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SUMMARY
Cerebral cortex supports representations of the world in patterns of neural activity, used by the brain to make
decisions andguide behavior. Pastwork has founddiverse, or limited, changes in the primary sensory cortex in
response to learning, suggesting that the key computations might occur in downstream regions. Alternatively,
sensory cortical changesmay be central to learning.We studied cortical learning by using controlled inputs we
insert: we trainedmice to recognize entirely novel, non-sensory patterns of cortical activity in the primary visual
cortex (V1) created by optogenetic stimulation. As animals learned to use these novel patterns, we found that
their detection abilities improved by an order of magnitude or more. The behavioral change was accompanied
by large increases inV1neural responses to fixedoptogenetic input. Neural responseamplification to novel op-
togenetic inputshad little effect onexistingvisual sensory responses.A recurrent corticalmodel shows that this
amplification canbeachievedbya smallmean shift in recurrent network synaptic strength. Amplificationwould
seem tobedesirable to improvedecision-making in a detection task; therefore, these results suggest that adult
recurrent cortical plasticity plays a significant role in improving behavioral performance during learning.
INTRODUCTION

Sensorimotor decision-making involves patterns of neural activ-

ity, which propagate through the neural circuits of many brain

areas and are changed by those circuits. The sets of neural com-

putations involved in sensory decision-making have not been

fully determined,1–4 but some principles have been identified.

One basic neural computation is representation, storing informa-

tion about the sensory world in patterns of activity, as is

observed in many cerebral cortical areas. Another is decision,

or readout, in which representations are transformed or catego-

rized by circuits into forms suitable for action.5,6

There is substantial evidence that sensory cortical representa-

tions can be modified by activity,7–11 but it is less clear whether

cortical response changes constitute the computational change

that leads to improved behavior with learning. Studies in humans

and animals have reported varied effects of learning on visual

cortical responses, including increased activity after visual

training,12–15 selective suppression of activity,16 decreased vari-

ability of visual selectivity response properties after training,17–19

and activity changes that disappeared once early learning has

ended.20 Some learning studies have found improvement in pri-

mary sensory representations,19,21–23 along with changes in

anticipatory and other signals.18,24 Other studies in primary vi-

sual cortex (area V1) have found little task-relevant change16,25
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but found changes in higher visual areas like V4.26,27 Thus, it

has been unclear whether a major substrate of visual sensory

learning is representational improvement in V1, such as

increased gain or selectivity, or whether the principal changes

are readout changes, perhaps in downstream areas.

One reason it has been difficult to delineate the neural compu-

tations underlying sensory decisions is that neurons and brain

areas are highly interconnected, and sensory stimuli can evoke

changes in the activity of numerous brain areas.28–30 Thus,

changes in neural activity that are observed in one cortical

area may be inherited from input regions, and indeed cognitive

factors like attention or arousal can modulate visual activity

before it arrives at the cortex.31 One way to isolate cortical rep-

resentations from downstream readout computations is to use

stimulation-based behavioral paradigms. Using electrical or op-

togenetic stimulation methods, entirely novel (non-sensory or

‘‘off-manifold’’)32,33 activity patterns can be introduced in a cho-

sen brain region. Using such novel patterns is a way to explore

the limits of cortical plasticity, as they are dissimilar from normal

sensory patterns.

Here, to isolate representational changes that occur as ani-

mals improve on a task, we study V1 neural changes as mice

learn to use a new cortical representation induced with optoge-

netic stimulation. Animals show dramatic improvements in

behavior as they learn, with detection thresholds improving at
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times over several orders of magnitude during weeks or months

of learning. Alongside the behavioral improvements, cortical

neurons produce larger responses to the same optogenetic

input. Thus, learning enables a fixed input to produce an increas-

ingly large response in the V1 network, presumably by some

adjustment of local, recurrent circuitry.34–36 The results imply

that this learning leads to local changes in representations by

increasing recurrent amplification in V1.

RESULTS

We trained animals to detect neural activity evoked by optoge-

netic stimulation and measured cortical responses during

learning with two-photon imaging. We implanted a 3 mm optical

glass window over V1 and usedmultiple viral injections in layer II/

III to express an opsin (soma-targeted ChrimsonR; stChrimsonR;

excitatory neurons; AAV9-FLIP/DIO in Emx1-Cre mouse

line),37–39 and for two-photon imaging, a calcium indicator

(jGCaMP7s or 8s; all neurons; AAV9-hSyn).40–42

We delivered optogenetic stimulation light through the objec-

tive (combined into the light path via a dichroic; Figure 1A; STAR

Methods), which robustly activates stChrimsonR-expressing

neurons throughout layer II/III (�500 mm diameter light spot at

cortical surface; Figures S2F–S2J; STAR Methods).

Optogenetic detection training (N = 16 animals) occurred in

two phases (Figures S1A and S1B). First, we trained animals

to perform a sensory detection task. This way, they first learned

the task demands (waiting for stimulus, lever press, etc.), which

reduced behavioral changes due to those effects as optoge-

netic learning progressed. We trained animals to respond to a

small visual stimulus (monocular Gabor; 14� FWHM) until they

performed the task with a stable psychometric threshold for

three sessions (e.g., for animals imaged during behavior:

training time 15–29 days, 23.6 ± 6.2 days, mean ± SEM, N = 3

animals). Next, we added an optogenetic stimulus (Figures 1,

S1A, and S1B; 0.5 mW at 595 nm), delivered at the same time

as the visual stimulus. Over the course of several sessions,

we removed the visual stimulus gradually by manually reducing

visual stimulus contrast.44 This made it more difficult to perform

the task using the visual stimulus, but performance was kept at

approximately the same level as animals began to use the op-

togenetic stimulus (Figures 1A, 1B, S1A, and S1B). When

contrast of the visual stimulus was zero, animals relied entirely

on the optogenetic stimulus (2.3 ± 0.9 days after first optoge-

netic stimulus, mean ± SEM, animals used for imaging, N = 3;

‘‘session 0’’). We confirmed that animals responded only to

the optogenetic-evoked neural activity by moving the optoge-

netic spot during behavior to non-training locations with similar

opsin expression within V1. This resulted in no behavioral re-

sponses (Figures S1C and S1D).

