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Abstract— Today’s power systems are controlled based on
decades of experience with the fundamentals of physics-based
properties of synchronous generators. Future power grids
however must cope with the increasing penetration of re-
newable energy resources (RERs) and require a much more
sophisticated control architecture. This is because RERs are
formed by uncertain solar- and wind-based resources and
are connected to the grid via advanced (power electronics)-
based technologies. These are, in short, far more complex to
control than traditional generators. RERs also do not provide
inertia to damp frequency oscillations, and thus the grid’s
operating point changes frequently causing deterioration in the
overall transient stability of the power system. This short paper
proposes a robust wide-area controller for an advanced power
system model having a higher order generator model, advanced
(power electronics)-based solar plants model, and composite
load dynamics. The simulation studies show that the proposed
controller can significantly improve the transient stability of the
system against uncertainty from load demand and renewables.

Index Terms— Robust control, Lyapunov methods, Grid-
forming inverters, Power systems, Nonlinear differential-
algebraic models.

I. PAPER INTRODUCTION AND CONTRIBUTIONS

To limit frequency oscillations and to bring the power grid
back to an equilibrium after a disturbance, three main control
layers are deployed: primary, secondary, and tertiary. The pri-
mary layer usually consists of an automatic voltage regulator
(AVR), power system stabilizer (PSS), generator droop con-
trol, and proportional-integral-derivative (PID) controllers—
usually responsible for regulating the frequency dynamics.
The secondary control layer which consists of automatic
generation control (AGC) removes the steady-state error and
tries to bring the system back to its nominal value, while
the tertiary control layer is used for economic dispatch and
redistributes the power such that the overall operating cost is
minimized [1].

With the increasing penetration of renewable energy re-
sources (RERS), the future electric grid faces major challenges,
and the overall transient stability and dynamic response of the
system are deteriorating [2]. For example, according to [3],
[4] it has been observed in the Nordic electric network that as
the penetration of RERs increases, the time the Nordic grid is
spending outside the allowed frequency range (which typically
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ranges from + 2-3%) is increasing significantly. This is be-
cause, unlike synchronous generators, RERs (which currently
are mainly dominated by wind and solar) are intermittent, they
do not provide rotational inertia, and they are connected to
the grid via power electronics-based technologies. This leads
to faster dynamical behavior, increased frequency nadir (the
overall dip in the frequency after a large disturbance), and
system oscillations.

The recent development in synchronized measurement tech-
nologies, such as phasor measurement units (PMUs), and
model- and data-driven control theory encourages the devel-
opment of advanced controllers that can handle the complex
load demands and uncertain dynamics of renewables. For
example, in [5] an H, based load frequency controller has
been proposed to handle uncertainties from tie-line power
flows. In [6] a robust L, based controller has been proposed
to handle disturbances from load and renewables. In [7], [8]
wide-area controllers based on PMU measurements have been
proposed to damp inter-area oscillations.

Similarly, in [9] researchers have thoroughly discussed the
limitations of the conventional power system control and
proposed a Lyapunov stability-based controller for the nonlin-
ear differential-algebraic equations (NDAE) model of power
systems. This study does not consider renewables and load
dynamics. In [10] an LMI-based decentralized controller has
been proposed for frequency regulation, however, a simplified
(modeling generator dynamics only) power system model has
been used. Recently in [11] a two-layer (centralized for syn-
chronous generator and decentralized for renewables) control
architecture has been designed for a comprehensive power
system model with solar farms, wind farms, and a higher-
order generator model. The study forgoes load dynamics
and modeling of algebraic equations (power flow/balance
equations) in the controller synthesis.

It is notable that the majority of these studies consider a
simplified representation of the power system. In the majority
of the power systems control studies, renewables are usually
considered as negative loads while dynamics of loads are
neglected and they are commonly just modeled as constant
power. That being said, we address the aforementioned limi-
tations and propose an H.-based wide-area controller (H
WAC) to enhance the transient stability of renewable heavy
power systems. The technical contributions are as follows:

o We extended the work presented in [9], by considering an
advanced interconnected power system model. The test
system considered in this study models: (i) ninth-order
synchronous machine dynamics, (ii) (power electronics)-
based models of solar plants, (iii) motor loads, (iv)

4495

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on July 28,2023 at 12:27:13 UTC from IEEE Xplore. Restrictions apply.



