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ARTICLE INFO ABSTRACT

MSC: The point-vortex system is a system of longstanding interest in nonlinear dynamics, describing the motion of
70F10 a two-dimensional inviscid fluid that is irrotational except at a discrete set of moving point vortices, at which
70H14 the vorticity diverges. The leapfrogging orbit consists of two rotating pairs of like-signed vortices which, taken
Keywords: as a quartet, propagate at constant velocity. It is known that if the two pairs are initially widely separated,
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the motion is stable, while if they are closer together it becomes unstable, with this relation represented by
a dimensionless parameter « defined in the text. We here demonstrate analytically that the transition from
stability to instability happens at a critical value « = ¢~2, where ¢ is the golden ratio. This value had been

hypothesized based on careful numerics by Tophgj and Aref, and by the present authors using a semi-analytic
argument but not previously demonstrated through exact analysis.

1. Introduction

The point-vortex model has a storied history in classical mechan-
ics. Helmholtz derived the system as a simplified model for a two-
dimensional incompressible inviscid fluid in which the vorticity is
confined to a discrete set of moving points [1]. In this case, the
equations reduce to a system of ODEs describing the evolving locations
of the point vortices. For a thorough and accessible introduction see
the Refs. [2-4].

A system of four vortices of equal strength, two with positive
circulation and two with negative circulation, possesses a remarkable
family of orbits known as leapfrogging. This was studied, separately, by
Love and by Grobli in the late nineteenth century [5,6]. The paths of the
four vortices in one such orbit are shown in Fig. 1. Initially, the inner
pair travels faster and passes through the outer pair. Subsequently,
the inner pair slows and widens, while the distance between the outer
pair decreases, causing them to speed up. After half a period of the
motion, the identities of the inner and outer pairs are exchanged, and
the motion repeats periodically modulo translation. An alternate inter-
pretation is that the motion is hierarchical: the two positive vortices
orbit each other, as do the two negative vortices, with the two pairs
translating along parallel tracks while maintaining mirror symmetry.
An analogous motion exists in the motion of a pair of coaxial vortex
rings, and the leapfrogging vortex quartet can be seen as a simplified
model of this phenomenon.

At the initial time, the four vortices are arranged collinearly, with
the two inner vortices separated by a distance d, and the two outer
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vortices by a distance d,, with « = Z—‘. Both Grobli and Love determined

2
that such orbits exist for a, < a < 1, where a, =3 — 2\/5 ~ 0.171. For
initial conditions with « < «,, the motion is non-periodic.

More recently, Acheson noticed, via direct numerical simulation,
that the leapfrogging motion is unstable for a < a, =~ 0.382, and stable
for « > a.. A stable motion, with @ ~ 0.42 and an unstable motion,
with @ ~ 0.26, are shown in Fig. 2. In both simulations, the initial
condition is perturbed very slightly from the leapfrogging orbit. The
first, which is stable, is not visibly affected by the perturbation, while
in the second, which is unstable, the vortices rearrange themselves into
a pair of dipoles and escape along oblique trajectories. In the present
paper, we confine our discussion to the question of linear stability.
However, a large variety of nonlinear dynamics becomes possible in the
unstable regime, including the so-called walkabout and braiding orbits,
e.g. [7-9]. We will explore this theme further in an upcoming paper.

Tophgj and Aref made the remarkable observation that a, ~ ¢~2,
where ¢ = HT\E is the golden ratio, which they justify with a formal
argument. The purpose of the present paper is to provide a more rig-
orous argument. That «, takes such a fortuitous value seems like more
than simple coincidence, and our previous paper [10] documents our
initial attempt to prove it. There, we devised a perturbative procedure
that allowed us to approximate a, with increasing accuracy, without
ever solving the ODE system numerically. Instead, we used the method
of harmonic balance to construct a sequence of matrices, of increasing
dimension, each depending on «. The determinants of these matrices
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Fig. 1. The trajectories of the four vortices in a leapfrog orbit, with initial conditions
marked and the distances d, and d,, as defined in the text, labeled.

are polynomials in «, and their roots yield an approximation to a.. We
constructed these matrices symbolically in Mathematica and found the
polynomials’ roots numerically, confirming the value of «, to sixteen
digits before we decided to halt it. This did not quite achieve the
authors’ original goals of proving the specific value of a,.

