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SUMMARY

Cerebral cortex supports representations of the world in patterns of neural activity, used by the brain to make
decisions and guide behavior. Past work has found diverse, or limited, changes in the primary sensory cortex in
response to learning, suggesting that the key computations might occur in downstream regions. Alternatively,
sensory cortical changes may be central to learning. We studied cortical learning by using controlled inputs we
insert: we trained mice to recognize entirely novel, non-sensory patterns of cortical activity in the primary visual
cortex (V1) created by optogenetic stimulation. As animals learned to use these novel patterns, we found that
their detection abilities improved by an order of magnitude or more. The behavioral change was accompanied
by large increases in V1 neural responses to fixed optogenetic input. Neural response amplification to novel op-
togenetic inputs had little effect on existing visual sensory responses. A recurrent cortical model shows that this
amplification can be achieved by a small mean shift in recurrent network synaptic strength. Amplification would
seem to be desirable to improve decision-making in a detection task; therefore, these results suggest that adult

recurrent cortical plasticity plays a significant role in improving behavioral performance during learning.

INTRODUCTION

Sensorimotor decision-making involves patterns of neural activ-
ity, which propagate through the neural circuits of many brain
areas and are changed by those circuits. The sets of neural com-
putations involved in sensory decision-making have not been
fully determined,’™ but some principles have been identified.
One basic neural computation is representation, storing informa-
tion about the sensory world in patterns of activity, as is
observed in many cerebral cortical areas. Another is decision,
or readout, in which representations are transformed or catego-
rized by circuits into forms suitable for action.>®

There is substantial evidence that sensory cortical representa-
tions can be modified by activity,” " but it is less clear whether
cortical response changes constitute the computational change
that leads to improved behavior with learning. Studies in humans
and animals have reported varied effects of learning on visual
cortical responses, including increased activity after visual
training,'?~'° selective suppression of activity, '® decreased vari-
ability of visual selectivity response properties after training, '~ '°
and activity changes that disappeared once early learning has
ended.? Some learning studies have found improvement in pri-
mary sensory representations,’®?'® along with changes in
anticipatory and other signals.'®?* Other studies in primary vi-
sual cortex (area V1) have found little task-relevant change'®°

but found changes in higher visual areas like V4.°?” Thus, it
has been unclear whether a major substrate of visual sensory
learning is representational improvement in V1, such as
increased gain or selectivity, or whether the principal changes
are readout changes, perhaps in downstream areas.

One reason it has been difficult to delineate the neural compu-
tations underlying sensory decisions is that neurons and brain
areas are highly interconnected, and sensory stimuli can evoke
changes in the activity of numerous brain areas.?®*° Thus,
changes in neural activity that are observed in one cortical
area may be inherited from input regions, and indeed cognitive
factors like attention or arousal can modulate visual activity
before it arrives at the cortex.®’ One way to isolate cortical rep-
resentations from downstream readout computations is to use
stimulation-based behavioral paradigms. Using electrical or op-
togenetic stimulation methods, entirely novel (non-sensory or
“off-manifold”)®>>® activity patterns can be introduced in a cho-
sen brain region. Using such novel patterns is a way to explore
the limits of cortical plasticity, as they are dissimilar from normal
sensory patterns.

Here, to isolate representational changes that occur as ani-
mals improve on a task, we study V1 neural changes as mice
learn to use a new cortical representation induced with optoge-
netic stimulation. Animals show dramatic improvements in
behavior as they learn, with detection thresholds improving at
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times over several orders of magnitude during weeks or months
of learning. Alongside the behavioral improvements, cortical
neurons produce larger responses to the same optogenetic
input. Thus, learning enables a fixed input to produce an increas-
ingly large response in the V1 network, presumably by some
adjustment of local, recurrent circuitry.>*°® The results imply
that this learning leads to local changes in representations by
increasing recurrent amplification in V1.

RESULTS

We trained animals to detect neural activity evoked by optoge-
netic stimulation and measured cortical responses during
learning with two-photon imaging. We implanted a 3 mm optical
glass window over V1 and used multiple viral injections in layer 11/
Il to express an opsin (soma-targeted ChrimsonR; stChrimsonR;
excitatory neurons; AAV9-FLIP/DIO in Emx1-Cre mouse
line),”° and for two-photon imaging, a calcium indicator
({GCaMP7s or 8s; all neurons; AAV9-hSyn).*0

We delivered optogenetic stimulation light through the objec-
tive (combined into the light path via a dichroic; Figure 1A; STAR
Methods), which robustly activates stChrimsonR-expressing
neurons throughout layer II/Ill (~500 um diameter light spot at
cortical surface; Figures S2F-S2J; STAR Methods).

Optogenetic detection training (N = 16 animals) occurred in
two phases (Figures S1A and S1B). First, we trained animals
to perform a sensory detection task. This way, they first learned
the task demands (waiting for stimulus, lever press, etc.), which
reduced behavioral changes due to those effects as optoge-
netic learning progressed. We trained animals to respond to a
small visual stimulus (monocular Gabor; 14° FWHM) until they
performed the task with a stable psychometric threshold for
three sessions (e.g., for animals imaged during behavior:
training time 15-29 days, 23.6 + 6.2 days, mean + SEM, N =3
animals). Next, we added an optogenetic stimulus (Figures 1,
S1A, and S1B; 0.5 mW at 595 nm), delivered at the same time
as the visual stimulus. Over the course of several sessions,
we removed the visual stimulus gradually by manually reducing
visual stimulus contrast.** This made it more difficult to perform
the task using the visual stimulus, but performance was kept at
approximately the same level as animals began to use the op-
togenetic stimulus (Figures 1A, 1B, S1A, and S1B). When
contrast of the visual stimulus was zero, animals relied entirely
on the optogenetic stimulus (2.3 + 0.9 days after first optoge-
netic stimulus, mean + SEM, animals used for imaging, N = 3;
“session 0”). We confirmed that animals responded only to
the optogenetic-evoked neural activity by moving the optoge-
netic spot during behavior to non-training locations with similar
opsin expression within V1. This resulted in no behavioral re-
sponses (Figures S1C and S1D).

How similar are optogenetic responses to visual sensory re-
sponses? The optogenetic stimuli we use produce a different
pattern of responses across the neural population than visual in-
puts, which activate cells based on their receptive field proper-
ties. However, in the temporal domain, our optogenetic stimula-
tion is more similar to visual responses, as optogenetic
stimulation with the parameters we use modulates firing rates
(measured with electrophysiology in O’Rawe et al.*"), and does
not dramatically synchronize firing. This is consistent with the
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cortex operating as a recurrent network with reasonably strong
excitatory-inhibitory coupling. In such a network, cortical neu-
rons can fire irregularly, due to large amounts of recurrent input
that lead to highly fluctuating membrane potentials.*®~*® Inputs
then modulate the firing rate*®°" of the neurons—whose individ-
ual spike times are determined by the network-driven membrane
potential fluctuations.®?