constant power loads, and (v) constant impedance loads.
The proposed methodology also explicitly models the
algebraic equations (power flow/balance) of the power
systems in the controller design.

o To handle disturbances from load and renewables, we
propose an H..-based controller architecture. The static
state feedback controller can be computed by solving a
fairly simple LMI-based convex optimization problem.
The proposed controller finds its application in wide-area
monitoring and control of power systems and it improves
system transient stability after a large disturbance.

o We assess the robustness of the proposed controller on the
IEEE Case-9 test system which is widely used in power
system control studies. The advantages of the proposed
H oo WAC are also showcased by comparing the response
of the power system with conventional control (primary
controllers of power systems) and with H ., WAC acting
on top of them.

Paper Notation: All the matrices and vectors are bold-faced.
The sets are represented in calligraphic such as N, G, etc. The
notation R? denotes the set of column vectors with a elements.
The notation O represents a zero matrix while I denotes an
identity matrix of appropriate dimensions. The notation R%*?
denotes the set of real matrices of size a-by-b. Similarly, Siib
denotes a positive definite matrix. The symbol * represents
symmetric entries in a symmetric matrix.

Note to Readers: An extended version of this short paper is
available [12]. It includes further analysis, case studies, and
mathematical proofs.

II. SOLAR AND LOADS-INTEGRATED DAE MODEL

We consider a power system model with G synchronous
generators, I solar power plants, and L., L,, L; number of
constant impedance, constant power, and motor loads, respec-
tively. The overall power system is represented as a graph
(N, E), where N denotes the set of buses and £ represents
the set of transmission lines. Notice that ' = GUR U L,
where G denotes the set of buses connected to synchronous
generators, R represents the set of buses with solar power
plants, and £ collects the set of buses connected to L, L,
and Ly, respectively.

To that end, we model the solars- and loads-integrated
synchronous machines-DAE (SLS-DAE) model of power
systems using a set of differential-algebraic equations as

(1a)
(1b)

:B(t) = f(.’Ed,.’Ba,U,'ID),

0= h(zg4,xq u,w),

dynamic equations:

algebraic equations:

where x, € R™ represents the dynamic variables, x, € R"
represents algebraic variables of the power network, u € R"«
models the control inputs, and w € R™» denotes exogenous
disturbances.

In (1), vector x, is modeled as

T, =m,(t) = [If, I, VE. Vil eR™, (2

where IRe = {[Rei }i€N> IIm = {IImi}iENv VRe =
{VRe, }ienrs Vim = {Vim, }ien represent the real and imag-
inary parts of currents and voltages, respectively. The vector

}T

u models the control inputs of synchronous generators and
solar PV plants and is represented as

wi=u(t) = [ul up] eR™, A3)

of € R2¢ with Vi and P,,,
denoting reference set-points for voltages (pu) and turbine
valve positions (pu) of the synchronous generator, respec-
tively. Similarly, up = [V.[; PJ;] € R2R, where P

where ug = [VT Pv—;f]T

ref ref
and Vi are the power (pu) and voltage (pu) reference set

points for solar PV plants. Also, we define w in Eq. (1) as
w=[I] PJ]T € R™ where I, is the solar irradiance
(W/m?) on the PV plants and P, is the system real power
load demand (pu).

Moreover, in Eq. (1), we represent x4 as

zqi=ma(t) = [&f, =z w)] €R™, 4)

where ¢ are the dynamic states of the conventional power
plant (states of synchronous generator, excitation system, gov-
ernor, and turbine dynamics), xr represents the differential
states of the solar power plant, and x,,, denotes the states of
motor loads. With that in mind, we model the conventional
power plant via a comprehensive 9*"-order model, and thus
vector x can be expressed as follows [13], [14]:

ze=[0], wl el e] PJ T EJ,v] r[]" €R, (5)

m

where 5, denotes generator rotor angle (pu), wsy is the
generator speed (pu), e,, eq, represent transient voltages
along dg-axis (pu), P, is the turbine valve position (pu),
T,, denotes turbines prime mover torque (pu), Eq is the
generator field voltage (pu), r; denotes stabilizer output
(pu), and v, represents amplifier voltage (pu) [13], [14].
The dynamic model for the solar power plant is taken from
[15], which models solar farms in grid-forming mode, and
thus vector & can be written as

T e R12E (6)

