a quantum computer, directly
simulating the decoder on a classical computer has exponential
complexity in the block length. Thus, our simulation results are
limited to very short block lengths and are included mainly to
validate our DE results. Additional information can be found
in an extended version of this paper [17].

II. BACKGROUND
A. Preliminaries

We define the set of natural numbers by N = {1,2,...}
and use the shorthand [m] :== {1,...,m} for m € N. Let H,
denote the n-dimensional Hilbert space C". A quantum pure
state is a unit length vector |¢)) € H,,. For quantum systems
Ay, As ..., A, we denote the joint quantum state of n qubits,
1¥) 4, A,...a, Where we follow the convention that the 1% qubit
is associated with the system A, the ond qubit with A5 and
so on. When [¢) 4 4. 4 is not entangled, we can use the
Kronecker product to write the joint state as

V)4 4p.n, = V1)a, ® - |¥n)a, -

A random ensemble of m quantum pure states in H,, is de-
noted by ¥ = {p;, [¢;) }|™,, where p; denotes the probability
of choosing the pure state |¢);). This ensemble can also be rep-
resented by the density matrix p =~ | p; [ )] € C™*™.
All such density matrices are positive semidefinite with unit
trace and we use D(H,,) to denote this subset. The unitary
evolution of a quantum state |¢)) € H,, is described by the
mapping |¢) — U |¢), where U € C"*™ is a unitary. For the
pure state ensemble W, this evolution results in the modified
ensemble U/ = {p;, U |1;) }|7™, whose density matrix is

p= ZMU i) | UT = UpUT,
=1

where U' is the Hermitian transpose of U. We denote the
Pauli matrices by

o1 o =] [t o
Oy — 1 0 ,O'y.— i 0 e 0 1|

Definition 1: A binary symmetric CQ (BSCQ) channel
is defined by the mapping W : {0,1} — D(H,) from
the binary classical input z € {0,1} to the density matrix



W(z) € D(H,) of the quantum output and a unitary U
satisfying U? = I. The unitary defines the symmetry constraint
via W(1) = UW(0)UT.

Lemma 2 ([18, Appendix A]): Any BSCQ channel that
outputs a qubit is unitarily equivalent to the qubit channel
W :{0,1} — D(Haz) satisfying W (z) = oZp(d,v)oz with

|4
p(6,7) = [ v 1-5 ]
for some & € [0,1] and v € C satisfying |y]* < 6(1 — 9).

This representation enables one to characterize any qubit
BSCQ channel using only two parameters ¢ and ~.

Definition 3: An m-outcome projective measurement of a
quantum system in H,, is defined by a set of m orthogonal
projection matrices II; € C™*" satisfying II;II; = ¢; ;II; and
> ;1Lj = I, where I, is the n X identity matrix. We denote
m

j=1-

Applying the measurement II to the quantum state p results
in a random outcome J and the probability of the event J = j
is given by Tr(IL,;p). The post-measurement state, conditioned
on the event J = j, is given by II,;pIl; /Tr(IL;p).

Consider a hypothesis test to distinguish between m pos-
sible quantum states defined by ® = {p;, p;}|/L;, where the
4™ hypothesis has prior probability p; and density matrix p;.
For a projective measurement I1, where II; is associated with
hypothesis p;, the probability of choosing correctly is

such a measurement by IT = {IT,}|

P(®,11) = > p;Tr(Ip;).
j=1

Definition 4: The Helstrom measurement is the minimum-
error measurement to distinguish between two density matrices
po,p1 € D(H,) when pg has prior probability p. This
measurement maximizes the success probability of the test by
forming projection operators onto the positive and negative
eigenspaces of M = ppg — (1 — p)p;. Formally, it is defined
by Iy = {11, 1, — 1, }, where

M= Y [o)v|
lvyevy
where, Vi = {|v) € H,, | (v|v) =1,3IA >0, M |[v) = A |v)}.
Lemma 5 ([15, Lemma 6]): Consider a a BSCQ channel W :
{0,1} — D(Hay,,) with equiprobable outputs where W (z) =
U?pU=. Then, the Helstrom measurement 11 p is defined by

n—1 n—1
Ty =Y o)l Y U lo)w,| U
=0 =0

where {|v;) ;7;01 is the set of eigenvectors for W (0) — W (1)
with non-negative eigenvalues.