How similar are optogenetic responses to visual sensory re-

sponses? The optogenetic stimuli we use produce a different

pattern of responses across the neural population than visual in-

puts, which activate cells based on their receptive field proper-

ties. However, in the temporal domain, our optogenetic stimula-

tion is more similar to visual responses, as optogenetic

stimulation with the parameters we use modulates firing rates

(measured with electrophysiology in O’Rawe et al.45), and does

not dramatically synchronize firing. This is consistent with the
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cortex operating as a recurrent network with reasonably strong

excitatory-inhibitory coupling. In such a network, cortical neu-

rons can fire irregularly, due to large amounts of recurrent input

that lead to highly fluctuating membrane potentials.46–48 Inputs

thenmodulate the firing rate49–51 of the neurons—whose individ-

ual spike times are determined by the network-drivenmembrane

potential fluctuations.52

Optogenetic learning in a detection task
We found that animals dramatically increase their ability to

detect the optogenetic stimulus—that is, the activation of V1

neurons—with practice. We collected psychometric curves dur-

ing training sessions to track changes in animals’ perceptual

sensitivity to the optogenetic stimulus (Figure 1C). Over the

course of long-term training (�90 sessions), we found that with

practice, animals’ perceptual thresholds dropped dramatically

(Figure 1C). Animals needed less-strong stimulation over time

to achieve the same level of performance. The observed rate

of threshold change could be roughly separated into two phases,

a phase that occurred within the initial �10 sessions of training

after acquisition of the optogenetic task (Figures 1C and 1D, i

and ii) and a slower phase over many additional sessions

(Figures 1C and 1D, ii and iii). Below, we focus on the first

6 days of this initial learning phase for our experiments examining

neural activity changes. In this initial phase, the threshold

changes were large (Figure 1E; Dthresh. pwr. = �0.28 mW:

0.35, 95% CI [0.31–0.37] to 0.058 [0.052–0.063]).

The threshold changes were accompanied by decreases in re-

action times. We compared reaction times for fixed stimulation

powers across days (Figures 1F and 1G; median = �15.4 ms,

IQR = 18.6, p < 0.01, over a subset of animals, N = 9, with com-

mon stimulation powers). The reaction time changes could not

be accounted for by changes in animals’ false alarm rates (Fig-

ure 1H). While reaction times did change with false alarm rates,

as expected due to changes in the underlying perceptual crite-

rion, the changes in reaction time remained even after regressing

out false alarm rate (Figure 1H).

Responses of V1 to optogenetic stimulation are
amplified by learning
We next imaged neural responses to stimulation during the pro-

cess of learning. We measured neural responses in layer II/III

during the first six optogenetic learning sessions, where learning

is rapid (Figures 1C–1F and 2A). During this period, animals

showed a greater than 50% drop in their optogenetic detection

thresholds (Figure 2A; Dthresh. pwr. from session 0 to 5,

�62% ± 10%, mean ± SEM, N = 4 animals, different cohort

than in Figure 1).

To examine response changes with high signal-to-noise, we

first averaged fluorescence responses over a large region of in-

terest (ROI) (Figures 2B and 2C). Imaging during optogenetic

detection behavior revealed clear stimulus-evoked responses

that were strongly amplified over the course of training

(Figures 2C–2J).

This amplification could not be explained by shifts in the imag-

ing plane or by changes in virus expression over sessions (Fig-

ure S1E). It also could not be explained by tissue growth under

the window or other optical degradation, over time or as a result

of stimulation, as the effect we measured was in the opposite
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Figure 1. Mice gradually learn to report direct optogenetic stimulation of V1 excitatory neurons

(A and B) Task schematic. Animals release a lever when they detect the optogenetic stimulus (opsin: soma-targeted stChrimsonR in excitatory neurons). Only

rapid lever releases (between 50 and 550ms post-stim) were scored as correct (release before this window, false alarm; releases later, miss) (see Figures S1A and

S1B for training details).

(C) Example of long-term optogenetic learning. Blue circles, i and ii (7 sessions), initial fast drop in stimulation power required to hold performance constant

(green: hit rate roughly constant, >70%; Results); ii and iii, longer phase of behavioral improvement (80 sessions).

(D) Psychometric curves showing stimulation power decrease (curves from days shown by i, ii, and iii in C). Small gray text, threshold power in mW. Leftward shift

signifies improved performance: gray arrow. Power threshold of the final session was 3 orders of magnitude lower than threshold of first session (0.38 versus

0.0002 mW: i versus iii).

(E) Psychometric curves covering the initial phase of optogenetic learning (same animal from C and D, sessions 0 and 9). See Figures S1C and S1D for non-

training site control. Red dotted line: common power across sessions used for reaction time analysis.

(F andG) Reaction times in response to optogenetic stimulation get shorter with learning (first 10 sessions of optogenetic learning; F, N = 1 animal, error bars: SEM

over trials; G, N = 9 animals, each point: regression slope for one animal, power shown by red line in E; STAR Methods; error bar: IQR = 18.6, p < 0.01).

(H) Change in reaction time cannot merely be explained by change in false alarm rate, a proxy for response criterion43 (black line, linear regression, slope �3.98,

p = 0.002; blue line, negative change in reaction time even at zero false alarm rate change, offset �15.6, p = 0.02) (see also Figure S1).
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direction: an increase in responses to stimulation. However, to

verify that optical changes did not account for the effects, we

used the effects of stimulation light on GCaMP (the artifactual

fluorescence induced by stimulation light exciting GCaMP,

which we normally rejected by stimulating outside imaging lines;

STAR Methods) and used it to adjust stimulation power, finding

that the amplification effects remained with and without this

adjustment (Figures S2A–S2E). Finally, as another check to

rule out changes in imaging properties, expression, or reward re-

sponses as contributing to this effect, we stimulated in control

animals using matched mock training sessions, with the same

imaging, stimulation, reward, optical window, and injection pa-

rameters as during training (Figures 2I and 2J; see also

Figures S4A and S4B for similar control experiments using

even higher powers). We found no amplification in these closely
matched controls (Figures 2I and 2J), arguing that the amplifica-

tion we saw was indeed an increase in neural responses as a

function of learning.

In principle, it could have been that amplification was seen at

some power levels but not others. We examined optogenetic-

evoked responses and found that after learning, responses

were amplified at all optogenetic power levels (Figures 2G–2J),

with strong effects both near the psychometric threshold (where

behavior is tightly bound to stimulus perception) and at above-

threshold optogenetic stimulation powers (where trials are

perceptually easy, and performance is not stimulus-limited)

where animals perform well. Though the magnitude of these

changes varied somewhat across animals, wemeasured individ-

ually significant amplification in all learning animals and not in

controls (Figures 2I, S3K, and S3L).
Current Biology 33, 2163–2174, June 5, 2023 2165
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Figure 2. V1 responses to optogenetic stimulation are amplified by learning

(A) Animals improve optogenetic detection ability with practice (y axis: threshold, stimulation power required for fixed detection performance; normalized to

session 0, N = 4 animals imaged during learning, different cohort than Figure 1).

