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AbstractÐ Today’s power systems are controlled based on
decades of experience with the fundamentals of physics-based
properties of synchronous generators. Future power grids
however must cope with the increasing penetration of re-
newable energy resources (RERs) and require a much more
sophisticated control architecture. This is because RERs are
formed by uncertain solar- and wind-based resources and
are connected to the grid via advanced (power electronics)-
based technologies. These are, in short, far more complex to
control than traditional generators. RERs also do not provide
inertia to damp frequency oscillations, and thus the grid’s
operating point changes frequently causing deterioration in the
overall transient stability of the power system. This short paper
proposes a robust wide-area controller for an advanced power
system model having a higher order generator model, advanced
(power electronics)-based solar plants model, and composite
load dynamics. The simulation studies show that the proposed
controller can significantly improve the transient stability of the
system against uncertainty from load demand and renewables.

Index TermsÐ Robust control, Lyapunov methods, Grid-
forming inverters, Power systems, Nonlinear differential-
algebraic models.

I. PAPER INTRODUCTION AND CONTRIBUTIONS

To limit frequency oscillations and to bring the power grid

back to an equilibrium after a disturbance, three main control

layers are deployed: primary, secondary, and tertiary. The pri-

mary layer usually consists of an automatic voltage regulator

(AVR), power system stabilizer (PSS), generator droop con-

trol, and proportional-integral-derivative (PID) controllersÐ

usually responsible for regulating the frequency dynamics.

The secondary control layer which consists of automatic

generation control (AGC) removes the steady-state error and

tries to bring the system back to its nominal value, while

the tertiary control layer is used for economic dispatch and

redistributes the power such that the overall operating cost is

minimized [1].

With the increasing penetration of renewable energy re-

sources (RERs), the future electric grid faces major challenges,

and the overall transient stability and dynamic response of the

system are deteriorating [2]. For example, according to [3],

[4] it has been observed in the Nordic electric network that as

the penetration of RERs increases, the time the Nordic grid is

spending outside the allowed frequency range (which typically
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ranges from ± 2±3%) is increasing significantly. This is be-

cause, unlike synchronous generators, RERs (which currently

are mainly dominated by wind and solar) are intermittent, they

do not provide rotational inertia, and they are connected to

the grid via power electronics-based technologies. This leads

to faster dynamical behavior, increased frequency nadir (the

overall dip in the frequency after a large disturbance), and

system oscillations.

The recent development in synchronized measurement tech-

nologies, such as phasor measurement units (PMUs), and

model- and data-driven control theory encourages the devel-

opment of advanced controllers that can handle the complex

load demands and uncertain dynamics of renewables. For

example, in [5] an H∞ based load frequency controller has

been proposed to handle uncertainties from tie-line power

flows. In [6] a robust L∞ based controller has been proposed

to handle disturbances from load and renewables. In [7], [8]

wide-area controllers based on PMU measurements have been

proposed to damp inter-area oscillations.

Similarly, in [9] researchers have thoroughly discussed the

limitations of the conventional power system control and

proposed a Lyapunov stability-based controller for the nonlin-

ear differential-algebraic equations (NDAE) model of power

systems. This study does not consider renewables and load

dynamics. In [10] an LMI-based decentralized controller has

been proposed for frequency regulation, however, a simplified

(modeling generator dynamics only) power system model has

been used. Recently in [11] a two-layer (centralized for syn-

chronous generator and decentralized for renewables) control

architecture has been designed for a comprehensive power

system model with solar farms, wind farms, and a higher-

order generator model. The study forgoes load dynamics

and modeling of algebraic equations (power flow/balance

equations) in the controller synthesis.

It is notable that the majority of these studies consider a

simplified representation of the power system. In the majority

of the power systems control studies, renewables are usually

considered as negative loads while dynamics of loads are

neglected and they are commonly just modeled as constant

power. That being said, we address the aforementioned limi-

tations and propose an H∞-based wide-area controller (H∞

WAC) to enhance the transient stability of renewable heavy

power systems. The technical contributions are as follows:

• We extended the work presented in [9], by considering an

advanced interconnected power system model. The test

system considered in this study models: (i) ninth-order

synchronous machine dynamics, (ii) (power electronics)-

based models of solar plants, (iii) motor loads, (iv)
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constant power loads, and (v) constant impedance loads.

The proposed methodology also explicitly models the

algebraic equations (power flow/balance) of the power

systems in the controller design.