Remark 6: For a qubit BSCQ with parameters (J,), the
error rate of the Helstrom measurement is 9.

B. Paired-Measurement BPOM

Paired-measurement BPQM (PM-BPQM) was introduced
in [15] as a generalization of BPQM [12].

Lemma 7 ([15, Lemma 6]): Consider the Helstrom measure-
ment to distinguish between W (0) and W (1) for the BSCQ
channel W : {0,1} — D(H,). One can achieve the same
error rate by first implementing

I = { oo + U Jo;)w; | U |
and then, if the first outcome is j, implementing
11() = { logXvsl U Jo;o; | U }.

Lemma 8 ([15, Lemma 7]): Consider a BSCQ channel W :
{0,1} — D(H,,) with W(0) = p and equiprobable inputs.
Then, the channel followed by the paired measurement My
gives a distinguishable mixture of symmetric qubit channels
defined by

n—1

Jj=0

m—1
2 Y pi(oipoi @ i),
j=0
where the jM paired outcome has probability p; =
Tr [(|vj)vj|+U |v;)v;| U)p] and post-measurement density
matrix

Pj =

1 ( (ilplvg) — (vilUplvs) )
p; \(jlpU |v;)  (v;|UpU |v;) )

From Lemma 2, we can identify the parameters of p; via

1 1
0; = — (vi|plvs), v = —(v;|Up|vj) .
J p]<J| |]> J pj<]| |]>

Now, we will describe the channel combining operations
that are used to define the PM-BPQM updates [12], [15].
For binary CQ channels W, W', the check-node and bit-node
channel combining operations are defined by

WaWE) = Y WeoHeW ) o
z'€{0,1}
W@ W(z)=W(z) e W(). 2)

Lemma 9: For qubit BSCQ channels W and W', using the
paired measurement to distinguish between [WW & W’](0) and
[W m W’](1) is equivalent to the unitary operation

1 0 0 1

1 =
c_L]-10 01
Z2lo 11 0
0 1 -10

to get 7 := C[W @ W’](2)CT followed by measurement of
the second qubit. This results in the state
HorIly + My r1l =Y p% (02p(62,4)os @ |5)il) ,
j€{0,1}

where Iy = I, ® |0)0] and II; = Iy — . If W and W’ have
the channel parameters (d,v) and (§’,7’), then we can define
lvg) = %(1,0,0, 1) and |v;) = %(—1,0,0,1) to compute
p;(0,7.9",7")

= Tr(([v;Xvj| + 00 ® Iz [v;)v;] 00 @ L) (W @ W)[0]),



52(6,7,8',7) = = (vy] (W @ W) [0]|vy),
J
V2(5,3,8,7) = = (03] (00 © L)W @ W)[0] o).
j

Remark 10: We call unitary C' the check-node unitary be-
cause it compresses the decision information from the check-
node combining operation into the first qubit while keeping the
reliability information in the second qubit. It is worth noting
that the check-node unitary does not depend on the parameters
of W and W'.

Lemma 11: For qubit BSCQ channels W and W’ with pa-
rameters (d,v) and (0’,7") respectively, implementing paired
measurement to distinguish between [W @ W’](0) and [W &
W’](1) is equivalent to implementing the unitary V =
V(8,7,8,7) to get 7' = V[W @ W'](2)VT followed
by measurement of the second qubit. Here, the rows of
V(d,7,d’,v') are defined, from top to bottom, by |v)), |v]),
(04 ® 04)|v) and (0, ® 04)|v]) in terms of the paired-
measurement eigenvectors |v()) and |v]) that span the positive
eigenspace of (W @ W')[0] — (W @ W')[1]. This results in
the state

H()T/HO + H]T’Hl :Z
je{0,1}
where IIy = Iy ® |0)0], IT; = I — Iy, and we have
PP (8,7,8',7")
= ([} + 02 © 02 [0 | 02 @ 02) (W @ W)[0)

vy (02p(57 75)oz @ 17)).