(legend continued on next page)
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We then examined single-neuron responses in an example an-

imal (Figure 2K). We found that during the stimulation period,

nearly all individual neurons (Figures 2K, 2N, and 2O) as well

as the surrounding neuropil (Figures 2L and S3A–S3F) showed

positive responses. Thus, averaging neurons into large ROIs

(Figures 2C–2J) captures the effects seen in single cells, the pos-

itive responses across many neurons. The cell responses were

amplified with learning (Figure 2O), and the amplification was

seen across multiple powers (Figures 2N and 2O; mean change

in DF/F = 6.7%, 14.0%, 26.6%; at 0.014, 0.04, and 0.14 mW;

95% CI [3.0–10], [9.5–19.5], [17.2–36.0]), also consistent with

the data from the large-ROI population measurements

(Figures 2B–2J). We also examined whether neurons showed

any signs of suppression after stimulation.44 We did find evi-

dence for suppression (Figure 2M). However, this suppression

was not part of the behavioral response or decision, as it

occurred only after the animal made its behavioral response

(Figures 2MandS3G–S3J; average reaction time for optogenetic

learning animals 225 ± 23ms,mean ± SEM, N = 3). This suppres-

sion time course is consistent with electrophysiological mea-

surements of V1 excitatory optogenetic responses.45 These

measurements show an initial positive transient in almost all neu-

rons, followed by a suppressed steady state in some excitatory

cells. These effects can be explained by coupling within the

cortical recurrent network. In any case, for our 100 ms optoge-

netic pulses, we found that the neural responses during the stim-

ulation period were nearly entirely positive (Figures 2D–2F and

2L–2O), and further, these responses increased with learning.

The changes we observed in neural activity were smaller than

the improvements seen in perception. Animals’ perceptual

detection performance improved, and thresholds decreased,

by a factor of approximately 2.73 after 6 sessions (i.e., power

threshold was 37% ± 11% of session 0 levels; Figure 2A). In

contrast, DF/F over the course of 6 sessions, measured at

threshold stimulation power showed a 1.73 increase in DF/F

over the large ROIs (session 0, 25.6% ± 7.4%, mean ± SEM

across animals; session 5, 42.9% ± 10.9%; Figure 2I) and a

2.13 increase in mean cell peak DF/F (Figure 2O; session 0,
(B) stChrimsonR, GCaMP7s expressed in layer II/III neurons (imaging for all anim

waist (�200 mm) (see also Figure S2 for stimulation details).

(C) Neural response amplification after optogenetic learning (mean DF/F, 0.04 mW

animal for D–H). Gray box: region of interest (ROI) used for trial-by-trial DF/F ana

(D and E) DF/F time courses before and after learning, matched stimulation pow

(F) Deconvolved signal (spike rate proxy; OASIS53,54) shows spiking changes occ

(G) Average DF/F response across power levels (ROI shown in C).

(H) Trial DF/F responses before and after learning (sessions 0 and 5, S0 and S5; D

point one trial).

(I) Normalized response change, all animals, with learning or control (change in

****p < 10�4, Mann-Whitney U test) (see also Figures S3K and S3L).

(J) Same as (G), for two additional animals plus an example control animal.

(K) Left: cell masks (animal 2, session 5; found with Suite2p55). Right: mean cell re

period (100 ms).

(L) Example cell stimulation response (0.14 mW). See Figures S3A–S3F for additio

decay (100–350 ms, green box).

(M) Mean stimulation response in cells and neuropil is positive (left, orange box),

line; purple box, post-reaction averaging window) (see also Figures S3G–S3J).

(N) Neuron responses to stimulation (during stimulation period: orange in L an

5, 0.04 mW).

(O) Cell responses showwidespread amplification with learning (each point: one c

N = 1 example animal in (K)–(O) (see also Figures S1–S4).
9.3%; session 5, 23.3%). Several caveats apply: the readout

mechanism presumably sums across large numbers of neurons

and thus may not be limited by the change in cortical responses

we measure, and opsin saturation at high power may lead to

greater changes in power than activity. While changes in cortical

sensitivity alone would be sufficient to drive behavioral improve-

ments, the fact that behavior changes by a larger factor than

cortical responses could potentially indicate that there is an

improvement in the readout mechanism, occurring along with

the amplification changes we see.

The largest neural response changes happened from
1 day to the next, not within session
Although we observed significant increases in DF/F responses

across experimental days, we found no evidence of increases

within session. In fact, we found a small decrease in responses

to stimulation over the course of each experimental day

(Figures S3K and S3L; average DF/F change over 100 trials:

�1.2% DF/F, 95% CI [�0.9 to 1.6]% DF/F, coefficient less

than zero at p < 10�13, via linear regression over trials within

day, estimated across animals and sessions, N = 3; STAR

Methods). Thus, it appears that optogenetic learning-related

changes do not happen within the behavioral day, i.e., from

one trial to the next. Instead, these data support that the major

changes to neural responses occur outside of training and may

be driven by consolidation: changes in the brain in the hours be-

tween the experimental sessions.

No amplification occurs with stimulation outside of the
behavioral learning context
To determine if cortical amplification is dependent on learning, or

might arise from repeated optogenetic stimulus alone, we per-

formed a stimulation control in a mock behavioral context and

found no amplification (Figures 2I and 2J). The experiment was

conducted with stimulation powers matched to those used dur-

ing optogenetic learning (up to 0.5 mW, N = 3 animals). To deter-

mine if we could drive changes using stronger optogenetic stim-

ulation, we increased stimulation power levels up to twice that
als, shown over days, in Figure S1E). Orange circle: approx. stimulation beam

stimulation power, near psychometric threshold, animal 1, analysis from same

lysis. See Figures S4A and S4B for non-learning control.

ers.

ur during stimulation (decay in D and E due to calcium dynamics, not spiking).

F/F in ROI, C; left, power near detection threshold; right, above threshold; each

DF/F, mean over trials ± SEM, at threshold power, **p < 10�2, ***p < 10�3,

sponses before and after optogenetic learning. Orange box: optogenetic stim

nal detail and time courses. Dotted lines: single-exponential fits to fluorescence

but suppression is seen after animals’ responses (lever releases, dashed black

d M) before and after learning (animal 2, near-threshold power for session

ell, ****p < 10�4, unpaired t test; session 0, N = 64 cells; session 5, N = 142 cells).

Current Biology 33, 2163–2174, June 5, 2023 2167
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used for behavior.Weprovided repeatedoptogenetic stimulation

using a range of powers up to 1mW (100ms stimulationwith�6 s

interpulse interval, 1,200 and 1,500 repetitions, N = 2 animals,

thus N = 5 total non-behaving controls). Evenwith higher stimula-

tion powers we observed no changes in the optogenetic sensi-

tivity of cells in the stimulated regions (Figures S4A and S4B).