• To handle disturbances from load and renewables, we

propose an H∞-based controller architecture. The static

state feedback controller can be computed by solving a

fairly simple LMI-based convex optimization problem.

The proposed controller finds its application in wide-area

monitoring and control of power systems and it improves

system transient stability after a large disturbance.

• We assess the robustness of the proposed controller on the

IEEE Case-9 test system which is widely used in power

system control studies. The advantages of the proposed

H∞ WAC are also showcased by comparing the response

of the power system with conventional control (primary

controllers of power systems) and with H∞ WAC acting

on top of them.

Paper Notation: All the matrices and vectors are bold-faced.

The sets are represented in calligraphic such as N ,G, etc. The

notation R
a denotes the set of column vectors with a elements.

The notation O represents a zero matrix while I denotes an

identity matrix of appropriate dimensions. The notation R
a×b

denotes the set of real matrices of size a-by-b. Similarly, Sa×b
++

denotes a positive definite matrix. The symbol ∗ represents

symmetric entries in a symmetric matrix.

Note to Readers: An extended version of this short paper is

available [12]. It includes further analysis, case studies, and

mathematical proofs.

II. SOLAR AND LOADS-INTEGRATED DAE MODEL

We consider a power system model with G synchronous

generators, R solar power plants, and Lz , Lp, Lk number of

constant impedance, constant power, and motor loads, respec-

tively. The overall power system is represented as a graph

(N , E), where N denotes the set of buses and E represents

the set of transmission lines. Notice that N = G ∪ R ∪ L,

where G denotes the set of buses connected to synchronous

generators, R represents the set of buses with solar power

plants, and L collects the set of buses connected to Lz , Lp,

and Lk, respectively.

To that end, we model the solars- and loads-integrated

synchronous machines-DAE (SLS-DAE) model of power

systems using a set of differential-algebraic equations as

dynamic equations: ẋ(t) = f(xd,xa,u,w), (1a)

algebraic equations: 0 = h(xd,xa,u,w), (1b)

where xd ∈ R
nd represents the dynamic variables, xa ∈ R

na

represents algebraic variables of the power network, u ∈ R
nu

models the control inputs, and w ∈ R
nw denotes exogenous

disturbances.

In (1), vector xa is modeled as

xa := xa(t) =
[
I⊤
Re I⊤

Im V ⊤
Re V ⊤

Im

]⊤ ∈ R
na , (2)

where IRe = {IRei}i∈N , IIm = {IImi
}i∈N ,VRe =

{VRei}i∈N ,VIm = {VImi
}i∈N represent the real and imag-

inary parts of currents and voltages, respectively. The vector

u models the control inputs of synchronous generators and

solar PV plants and is represented as

u := u(t) =
[
u⊤
G u⊤

R

]⊤ ∈ R
nu , (3)

where uG =
[
V ⊤
ref P⊤

vref

]⊤ ∈ R
2G with Vref and Pvref

denoting reference set-points for voltages (pu) and turbine

valve positions (pu) of the synchronous generator, respec-

tively. Similarly, uR =
[
V ⊤
ref P⊤

ref

]⊤ ∈ R
2R, where Pref

and Vref are the power (pu) and voltage (pu) reference set

points for solar PV plants. Also, we define w in Eq. (1) as

w =
[
I⊤
r P⊤

d

]⊤ ∈ R
nw where Ir is the solar irradiance

(W/m2) on the PV plants and Pd is the system real power

load demand (pu).
Moreover, in Eq. (1), we represent xd as

xd := xd(t) =
[
x⊤
G x⊤

R x⊤
m

]⊤ ∈ R
nd , (4)

where xG are the dynamic states of the conventional power

plant (states of synchronous generator, excitation system, gov-

ernor, and turbine dynamics), xR represents the differential

states of the solar power plant, and xm denotes the states of

motor loads. With that in mind, we model the conventional

power plant via a comprehensive 9th-order model, and thus

vector xG can be expressed as follows [13], [14]:

xG=
[
δ⊤sg ω⊤

sg e⊤q e⊤d P⊤
v T⊤

m E⊤
fd v⊤

a r⊤f
]⊤ ∈ R

9G, (5)

where δsg denotes generator rotor angle (pu), ωsg is the

generator speed (pu), eq , ed, represent transient voltages

along dq-axis (pu), Pv is the turbine valve position (pu),
Tm denotes turbines prime mover torque (pu), Efd is the

generator field voltage (pu), rf denotes stabilizer output

(pu), and va represents amplifier voltage (pu) [13], [14].