_[sT o7 T pTOT T »T T
LTR= [Jinv Viq. quf Pe Qe Edc quf Zdgo

where d;,, represents the inverter angle (pu) of solar power

plants, vq, = [v; v, ] are the voltages (pu) across the
AC capacitor along dg-axis, 44, = [zgf quf] represent the

currents (pu) at the terminals of the inverter along dg-axis, P,
Q. are the total real and reactive power injected by S1 and 52
to the grid, Fq. is the energy stored in the DC side capacitor,
and zqq,= [z;—f z;';], Zdg, = [z:i'—o z;)] are the dynamic states
of the current and voltage regulator of S1 and S2. Notice that
from E4. the DC-link voltage V. can also be computed as
Vie = v/Eqc. To obtain further information and a detailed
description of the solar power plant model used in this study,
readers are referred to [15].

In (4), the model for the motor loads is defined as [16]:

. 1

Wmot = E(Te - Tm)7 (7)
where T, T, are the mechanical and electromagnetic torques,
respectively, wpot 1S the motor speed, and H,, is the motor
inertia constant [16, p. 244]. Thus, vector x,,, only has one
state [wm o). This completes the modeling of system dynamics
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(1a). Now, the model for the algebraic constraints Eq. (1b) is
expressed as [13]

ia Yoo Yor Yoo ‘ZG
Ir| = |Yre Yrr Yrr| |Vg| =0, ®)
I; Y YLr Yir| |V,

—— > ——
I \4

where matrix Y € RV¥*¥ represents the system admittance
matrix, vector I denotes the net current, and vector V' lumps
all the bus voltages. Note that Eq. (8) describes the overall
current balance equation between the generation and demand
sides. In (8), vector Vg = {VRe, ticg + J{Vim, }icg encap-
sulates all the voltage phasors at the terminal buses of syn-
chronous machines and I ={Ige, }icg+7{Irm, }icg lumps
all the phasor currents supplied by synchronous machines.
Similarly, vectors Ir, Iy, and Vg, Vi, collect current and
voltage phasors at buses connected with S1, S2, and loads,
respectively.

That being said, by considering equations (2)—(8) and
including the associated dynamic and algebraic models given
in [13], [15], we can express the overall SLS-DAE model of
power systems in a descriptor state-space format as follows:

‘SLS-DAE: Ex = Ax + f (z,u,w) + B,u + B,w,
)

where x = [w;ir a::HT € R"= is the state vector and E €
R™=*"= {g a singular matrix encoding algebraic constraints
with rows of zeros, while the constant system matrices A €
RreXne B ¢ R"X" B, € R"*"w have been obtained
by capturing the linear component of (1) and the function
f () € R% x R™ x R™ — R™ represents the associated

nonlinearities in the system model.

III. ROBUST WIDE-AREA CONTROLLER FOR SLS-DAE

In this section, we present the architecture of the proposed
H~ WAC for the SLS-DAE model of power systems (9). The
primary objective of the formulation is to design a control law
that provides additional control inputs to both synchronous
generators and solar power plants in the presence of large
unknown disturbances from load demand and renewables. The
main objective of the proposed controller is to damp out os-
cillations and quickly restore system frequency to its nominal
value after large unknown disturbances in load demand and
renewable generation.

The SLS-DAE model of power systems (9) with the pro-
posed H, WAC is expressed as

Ex = Ax + f (2, Uyac, W) + Buyac + Byw,  (10)

where for kT < t < (k + 1)T the controller 1aw Uy, is
designed as follows:

Uniac = Uwac(t) = ulop + K (@(t) — (). (1D

In the control law (11), uffe ¥ is the reference or baseline
control inputs for the synchronous machines and renewables
which are usually determined for every k*"-dispatch time-
period using power flow studies. For a given load demand
and renewable generation, the control signal u_ ¢ keeps the

______ PMU measurements

SLS-DAE model of
power systems

Design ¢D | H, DAE
Parameters Controller

Fig. 1. Architecture of the proposed Hoo WAC. Vector x is the overall state
vector, w encapsulates the total load demand of the system and irradiance
of the solar plants, while y contains the measurements received from PMUs
Sensors.