Optogenetic learning in a detection task

We found that animals dramatically increase their ability to
detect the optogenetic stimulus—that is, the activation of V1
neurons —with practice. We collected psychometric curves dur-
ing training sessions to track changes in animals’ perceptual
sensitivity to the optogenetic stimulus (Figure 1C). Over the
course of long-term training (~90 sessions), we found that with
practice, animals’ perceptual thresholds dropped dramatically
(Figure 1C). Animals needed less-strong stimulation over time
to achieve the same level of performance. The observed rate
of threshold change could be roughly separated into two phases,
a phase that occurred within the initial ~10 sessions of training
after acquisition of the optogenetic task (Figures 1C and 1D, i
and i) and a slower phase over many additional sessions
(Figures 1C and 1D, ii and iii). Below, we focus on the first
6 days of this initial learning phase for our experiments examining
neural activity changes. In this initial phase, the threshold
changes were large (Figure 1E; Athresh. pwr. = —0.28 mW:
0.35, 95% CI [0.31-0.37] to 0.058 [0.052-0.063]).

The threshold changes were accompanied by decreases in re-
action times. We compared reaction times for fixed stimulation
powers across days (Figures 1F and 1G; median = —15.4 ms,
IQR = 18.6, p < 0.01, over a subset of animals, N = 9, with com-
mon stimulation powers). The reaction time changes could not
be accounted for by changes in animals’ false alarm rates (Fig-
ure 1H). While reaction times did change with false alarm rates,
as expected due to changes in the underlying perceptual crite-
rion, the changes in reaction time remained even after regressing
out false alarm rate (Figure 1H).

Responses of V1 to optogenetic stimulation are
amplified by learning

We next imaged neural responses to stimulation during the pro-
cess of learning. We measured neural responses in layer /1l
during the first six optogenetic learning sessions, where learning
is rapid (Figures 1C-1F and 2A). During this period, animals
showed a greater than 50% drop in their optogenetic detection
thresholds (Figure 2A; Athresh. pwr. from session 0 to 5,
—62% + 10%, mean + SEM, N = 4 animals, different cohort
than in Figure 1).

To examine response changes with high signal-to-noise, we
first averaged fluorescence responses over a large region of in-
terest (ROI) (Figures 2B and 2C). Imaging during optogenetic
detection behavior revealed clear stimulus-evoked responses
that were strongly amplified over the course of training
(Figures 2C-2J).

This amplification could not be explained by shifts in the imag-
ing plane or by changes in virus expression over sessions (Fig-
ure ST1E). It also could not be explained by tissue growth under
the window or other optical degradation, over time or as a result
of stimulation, as the effect we measured was in the opposite
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Figure 1. Mice gradually learn to report direct optogenetic stimulation of V1 excitatory neurons

(A and B) Task schematic. Animals release a lever when they detect the optogenetic stimulus (opsin: soma-targeted stChrimsonR in excitatory neurons). Only
rapid lever releases (between 50 and 550 ms post-stim) were scored as correct (release before this window, false alarm; releases later, miss) (see Figures S1Aand
S1B for training details).

(C) Example of long-term optogenetic learning. Blue circles, i and ii (7 sessions), initial fast drop in stimulation power required to hold performance constant
(green: hit rate roughly constant, >70%; Results); ii and iii, longer phase of behavioral improvement (80 sessions).

(D) Psychometric curves showing stimulation power decrease (curves from days shown by i, i, andiii in C). Small gray text, threshold power in mW. Leftward shift
signifies improved performance: gray arrow. Power threshold of the final session was 3 orders of magnitude lower than threshold of first session (0.38 versus
0.0002 mW: i versus iii).

(E) Psychometric curves covering the initial phase of optogenetic learning (same animal from C and D, sessions 0 and 9). See Figures S1C and S1D for non-
training site control. Red dotted line: common power across sessions used for reaction time analysis.

(F and G) Reaction times in response to optogenetic stimulation get shorter with learning (first 10 sessions of optogenetic learning; F, N = 1 animal, error bars: SEM
over trials; G, N = 9 animals, each point: regression slope for one animal, power shown by red line in E; STAR Methods; error bar: IQR = 18.6, p < 0.01).

(H) Change in reaction time cannot merely be explained by change in false alarm rate, a proxy for response criterion*® (black line, linear regression, slope —3.98,

p = 0.002; blue line, negative change in reaction time even at zero false alarm rate change, offset —15.6, p = 0.02) (see also Figure S1).

direction: an increase in responses to stimulation. However, to
verify that optical changes did not account for the effects, we
used the effects of stimulation light on GCaMP (the artifactual
fluorescence induced by stimulation light exciting GCaMP,
which we normally rejected by stimulating outside imaging lines;
STAR Methods) and used it to adjust stimulation power, finding
that the amplification effects remained with and without this
adjustment (Figures S2A-S2E). Finally, as another check to
rule out changes in imaging properties, expression, or reward re-
sponses as contributing to this effect, we stimulated in control
animals using matched mock training sessions, with the same
imaging, stimulation, reward, optical window, and injection pa-
rameters as during training (Figures 2| and 2J; see also
Figures S4A and S4B for similar control experiments using
even higher powers). We found no amplification in these closely

matched controls (Figures 21 and 2J), arguing that the amplifica-
tion we saw was indeed an increase in neural responses as a
function of learning.