The dynamic model for the solar power plant is taken from

[15], which models solar farms in grid-forming mode, and

thus vector xR can be written as

xR=
[
δ⊤inv v

⊤
dqc

i⊤dqf P
⊤
e Q⊤

e E⊤
dc z

⊤
dqf

z⊤
dq0

]⊤
∈ R

12R, (6)

where δinv represents the inverter angle (pu) of solar power

plants, vdqc = [v⊤
dc

v⊤
qc
] are the voltages (pu) across the

AC capacitor along dq-axis, idqf = [i⊤df
i⊤qf ] represent the

currents (pu) at the terminals of the inverter along dq-axis,P e,

Qe are the total real and reactive power injected by S1 and S2
to the grid, Edc is the energy stored in the DC side capacitor,

and zdqf= [z⊤
df

z⊤
qf
], zdqo= [z⊤

d0
z⊤
q0
] are the dynamic states

of the current and voltage regulator of S1 and S2. Notice that

from Edc the DC-link voltage Vdc can also be computed as

Vdc =
√
Edc. To obtain further information and a detailed

description of the solar power plant model used in this study,

readers are referred to [15].

In (4), the model for the motor loads is defined as [16]:

ω̇mot =
1

2Hm

(Te − Tm), (7)

where Tm, Te are the mechanical and electromagnetic torques,

respectively, ωmot is the motor speed, and Hm is the motor

inertia constant [16, p. 244]. Thus, vector xm only has one

state [ωmot]. This completes the modeling of system dynamics
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(1a). Now, the model for the algebraic constraints Eq. (1b) is

expressed as [13]


ĨG

ĨR

ĨL




︸ ︷︷ ︸
I

−



YGG YGR YGL

YRG YRR YRL

YLG YLR YLL




︸ ︷︷ ︸
Y



ṼG

ṼR

ṼL




︸ ︷︷ ︸
V

= 0, (8)

where matrix Y ∈ R
N×N represents the system admittance

matrix, vector I denotes the net current, and vector V lumps

all the bus voltages. Note that Eq. (8) describes the overall

current balance equation between the generation and demand

sides. In (8), vector ṼG = {VRei}i∈G + j{VImi
}i∈G encap-

sulates all the voltage phasors at the terminal buses of syn-

chronous machines and ĨG={IRei}i∈G+j{IImi
}i∈G lumps

all the phasor currents supplied by synchronous machines.

Similarly, vectors ĨR, ĨL, and ṼR, ṼL collect current and

voltage phasors at buses connected with S1, S2, and loads,

respectively.

That being said, by considering equations (2)±(8) and

including the associated dynamic and algebraic models given

in [13], [15], we can express the overall SLS-DAE model of

power systems in a descriptor state-space format as follows:

SLS-DAE: Eẋ = Ax+ f (x,u,w) +Buu+Bww,

(9)

where x =
[
x⊤
d x⊤

a

]⊤ ∈ R
nx is the state vector and E ∈

R
nx×nx is a singular matrix encoding algebraic constraints

with rows of zeros, while the constant system matrices A ∈
R

nx×nx , B ∈ R
nx×nu , Bw ∈ R

nx×nw have been obtained

by capturing the linear component of (1) and the function

f (·) ∈ R
nx × R

nu × R
nw → R

nf represents the associated

nonlinearities in the system model.

III. ROBUST WIDE-AREA CONTROLLER FOR SLS-DAE

In this section, we present the architecture of the proposed

H∞ WAC for the SLS-DAE model of power systems (9). The

primary objective of the formulation is to design a control law

that provides additional control inputs to both synchronous

generators and solar power plants in the presence of large

unknown disturbances from load demand and renewables. The

main objective of the proposed controller is to damp out os-

cillations and quickly restore system frequency to its nominal

value after large unknown disturbances in load demand and

renewable generation.

The SLS-DAE model of power systems (9) with the pro-

posed H∞ WAC is expressed as

Eẋ = Ax+ f (x,uwac,w) +Buwac +Bww, (10)

where for kT ≤ t < (k + 1)T the controller law uwac is

designed as follows:

uwac := uwac(t) = uk
ref +K

(
x(t)− xk(t)

)
. (11)

In the control law (11), uk
ref is the reference or baseline

control inputs for the synchronous machines and renewables

which are usually determined for every kth-dispatch time-

period using power flow studies. For a given load demand

and renewable generation, the control signal uk
ref keeps the

Fig. 1. Architecture of the proposed H∞ WAC. Vector x is the overall state
vector, w encapsulates the total load demand of the system and irradiance
of the solar plants, while y contains the measurements received from PMUs
sensors.