SLS-DAE system (9) at a particular steady-state 2*(¢). The
matrix K € R™«*"= is the static state feedback matrix for the
controller and it is determined with the help of the knowledge
of constant matrices (A, B, and B,,) in SLS-DAE model (9).
Further discussion on the computation of matrix K is given
later in this section. The overall architecture of the proposed
Hoo WAC is presented in Fig. 1. We observe from Fig. 1 that
the overall control law requires the knowledge of both differ-
ential and algebraic states of the system. This requirement can
easily be satisfied since the plethora of dynamic state estimator
(DSE) algorithms exists in the literature—see [17]-[19] that
can provide very accurate estimates of all the states of the

power systems using PMU measurements.

To proceed with the computation of controller matrix K,
let us assume w® and x® be the post-fault steady-state values
of the SLS-DAE model (9). Then, the system dynamics (9)
with the proposed controller at this new equilibrium point can
be written as

0=Az"+ f (2°, Uwac, w") + By (ure j+ K (z° —a"))+ B,w’.

Now, to examine the system dynamic behavior before and
after the occurrence of any fault/disturbances, let us introduce
new variables T, = x, — ) € R", 5 = x4 — ) € R",
and @w = w — w® € R™ . These new variables describe the
deviations of algebraic and dynamic states of the perturbed
SLS-DAE model around the post-fault system steady-state
values ° and w?®. With that in mind, the perturbed closed-
loop SLS-DAE model of power systems can be expressed as
follows:

Exz=(A+B,K)Z + f(Z, Uyac, W)+ B,w, (12)

where f(Z, Uwac, W) = F(@, Uwac, W) — F(T°, Ugae, WP).

Note that w denotes the deviation of system total load
demand and solar irradiance from their respective post-fault
equilibrium w?. Our main objective herein is to compute con-
troller matrix K in a way such that the solution trajectories of
the perturbed SLS-DAE model (12) asymptotically converge
to zero under unknown disturbances caused by w (which
describes the mismatch between generation and demand and
disturbances in solar power caused by uncertainties in solar
irradiance).

In the following section, we present the theory of our
proposed H~, WAC which is primarily based on Lyapunov
stability, and the H., notion is used for achieving robust
performance under unknown disturbances from load demand
and renewable generation.
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H~ Notion and WAC Design: To synthesize robust con-
trollers, H.o-based control designs are the most powerful and
well-established tools in modern control theory literature. The
core idea in H,-based control is that first, a performance
criterion/index is established, and then, the controller matrix
is designed in a way such that using state/output feedback,
the controller ensures the minimum impact of unknown dis-
turbances on the designed performance criterion [20].

That being said, let us define z = 2(t) = Cxz(t) +
Duyac(t) € R™ to be the performance criterion for the
control 1aw ., where C' € R"=*"= and D € R"=*"u are
constant known matrices. Similar to the penalizing matrices Q
and R in the conventional linear-quadratic regulator (LQR),
matrices C' and D can be selected based on the electrical
grid operator preferences, meaning how much and which state
or control input needs to be penalized while determining the
controller matrix K. Likewise, the previous derivation, the
perturbed performance criterion around post-fault equilibrium
x® can be expressed as Z = z—2z° = (C'+ DK)Z. Then, the
perturbed SLS-DAE model (12) with the performance index
Z can be written as follows:

Exz=(A+B,K)Z + f(Z, Uyac, W)+ B,w,
zZ=(C+ DK)z.

(13a)
(13b)

Then, the system (13) is H o, stable, if for any bounded uncer-
tainty/disturbance in load demand and renewable generation,
the magnitude of the performance criterion Z always remains
less then constant times the magnitude of uncertainty , i.e.,
1212, < w2l@ll3, 1211

To that end, we now pose the computation of controller
matrix K as a convex semi-definite program (SDP) which
guarantees that the SLS-DAE model of power system (13) is
always Hoo stable against unknown disturbances from load
and renewable generation as follows:

minimize a1\ + ask1 + asks
H,X,W,)\,K/l,liz
subject to LMI (14), LMIs (15), X > 0,

A>0, k1 >0, ko >0,

(OP)

where

e aj, a2, and ag are predefined weighting constants.

e The variables in OP are real-valued matrices H €
Rruxnz W e R™ X" positive-definite matrix X €
Sh="=, and positive scalars \, k1, k2 € Ry 4.

o LMI (14) is defined as

v * *
B] =Y <0,
C(XE"+E*W)+DH O -I
(14)

with ¥ given as
V=(XE4“E*W)A+AXE'+E*W)+H B+BH,

where E-- € R"#*" is the orthogonal complement of
E.