This result shows that amplification in response to these novel

non-sensory stimuli requires an associative (behavioral) context.

Statistics of visual responses are unchanged after
optogenetic learning at both the training and control
sites
Previous studies suggest that learning in visual perceptual tasks

can lead to changes in the tuning properties of responsive neu-

rons in mouse V1.19,24 However, it remains unresolved if these

perceptual learning changes arise from plasticity in the local

cortical networks, or if changes may be inherited from thalamic

input pathways that could in principle adjust input strength,

state, or synchrony56–59 to change cortical responses. Since op-

togenetic stimulation bypasses feedforward input from the thal-

amus, we asked whether the visual response properties of V1

neurons would change with optogenetic learning.

We imaged V1 neurons as mice were shown a series of visual

stimuli before and after optogenetic learning (Figures 3A–3D;

STAR Methods). We collected the responses of neurons at

both the optogenetic training location (imaging site in V1 towhich

the visual stimulus was retinotopically matched) and an adjacent

control location in V1 where stimuli were not delivered for opto-

genetic learning.

Though we found some changes in visual tuning indices (Fig-

ure 3E) at both the optogenetic training and control locations

before and after learning, these changes were inconsistent across

animals and comparable in size between the training and control

locations (FigureS4C). Across the populationof animals,we found

no significant mean changes in the visual response metrics (Fig-

ure 3F) or in the magnitude of neural responsivity to visual stimuli

(Figure S4D). We found that the optogenetically and visually

responsive fraction of imaged cell populations were comparable

(vis, 89% ± 5%; opto, 71% ± 11%; mean ± SEM, pre- and post-

learning FOVs for 3 animals, N = 6; STAR Methods), suggesting

a high degree of overlap between response populations. Taken

together with the similarity of responses across days for optoge-

netic stimulation (Figures 2N and 2O), any per-animal changes

could arise from representational drift over time.60,61 The lack of

change in mean visual responses is consistent with the idea that

recurrent network changes boost optogenetic responses, while

leaving unchanged other dimensions of network response

(Figures 3E and S4C). Thus, while optogenetic learning leads to

amplification of optogenetic responses, underlying visual

responsedistributions and the overall structure of existing sensory

representations remain intact.

A network model shows that amplification can be
achieved by adjusting a minority of recurrent synapses
To understand how recurrent synapses might change to support

the amplification we observed, we trained a recurrent neural

network (RNN; Figure 4A) to show amplification. We trained the

network in two steps, first to produce a response that mirrored

an optogenetic input delivered to a fraction of cells (30%;
2168 Current Biology 33, 2163–2174, June 5, 2023
matching previous expression data45 and Figures S1E and

S2F–S2J), and then to produce a response that was twice the

size (Figure 4B). We only allowed changes in the recurrent con-

nections, but not in the input and output weights. During training

to produce amplification,many synapticweights changed, with a

small positive shift in thepopulationmeanweight (Figures 4C, 4D,

and S4E–S4G; mean 5.8% ± SD 88% change). The stimulated

neurons tended to strengthen their synapses onto other neurons

(meanchange 31.8%),while neurons that did not receive optoge-

netic input showed a small negative synaptic change (mean

change �5.4%). We next checked if this amplification training

produced changes in other network responses, as for example

responses to visual stimuli. On average, we found little change

in other randomly selected responses—amplification effects

were specific to trained input ensembles (Figure S4H). Therefore,

small effects on visual responses we observed experimentally

couldbebecause thecortical network in vivo is high-dimensional,

so that learning one new response pattern does not interfere with

others. Or it could be that there is some biological mechanism

that stabilizes visual response (e.g., Kirkpatrick et al.62).

In sum, amplification in this recurrent model shows that synap-

tic strength changes, even when restricted to the local recurrent

connectivity, can in principle support the amplification we

observed.

DISCUSSION

In this work, we examine the capacity of adult mouse V1 to un-

dergo plastic changes in response to novel optogenetic stimuli

over a few days of learning. We found clear evidence that neural

responses to novel stimuli—optogenetic inputs applied directly

to many cells—are amplified in V1, but only if those stimuli are

made behaviorally relevant. The changes in neurons’ responses

over learning sessions mirrored the animals’ perceptual im-

provements. Responses to visual stimuli, which were not rele-

vant for learning, did not show systematic changes, suggesting

that the layer II/III cortical network was able to selectively amplify

the input pattern created by optogenetic stimulation. Taken

together, our results provide evidence for substantial plastic

changes specifically in the V1 of the adult mouse brain that are

linked to perceptual learning of a completely novel stimulus.

Amplification is a desirable representational change for
a perceptual detection task
In an optogenetic detection task, the principal neural computa-

tion that must be performed is the comparison between the ac-

tivity evoked by optogenetic stimulation and spontaneous

ongoing activity. Therefore, the amplification of the optogenetic

signal that we found, characterized by an increasingly large

spiking response to fixed input, appears to be the optimal way

(assuming nomajor changes in the noise or variability in the pop-

ulation63) for the V1 recurrent network to adjust to improve task

performance.

Other studies have found evidence for learning-related

changes with optogenetic stimulation tasks. Using a discrimina-

tion task and stimulating neurons in the somatosensory cortex

(S1) with widefield (one-photon) optogenetics, Pancholi et al.64

found no evidence for amplification but did see other changes,

including increases in response sparsity. Another study in S1
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Figure 3. Visual response properties are unchanged after optogenetic learning

(A) Schematic of experiment (N = 3 animals, different animals than shown in Figure 2). Visual responses were measured before and after optogenetic learning (12-

direction full-field drifting gratings or monocular Gabors, FWHM 12�).
(B) Example pixel-by-pixel responses (gray: SD of DF/F over imaging frames).

(C) Tuning of two example cells (blue, green outlines in B).

(D) Responses to visual stimulation across the 12 drifting grating directions, same cells as shown in (C).

(E) Example (N = 1 animal) distributions of unitless direction selectivity indices (DSIs), orientation selectivity indices (OSIs), and global orientation selectivity

indices (gOSIs; STARMethods). Full-field stimulus; *p < 0.05, Kolmogorov-Smirnoff two-sample test; p values, training location, DSI, 0.06; OSI, 0.90; gOSI, 0.21;

control location, DSI, 0.27; OSI, 7.8 3 10�4; gOSI, 5.7 3 10�6.