SLS-DAE system (9) at a particular steady-state xk(t). The

matrix K ∈ R
nu×nx is the static state feedback matrix for the

controller and it is determined with the help of the knowledge

of constant matrices (A,Bu, andBw) in SLS-DAE model (9).

Further discussion on the computation of matrix K is given

later in this section. The overall architecture of the proposed

H∞ WAC is presented in Fig. 1. We observe from Fig. 1 that

the overall control law requires the knowledge of both differ-

ential and algebraic states of the system. This requirement can

easily be satisfied since the plethora of dynamic state estimator

(DSE) algorithms exists in the literatureÐsee [17]±[19] that

can provide very accurate estimates of all the states of the

power systems using PMU measurements.
To proceed with the computation of controller matrix K,

let us assume ws and xs be the post-fault steady-state values
of the SLS-DAE model (9). Then, the system dynamics (9)
with the proposed controller at this new equilibrium point can
be written as

0=Ax
s+f (xs

,uwac,w
s)+Bu(u

k
ref+K(xs

−x
k))+Bww

s
.

Now, to examine the system dynamic behavior before and

after the occurrence of any fault/disturbances, let us introduce

new variables x̄a = xa − xs
a ∈ R

na , x̄d = xd − xs
d ∈ R

nd ,

and w̄ = w −ws ∈ R
nw . These new variables describe the

deviations of algebraic and dynamic states of the perturbed

SLS-DAE model around the post-fault system steady-state

values xs and ws. With that in mind, the perturbed closed-

loop SLS-DAE model of power systems can be expressed as

follows:

E ˙̄x=(A+BuK)x̄+ f̄(x̄,uwac, w̄)+Bww̄, (12)

where f̄(x̄,uwac, w̄) = f(x,uwac,w)− f(xs,uwac,w
s).

Note that w̄ denotes the deviation of system total load

demand and solar irradiance from their respective post-fault

equilibrium ws. Our main objective herein is to compute con-

troller matrix K in a way such that the solution trajectories of

the perturbed SLS-DAE model (12) asymptotically converge

to zero under unknown disturbances caused by w̄ (which

describes the mismatch between generation and demand and

disturbances in solar power caused by uncertainties in solar

irradiance).

In the following section, we present the theory of our

proposed H∞ WAC which is primarily based on Lyapunov

stability, and the H∞ notion is used for achieving robust

performance under unknown disturbances from load demand

and renewable generation.
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H∞ Notion and WAC Design: To synthesize robust con-

trollers, H∞-based control designs are the most powerful and

well-established tools in modern control theory literature. The

core idea in H∞-based control is that first, a performance

criterion/index is established, and then, the controller matrix

is designed in a way such that using state/output feedback,

the controller ensures the minimum impact of unknown dis-

turbances on the designed performance criterion [20].

That being said, let us define z := z(t) = Cx(t) +
Duwac(t) ∈ R

nx to be the performance criterion for the

control law uwac, where C ∈ R
nx×nx and D ∈ R

nx×nu are

constant known matrices. Similar to the penalizing matrices Q

and R in the conventional linear-quadratic regulator (LQR),

matrices C and D can be selected based on the electrical

grid operator preferences, meaning how much and which state

or control input needs to be penalized while determining the

controller matrix K. Likewise, the previous derivation, the

perturbed performance criterion around post-fault equilibrium

xs can be expressed as z̄ = z−zs = (C+DK)x̄. Then, the

perturbed SLS-DAE model (12) with the performance index

z̄ can be written as follows:

E ˙̄x=(A+BuK)x̄+ f̄(x̄,uwac, w̄)+Bww̄, (13a)

z̄ = (C +DK)x̄. (13b)

Then, the system (13) is H∞ stable, if for any bounded uncer-

tainty/disturbance in load demand and renewable generation,

the magnitude of the performance criterion z̄ always remains

less then constant times the magnitude of uncertainty w̄, i.e.,

∥z̄∥2L2
< µ2∥w̄∥2L2

[21].

To that end, we now pose the computation of controller

matrix K as a convex semi-definite program (SDP) which

guarantees that the SLS-DAE model of power system (13) is

always H∞ stable against unknown disturbances from load

and renewable generation as follows:

(OP) minimize
H,X,W ,λ,κ1,κ2

a1λ+ a2κ1 + a3κ2

subject to LMI (14), LMIs (15), X ≻ 0,

λ > 0, κ1 > 0, κ2 > 0,

where

• a1, a2, and a3 are predefined weighting constants.