1
57 6.1,8.7) = g (5 (W@ WI[0] o)
J

£ 1
V(6a7a6/77/) = F <U;| (Ux & O'm)(W ® W,)[O] |'U‘;> .
J

Remark 12: The unitary V(§,7,d’,7') is called the bit-
node unitary. Similar to the check-node unitary, it compresses
the decision information from the bit-node channel combining
into the first qubit while keeping the reliability information
in the second qubit. Unlike the check-node unitary C, the
eigenvectors |vj) and |v]) depend on the channel parameters
and thus V' (d,v,0’,~’) does as well [15].

C. Density Evolution for Paired-Measurement BPOM

Density evolution (DE) is a tool widely used by coding
theorists to analyze the asymptotic performance of BP de-
coding for long codes chosen from certain families [19]. For
BSCQ channels, the paired measurement [18] compresses the
decision information from check-node and bit-node combining
into the first qubit while keeping reliability information in
the second qubit. By tracking how the message reliability
evolves through this process, one can use DE to analyze
the performance of PM-BPQM decoding for a code whose
factor graph is a tree. Applying DE to a long code, whose
factor graph is a tree with sufficiently large depth, results in
a threshold phenomenon that allows one to estimate the noise

threshold (i.e., the maximum noise level where DE predicts
successful decoding) for families of codes. In [18], this was
applied to regular LDPC codes on CQ channels with PM-
BPQM decoding.

D. Polar Codes

Polar codes were introduced by Arikan in 2009 as the
first deterministic construction of capacity-achieving codes for
binary memoryless symmetric (BMS) channels [20]. The polar
transform of length N = 2" is denoted by Gy £ ByGS™
where By is N x IN bit reversal matrix [20, Sec. VIL.B] and
GS™ is n-fold tensor product of 2 x 2 binary matrix

A[1 0
GQ_L J.

Polar codes work by using the polar transform Gy to encode a
vector u € {0, 1} whose values are free on a subset A C [N]
of information positions but restricted to have fixed values on
the complementary set A° = [N]\ A of frozen positions.
For the frozen positions, the fixed values are shared with the
receiver in advance to aid the decoding process.

Polar codes can achieve capacity on BMS channels under
low-complexity successive-cancellation (SC) decoding, where
one decodes the bits uj,us, ... in order assuming all past de-
coding decisions are correct but that no information is known
about future v values. The performance of this approach is
analyzed by recursively defining the effective channels seen
by the SC decoder assuming all past decisions are correct.

Polar codes were extended to CQ channels by Wilde and
Guha [8]. Similar to the classical case, one can recursively
define effective channels that characterize the performance of
successive cancellation (SC) decoding. When decoding the i
bit of a length-V polar code, the designed effective channel [8,
p. 1178] for a CQ channel W is defined by

N
- Y |u;1><ual|®(®W<[quh>)-

UNZ‘E{O,I}N_I =1

WA (us)

The SC decoder implements the implied sequence of Helstrom
measurements indexed by the information bits in A. One
difference from the classical case is that the effective channels
encountered during decoding may differ from the designed ef-
fective channels even when all past decisions are correct. This
is because the sequential measurement process can disturb the
codeword state even when the decision is correct. In particular,
the channel seen by the decoder equals the designed effective
channel if all earlier bits are frozen (i.e., [i — 1] C .A°). When
the set A of information channels is selected to achieve a
sufficiently low error rate, the non-commutative union bound
(e.g., see [21]-[23]) shows that this disturbance is negligible.

III. PM-BPQM AND POLAR CODES
A. PM-BPQM DE for Polar Code Design

To design a polar code for a CQ channel assuming SC
decoding based on PM-BPQM, we implement PM-BPQM DE
for the BSCQ channel via Monte Carlo simulation.



Let W](\;) refer to the effective channel experienced by the i
information bit of a length-/V polar code assuming all previous
bits are frozen. The input-output law for this channel can be
computed recursively using

(2i-1) _ 1/ (@)
Wy =Wy Wy

Wz(v?i) = WJ(\;}z ® W](\;}Q’

where the check-node and bit-node update rules are defined
by Eq. (1) and Eq. (2). For a code of length N = 2", this
requires n levels of recursion starting from W = Wl(l)

At each level of the recursion, one computes a representa-
tion of the new channels via check-node and bit-node updates
from representations of the channels at the previous level.
This approach has two key issues. First, the channels involved
may not have simple representations. While any classical BMS
channel can be represented as a mixture of binary symmetric
channels (i.e., a distribution over [0, %]) [19], the set of BSCQ
channels does have such a simple description. Second, the
set of possible channel parameters grows very rapidly and is
expensive to track.