(F) Summary of all visual response indices, both visual stimuli, pre- and post- optogenetic learning. Mean ± SEM; n.s., p > 0.05; N = 3 animals, unpaired t test, pre-

versus post-learning (see also Figure S4).
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that used one-photon stimulation learning44 found behavioral

improvement, but it did not examine response changes during

optogenetic stimulation (due to a one-photon light artifact, which

we were able to avoid by stimulating between imaging lines;

STAR Methods) and did not examine neural changes during

the course of learning. In the visual cortex, Marshel et al.22
trained animals to report activation of specific neural ensembles

activated with two-photon holographic stimulation. They found

evidence for amplification in two different subnetworks, defined

by intrinsic visual responses, but observed less consistent

changes for random-ensemble stimulation. In contrast, our

work uses stronger widefield (one-photon) stimulation and
Current Biology 33, 2163–2174, June 5, 2023 2169



A

C D

B Figure 4. Network amplification for fixed

optogenetic input arising from recurrent

weight changes

A) Two-step training of a rate-based RNN of 200

neurons with all-to-all connectivity (Gaussian

distributed variance, g0 = 0.8; STAR Methods).

Fixed input (Win) and output (Wout) weights with

30% of neurons receiving optogenetic input (Iopto),

a 100 ms pulse train with a variable rest interval up

to 400 ms. Only recurrent weights were trained

(Wrec
(pre) and Wrec

(post)). Initial training (red): target

output profilewasZpre = Iopto. Amplification training

(blue): profile was Zpost = 2 * Iopto, a fixed gain of 2.

(B) Profiles of target optogenetic output mimics

pre- and post- learning amplification (Zpre and

Zpost, respectively).

(C) Resultant weight matrices for initial training

(Wrec
(pre)) and amplification training (Wrec

(post)).

(D) Difference weight matrix (Wrec
(post) � Wrec

(pre))

showing that amplification resulted in primarily

positive weight changes across neurons receiving

optogenetic stimulation (see also Figure S4).
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shows robust behavioral changes after learning that are accom-

panied by unambiguous V1 neural amplification.

The different effects seen in Pancholi et al. might be due to

structural differences between V1 and S1 cortical circuits or

may be related to differences in task-specific computations.

Their subjects were asked to discriminate between total stimula-

tion intensity (low versus high numbers of optogenetic pulses),

rather than discriminate or detect a specific pattern of activity.

Prior studies also disagree on interpretation, seemingly due to

these differences in measurement of neural responses. For

example, Dalgleish et al.44 hypothesize that the main neural

changes relevant for behavior are happening downstream,

outside the cortical area they stimulate (S1). Our work shows

that there are clear changes occurring in V1 that support this op-

togenetic learning and that those changes appear to be the

optimal change to improve task performance.

Readout changes and representational changes
Our results appear to help resolve a contradiction in recent opto-

genetic stimulation studies. Some studies have found that ani-

mals can detect the activation of approximately 40 neurons, in

S1,44 and the olfactory bulb.65 However, other work has found

that only a subset of animals reported activation of similarly sized

groups of randomly selected V1 neurons.22 While a possible

explanation may be differences between brain areas, our data

suggest a different explanation: that detection of randomly

selected small ensembles of neurons requires initial learning

with stronger stimulation. The S1 and olfactory bulb studies

initially trained animals using one-photon (widefield) optoge-

netics, as we use here. Thus, these optogenetic results, along

with electrical stimulation studies66–71 imply that, in many brain

areas, animals can use completely novel, randomly chosen
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patterns of neural stimulation, but to do

so, learning must first be induced by

strong stimulation of hundreds of neurons

or more.

While we found significant changes in
cortical representations during learning, it is possible that the

readout mechanism improves as well. Our data might suggest

that there are changes in readout, beyond V1 changes in ampli-

fication, as we found larger improvements in behavioral perfor-

mance than in cortical responses (percent changes in stimulation

power needed to do the task versus percent changes in neural

responses; Figures 1 and 2), though interpretation is difficult

due to potential opsin saturation and potential nonlinear or vari-

ability-dependent readout.63,72 Dalgleish et al. also provide evi-

dence that readout changes occur in optogenetic learning tasks:

they found that high detection performance generalized across

different stimulated patterns of cortical neurons. That is, after

learning, animals did well at detecting the activation of not just

a single trained subset of up to 100 neurons, but many different

sets of up to 100 neurons. On the other hand, Marshel et al., who

also stimulated randomly selected groups of up to approxi-

mately 100 neurons, found little generalization from one

randomly selected pattern to the next (their Figure 4I). Several

differences might explain the divergent results: differences in

cortical area, or differences in behavioral task, single-pattern

detection versus two-pattern discrimination. While the large

amplification in cortical circuits that we observe after optoge-

netic learning would be sufficient to drive the behavioral im-

provements, our data are unable to exclude the possibility that,

in some circumstances, the decoding mechanism may also

change during optogenetic learning.

The learning that we observed here seems likely to be a

change in optogenetic sensitivity and not related to changes in

movements. Our animals were pre-trained on a visual detection

task before introducing the optogenetic stimulus (Figures S1A

and S1B). Thus, the task demands and motor responses were

fixed, and the only learning step needed was for animals to
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gain the ability to perceive and report the novel optogenetic ac-

tivity induced in the cortex.

Amplification happens via consolidation, with the
largest changes outside sessions
Because we measured neural responses during task perfor-

mance, we were able to determine whether amplification

happened within the training sessions or developed from 1 day

to the next. We found that within session, there were only small

or negative changes in neural responses to a fixed stimulus

(Figures S3K and S3L), though there were consistent changes

from one learning session to the next (Figure 2). While some de-

creases in response within session could, in principle, be due to

bleaching of opsin or indicator, the changes from one session to

the next suggests that the major cortical network changes were

happening outside sessions, perhaps as animals rested or slept.

This is reminiscent of the consolidation that happens in motor

learning, where a significant component of the motor improve-

ment also appears to occur outside of the actual learning or

practice repetitions.73,74

Our physiological recordings found learning-related neural

changes over the initial few days of optogenetic learning (5–

6 days), consistent with previous reports.22,44,64 However, we

also measured continued improvement in optogenetic detection

performance (without neural imaging) over many weeks to

months of training (Figure 1). It seems possible that additional

cortical amplification happens during this longer phase as well.