In this note, we complete the result. That is, we use mathematical
perturbation theory to demonstrate the existence of a bifurcation at
a, = ¢ 2. To accomplish this result we perform three sequential
transformations of different types. First, we apply a sequence of canon-
ical transformations that, taking advantage of conserved quantities,
reduces the number of degrees of freedom from four to two. Second, we
nonlinearly rescale the Hamiltonian itself to desingularize the dynamics
in the region of interest. Finally, we change independent variables,
which allows us to write down the stability problem in exact form,
even though no closed-form solution exists to the original system of
equations. We then rely on an exact solution to a variable-coefficient
linear system and an application of Floquet theory.

The remainder of the paper is organized as follows. In Section 2
we set up the equations of motion and review the arguments from our
earlier work [10] in which we transform the problem into a simplified
form amenable to analysis. Section 3 discusses the linearization and a
change of independent variables that allows further analysis. Section 4
provides a short review of Floquet theory and describes a perturbation
scheme applicable to the Floquet problem at hand. In Section 5 we
finish the analysis that determines the change of stability.

2. The equations of motion and their transformation

The point-vortex model is most easily analyzed by posing it in
a Hamiltonian form due to Kirchhoff [11]. Consider a system of N
vortices with positions r; = (x;, y;) and circulations I';. The Hamiltonian
is given by
N
H(r,,...,ry) = -Zr,.rjlog I, — ;1% @
i<j

with equations of motion

dx; oH dy; 0H
r—L=+2% and r—2L=-22j=1,...,N. 2
Jodr +0yj an S dt 0x; J 2
a=0.42

SAAIAIAIAL
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This Hamiltonian construction is slightly non-standard, as evidenced by
the factor of I'; multiplying the time derivative terms.

We specialize to the case of two vortices of circulation I' = 1 located
at positions r;' and r; , and two of circulation I' = -1 located at
positions r” and r;, which has the Hamiltonian

- _ 2 -2
H(@y v, ry,r)) =—log|ry —rf||* —log|r] —rj|l
- 2 - 2
+ log |Iry = |I” +log Ir; —rf |l 3)
_ 2 - 2
+ log|Iry =y |I* +log [y — S |1%.

We make a symplectic change of variable to coordinates describing the

centers of vorticity r, and for the displacements R, within the positive

and negative pairs

= r1++r;, - r+ry
2 2

under which the Hamiltonian becomes

+ _ .t e
1 l‘Z,R_—r1 T

LRy =r

HR,.R_r,.r)=-log|R,|*-log|[R_|?
+ log IR, —R_ +2(r, —r_)|?
+ log IR, —R_ —2(r, —r_)|?
+ log IR, +R_ +2(r, —r_)|?
+ log IR, +R_ —2(r, —r)|%.
This depends on r, and r_ only through the combination M = 2(r, —
r_). As shown in Ref. [8], the components of M are conserved and
correspond to the vector-valued impulse of the system. This yields our
final form of the Hamiltonian
H(R,.R_)=—log|R,|* - log [R_|*
+ log [[R, —R_ +M]||* + log R, —R_ — M]|?
+ log |[R, +R_ +M]||? + log |[R, + R_ — M.
Without loss of generality, we can choose M = (2, 0), which amounts
to a rotation and scaling of the initial conditions. We then substitute in

components, writing in a standard canonical form H(q,,q_,p,.p_) by
introducing the components,

R, =(q;,p,) and R_=(q_,—p_). C)]

The choice of the minus sign on p_ normalizes the Poisson brackets so
that the evolution equations take the familiar form

4 _oH 5 _ _oH

e op;’ dr aq;’

removing the dependence on I; seen in system (2). A final change of
variables

L
V2
1
V2

0 =—(qs+9). 0= —= (9, -a.).

P = (1’++1’—)’P2= (P+_1’f)

Sl=Sl-

Fig. 2. Two perturbed leapfrogging orbits, the left one stable, the right one unstable.
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Fig. 3. Level sets of the reduced Hamiltonian function (7), showing periodic (leapfrogging) orbits in purple, unbounded orbits in red, and the critical orbit as a dashed blue line.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

puts this system in the form used by Tophgj and Aref,
H(Q,,0,, P, P)) = log ((Q) + 0y + (P, + P))?)
— +log ((Q) — 0)* + (P, — Py)?)
= log (0} + (1= P)*) —log (0% + (1 + P,)?)
— log (Q% + (P, - 1)*) —log (O} + (P, + 1)) .
In these coordinates, the plane Q, = P, = 0 is invariant. This
invariant plane includes all the leapfrogging orbits, and this makes the

coordinates useful for studying the stability of the leapfrogging orbit.
Within this plane, the Hamiltonian simplifies to

H(Q,,P) =2log (P? + Q%) —2log (1 - P?) —2log (Q? +1)..