In principle, it could have been that amplification was seen at
some power levels but not others. We examined optogenetic-
evoked responses and found that after learning, responses
were amplified at all optogenetic power levels (Figures 2G-2J),
with strong effects both near the psychometric threshold (where
behavior is tightly bound to stimulus perception) and at above-
threshold optogenetic stimulation powers (where trials are
perceptually easy, and performance is not stimulus-limited)
where animals perform well. Though the magnitude of these
changes varied somewhat across animals, we measured individ-
ually significant amplification in all learning animals and not in
controls (Figures 21, S3K, and S3L).
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Figure 2. V1 responses to optogenetic stimulation are amplified by learning
(A) Animals improve optogenetic detection ability with practice (y axis: threshold, stimulation power required for fixed detection performance; normalized to
session 0, N = 4 animals imaged during learning, different cohort than Figure 1).
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We then examined single-neuron responses in an example an-
imal (Figure 2K). We found that during the stimulation period,
nearly all individual neurons (Figures 2K, 2N, and 20) as well
as the surrounding neuropil (Figures 2L and S3A-S3F) showed
positive responses. Thus, averaging neurons into large ROIls
(Figures 2C-2J) captures the effects seen in single cells, the pos-
itive responses across many neurons. The cell responses were
amplified with learning (Figure 20), and the amplification was
seen across multiple powers (Figures 2N and 20; mean change
in AF/F = 6.7%, 14.0%, 26.6%; at 0.014, 0.04, and 0.14 mW;
95% CI [3.0-10], [9.5-19.5], [17.2-36.0]), also consistent with
the data from the large-ROI population measurements
(Figures 2B-2J). We also examined whether neurons showed
any signs of suppression after stimulation.** We did find evi-
dence for suppression (Figure 2M). However, this suppression
was not part of the behavioral response or decision, as it
occurred only after the animal made its behavioral response
(Figures 2M and S3G-S3J; average reaction time for optogenetic
learning animals 225 + 23 ms, mean = SEM, N = 3). This suppres-
sion time course is consistent with electrophysiological mea-
surements of V1 excitatory optogenetic responses.*® These
measurements show an initial positive transient in almost all neu-
rons, followed by a suppressed steady state in some excitatory
cells. These effects can be explained by coupling within the
cortical recurrent network. In any case, for our 100 ms optoge-
netic pulses, we found that the neural responses during the stim-
ulation period were nearly entirely positive (Figures 2D-2F and
2L-20), and further, these responses increased with learning.

The changes we observed in neural activity were smaller than
the improvements seen in perception. Animals’ perceptual
detection performance improved, and thresholds decreased,
by a factor of approximately 2.7 x after 6 sessions (i.e., power
threshold was 37% + 11% of session 0 levels; Figure 2A). In
contrast, AF/F over the course of 6 sessions, measured at
threshold stimulation power showed a 1.7x increase in AF/F
over the large ROIs (session 0, 25.6% + 7.4%, mean = SEM
across animals; session 5, 42.9% + 10.9%; Figure 2I) and a
2.1x increase in mean cell peak AF/F (Figure 20; session 0,

¢? CellPress

9.3%; session 5, 23.3%). Several caveats apply: the readout
mechanism presumably sums across large numbers of neurons
and thus may not be limited by the change in cortical responses
we measure, and opsin saturation at high power may lead to
greater changes in power than activity. While changes in cortical
sensitivity alone would be sufficient to drive behavioral improve-
ments, the fact that behavior changes by a larger factor than
cortical responses could potentially indicate that there is an
improvement in the readout mechanism, occurring along with
the amplification changes we see.

The largest neural response changes happened from

1 day to the next, not within session

Although we observed significant increases in AF/F responses
across experimental days, we found no evidence of increases
within session. In fact, we found a small decrease in responses
to stimulation over the course of each experimental day
(Figures S3K and S3L; average AF/F change over 100 trials:
—-1.2% AF/F, 95% CI [-0.9 to 1.6]% AF/F, coefficient less
than zero at p < 1073, via linear regression over trials within
day, estimated across animals and sessions, N = 3; STAR
Methods). Thus, it appears that optogenetic learning-related
changes do not happen within the behavioral day, i.e., from
one trial to the next. Instead, these data support that the major
changes to neural responses occur outside of training and may
be driven by consolidation: changes in the brain in the hours be-
tween the experimental sessions.

No amplification occurs with stimulation outside of the
behavioral learning context

To determine if cortical amplification is dependent on learning, or
might arise from repeated optogenetic stimulus alone, we per-
formed a stimulation control in a mock behavioral context and
found no amplification (Figures 21 and 2J). The experiment was
conducted with stimulation powers matched to those used dur-
ing optogenetic learning (up to 0.5 mW, N = 3 animals). To deter-
mine if we could drive changes using stronger optogenetic stim-
ulation, we increased stimulation power levels up to twice that

(B) stChrimsonR, GCaMP7s expressed in layer II/lll neurons (imaging for all animals, shown over days, in Figure S1E). Orange circle: approx. stimulation beam

waist (~200 um) (see also Figure S2 for stimulation details).

(C) Neural response amplification after optogenetic learning (mean AF/F, 0.04 mW stimulation power, near psychometric threshold, animal 1, analysis from same
animal for D-H). Gray box: region of interest (ROI) used for trial-by-trial AF/F analysis. See Figures S4A and S4B for non-learning control.

(D and E) AF/F time courses before and after learning, matched stimulation powers.

(F) Deconvolved signal (spike rate proxy; OASIS®*°%) shows spiking changes occur during stimulation (decay in D and E due to calcium dynamics, not spiking).

(G) Average AF/F response across power levels (ROl shown in C).

(H) Trial AF/F responses before and after learning (sessions 0 and 5, S0 and S5; AF/F in ROI, C; left, power near detection threshold; right, above threshold; each

point one trial).

() Normalized response change, all animals, with learning or control (change in AF/F, mean over trials + SEM, at threshold power, **p < 1072, **p < 1073,

= < 1074, Mann-Whitney U test) (see also Figures S3K and S3L).
(J) Same as (G), for two additional animals plus an example control animal.

(K) Left: cell masks (animal 2, session 5; found with Suite2p®®). Right: mean cell responses before and after optogenetic learning. Orange box: optogenetic stim
period (100 ms).

(L) Exampile cell stimulation response (0.14 mW). See Figures S3A-S3F for additional detail and time courses. Dotted lines: single-exponential fits to fluorescence
decay (100-350 ms, green box).

(M) Mean stimulation response in cells and neuropil is positive (left, orange box), but suppression is seen after animals’ responses (lever releases, dashed black
line; purple box, post-reaction averaging window) (see also Figures S3G-S3J).

(N) Neuron responses to stimulation (during stimulation period: orange in L and M) before and after learning (animal 2, near-threshold power for session
5, 0.04 mW).

(O) Cell responses show widespread amplification with learning (each point: one cell, ****p < 10, unpaired t test; session 0, N = 64 cells; session 5, N = 142 cells).
N = 1 example animal in (K)-(O) (see also Figures S1-S4).
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used for behavior. We provided repeated optogenetic stimulation
using a range of powers up to 1 mW (100 ms stimulation with ~6 s
interpulse interval, 1,200 and 1,500 repetitions, N = 2 animals,
thus N = 5 total non-behaving controls). Even with higher stimula-
tion powers we observed no changes in the optogenetic sensi-
tivity of cells in the stimulated regions (Figures S4A and S4B).
This result shows that amplification in response to these novel
non-sensory stimuli requires an associative (behavioral) context.