This is supported by studies of long-term deafferentation, which

have demonstrated that cortical responses can change over

months or years to accommodate input changes.75,76

Pattern amplification in cortex due to recurrent
connectivity
We found that optogenetic learning produced little change in the

visual response properties of targeted neurons (Figure 3). In prin-

ciple, the observed increase in cortical responses to the optoge-

netic stimulus could have arisen from changes outside the local

cortical network that would not be due to modification of recur-

rent connections. These outside sources might be changes in

top-down, higher-order thalamic (e.g., from the lateral posterior

nucleus, LP/pulvinar) or neuromodulatory input that change the

gain of V1 neurons. In addition, individual cells might change

their intrinsic excitability.77 However, if top-down input changes,

intrinsic excitability, or neuromodulatory effects were the domi-

nant players, we might expect effects on visual responses as

well. Alternatively, neurons in an external area might function in

a loop as part of the RNN that we simulated.78–80 However, the

short latency of the responses that are amplified, as well as the

higher density of recurrent versus cross-area connections, ar-

gues against an elaborate multi-area mechanism for the amplifi-

cation that we observed. Theoretical work and our modeling re-

sults show that response amplification to a fixed input can be

created in recurrent networks by adjusting the synaptic connec-

tivity within the network.34,35,81 Pattern completion observations

in cortex82 are also consistent with response amplification, as

amplification of a particular input pattern is closely related to

completion, where a partial input pattern, via the recurrent

network, induces larger responses in the neurons that compose

the activity pattern. Finally, spinogenesis in motor cortex
accompanies motor learning83,84 and chronic optogenetic stim-

ulation in vitro can also produce recurrent changes.85 Along with

the time course of the changes we saw, over the course of

several days of practice, these observations together suggest

that changes in local recurrent cortical synapses are a likely

mechanism for the learning-related neural changes we

observed.

What circuit mechanismsmight gate, or enable, cortical recur-

rent plasticity to allow changes during behavior but not for inputs

presented outside of a behavioral context? There is substantial

evidence that inhibitory modulation is involved when such

cortical network changes occur9,86–92 and alternation of peri-

neuronal networks, which surround many inhibitory neurons,

participate in these synaptic changes.93–99 Since the observed

response changes are dependent on animals performing a re-

warded behavioral task, a compelling possibility is that task

context or reward prediction signals trigger the activation of

inhibitory neurons, which in turn opens the gate for plasticity,

enabling changes to begin.
Conclusions
How the cerebral cortex builds sensory representations for use

in behavior is key to understanding brain function. Though the

adult visual cortex is less plastic than the developing cor-

tex,100–102 our results—cortical amplification in response to

completely novel artificial patterns of optogenetic input—pro-

vide key insights into how brains can adapt to behaviorally rele-

vant sensory information throughout our lifetimes.
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Hübener, M. (2013). Synaptic scaling and homeostatic plasticity in the

mouse visual cortex in vivo. Neuron 80, 327–334.

87. Swanson, O.K., and Maffei, A. (2019). From hiring to firing: activation of

inhibitory neurons and their recruitment in behavior. Front. Mol.

Neurosci. 12, 168.

88. Trachtenberg, J.T. (2015). Competition, inhibition, and critical periods of

cortical plasticity. Curr. Opin. Neurobiol. 35, 44–48.

89. Heimel, J.A., van Versendaal, D., and Levelt, C.N. (2011). The role of

GABAergic inhibition in ocular dominance plasticity. Neural Plast. 2011,

391763.

90. Fagiolini, M., and Hensch, T.K. (2000). Inhibitory threshold for critical-

period activation in primary visual cortex. Nature 404, 183–186.

91. Fagiolini, M., Fritschy, J.-M., Löw, K., Möhler, H., Rudolph, U., and
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

All experimental procedures were approved by the NIH Institutional Animal Care and Use Committee (IACUC) and complied with

Public Health Service policy on the humane care and use of laboratory animals. Adult Emx1-Cre mice (Cre-recombinase targeted

at the Emx1 locus,103 Jax stock no. 005628, N = 21, 9 females, 11 males) were used for all experiments. N = 9 animals were used

for optogenetic behavior without imaging (Figure 1), N = 4 for optogenetic behavior plus simultaneous 2-photon imaging (Figure 2),

N = 3 for mock behavior with optogenetic stimulation only (Figure 2), N = 2 for non-behavior optogenetic stimulation (Figures S4A and

S4B), and N = 3 for visual stimulation before and after optogenetic behavior (Figure 3). Animals were housed on a reverse light/dark

cycle.

METHOD DETAILS

Cranial window implantation and viral injection
Mice were given intraperitoneal dexamethasone (3.2 mg/kg) and anesthetized with isoflurane (1–3% in 100% O2 at 1 L/min). Using

aseptic technique, a titanium headpost was affixed using C & B Metabond (Parkell) and a 3 mm diameter craniotomy was made,

centered over V1 (�3.1 mm ML, +1.5 mm AP from lambda).

Mice were injected with a pre-mixed combination of two adenovirus-mediated (AAV9) vectors for expression in the cortex, a func-

tional calcium indicator (AAV9-hSyn-jGCaMP7s or -jGCaMP8s, viral titers 3.0 x 1013 and 4.1 x 1013 GC/ml respectively, final dilution

1:10)40,42 construct and a photoactivatable soma-targeted opsin construct (AAV9-hSyn-DIO-stChrimsonR-mRuby2, viral titer 3.2 x

1013 GC/ml, final dilution 1:8).37 Injections were made 150-250 mmbelow the surface of the brain for expression in layer II/III neurons.

Multiple 300 nL injections were done at 150 nL/min to achieve widespread coverage across the 3 mm window. Animals were not

reinjected.
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A 3 mm optical window was then cemented into the craniotomy, providing chronic access to the visual cortex. Post-surgery, mice

were given subcutaneous 72 hour slow-release buprenorphine (0.5 mg/kg) and recovered on a heating pad. Virus expression was

monitored over the course of 3 weeks. We selected animals with good window clarity and high levels of virus co-expression

(GCaMP and stChrimsonR) for behavior and imaging experiments.

Retinotopic mapping
We determined the location of V1 in the cranial window prior to GCaMP or opsin expression using a hemodynamic intrinsic imaging

protocol previously described in Goldbach et al.104 Briefly, we delivered small visual stimuli to head-fixed animals at different retino-

topic positions and measured hemodynamic-related changes in absorption by measuring reflected 530 nm light. Imaging light was

delivered with a 530 nm fiber-coupled LED (M350F2, Thorlabs). Images were collected through a green long-pass emission filter onto

a Retiga R3 CCD camera (QImaging, captured at 2 Hz with 43 4 binning). The hemodynamic response to each stimulus was calcu-

lated as the change in reflectance of the cortical surface between the baseline period and a response window starting 2–3 s after

stimulus onset. We fit an average visual area map to the cortex based on the centroids of each stimulus’ V1 hemodynamic response.