(5)

As (Q,,P)) — (0,0), the Hamiltonian and its derivatives diverge,
corresponding to the divergence in the rotation rate of the two like-
signed pairs. This singularity prevents the straightforward application
of perturbation theory, but we may desingularize the dynamics by
introducing a new Hamiltonian

H=f(H)= %eH/Z.

Since Z—H = f’(H)dd—H and c:j—” = f’(H)C:i—H, and H is constant on
trajectories, the orbits of the transformed Hamiltonian system coincide
with those of the original system, up to a reparameterization in time.

The transformed Hamiltonian is

I:I(Q1,Q27P1,P2)=

1
1 < ((r=P2)*+(01-02)) (P +R)*+(21402)°) >§
2\ ((-n)*+02)((1+p2)2+02) (1= ) 2402 ) (1+1) 7 +03)

(6)
and the Hamiltonian on the invariant plane Q, = P, = 0 takes the
especially simple form
1 1 1 1

HQ.P)=-5——+5——. ™)
P 2402 2P

At small amplitude, this has expansion

i o7 P}

H(Ql’P1)=7+7+'~, (8)

so that, to leading order, the motion is simple harmonic with unit
frequency. Fig. 3 shows the trajectories due to Hamiltonian (7). In what
remains, we switch from using the ratio « as our bifurcation parameter
to using the value & of the conserved Hamiltonian of the orbit with a
given a. In particular, the orbit with ratio a corresponds to the (Q;, P,)

2
periodic orbit with h = 4=2°

. The limit « — 1~ corresponds to 4 — 0%.
Periodic orbits exist for 0 < h < % and correspond to leapfrogging
orbits in the original system. Most importantly, the value @, = ¢2
corresponds to i = %, and our task is now to show that periodic orbits
are linearly stable for 0 < h < é and linearly unstable for h > %

As suggested by expansion (8), we will find it useful to make the
change of variables

Q; =1\/2psinb, P =y/2pcosb, (C))
to the action-angle variables of the simple harmonic oscillator, which
puts the Hamiltonian (7) in the form
2p

H(p,6) = .
(. 6) 2 — p2 —4pcos26 + p? cos 40

(10)

Since this transformation is canonical, the new coordinates satisfy

do _ oA dp _ 9H

@ an =-= an
dr  op dr 00

3. The linearization and a change of independent variable

The next step is to linearize the Hamiltonian system (6) about
periodic orbits of system (7). The difficulty is that, while this system
is formally integrable by quadratures, integration yields a complicated
formula for #(Q,, h) that contains both elliptic integrals and algebraic
functions, given in [10]. This formula cannot be analytically inverted,
so we seek an alternative method. The cited reference also contains a
formula for the period of these motions.

Supposing that the periodic orbits of system (7) were known, we
linearize system (6) by substituting

Q) =\/2psinf +ex, 0, = eu,
P, =+/2pcosf + ey, P, = ev.

into the evolution equations defined by Hamiltonian (6) and keeping
the terms linear in e. The (x, y) motion decouples from the (u, v) motion
yielding a pair of linear problems, each with two dependent variables.
The former is generically neutrally stable, as perturbation within the
invariant plane merely leads to an initial condition on a nearby periodic
orbit, and, thus, linear separation in time. The interesting linearized
motion in the (u, v) coordinates is

d fu) _ u
T <U> = A0, p) <U> 12)

where

5in 260 p(—cos? 20+3 cos 20—2)+cos 20

- P2 cos2 20—2p cos 20—p2+1 (pcos20—p—1)3 (13)
p(— cos2 203 cos 20—2) +cos 20 sin26
(pcos20+p—1)3 p? cos? 20—2p cos 20—p2+1

A0, p) =

While (0(z), p(¢)) are not obtainable in closed form, we can rewrite
system (12) explicitly by changing the independent variable from ¢ to
0, since 0 increases monotonically on trajectories. This idea goes back
to Newton’s proof that the bodies in a two-body gravitational system
trace elliptical orbits [12]. We first solve equation (10) for p in terms
of 9 and the energy level H = h, finding

p= 1+2hcos20 — V1 +4h? +4hcos 20

h(—1 + cos40)

The apparent singularity in this expression at the vanishing of the
denominator is removable, as the numerator vanishes to the same
order. There are many such apparent singularities in the calculation
that follows, all of them removable.