Statistics of visual responses are unchanged after
optogenetic learning at both the training and control
sites

Previous studies suggest that learning in visual perceptual tasks
can lead to changes in the tuning properties of responsive neu-
rons in mouse V1."%?* However, it remains unresolved if these
perceptual learning changes arise from plasticity in the local
cortical networks, or if changes may be inherited from thalamic
input pathways that could in principle adjust input strength,
state, or synchrony®®° to change cortical responses. Since op-
togenetic stimulation bypasses feedforward input from the thal-
amus, we asked whether the visual response properties of V1
neurons would change with optogenetic learning.

We imaged V1 neurons as mice were shown a series of visual
stimuli before and after optogenetic learning (Figures 3A-3D;
STAR Methods). We collected the responses of neurons at
both the optogenetic training location (imaging site in V1 to which
the visual stimulus was retinotopically matched) and an adjacent
control location in V1 where stimuli were not delivered for opto-
genetic learning.

Though we found some changes in visual tuning indices (Fig-
ure 3E) at both the optogenetic training and control locations
before and after learning, these changes were inconsistent across
animals and comparable in size between the training and control
locations (Figure S4C). Across the population of animals, we found
no significant mean changes in the visual response metrics (Fig-
ure 3F) or in the magnitude of neural responsivity to visual stimuli
(Figure S4D). We found that the optogenetically and visually
responsive fraction of imaged cell populations were comparable
(vis, 89% =+ 5%; opto, 71% + 11%; mean = SEM, pre- and post-
learning FOVs for 3 animals, N = 6; STAR Methods), suggesting
a high degree of overlap between response populations. Taken
together with the similarity of responses across days for optoge-
netic stimulation (Figures 2N and 20), any per-animal changes
could arise from representational drift over time.®®°" The lack of
change in mean visual responses is consistent with the idea that
recurrent network changes boost optogenetic responses, while
leaving unchanged other dimensions of network response
(Figures 3E and S4C). Thus, while optogenetic learning leads to
amplification of optogenetic responses, underlying visual
response distributions and the overall structure of existing sensory
representations remain intact.

A network model shows that amplification can be
achieved by adjusting a minority of recurrent synapses
To understand how recurrent synapses might change to support
the amplification we observed, we trained a recurrent neural
network (RNN; Figure 4A) to show ampilification. We trained the
network in two steps, first to produce a response that mirrored
an optogenetic input delivered to a fraction of cells (30%;
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matching previous expression data’® and Figures S1E and
S2F-S2J), and then to produce a response that was twice the
size (Figure 4B). We only allowed changes in the recurrent con-
nections, but not in the input and output weights. During training
to produce ampilification, many synaptic weights changed, with a
small positive shift in the population mean weight (Figures 4C, 4D,
and S4E-S4G; mean 5.8% + SD 88% change). The stimulated
neurons tended to strengthen their synapses onto other neurons
(mean change 31.8%), while neurons that did not receive optoge-
netic input showed a small negative synaptic change (mean
change —5.4%). We next checked if this amplification training
produced changes in other network responses, as for example
responses to visual stimuli. On average, we found little change
in other randomly selected responses—amplification effects
were specific to trained input ensembles (Figure S4H). Therefore,
small effects on visual responses we observed experimentally
could be because the cortical network in vivo is high-dimensional,
so that learning one new response pattern does not interfere with
others. Or it could be that there is some biological mechanism
that stabilizes visual response (e.g., Kirkpatrick et al.®?).

In sum, amplification in this recurrent model shows that synap-
tic strength changes, even when restricted to the local recurrent
connectivity, can in principle support the amplification we
observed.

DISCUSSION

In this work, we examine the capacity of adult mouse V1 to un-
dergo plastic changes in response to novel optogenetic stimuli
over a few days of learning. We found clear evidence that neural
responses to novel stimuli—optogenetic inputs applied directly
to many cells—are amplified in V1, but only if those stimuli are
made behaviorally relevant. The changes in neurons’ responses
over learning sessions mirrored the animals’ perceptual im-
provements. Responses to visual stimuli, which were not rele-
vant for learning, did not show systematic changes, suggesting
that the layer II/1ll cortical network was able to selectively amplify
the input pattern created by optogenetic stimulation. Taken
together, our results provide evidence for substantial plastic
changes specifically in the V1 of the adult mouse brain that are
linked to perceptual learning of a completely novel stimulus.

Amplification is a desirable representational change for
a perceptual detection task

In an optogenetic detection task, the principal neural computa-
tion that must be performed is the comparison between the ac-
tivity evoked by optogenetic stimulation and spontaneous
ongoing activity. Therefore, the amplification of the optogenetic
signal that we found, characterized by an increasingly large
spiking response to fixed input, appears to be the optimal way
(assuming no major changes in the noise or variability in the pop-
ulation®®) for the V1 recurrent network to adjust to improve task
performance.

Other studies have found evidence for learning-related
changes with optogenetic stimulation tasks. Using a discrimina-
tion task and stimulating neurons in the somatosensory cortex
(S1) with widefield (one-photon) optogenetics, Pancholi et al.®
found no evidence for amplification but did see other changes,
including increases in response sparsity. Another study in S1
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Figure 3. Visual response properties are unchanged after optogenetic learning

(A) Schematic of experiment (N = 3 animals, different animals than shown in Figure 2). Visual responses were measured before and after optogenetic learning (12-
direction full-field drifting gratings or monocular Gabors, FWHM 12°).

(B) Example pixel-by-pixel responses (gray: SD of AF/F over imaging frames).

(C) Tuning of two example cells (blue, green outlines in B).

(D) Responses to visual stimulation across the 12 drifting grating directions, same cells as shown in (C).

(E) Example (N = 1 animal) distributions of unitless direction selectivity indices (DSls), orientation selectivity indices (OSls), and global orientation selectivity
indices (gOSls; STAR Methods). Full-field stimulus; *p < 0.05, Kolmogorov-Smirnoff two-sample test; p values, training location, DSI, 0.06; OSI, 0.90; gOSI, 0.21;

control location, DS, 0.27; OSI, 7.8 x 1074 gOSI, 5.7 x 107,
(F) Summary of all visual response indices, both visual stimuli, pre- and post- optogenetic learning. Mean + SEM; n.s., p > 0.05; N = 3 animals, unpaired t test, pre-

versus post-learning (see also Figure S4).

that used one-photon stimulation learning** found behavioral trained animals to report activation of specific neural ensembles
improvement, but it did not examine response changes during  activated with two-photon holographic stimulation. They found
optogenetic stimulation (due to a one-photon light artifact, which  evidence for amplification in two different subnetworks, defined
we were able to avoid by stimulating between imaging lines; by intrinsic visual responses, but observed less consistent
STAR Methods) and did not examine neural changes during changes for random-ensemble stimulation. In contrast, our
the course of learning. In the visual cortex, Marshel et al.??> work uses stronger widefield (one-photon) stimulation and
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shows robust behavioral changes after learning that are accom-
panied by unambiguous V1 neural amplification.