• The variables in OP are real-valued matrices H ∈
R

nu×nx , W ∈ R
na×nx , positive-definite matrix X ∈

S
nx×nx

++ , and positive scalars λ, κ1, κ2 ∈ R++.

• LMI (14) is defined as




Ψ ∗ ∗
B⊤

w −λI ∗
C(XE⊤ +E⊥W ) +DH O −I


 ≺ 0,

(14)

with Ψ given as

Ψ=(XE
⊤+E

⊥
W )⊤A⊤+A(XE

⊤+E
⊥
W )+H

⊤
B

⊤+BH,

where E⊥ ∈ R
nx×na is the orthogonal complement of

E.

G1

1

4

65

3

987

2

S1 S2

Fig. 2. One line diagram of the modified WECC test power system with
a motor load at Bus 8, a synchronous generator at Bus 1, and two solar
power plants S1 and S2 at Buses 2 and 3.

• LMIs (15) are defined as:
[
−κ1I H⊤

H −I

]
≺ 0,

[
−κ2I I

I −S − S⊤

]
≺ 0,

(15)

with S = XE⊤ +E⊥W .

• Controller matrix K can be retrieved as

K = H(XE⊤+E⊥W )−1.

• OP is a convex semi-definite problem and can be easily

solved via various convex optimization toolboxes.

For brevity, the motivation and proof behind OP are omitted

and included in the extended manuscript [12]. Calculating

controller matrix K by solving OP always ensures that

after a large mismatch between generation and demand,

the perturbed SLS-DAE (13) remains H∞ stable, such that

∥z̄∥2L2
< µ2∥w̄∥2L2

, where λ = µ2 in LMI (14). Thus, the

designed control law (11) tries to minimize the impact of

unknown disturbances on the system dynamics. By doing so,

in the below numerical case studies section, we show that

the proposed H∞ WAC decreases system oscillations and

frequency nadir, and quickly restores the SLS-DAE model

nominal frequency after any fault/disturbance.

IV. SIMULATION STUDIES

The proposed wide-area controller has been tested on

a modified WECC (Western electricity coordinate council)

power system [1], which is a simplified representation of North

American Western interconnection. This test system consists

of a total of 9 buses, one synchronous generator G1 connected

at Bus 1, constant power and constant impedance load at both

Buses 5 and 6, an induction motor load connected at Bus 8,

and two solar power plants S1 and S2 at Buses 2 and 3. The

single-line diagram of this test system is shown in Fig. 2. All

the parameters (for synchronous generators, solar plants, and

loads) and a further detailed explanation of the dynamics of

the test power system used in this study can be found in [13],

[15]

The numerical simulations are carried out on a personal

computer having 64GB of RAM and a 16-core Intel i9 −
11980HK processor. All the case studies are implemented

in MATLAB R2021a. The SLS-DAE model (10) is solved

via MATLAB’s differential-algebraic system solver ode15s.

The settings for the ode15s are selected to be: (i) absolute

tolerance = 10−6, (ii) maximum step size = 10−4, and (iii)

relative tolerance = 10−6. The system bases are considered

to be Sb = 100MVA and wb = 120πrad/s. The SDP
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optimization problem OP is modeled in YALMIP [22] and

is solved via a MOSEK solver [23]. The initial steady-state

values for the power system before the occurrence of any

disturbances are computed using power flow solutions through

runpf function in MATPOWER [24]. Furthermore, for all the

case studies, it has been assumed that an observer/estimator is

already present in the system and is estimating all the states

of the power system in real-time which are then fed as state

feedback to the H∞ WAC as depicted in Fig. 1.

A. Case A: Performance Under Load Disturbances

In this section, we assess the performance of the proposed

WAC in the presence of large disturbances in the overall load

demand of the power network. To that end, the simulation

studies for this section are carried out as follows: Initially,

the system operates in equilibrium conditions (meaning total

power generation is equal to the total load demand P 0
d +Q0

d =
0.77 + j0.25 pu). Thus, there are no transients in the system

states, and all the dynamic and algebraic states rest at their

steady-state values. Then, right after t > 0 the total load

demand of the SLS-DAE model has abruptly been increased

to a new value given as P s
d + Qs

d = (1 + δd)(P
0
d + Q0

d),
where δd specifies the severity of the disturbance and here,

it is chosen to be δd = 0.5. This disturbance will eventually

throw the power system to a new equilibrium or maybe make

it unstable. The objective of the controller is to dampen the

system oscillations and restore system frequency as soon as

possible to its nominal value.