Fig. 2. One line diagram of the modified WECC test power system with
a motor load at Bus 8, a synchronous generator at Bus 1, and two solar
power plants S1 and S2 at Buses 2 and 3.

o LMIs (15) are defined as:

—K}lI HT 7/&21' I
[ H —I] 0 [ 1 —S—ST} <0
15)

with S = XET + EtW.
¢ Controller matrix K can be retrieved as

K=HXE'+E*W)™ ..

e OP is a convex semi-definite problem and can be easily
solved via various convex optimization toolboxes.

For brevity, the motivation and proof behind OP are omitted
and included in the extended manuscript [12]. Calculating
controller matrix K by solving OP always ensures that
after a large mismatch between generation and demand,
the perturbed SLS-DAE (13) remains H ., stable, such that
|27, < p?[lw®|l7,. where A = 42 in LMI (14). Thus, the
designed control law (11) tries to minimize the impact of
unknown disturbances on the system dynamics. By doing so,
in the below numerical case studies section, we show that
the proposed Ho, WAC decreases system oscillations and
frequency nadir, and quickly restores the SLS-DAE model
nominal frequency after any fault/disturbance.

IV. SIMULATION STUDIES

The proposed wide-area controller has been tested on
a modified WECC (Western electricity coordinate council)
power system [1], which is a simplified representation of North
American Western interconnection. This test system consists
of a total of 9 buses, one synchronous generator G'1 connected
at Bus 1, constant power and constant impedance load at both
Buses 5 and 6, an induction motor load connected at Bus 8,
and two solar power plants S1 and S2 at Buses 2 and 3. The
single-line diagram of this test system is shown in Fig. 2. All
the parameters (for synchronous generators, solar plants, and
loads) and a further detailed explanation of the dynamics of
the test power system used in this study can be found in [13],
[15]

The numerical simulations are carried out on a personal
computer having 64GB of RAM and a 16-core Intel 79 —
11980H K processor. All the case studies are implemented
in MATLAB R2021a. The SLS-DAE model (10) is solved
via MATLAB’s differential-algebraic system solver ode15s.
The settings for the ode15s are selected to be: (i) absolute
tolerance = 1075, (ii) maximum step size = 10~%, and (iii)
relative tolerance = 1076, The system bases are considered
to be S, = 100MVA and w, = 1207nrad/s. The SDP
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optimization problem OP is modeled in YALMIP [22] and
is solved via a MOSEK solver [23]. The initial steady-state
values for the power system before the occurrence of any
disturbances are computed using power flow solutions through
runpf function in MATPOWER [24]. Furthermore, for all the
case studies, it has been assumed that an observer/estimator is
already present in the system and is estimating all the states
of the power system in real-time which are then fed as state
feedback to the H., WAC as depicted in Fig. 1.

A. Case A: Performance Under Load Disturbances

In this section, we assess the performance of the proposed
WAC in the presence of large disturbances in the overall load
demand of the power network. To that end, the simulation
studies for this section are carried out as follows: Initially,
the system operates in equilibrium conditions (meaning total
power generation is equal to the total load demand P! +QY =
0.77 + j0.25 pu). Thus, there are no transients in the system
states, and all the dynamic and algebraic states rest at their
steady-state values. Then, right after ¢ > 0 the total load
demand of the SLS-DAE model has abruptly been increased
to a new value given as P35 + Q%5 = (1 + d4)(PY + QY),
where 04 specifies the severity of the disturbance and here,
it is chosen to be 4 = 0.5. This disturbance will eventually
throw the power system to a new equilibrium or maybe make
it unstable. The objective of the controller is to dampen the
system oscillations and restore system frequency as soon as
possible to its nominal value.

The results for this case study are shown in Fig. 3. To advo-
cate the advantages of the proposed H ., WAC, a comparison
between the system dynamics response after a disturbance
with only conventional control and with the proposed Hoo
WAC on top of it has also been carried out. The conventional
control is comprised of the legacy control devices used in
the power systems—that are, governor, PSS, and AVR for
the synchronous generators [ 13] and proportional-integral (PI)
and droop controllers for the solar power plants [15], [25].

From Fig. 3, we clearly observe that with the proposed H
WAC, the system oscillations during the transient period (first
few seconds of simulations) have significantly been damped
out. Also, the frequency nadir is significantly improved, with
just conventional control the overall dip in the frequency is
0.9843 (pu) while with proposed WAC, it improved to 0.996
(pu).