The different effects seen in Pancholi et al. might be due to
structural differences between V1 and S1 cortical circuits or
may be related to differences in task-specific computations.
Their subjects were asked to discriminate between total stimula-
tion intensity (low versus high numbers of optogenetic pulses),
rather than discriminate or detect a specific pattern of activity.

Prior studies also disagree on interpretation, seemingly due to
these differences in measurement of neural responses. For
example, Dalgleish et al.** hypothesize that the main neural
changes relevant for behavior are happening downstream,
outside the cortical area they stimulate (S1). Our work shows
that there are clear changes occurring in V1 that support this op-
togenetic learning and that those changes appear to be the
optimal change to improve task performance.

Readout changes and representational changes

Our results appear to help resolve a contradiction in recent opto-
genetic stimulation studies. Some studies have found that ani-
mals can detect the activation of approximately 40 neurons, in
S1,** and the olfactory bulb.®® However, other work has found
that only a subset of animals reported activation of similarly sized
groups of randomly selected V1 neurons.?” While a possible
explanation may be differences between brain areas, our data
suggest a different explanation: that detection of randomly
selected small ensembles of neurons requires initial learning
with stronger stimulation. The S1 and olfactory bulb studies
initially trained animals using one-photon (widefield) optoge-
netics, as we use here. Thus, these optogenetic results, along
with electrical stimulation studies®®~"" imply that, in many brain
areas, animals can use completely novel, randomly chosen
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Figure 4. Network amplification for fixed
optogenetic input arising from recurrent
weight changes
A) Two-step training of a rate-based RNN of 200
neurons with all-to-all connectivity (Gaussian
distributed variance, g0 = 0.8; STAR Methods).
Fixed input (W;,) and output (W, weights with
30% of neurons receiving optogenetic input (lopto),
a 100 ms pulse train with a variable rest interval up
to 400 ms. Only recurrent weights were trained
(WreoP™ and W, P°%Y). Initial training (red): target
P output profile was Zre = lopto- Amplification training
(blue): profile was Zpost = 2 * lopto, a fixed gain of 2.
(B) Profiles of target optogenetic output mimics
pre- and post- learning amplification (Z,.e and
Zpost, respectively).
(C) Resultant weight matrices for initial training
(WreoP™®) and amplification training (WyecPo%Y).
(D) Difference weight matrix (WyecPoS? — WieoP™)
showing that amplification resulted in primarily
positive weight changes across neurons receiving
optogenetic stimulation (see also Figure S4).
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patterns of neural stimulation, but to do
so, learning must first be induced by
strong stimulation of hundreds of neurons
or more.

While we found significant changes in
cortical representations during learning, it is possible that the
readout mechanism improves as well. Our data might suggest
that there are changes in readout, beyond V1 changes in ampli-
fication, as we found larger improvements in behavioral perfor-
mance thanin cortical responses (percent changes in stimulation
power needed to do the task versus percent changes in neural
responses; Figures 1 and 2), though interpretation is difficult
due to potential opsin saturation and potential nonlinear or vari-
ability-dependent readout.®*”? Dalgleish et al. also provide evi-
dence that readout changes occur in optogenetic learning tasks:
they found that high detection performance generalized across
different stimulated patterns of cortical neurons. That is, after
learning, animals did well at detecting the activation of not just
a single trained subset of up to 100 neurons, but many different
sets of up to 100 neurons. On the other hand, Marshel et al., who
also stimulated randomly selected groups of up to approxi-
mately 100 neurons, found little generalization from one
randomly selected pattern to the next (their Figure 4l). Several
differences might explain the divergent results: differences in
cortical area, or differences in behavioral task, single-pattern
detection versus two-pattern discrimination. While the large
amplification in cortical circuits that we observe after optoge-
netic learning would be sufficient to drive the behavioral im-
provements, our data are unable to exclude the possibility that,
in some circumstances, the decoding mechanism may also
change during optogenetic learning.

The learning that we observed here seems likely to be a
change in optogenetic sensitivity and not related to changes in
movements. Our animals were pre-trained on a visual detection
task before introducing the optogenetic stimulus (Figures S1A
and S1B). Thus, the task demands and motor responses were
fixed, and the only learning step needed was for animals to
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gain the ability to perceive and report the novel optogenetic ac-
tivity induced in the cortex.

Amplification happens via consolidation, with the

largest changes outside sessions

Because we measured neural responses during task perfor-
mance, we were able to determine whether ampilification
happened within the training sessions or developed from 1 day
to the next. We found that within session, there were only small
or negative changes in neural responses to a fixed stimulus
(Figures S3K and S3L), though there were consistent changes
from one learning session to the next (Figure 2). While some de-
creases in response within session could, in principle, be due to
bleaching of opsin or indicator, the changes from one session to
the next suggests that the major cortical network changes were
happening outside sessions, perhaps as animals rested or slept.
This is reminiscent of the consolidation that happens in motor
learning, where a significant component of the motor improve-
ment also appears to occur outside of the actual learning or
practice repetitions.”>"*

Our physiological recordings found learning-related neural
changes over the initial few days of optogenetic learning (5-
6 days), consistent with previous reports.?>**%* However, we
also measured continued improvement in optogenetic detection
performance (without neural imaging) over many weeks to
months of training (Figure 1). It seems possible that additional
cortical amplification happens during this longer phase as well.
This is supported by studies of long-term deafferentation, which
have demonstrated that cortical responses can change over
months or years to accommodate input changes.”>"®