These retinotopic mapswere used during behavioral training to overlap the visual stimulus position in the right monocular hemifield

with the imaging/optogenetic stimulation location in the V1. We found that the transition period between visual detection and opto-

genetic detection was facilitated by a strong overlap.

For measuring visual response properties, we further refined the visual position by measuring cellular responses in layer II/III with

2-photon imaging. Small, oriented noise visual stimuli (14� FWHM) were presented at 9 locations (spaced by ±15� azimuth and ±10�

elevation) in the right visual hemifield. The visual stimulus position that evoked the greatest response in the FOVwas chosen for char-

acterizing visual responses. We found that the strongest response was typically the center location, selected using the widefield he-

modynamic map above.

Behavioral task
Water-restricted mice (20-40 ml/kg/day) were head-fixed and trained first to hold a lever and release in response to a visual stimulus

(Gabor patch; 14� FWHM, spatial frequency 0.1 cycle/degree), that increased contrast relative to a gray screen,104,105 and then to an

optogenetic stimulus that directly activated layer II/III neurons in V1. Mice initiated behavioral trials by pressing and holding a lever for

400-4000 ms (according to a geometric distribution, to reduce variation in the stimulus appearance time hazard function, see Gold-

bach et al.104), and then the stimulus appeared for 100 ms in the animal’s right monocular hemifield. Animals had up to 550 ms to

report the stimulus by releasing the lever. Because someminimum time is required to process the stimulus, we counted as false alarm

trials those releases that occurred within 50-100ms of the stimulus onset. Correct detection responses resulted in delivery of a 1-5 mL

liquid reward (10 mM saccharine). We varied the liquid reward during training,105 increasing reward after up to three consecutive cor-

rect trials, to decrease incentive for guessing.106 Once proficient, reward volume did not fluctuate significantly across sessions.

All behavioral animals were first trained on a visual detection task (see task schematic, in Figure S1 and Goldbach et al.104). Once

animals were performing well on the visual task and produced stable psychometric curves with low lapses for three consecutive ses-

sions, we transitioned the animal to using the optogenetic stimulus by pairing each visual stimulus appearancewith a fixed power (0.5

mW) optogenetic stimulation. During these transition sessions we lowered the contrast of the visual stimulus until animals could

perform the task without the visual stimulus. The session where animals started behaving exclusively on the optogenetic stimulus

was denoted session 0. During session 0 we generated the first psychometric curve for optogenetic stimulation. Analysis of data

from session 0 came only from the part of trials where the animal was exclusively on the optogenetic stimulus. Subsequent behavioral

sessions were started and conducted with only optogenetic stimuli. Animals used in behavior were not exposed to any other

1-photon stimulation outside of behavior and the craniotomy was kept covered by an opaque cap between sessions.

Optogenetic stimulation
For optogenetic behavior experiments without simultaneous 2-photon imaging we delivered light through a fiber aimed at the cortical

surface.104 A fiber-coupled LED light source (M625F2, Thorlabs, peak wavelength 625 ± 15 nm, FWHM) was coupled via a fiber patch

cable to a fiber optic cannula (400 mm core diameter, 0.39 NA, Thorlabs CFMLC14L02) cemented above V1. This method was used

for long-term learning and control experiments with increased optogenetic stimulation outside of behavior (powers up to 1mW with

6.3 ± 1.7s between simulations, mean ± SD, N = 2).

For optogenetic behavior experiments conductedwith simultaneous 2-photon imagingwe activated stChrimsonR expressing neu-

rons by passing 595 nm light (CoolLED pE4000 multispectral illuminator, 595 ±15 nm, FWHM) through the imaging objective to the

surface of the brain. The illumination power was measured through the objective at the beginning of each session using a light meter

(Newport 1918-C with a 918D-SL-OD3R detector) with a maximum of �0.5 mW.

Analysis of behavioral data
Analyses were conducted in Matlab and Python. Optogenetic learning effects were characterized by analyzing data collected during

animal behavior on the optogenetic stimulation detection task.

Reaction times were averaged across trials for each laser power group and for each training session. Linear fits were calculated for

these data points across the start and end sessions in which each laser power group was present during the task. The slope of the

linear fit indicated the change in reaction time per session for each laser power group. A mean change in reaction time per training
e2 Current Biology 33, 2163–2174.e1–e4, June 5, 2023
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session was then calculated across all laser powers for each animal. Changes in optogenetic detection sensitivity were analyzed by

fitting cumulative Weibull functions to data from individual training sessions to estimate detection performance (hit rate) as a function

of laser power. Quantifying thresholds with d’ (sensitivity) produces similar results to using hit rate in this task, as false alarm rates are

nearly constant over time (false alarm hazard rate is near constant, see Goldbach et al.104). Threshold was the 50% point of the Wei-

bull functions.

2-photon calcium imaging
2-photon calcium imaging was conducted using a custom microscope based on MIMMS (Modular In vivo Multiphoton Microscopy

System, e.g., Kerlin et al.107) components (Sutter Instruments, Novato, CA) with a Chameleon Discovery NX tunable femtosecond

laser (Coherent; Santa Clara, CA). Imaging was performed using a 16Xwater dipping objective (Nikon; Tokyo, Japan). A small volume

of clear ultrasound gel (�1mL) was used to immerse the lens. Images of calcium responses (�150-200 mm from the surface of the pia,

layer II/III) were acquired at 30 Hz using % 50 mW laser power for static imaging, and % 15 mW for behavior at 920 nm.

Analysis of imaging data
Raw 2-photon image stacks were downsized (512 rows to 256 rows) to facilitate handling of large datasets. For each behavioral ses-

sion, frames were motion corrected using CaImAn.108 Each imaging data set was baseline corrected to an estimated minimum pixel

intensity, calculated as the minimum value in the average projection image across all frames from all trials prior to stimulus presen-

tation (Fmin, a scalar). The minimum pixel intensity was subtracted from all pixels and all resulting negative values were set to 0.