14

We rewrite the linear system (12) with 6 as the independent variable

. . d _dod _ o d .1
using the chain rule and Eq. (11), il Rl yielding

N
d (u o0H u\ _ = u
7 <U> = <a—p) A(0,p(6, b)) <U) = A4,(0) <U> (15)
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where, putting everything together, we find

Ap0) =
in28 (4h+1 )( 4h2+4h cos 26+1-2h—cos 25) _sin®26
VAh +4h cos 20+1 (1=cos 20)V/4h2+4h cos 20+1
(4h—1)(\/m+2h+cos 29)+sin2 20 in20
(14cos 20)V/4h2+4h cos 20+1 m

(16)

Thus, to understand the linear stability of leapfrogging orbits we must
study this one-parameter family of non-autonomous two-by-two linear
systems in which the coefficient matrices have period T = x.

4. Review of Floquet theory

Floquet theory is concerned with exactly such problems, i.e., with
systems of the form

dz

— = B(t)z,
a Nz
Here z € R" and B(¢) is an n X n matrix-valued function. The stability
of the system is studied by considering its fundamental solution matrix

@(t), which satisfies

do
— =B®)®, ®(0) =1,
o O, 2(0)

where B(t+T) = B(1). 17

since, clearly, all solutions of Eq. (17) are of the form @®(r)z,. The
monodromy matrix is given by M = &(T). If M has any eigenvalues
A with |A] > 1, then there exist solutions that grow exponentially in
time.

For Hamiltonian systems in dimension n = 2, there is a useful
diagnostic. For such systems B(r) = JS() where J = ( % }) and S()
is symmetric. Thus tr B(t) = 0, which implies that det @() = 1 and, in
particular, that det M = 1. The eigenvalues must then satisfy 1, -4, =1
and there are two generic cases:

Case 1. If the eigenvalues are real, then, without loss of generality, we
can choose —1 < 4; < 1 and |4,| > 1 so that |tr M| > 2, and the
system is unstable

Case 2. If the eigenvalues have nonzeros imaginary part then 4, = 4} =
/%, and tr M = 2cos 6 and, in particular |tr M| < 2. The system
is stable.

In the borderline cases 4, = 4, = #1, so that tr M = +2. In the
case tr M = +2, the system has a periodic solution with period 7" and
in the case tr M = -2, the system has an anti-periodic solution with
z(T) = —z(0). The theory was developed by Floquet and is explained in
more detail in many textbooks, for example, that of Meiss [13,14].

4.1. A perturbation expansion for the monodromy matrix

In what follows, we need to determine the stability of a system of
the form (17) where
B(t) = By(t) + €B (1),

where we can assume for ¢ = 0, the system has fundamental solution
matrix @((r) and monodromy matrix M. Letting
z = Dy(t)w,

then w solves
‘ii_‘tv = ed; () B, (1D ()W = eB()w. 18)
If system (18) has fundamental solution matrix @ (¢), then system (17)

has fundamental solution matrix
D(1) = D (1)Dy(1)
and monodromy matrix

M =& (T)M,. (19)
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For this paper, it suffices to calculate this term to leading order
approximation in ¢, which we may compute as follows. Integrating in
t, @, solves

t
o) =1+ e/ B(s)®(s)ds.
0

Picard iteration, a standard technique for showing the existence and
uniqueness of solutions, see Ref. [14], can be used as an approxima-
tion method. Under additional assumptions, it generates a convergent
sequence of approximations as the solutions to a recurrence relation

t
Yo=1+ e/ B(s)P,(s)ds, with ¥, =1.
0

For this scheme to converge, the map being iterated must be a contrac-
tion on the space of continuous matrix-valued functions on [0, T']. Since
B(s) is continuous on the interval, it is bounded, and we may ensure it
is a contraction by choosing ¢ sufficiently small. The first iterate is

t

t
Yi=T+e¢ / B(s)¥y(s)ds =T +¢ / B(s)ds, (20)
0 0

which yields the approximation

D (n=1+ e/ B(s)ds + o(e). @D
0

5. Determining the stability

To prove the desired stability result, it suffices to show that the

monodromy matrix of system (15) satisfies |tr M| < 2 for h < é and

[tr M| > 2 for h > % In [10] we showed slightly less than this.
First, we numerically computed a z-periodic solution to system (15)
with h = %, initially using MATLAB’s ode45 to within an error of
10716, and then, to be doubly sure, using a method of order thirty
and extended numerical precision in Julia, to an error of about 107120,
Second, we devised a perturbative procedure that approximates the
value of h at which a periodic orbit exists. This produced a sequence
of approximations that converge exponentially to 4 = é in the order of
the approximation.