Pattern amplification in cortex due to recurrent
connectivity

We found that optogenetic learning produced little change in the
visual response properties of targeted neurons (Figure 3). In prin-
ciple, the observed increase in cortical responses to the optoge-
netic stimulus could have arisen from changes outside the local
cortical network that would not be due to modification of recur-
rent connections. These outside sources might be changes in
top-down, higher-order thalamic (e.g., from the lateral posterior
nucleus, LP/pulvinar) or neuromodulatory input that change the
gain of V1 neurons. In addition, individual cells might change
their intrinsic excitability.”” However, if top-down input changes,
intrinsic excitability, or neuromodulatory effects were the domi-
nant players, we might expect effects on visual responses as
well. Alternatively, neurons in an external area might function in
a loop as part of the RNN that we simulated.”®%° However, the
short latency of the responses that are amplified, as well as the
higher density of recurrent versus cross-area connections, ar-
gues against an elaborate multi-area mechanism for the amplifi-
cation that we observed. Theoretical work and our modeling re-
sults show that response amplification to a fixed input can be
created in recurrent networks by adjusting the synaptic connec-
tivity within the network.®**>#" Pattern completion observations
in cortex® are also consistent with response amplification, as
amplification of a particular input pattern is closely related to
completion, where a partial input pattern, via the recurrent
network, induces larger responses in the neurons that compose
the activity pattern. Finally, spinogenesis in motor cortex

¢? CellPress

accompanies motor learning®*®* and chronic optogenetic stim-

ulation in vitro can also produce recurrent changes.®® Along with
the time course of the changes we saw, over the course of
several days of practice, these observations together suggest
that changes in local recurrent cortical synapses are a likely
mechanism for the learning-related neural changes we
observed.

What circuit mechanisms might gate, or enable, cortical recur-
rent plasticity to allow changes during behavior but not for inputs
presented outside of a behavioral context? There is substantial
evidence that inhibitory modulation is involved when such
cortical network changes occur®®®=°? and alternation of peri-
neuronal networks, which surround many inhibitory neurons,
participate in these synaptic changes.®**° Since the observed
response changes are dependent on animals performing a re-
warded behavioral task, a compelling possibility is that task
context or reward prediction signals trigger the activation of
inhibitory neurons, which in turn opens the gate for plasticity,
enabling changes to begin.

Conclusions

How the cerebral cortex builds sensory representations for use
in behavior is key to understanding brain function. Though the
adult visual cortex is less plastic than the developing cor-
tex,'°°'%2 our results—cortical amplification in response to
completely novel artificial patterns of optogenetic input—pro-
vide key insights into how brains can adapt to behaviorally rele-
vant sensory information throughout our lifetimes.
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REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Datasets with code for analysis, plotting, and modeling This paper https://github.com/histedlab/
Experimental models: Organisms/strains

Mouse: Emx1-Cre: B6.129S2-Emx 1™ Cre)Kii/ The Jackson Laboratory RRID: IMSR_JAX:005628
Recombinant DNA

AAV9-hSyn-jGCaMP7s Dana et al.”’ RRID: Addgene_104487
AAV9-hSyn-FLEX-jGCaMP8s Zhang et al.*? RRID: Addgene_162377
AAV9-hSyn-DIO-stChRimsonR-mRuby2 Pegard et al.®” RRID: Addgene_105448
Software and algorithms

Anaconda: Open Data Science Platform Continuum analytics RRID:SCR_018317; RRID:SCR_008394;

https://www.anaconda.com/products/distribution

RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Mark H. Histed (mark.
histed@nih.gov).

Materials availability
This study did not generate new unique reagents.

Data and code availability

@ All data reported in this paper will be shared by the lead contact upon request.
e All original code has been deposited at https://github.com/histedlab/ and is publicly available as of the date of publication.
® Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All experimental procedures were approved by the NIH Institutional Animal Care and Use Committee (IACUC) and complied with
Public Health Service policy on the humane care and use of laboratory animals. Adult Emx1-Cre mice (Cre-recombinase targeted
at the Emx1 locus, % Jax stock no. 005628, N = 21, 9 females, 11 males) were used for all experiments. N = 9 animals were used
for optogenetic behavior without imaging (Figure 1), N = 4 for optogenetic behavior plus simultaneous 2-photon imaging (Figure 2),
N = 3 for mock behavior with optogenetic stimulation only (Figure 2), N = 2 for non-behavior optogenetic stimulation (Figures S4A and
S4B), and N = 3 for visual stimulation before and after optogenetic behavior (Figure 3). Animals were housed on a reverse light/dark
cycle.

METHOD DETAILS

Cranial window implantation and viral injection

Mice were given intraperitoneal dexamethasone (3.2 mg/kg) and anesthetized with isoflurane (1-3% in 100% O, at 1 L/min). Using
aseptic technique, a titanium headpost was affixed using C & B Metabond (Parkell) and a 3 mm diameter craniotomy was made,
centered over V1 (—3.1 mm ML, +1.5 mm AP from lambda).

Mice were injected with a pre-mixed combination of two adenovirus-mediated (AAV9) vectors for expression in the cortex, a func-
tional calcium indicator (AAV9-hSyn-jGCaMP7s or -j{GCaMP8s, viral titers 3.0 x 10'® and 4.1 x 10'® GC/ml respectively, final dilution
1:10)*%*? construct and a photoactivatable soma-targeted opsin construct (AAV9-hSyn-DIO-stChrimsonR-mRuby2, viral titer 3.2 x
10" GC/m, final dilution 1:8).%” Injections were made 150-250 pm below the surface of the brain for expression in layer II/Ill neurons.
Multiple 300 nL injections were done at 150 nL/min to achieve widespread coverage across the 3 mm window. Animals were not
reinjected.
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A 3 mm optical window was then cemented into the craniotomy, providing chronic access to the visual cortex. Post-surgery, mice
were given subcutaneous 72 hour slow-release buprenorphine (0.5 mg/kg) and recovered on a heating pad. Virus expression was
monitored over the course of 3 weeks. We selected animals with good window clarity and high levels of virus co-expression
(GCaMP and stChrimsonR) for behavior and imaging experiments.

Retinotopic mapping

We determined the location of V1 in the cranial window prior to GCaMP or opsin expression using a hemodynamic intrinsic imaging
protocol previously described in Goldbach et al.'%* Briefly, we delivered small visual stimuli to head-fixed animals at different retino-
topic positions and measured hemodynamic-related changes in absorption by measuring reflected 530 nm light. Imaging light was
delivered with a 530 nm fiber-coupled LED (M350F2, Thorlabs). Images were collected through a green long-pass emission filter onto
a Retiga R3 CCD camera (Qlmaging, captured at 2 Hz with 4 x 4 binning). The hemodynamic response to each stimulus was calcu-
lated as the change in reflectance of the cortical surface between the baseline period and a response window starting 2-3 s after
stimulus onset. We fit an average visual area map to the cortex based on the centroids of each stimulus’ V1 hemodynamic response.