The results for this case study are shown in Fig. 3. To advo-

cate the advantages of the proposed H∞ WAC, a comparison

between the system dynamics response after a disturbance

with only conventional control and with the proposed H∞

WAC on top of it has also been carried out. The conventional

control is comprised of the legacy control devices used in

the power systemsÐthat are, governor, PSS, and AVR for

the synchronous generators [13] and proportional-integral (PI)

and droop controllers for the solar power plants [15], [25].

From Fig. 3, we clearly observe that with the proposed H∞

WAC, the system oscillations during the transient period (first

few seconds of simulations) have significantly been damped

out. Also, the frequency nadir is significantly improved, with

just conventional control the overall dip in the frequency is

0.9843 (pu) while with proposed WAC, it improved to 0.996
(pu).

Notice that the inverter angular speed ωinv and slip sinv
have been computed from the state vectors as follows:

ωinv = 1− kinv(P̃e − Pref), sinv=(we − ωinv)/we,

where kinv is the inverter droop constant and we is the overall

weighted-average system frequency.

To further advocate the advantages of the proposed con-

troller, we add further disturbance in the system, this time by

decreasing the load demand of the SLS-DAE model such that

P s
d +Qs

d = (1− δd)(P
0
d +Q0

d) where δd = 0.5. The results

are presented in Fig. 4. We observe that the controller is still

significantly increasing the overall transient stability of the

system by adding damping to the oscillations and driving the

system back to its equilibrium values.
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Fig. 3. Controller performance under Case A: relative angle, slip, DC-
link voltage, and angular speed of both solar plants S1 and S2 with only
conventional control and with H∞ WAC acting on top of them.
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Fig. 4. Controller performance under sudden decrease in load demand:
G1 rotor speed, G1 slip, G1 rotor angle, and angular speed of both solar
plants S1 and S2.

Moreover, we also observe from Figs. 3 and 4 that after a

large disturbance, with the proposed H∞ WAC, the system

frequency is almost restored to its nominal value while with

only conventional control, the system frequency settles to a

value below its nominal value. This also indicates that with the

proposed H∞ WAC, the work required by well-known AGC

(which mainly works as a PI-type controller and is primarily

responsible to remove the steady-state error in the frequency

and restore it to its nominal value) in the power systems is

reduced.

B. Case B: Performance in the Presence of Uncertainty in

Solar Irradiance and Load Demand

Here, we evaluate the robustness of the proposed controller

in the presence of uncertainty in both load demand and the

sun’s irradiance on the solar power plants. Similar to as

done in the previous case study, right after the start of the

simulation, the irradiance Ir on both S1 and S2 has suddenly

decreased by 30% as Idr = (1 + δI)(I
0
r ), with δI = 0.3,

where I0r and Idr are the sun’s irradiance before and after the

disturbance, respectively. The load demand is increased as

P s
d +Qs

d = (1+ δd)(P
0
d +Q0

d) with δd chosen this time to be

δd = 0.9. The results are shown in Fig. 5. We observe that the

conventional/primary controllers of the SLS-DAE model are
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Fig. 5. Controller performance under Case B: DC-link voltage for both
S1 and S2, G1 rotor angle, angular speed of S1 and S2, and G1 rotor
speed.

unable to control the system and the power network becomes

unstable and loses its synchronicity. While with H∞ WAC

acting on top of it and sending additional control signal uwac

to these primary controllers, the power system remains stable

and synchronized. Furthermore, from Fig. 5 we also verify that

the proposed controller not only keeps the SLS-DAE model

stable but also recovers the system to its nominal value. Further

case studies on a larger system are included in [12].

V. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a new robust state feedback

controller for power systems namelyH∞ WAC. The presented

controller is applied to an advanced interconnected power

system model. The proposed controller is robust against

uncertainties from load demands and renewables and can sig-

nificantly improve the overall transient stability of the power

system after a large disturbance. The presented controller is

highly feasible for practical applications as it sends additional

control signals to the already present primary controllers of

the power system and does not require any new installation of

control equipment.

The limitations of the study are twofold: Firstly, the pre-

sented controller structure is dense and not sparse, Second, the

proposed controller may not be robust to changes in system

matrices unless these changes are specifically modeled in

controller design. Future work will be about addressing the

aforementioned issues in the proposed controller design.
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