In this work, the first issue is resolved by using the subopti-
mal PM-BPQM decoder because its intermediate channels are
all qubit BSCQ channels that are parameterized by two real
numbers (0, 7). The second issue can also occur with classical
channels and is typically resolved by using Monte Carlo DE
(known as population dynamics in statistical physics [24]) to
approximate the answer efficiently [25]. The idea of Monte
Carlo DE is to approximate distributions over channel param-
eters by bags of M samples (i.e., a uniform distribution over
a length-M list of channel parameters).

Consider a bag B = {(;,7;)}}L, containing M pairs of
real numbers corresponding to the parameters of different qubit
BSCQ channels. Then, we define the check-node and bit-node
updates of B as follows.

Definition 13: The check-node update B® = {(5;,7})}}L,
of B be constructed as follows. For each element (J;,7;) €
B, we choose another random element (Jx(;), Vx(j))» Where
7 : [M] — [M] is a uniform random permutation. Then, we
apply the check-node channel combining operation on the two
implied qubit BSCQs. The parameters of the resulting qubit
BSCQ are given (for a € {0,1}) by

(OB (31,95 Oniys V() VE (855 % Oy V(i)

with probability pZ’(d,~,d’,7'). The j-th value (97, ;) of B¥
is set by choosing one of the two according to p2.

Definition 14: The bit-node update B® = {(6},~})}}L, of
B is constructed analogously to the check-node update. In
particular, the steps are identical but all expressions use the &
superscript rather than the & superscript.

Now, we consider the design of an (N, K') polar code for
a qubit BSCQ with parameters (0,~). We implement the DE
design of the code using the following steps.

1)) BO,I — {(53"7]') jl\il with (5]"7]') = (57 ’Y) for j € [M]

2) For k in {1,...,logy N}:

a) Foriin {1,...,2F 1}

i) Compute check-node update: By ;1 ¢ B_ 14
ii) Compute bit-node update: By, 2; < B,(?_M '
3) Foriin {1,...,N}:
a) Using By, ; — {(8;,7;)} )L,
b) Compute: &; + =7 Z;Vil 0
4) For a length-N polar code with K information bits, let
A={i € [N]|e <a} and choose a so |A] = K.

We note that the DE for PM-BPQM decoding of the
effective channel W](\;) assumes that we make hard decisions
about the channel reliability at each stage of decoding (e.g., it
measures the second qubit after applying the C' or V unitary
at each stage). Under this assumption, B,, ; approximates the
distribution of the channel parameters seen when decoding U;
given the observation from W](\;). Since the Helstrom error rate
for a qubit BSCQ with parameters (¢,7) is J, the expected
Helstrom error rate for W](\?) under PM-BPQM decoding is
approximated by ;. Thus, the design method approximates
the expected error rate of each effective channel and then
chooses the K information bits whose effective channels have
the smallest error rates.

IV. NUMERICAL RESULTS FOR POLAR CODE DESIGN

In Fig. 1 and Fig. 2, we plot the code rate achievable
by the PM-BPQM decoder for length-1024 polar codes. Our
results consider channels with ¢ € {0.07,0.09} and a range
of v. We also compare the results with a measure first (MF)
strategy that uses a classical polar code designed for the binary
symmetric channel. Its curve is labeled MF:UB because it
uses the classical union bound. All codes are designed under
a union-bound constraint on the block-error probability of 0.1.

Since the union bound for classical and quantum events
differs roughly by a factor of 4 [21]-[23], a fair comparison
is challenging and we make two different unfair comparisons.
The curve labeled PM-BPQM:UB ignores the factor of 4 and
uses the classical union bound to enforce the block error
constraint. Comparing it with the MF:UB curve is somewhat
unfair to MF strategy. The curve labeled PMBPQM:NCUB
uses Gao’s bound [21]. Comparing it with the MF:UB curve
gives MF strategy an unfair advantage. In both cases, the PM-
BPQM decoder achieves a higher rate than the hard-decision
decoder for large values of  but the transition point increases
for the non-commutative union bound.