These retinotopic maps were used during behavioral training to overlap the visual stimulus position in the right monocular hemifield
with the imaging/optogenetic stimulation location in the V1. We found that the transition period between visual detection and opto-
genetic detection was facilitated by a strong overlap.

For measuring visual response properties, we further refined the visual position by measuring cellular responses in layer II/Ill with
2-photon imaging. Small, oriented noise visual stimuli (14° FWHM) were presented at 9 locations (spaced by +15° azimuth and +10°
elevation) in the right visual hemifield. The visual stimulus position that evoked the greatest response in the FOV was chosen for char-
acterizing visual responses. We found that the strongest response was typically the center location, selected using the widefield he-
modynamic map above.

Behavioral task
Water-restricted mice (20-40 ml/kg/day) were head-fixed and trained first to hold a lever and release in response to a visual stimulus
(Gabor patch; 14° FWHM, spatial frequency 0.1 cycle/degree), that increased contrast relative to a gray screen,’®* %> and then to an
optogenetic stimulus that directly activated layer II/Ill neurons in V1. Mice initiated behavioral trials by pressing and holding a lever for
400-4000 ms (according to a geometric distribution, to reduce variation in the stimulus appearance time hazard function, see Gold-
bach et al.'®%), and then the stimulus appeared for 100 ms in the animal’s right monocular hemifield. Animals had up to 550 ms to
report the stimulus by releasing the lever. Because some minimum time is required to process the stimulus, we counted as false alarm
trials those releases that occurred within 50-100 ms of the stimulus onset. Correct detection responses resulted in delivery of a 1-5 ulL
liquid reward (10 mM saccharine). We varied the liquid reward during training, '°® increasing reward after up to three consecutive cor-
rect trials, to decrease incentive for guessing.'®® Once proficient, reward volume did not fluctuate significantly across sessions.
All behavioral animals were first trained on a visual detection task (see task schematic, in Figure S1 and Goldbach et al.“"‘). Once
animals were performing well on the visual task and produced stable psychometric curves with low lapses for three consecutive ses-
sions, we transitioned the animal to using the optogenetic stimulus by pairing each visual stimulus appearance with a fixed power (0.5
mW) optogenetic stimulation. During these transition sessions we lowered the contrast of the visual stimulus until animals could
perform the task without the visual stimulus. The session where animals started behaving exclusively on the optogenetic stimulus
was denoted session 0. During session 0 we generated the first psychometric curve for optogenetic stimulation. Analysis of data
from session 0 came only from the part of trials where the animal was exclusively on the optogenetic stimulus. Subsequent behavioral
sessions were started and conducted with only optogenetic stimuli. Animals used in behavior were not exposed to any other
1-photon stimulation outside of behavior and the craniotomy was kept covered by an opaque cap between sessions.

Optogenetic stimulation

For optogenetic behavior experiments without simultaneous 2-photon imaging we delivered light through a fiber aimed at the cortical
surface.'®* A fiber-coupled LED light source (M625F2, Thorlabs, peak wavelength 625 + 15 nm, FWHM) was coupled via a fiber patch
cable to a fiber optic cannula (400 um core diameter, 0.39 NA, Thorlabs CFMLC14L02) cemented above V1. This method was used
for long-term learning and control experiments with increased optogenetic stimulation outside of behavior (powers up to TmW with
6.3 + 1.7s between simulations, mean + SD, N = 2).

For optogenetic behavior experiments conducted with simultaneous 2-photon imaging we activated stChrimsonR expressing neu-
rons by passing 595 nm light (CoolLED pE4000 multispectral illuminator, 595 +15 nm, FWHM) through the imaging objective to the
surface of the brain. The illumination power was measured through the objective at the beginning of each session using a light meter
(Newport 1918-C with a 918D-SL-OD3R detector) with a maximum of ~0.5 mW.

Analysis of behavioral data
Analyses were conducted in Matlab and Python. Optogenetic learning effects were characterized by analyzing data collected during
animal behavior on the optogenetic stimulation detection task.

Reaction times were averaged across trials for each laser power group and for each training session. Linear fits were calculated for
these data points across the start and end sessions in which each laser power group was present during the task. The slope of the
linear fit indicated the change in reaction time per session for each laser power group. A mean change in reaction time per training
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session was then calculated across all laser powers for each animal. Changes in optogenetic detection sensitivity were analyzed by
fitting cumulative Weibull functions to data from individual training sessions to estimate detection performance (hit rate) as a function
of laser power. Quantifying thresholds with d’ (sensitivity) produces similar results to using hit rate in this task, as false alarm rates are
nearly constant over time (false alarm hazard rate is near constant, see Goldbach et al.’®*). Threshold was the 50% point of the Wei-
bull functions.

2-photon calcium imaging

2-photon calcium imaging was conducted using a custom microscope based on MIMMS (Modular In vivo Multiphoton Microscopy
System, e.g., Kerlin et al.’®”") components (Sutter Instruments, Novato, CA) with a Chameleon Discovery NX tunable femtosecond
laser (Coherent; Santa Clara, CA). Imaging was performed using a 16X water dipping objective (Nikon; Tokyo, Japan). A small volume
of clear ultrasound gel (~1 mL) was used to immerse the lens. Images of calcium responses (~150-200 um from the surface of the pia,
layer 1I/1ll) were acquired at 30 Hz using < 50 mW laser power for static imaging, and < 15 mW for behavior at 920 nm.

Analysis of imaging data

Raw 2-photon image stacks were downsized (512 rows to 256 rows) to facilitate handling of large datasets. For each behavioral ses-
sion, frames were motion corrected using CalmAn.'%® Each imaging data set was baseline corrected to an estimated minimum pixel
intensity, calculated as the minimum value in the average projection image across all frames from all trials prior to stimulus presen-
tation (Fmin, @ scalar). The minimum pixel intensity was subtracted from all pixels and all resulting negative values were set to 0.

For quantitative analyses we computed AF/F as (F-Fg)/Fo at each pixel. Fy was taken over the 10 frames before each stimulus
onset, and F, did not systematically change over days (see also Figure S1E). For statistical analyses, F was taken as the frame
120 ms after the stimulus onset (frame 3 post-stimulation, near the peak response, well before the median reaction time
(~250 ms) and reward delivery). For visual display of responses in entire frames, as in Figure 2C, was taken over 0-270 ms after stim-
ulus onset (frames 0-9 post-stimulation), and we computed AF/F as (F-Fo)/Fqiy, Where Fq;, is Fg smoothed with a gaussian filter
(sigma = 20 pix). Using a smoothed divisor image averages overall intensity in small regions of the image, yielding a form of local
contrast adaptation. Image ROI fluorescent (F) activity traces were measured by calculating the average pixel intensity within a
user-defined ROI, prior to computing AF/F for an ROI. Deconvolved calcium responses to estimate spiking activity for an ROI
were calculated using the OASIS method with an autoregressive constant of 1.