For quantitative analyses we computed DF/F as (F-F0)/F0 at each pixel. F0 was taken over the 10 frames before each stimulus

onset, and F0 did not systematically change over days (see also Figure S1E). For statistical analyses, F was taken as the frame

120 ms after the stimulus onset (frame 3 post-stimulation, near the peak response, well before the median reaction time

(�250 ms) and reward delivery). For visual display of responses in entire frames, as in Figure 2C, was taken over 0-270 ms after stim-

ulus onset (frames 0-9 post-stimulation), and we computed DF/F as (F-F0)/Fdiv, where Fdiv is F0 smoothed with a gaussian filter

(sigma = 20 pix). Using a smoothed divisor image averages overall intensity in small regions of the image, yielding a form of local

contrast adaptation. Image ROI fluorescent (F) activity traces were measured by calculating the average pixel intensity within a

user-defined ROI, prior to computing DF/F for an ROI. Deconvolved calcium responses to estimate spiking activity for an ROI

were calculated using the OASIS method with an autoregressive constant of 1.53

Segmented cell masks were identified using either Suite2p (for Figure 2)55 or CaImAn (for Figure 3)108 and their resulting calcium

responses (F) were extracted using the default settings for background and neuropil subtraction. In order to quantify neuropil activity,

wemanually segregated cell bodies from their surrounding neuropil with non-overlappingmasks (for Figure 2, details in Figures S3A–

S3C). We fit the fluorescence decays of cell bodies neuropil by a single exponential in a post-stimulation window (300 ms, starting 1

frame after cessation of optogenetic stimulation). Suppression effects were characterized in a 1.5 s post-reaction timewindow (start-

ing 350 ms after optogenetic stimulus presentation, well after the median reaction time (�250 ms) for the detection behavior).

Linear regression model for testing for effects of change between experimental days was OLS regression, using all trials on which

the stimulus was successfully detected. Data was fromN = 3 animals, N = 6 sessions for each animal, and 2633 total number of stim-

ulation trials (all animals and sessions are shown in Figures S3K and S3L, including the same analysis of N = 3mock behavior control

animals). Regression model equation: DF/F� C(animal) * C(session) + stimulation_power_mw + trial_number + constant, where C(x)

signifies a categorical or dummy variable. Full details of the model definition are in https://patsy.readthedocs.io/en/latest/.

We also tested for significant change in DF/F within-session by running the same model over each animals’ data, and found all

three animals showed a negative change (trial number coefficient: -1.5, -1.1, -0.2% DF/F) though only two were significantly different

from zero (p < 1 x 10-12, < 1 x 10-6, = 0.6, respectively).

Linear regressionmodel for testing effects of optogenetic stimulation outside of behavior (results in Figures S4A and S4B) wasOLS

regression from N = 2 animals, session 0 (S0) vs. session 6 (S6) via ANOVA. Regression model equation: DF/F � C(power) + C(S0 v.

S6), where C(x) indicates a categorical or dummy variable.

Confirming optogenetic stimulation power between sessions
We measured the power of the stimulation LED light path immediately before each behavioral session. We also measured relative

laser excitation power across days by measuring light collected by the PMTs during stimulation. The optogenetic blanking circuit

operates the LED illuminator during the flyback phase of scanning image acquisition, and the refractory time of the blanking circuit

leaves an up to�20 pixel artifact at the edges of the raw image stacks that scales with stimulation intensity. We used the mean pixel

intensity change for this artifact to scale attenuated sessions and normalize stimulation powers across days (Figures S2A–S2E), and

our results were unchanged with and without this scaling, confirming we accurately measured stimulation power.

Analysis of visual response properties
2-photon calcium imaging was performed directly before and after optogenetic learning to assess V1 neural responses at both

training and control locations (an area with stable expression at least 200 mm away from training location). Visual stimuli were

presented on a monitor positioned in front of the head-fixed animal at a 45� angle on the animal’s right side. The visual stimulus

was either a full-field or Gabor patch (12� FWHM) drifting grating stimulus at 100% contrast presented in 12 different directions

(30� increments). Stimuli were presented for 3 second durations (with 4 seconds between presentations) and were delivered in
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random order for a total of 25 repetitions of each stimulus direction. Gabor patch stimuli were displayed on the monitor at the visual

field location corresponding to the retinotopic map at the training and control locations.

To assess potential changes in visual response selectivity, direction and orientation selectivity indices were calculated for each

identified cell.109,110 First, tuning curves for each cell were calculated by averaging DF/F responses across the 3 second stimulus

period across all repetitions for each of the 12 drifting grating directions. Direction selectivity indices (DSI) were measured as (Rpref

- Roppo)/(Rpref + Roppo), where Rpref is the peak average response across the 12 directions and Roppo is the average response at the

opposite direction 180� away from the preferred direction. Orientation selectivity indices (OSI) were measured by first averaging re-

sponses from opposite pairs of directions (e.g., 0� and 180�, 45� and 225�) and calculating (Rpref - Rortho)/(Rpref + Rortho), where Rpref is

the peak average response across the 6 orientations, and Rortho is the average response of the orthogonal orientation 90� away from

the preferred orientation. Last, a global OSI (gOSI) metric was calculated as 1 - CV (tuning curve) for each cell, where CV is the circular

variance.

Modeling
We trained a recurrent neural network (RNN) consisting of N = 200 units, whose response dynamics for the i-th neuron are given by:

t
dxi
dt

= � xi +
XN

j = 1

Wrec
ij 4ðxjÞ + Iopto ðtÞ win

i + ni

The readout of the network is:

Z ðtÞ =
XN

i = 1

wout
i 4 ðxiÞ

The transfer function of single units is 4 ðxÞ = tanhðxÞ. The weights of the input pattern win are positive and exponentially distrib-

uted with mean 0.05 for a fraction p = 0.3 of units, and zero otherwise. The readout weights are homogeneous and constant: wout
i =

1. The initial recurrent weights Wrec
ij , before any training, are independently sampled from a random Gaussian distribution with

mean zero and standard deviation g0 =
ffiffiffiffi
N

p
.111 The noise term ni is randomly sampled from a zero mean distribution with standard

deviation 0.0005 at every time step.

We trained the recurrent weightsWrec
ij of the RNN using backpropagation-through-time (ADAMoptimizer112 in pytorch113 such that

the network readout Z matches a scaled version of the time-varying input Iopto ðtÞ. The input and output weights remained fixed. In a

first phase, mimicking the pre-learning response, we trained the network for 100 epochs such that Zpre = Iopto, obtaining recurrent

weights W
ðpreÞ
rec . In a second phase, we trained the pre-learning network on 100 epochs to produce an amplified response, Zpost =

2Iopto, with recurrent weights W�recðpostÞ . Parameters: t = 10 ms, g0 = 0.8, Euler integration timestep Dt = 1 ms, learning rate 0.01.

To analyze the response to novel untrained input patterns, we calculated the network readout response to inputs with the same

temporal statistics Iopto ðtÞ but fed to the network along 100 different input patterns. The random input weights had the same statistics

as the trained input patterns.

To compute the normalized synaptic weight change in percent, we took the mean of the absolute value of weight across all syn-

apses during the pre-training period, yielding a scalar value, and divided each synaptic weight by this scalar and multiplied by 100.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyses were performed using Python unless otherwise stated. Details of statistical tests can be found in the figure leg-

ends. Analyses used packages provided by the Anaconda distribution (Continuum Analytics).
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