In [17], one can find additional information such as the
channel error rates as a function of block length in order
to visualize polarization. The capacity of the qubit BSCQ is
compared with the hard-decision capacity in [17].

V. SIMULATION OF THE PM-BPQM POLAR DECODER

The PM-BPQM decoding process is assumed to measure
the reliability information of intermediate channels during
decoding [15]. While these measurements do not affect the
performance of the targeted information bit (e.g., the first
non-frozen bit or the root node of an LDPC code tree),
they do disturb the quantum state and hurt the performance
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Fig. 1. Comparison of PM-BPQM and MF polar decoder for N = 1024

on qubit BSCQ channels with § = 0.07 and variable ~ under a union-bound
block-error constraint of 0.1.

of later bits (e.g., the second non-frozen bit). It is well-
known that this degradation can be avoided by delaying the
intermediate measurements using the quantum principle of
deferred measurement [12], [13].

The cost of deferring measurements is that all unitary opera-
tions done after a deferred measurement must be implemented
as conditional unitary operations that depend on the system
that was not measured. This results in conditional unitary op-
erations that depend on many qubits. While such operations are
difficult to realize on physical quantum computers, they can
be implemented with relatively low complexity in a classical
simulation of a quantum computer. This is the approach we
use in our simulation code. For a physical quantum computer,
Renes and Piveteau recently described another approach that
achieves quadratic complexity by using reliability registers in
the decoder to reduce the burden of conditioning [14].

In [17], we describe in detail the decoding process with
deferred measurements for a length-4 polar code. We provide
descriptions both for BPQM on the pure-state channel and for
PM-BPQM on a qubit BSCQ channel. We compare the perfor-
mance of this decoder (by simulating the full quantum system)
with the DE calculation (which only uses the expressions in
Lemmas 9 and 11. The results can be found in Fig. 3 where
we plot the Helstrom error rate corresponding to each channel
between DE output and the PM-BPQM based polar decoder.

VI. CONCLUSION

In this paper, we consider the design and decoding of
polar codes on general CQ channels. Our approach is based
on analyzing and implementing the suboptimal PM-BPQM
decoder. On the analysis side, we use DE to design polar codes
for general CQ channels under PM-BPQM decoding. This
process can be easily implemented on a classical computer
and allows one to explore the achievable trade-off between
rate and block-error probability.

We have also implemented the PM-BPQM polar decoder
for arbitrary IV in Python. It consists of a classical recursive
algorithm that controls a quantum simulator (or quantum
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-o— MF:UB
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o
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Fig. 2. Comparison of PM-BPQM and MF polar decoder with N = 1024
on qubit BSCQ channels with 6 = 0.09 and variable -y under a union-bound
block-error constraint of 0.1.
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Fig. 3. Comparison of bit-error rate between DE analysis (solid lines) and
simulated decoder (circles) for the effective channels of bits w1, ..., ug of a
length-8 polar code over qubit BSCQ channels with § = 0.1 and variable ~.

computer) to implement the PM-BPQM decoding process. The
code can be found on GitHub in the repository:

https://github.com/Aviemathelec1995/CQ-Polar-BPQM.

This decoder was used to perform some experiments. In
Fig. 3, we compare the simulated decoding performance with
the DE prediction for a length-8 polar code and observe a good
agreement. The decoder also allows us to analyze the block
error rate without resorting to union bounds. For the length-8
code, we use the 4", 6™, 7% and 8™ input bits as information
bits. We estimate the block error rate using 1000 blocks over
the BSCQ channel with (4,y) = (0.05,0.15). Its value is
roughly 0.07 when we use the frozen set (u,us,us,us) =
(1,1,1,1) and random information symbols. For comparison,
the error rates of the individual channels (uy,ug,u7,us) are
computed using DE and they are 0.0178, 0.0146, 0.0123, and
0.0003, respectively. The classical union bound on block error
rate equals the sum of the individual channel error rates (i.e.,
roughly 0.045). Thus, the observed block error rate is roughly
twice the classical union bound and less than the factor of 4
worst-case increase allowed by Gao’s bound [21].
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