Notice that the inverter angular speed win, and slip Siny
have been computed from the state vectors as follows:

Winy = 1- kinv(lse - Pref>7 sinvz(we - winv)/we7

where ki is the inverter droop constant and w, is the overall
weighted-average system frequency.

To further advocate the advantages of the proposed con-
troller, we add further disturbance in the system, this time by
decreasing the load demand of the SLS-DAE model such that
P5+ Q% = (1—684)(P? + QY) where 64 = 0.5. The results
are presented in Fig. 4. We observe that the controller is still
significantly increasing the overall transient stability of the
system by adding damping to the oscillations and driving the
system back to its equilibrium values.

01—

= 0
=
Rl ——with H.. WAC
—— Conventional control
02 L1 L1
o 2 4 6 8
1.56 — 1
=5 2 0995
2
— 152 -
] £ 099
= s 3
148 L1 11 ] 0985 [ R B N
o 2 4 & 8 10 0o 2 4 6 8 10
t (sec) t (sec)
Fig. 3. Controller performance under Case A: relative angle, slip, DC-

link voltage, and angular speed of both solar plants S1 and S2 with only
conventional control and with Hs, WAC acting on top of them.

104
1.008 ——with H,, WAC -

—— Conventional control

1.006
—
=1
=)
~— 1.004

Ws

1.002

0.836 1.008
— 0.834 — 1.006
& &
NG ~ 1.004
7 0.832 g
© 3 1.002
0.83 \ \ \ \ | 1 \ \ \ \ |
o 2 4 6 8 10 0o 2 4 6 8 10
t (sec) t (sec)
Fig. 4. Controller performance under sudden decrease in load demand:

G1 rotor speed, G1 slip, G1 rotor angle, and angular speed of both solar
plants S1 and S2.

Moreover, we also observe from Figs. 3 and 4 that after a
large disturbance, with the proposed H., WAC, the system
frequency is almost restored to its nominal value while with
only conventional control, the system frequency settles to a
value below its nominal value. This also indicates that with the
proposed Ho, WAC, the work required by well-known AGC
(which mainly works as a PI-type controller and is primarily
responsible to remove the steady-state error in the frequency
and restore it to its nominal value) in the power systems is
reduced.

B. Case B: Performance in the Presence of Uncertainty in
Solar Irradiance and Load Demand

Here, we evaluate the robustness of the proposed controller
in the presence of uncertainty in both load demand and the
sun’s irradiance on the solar power plants. Similar to as
done in the previous case study, right after the start of the
simulation, the irradiance I, on both S1 and S2 has suddenly
decreased by 30% as I¢ = (1 + §;)(I?), with 6; = 0.3,
where I and I¢ are the sun’s irradiance before and after the
disturbance, respectively. The load demand is increased as
Ps+Q% = (1+64)(P?+QY) with 6, chosen this time to be
04 = 0.9. The results are shown in Fig. 5. We observe that the
conventional/primary controllers of the SLS-DAE model are
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Fig. 5. Controller performance under Case B: DC-link voltage for both
S1 and S2, G1 rotor angle, angular speed of S1 and S2, and G1 rotor
speed.

unable to control the system and the power network becomes
unstable and loses its synchronicity. While with H,, WAC
acting on top of it and sending additional control signal U
to these primary controllers, the power system remains stable
and synchronized. Furthermore, from Fig. 5 we also verify that
the proposed controller not only keeps the SLS-DAE model
stable but also recovers the system to its nominal value. Further
case studies on a larger system are included in [12].

) V. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a new robust state feedback
controller for power systems namely H ., WAC. The presented
controller is applied to an advanced interconnected power
system model. The proposed controller is robust against
uncertainties from load demands and renewables and can sig-
nificantly improve the overall transient stability of the power
system after a large disturbance. The presented controller is
highly feasible for practical applications as it sends additional
control signals to the already present primary controllers of
the power system and does not require any new installation of
control equipment.

The limitations of the study are twofold: Firstly, the pre-
sented controller structure is dense and not sparse, Second, the
proposed controller may not be robust to changes in system
matrices unless these changes are specifically modeled in
controller design. Future work will be about addressing the
aforementioned issues in the proposed controller design.
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