Segmented cell masks were identified using either Suite2p (for Figure 2)°° or CalmAn (for Figure 3)'°® and their resulting calcium
responses (F) were extracted using the default settings for background and neuropil subtraction. In order to quantify neuropil activity,
we manually segregated cell bodies from their surrounding neuropil with non-overlapping masks (for Figure 2, details in Figures S3A-
S3C). We fit the fluorescence decays of cell bodies neuropil by a single exponential in a post-stimulation window (300 ms, starting 1
frame after cessation of optogenetic stimulation). Suppression effects were characterized in a 1.5 s post-reaction time window (start-
ing 350 ms after optogenetic stimulus presentation, well after the median reaction time (~250 ms) for the detection behavior).

Linear regression model for testing for effects of change between experimental days was OLS regression, using all trials on which
the stimulus was successfully detected. Data was from N = 3 animals, N = 6 sessions for each animal, and 2633 total number of stim-
ulation trials (all animals and sessions are shown in Figures S3K and S3L, including the same analysis of N = 3 mock behavior control
animals). Regression model equation: AF/F ~ C(animal) * C(session) + stimulation_power_mw + trial_number + constant, where C(x)
signifies a categorical or dummy variable. Full details of the model definition are in https://patsy.readthedocs.io/en/latest/.

We also tested for significant change in AF/F within-session by running the same model over each animals’ data, and found all
three animals showed a negative change (trial number coefficient: -1.5, -1.1, -0.2% AF/F) though only two were significantly different
from zero (p < 1 x 1072, < 1 x 10°®, = 0.6, respectively).

Linear regression model for testing effects of optogenetic stimulation outside of behavior (results in Figures S4A and S4B) was OLS
regression from N = 2 animals, session 0 (S0) vs. session 6 (S6) via ANOVA. Regression model equation: AF/F ~ C(power) + C(SO v.
S6), where C(x) indicates a categorical or dummy variable.

Confirming optogenetic stimulation power between sessions

We measured the power of the stimulation LED light path immediately before each behavioral session. We also measured relative
laser excitation power across days by measuring light collected by the PMTs during stimulation. The optogenetic blanking circuit
operates the LED illuminator during the flyback phase of scanning image acquisition, and the refractory time of the blanking circuit
leaves an up to ~20 pixel artifact at the edges of the raw image stacks that scales with stimulation intensity. We used the mean pixel
intensity change for this artifact to scale attenuated sessions and normalize stimulation powers across days (Figures S2A-S2E), and
our results were unchanged with and without this scaling, confirming we accurately measured stimulation power.

Analysis of visual response properties

2-photon calcium imaging was performed directly before and after optogenetic learning to assess V1 neural responses at both
training and control locations (an area with stable expression at least 200 pm away from training location). Visual stimuli were
presented on a monitor positioned in front of the head-fixed animal at a 45° angle on the animal’s right side. The visual stimulus
was either a full-field or Gabor patch (12° FWHM) drifting grating stimulus at 100% contrast presented in 12 different directions
(80° increments). Stimuli were presented for 3 second durations (with 4 seconds between presentations) and were delivered in
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random order for a total of 25 repetitions of each stimulus direction. Gabor patch stimuli were displayed on the monitor at the visual
field location corresponding to the retinotopic map at the training and control locations.

To assess potential changes in visual response selectivity, direction and orientation selectivity indices were calculated for each
identified cell.’®""° First, tuning curves for each cell were calculated by averaging AF/F responses across the 3 second stimulus
period across all repetitions for each of the 12 drifting grating directions. Direction selectivity indices (DSI) were measured as (Rprer
- Roppo)/(Rorer + Roppo), Where Ryt is the peak average response across the 12 directions and R, is the average response at the
opposite direction 180° away from the preferred direction. Orientation selectivity indices (OSI) were measured by first averaging re-
sponses from opposite pairs of directions (e.g., 0° and 180°, 45° and 225°) and calculating (Rpref - Rortho)/(Rpref + Rortho), Where Rpretis
the peak average response across the 6 orientations, and R is the average response of the orthogonal orientation 90° away from
the preferred orientation. Last, a global OSI (gOSI) metric was calculated as 1 - CV (tuning curve) for each cell, where CV is the circular
variance.

Modeling
We trained a recurrent neural network (RNN) consisting of N = 200 units, whose response dynamics for the i-th neuron are given by:

ax; N .
Td—t' = — Xf+/Z1:W,§e°<p(Xj) - PO () W 4,

The readout of the network is:
N
Z(t) =Y wMo(x)
i=1

The transfer function of single units is ¢ (x) = tanh(x). The weights of the input pattern w;, are positive and exponentially distrib-
uted with mean 0.05 for a fraction p = 0.3 of units, and zero otherwise. The readout weights are homogeneous and constant: w4 =
1. The initial recurrent weights W;°, before any training, are independently sampled from a random Gaussian distribution with

mean zero and standard deviation go / VN.""" The noise term n; is randomly sampled from a zero mean distribution with standard
deviation 0.0005 at every time step.

We trained the recurrent weights W, of the RNN using backpropagation-through-time (ADAM optimizer''* in pytorch''® such that
the network readout Z matches a scaled version of the time-varying input /P (t). The input and output weights remained fixed. In a
first phase, mimicking the pre-learning response, we trained the network for 100 epochs such that Z,re = Iopto, Obtaining recurrent
weights W,fcre). In a second phase, we trained the pre-learning network on 100 epochs to produce an amplified response, Zyost =
2lopto, With recurrent weights W],ec[,mr). Parameters: 7 = 10 ms, go = 0.8, Euler integration timestep At = 1 ms, learning rate 0.01.

To analyze the response to novel untrained input patterns, we calculated the network readout response to inputs with the same
temporal statistics /°P (t) but fed to the network along 100 different input patterns. The random input weights had the same statistics
as the trained input patterns.

To compute the normalized synaptic weight change in percent, we took the mean of the absolute value of weight across all syn-
apses during the pre-training period, yielding a scalar value, and divided each synaptic weight by this scalar and multiplied by 100.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyses were performed using Python unless otherwise stated. Details of statistical tests can be found in the figure leg-
ends. Analyses used packages provided by the Anaconda distribution (Continuum Analytics).
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