Now, we complete the result. It turns out that for 4 = é, system (15)
has a closed-form periodic orbit that can be expressed in terms of
elementary functions. The coefficient matrix (16) in this case is

___4sin20 8 cos 20—12 cos 20+31/8 cos 20+17—11
A“] — ., V8cos20+17 2(1—00526)}/800529+17
g —8 cos” 260—4 cos 20—1/8 cos 20+17+7 4sin26
2(cos 20+1)y/8 cos 20+17 \/8cos20+17

(22)

A periodic orbit (u,(6), v,(#)) with initial condition (1,0) was found by
entering the problem into the software package Maple, which returned
the answer

u (0) 1 14+4c0s20+ 3417+ 8cos 20
0,0) —tan9(1+4c0529+ 17+8cos29) '

For the next part of the argument, we need to find the funda-
mental solution matrix @ for system (15). The solution (23) forms
the first column of @. We may find the second column of @, i.e., a
solution (u,(0), v,(0)) with initial condition (0, 1) by reduction of order.
Abel’s identity ensures that, because tr A; = 0, the fundamental

720 (23)

solution matrix satisfies det® = 1, whicﬁg we use to find v,(0) =
(14 v1(8)uy(0)) /uy(6). Substituting this into system (15) gives a non-
homogeneous first-order equation for u,(6), which we integrate to
find

<u2(9>> _ <u2(e>> N (u;"w))
v(0) v5(60) v,@))°
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—3(1672 cos 0+1801 cos 30+321 cos 50—44 cos 70)+(2794 cos —323 cos 30—243 cos 50+22 cos 70)1/8 cos 20+17

w(0)\ _
o)~

150(—28 sin 6—9 sin 36+sin 50)

= (13—88c0529+(89—44c0529)\/8c0529+17) '

Box L.

where the periodic part is given by the equation in Box I and the
nonperiodic part is given by

np
0= (e 6l2) - () ()

Here, E(0|m) and F(0|m) are incomplete elliptic integrals with parame-
ter m of the second and first kind, respectively [15, §19]. Each of these
grows, on average, linearly in 6, demonstrating that this solution is not
periodic. Evaluating @ at § = r yields the monodromy matrix

= (1) e =2 (0) k() =0 o

and E(m) = E (%|m) and K(m) = F (’2—”|m) are here complete elliptic
integrals of the second and first kind, respectively.

Now we consider the case that 4 = % +e¢, and expand the coefficient
matrix A, in powers of e,
A = Ay(0) + €A (8) + o(e),

1
gte

where A, = A, is given by Eq. (22) and
8
A =
32(sin 20+2 sin 46)
(8cos20+17)3/2

68 cos 20+28 cos 40+8 cos 60+21
2sec? @ ( DI TR OTES 1]
sec” 8 (8cos20+17)3/2 +

2 —68 cos 20+4 cos 46—8 cos 60—53
Zescr o ( (8c0s20+17)3/2 +1

__ 32(sin 20+2sin 40)
(8cos 20+17)3/2

and apply the perturbation argument of Section 4.1.
Calculating the trace of the monodromy matrix (19) with leading-
order term given by Eq. (24) shows that

tr M =2+ u®(x), ., (25)

and our remaining task is to find the (2, 1) entry of @, (x). In particular,
the needed element of @, in Eq. (21)

D (1), =€ / B, 1(6)d6,
0

where

= 2sec? 0 [ 256 cos 26 + 100 cos 40 + 16 cos 66 + 253
B,,(0) =

25 8cos20 + 17

+ 1536 cos 26 + 660 cos 46 + 148 cos 60 + 12 cos 86 + 769
(8c0os 26 + 17)3/2 ’

Integrating gives ¥(x),; = % (llE (g) -3K (%)) € = 6.44¢. In
particular, we have found that both 4 > 0 and @, (), > 0. Therefore,
by Eq. (25), tr M > 0 when e > 0 and the leapfrogging orbit is unstable,
and tr M < 0 when ¢ < 0 and the leapfrogging orbit is stable. Thus
we have resolved Tophgj and Aref’s conjecture from Ref. [8] that a
bifurcation occurs at the critical ratio @ = ¢~2, leaving the leapfrogging
orbit unstable for smaller values of a.
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