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Abstract— This paper revisits the optimal phasor measure-
ment unit (PMU) placement problem (P3) in transmission
networks. We examine P3 from a control-theoretic and dynamic
systems perspectives. Relevant prior literature studied this
problem through formulations that are based on empirical ob-
servability maximization for nonlinear dynamic power system
models. While such studies addressed a plethora of challenges,
they mostly adopt a simple representation of system dynamics,
ignore basic algebraic equations modeling power flows, forgo
including renewables and their uncertainty. This paper offers
a fresh perspective on this problem by leveraging the observ-
ability matrix’s modularity property under a moving horizon
estimation theoretic. A nonlinear differential algebraic repre-
sentation of the system is implicitly discretized while explicitly
accounting for uncertainty. To that end, the posed challenges
are addressed for the optimal P3 via a computationally tractable
integer program formulation. The validity of the approach is
illustrated on an IEEE 39-bus power system.

I. INTRODUCTION

T
HE optimal sensor placement problem exists widely in

various dynamic networks such as water distribution

networks, electric power systems, and transportation networks.

In power systems, PMU placement is critical for accurate

fast monitoring and control of the transmission network [1].

The placement refers to the process of selecting the buses

or nodes on which PMUs should be installed—naturally an

offline design problem. Signal fault detection, communication

channel limitations, static power flow considerations, topolog-

ical network changes, and some socio-economics are several

factors that are a basis for P3 [2]. However, in the scope

of this work we focus on the problem from observability-

and systems-theoretic perspectives. That being said, a sys-

tem can have PMUs located at each bus and achieve full

observability, however this is not feasible economically [3].

As such, it is necessary to solve for optimal PMU placement

that achieves maximum observability given a fixed number of

to-be-installed PMUs [4].

From a dynamic system perspective, P3 can be understood

as obtaining the minimal number of PMUs such that the power

network model is observable—or at least detectable. For linear

dynamic systems modeled as ẋ = Ax + Bu,y = Cx,

this translates to the observability matrix being full rank

or that the pair (A,C) satisfy the Popov-Belevitch-Hautus

(PBH) test [5]—a classical linear systems theory result. Matrix
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C encodes the binary PMU placement variables. This also

extends to nonlinear, multi-machine network model through

the empirical observability Gramian [6], [7] which is more

cumbersome and, as its adjective suggests, is empirical.

Nonetheless, not much research has been conducted on

PMU placement jointly with dynamic state estimation (DSE).

The literature that addresses optimal PMU placement from a

DSE approach in power networks establish that such PMU

selection problem is not well understood and is solved via

heuristics or greedy approach [8]. Consequently, conventional

schemes for observing and estimating power networks are

not computationally efficient for larger networks. In [9], the

authors formulate P3 as a maximization of the empirical ob-

servability Gramian metrics, however (i) it is performed under

typical flow conditions and is then assessed for robustness, (ii)
it is computationally expensive, and (iii) it doesn’t consider

the joint estimation of differential and algebraic states.

Several studies [8]–[12] have extended the P3 formulation

developed in [9], but the studies also neglected the afore-

mentioned drawbacks. Commonly, the differential equations

are included in the state system representation of the model,

whereas the algebraic equations are neglected due to the

computational burden and overall stability implications [13].

A complete representation of a power system includes both

differential and algebraic equation forming a system of nonlin-

ear differential algebraic equations (NDAE). The advantages

of using an NDAE formulation of the power system are: (i)
linking of network dynamics with power flow equations [3],

(ii) incorporating renewables and loads, whilst modeling their

uncertainty in DSE routines [14], and (iii) rendering the

selection of non-generator buses feasible. It is to the best of our

knowledge that the observability-based P3 in power systems

represented as a NDAE has not yet been investigated.

Paper’s Approach and Contributions: Motivated by the afore-

mentioned limitations within the literature, we revisit P3

by performing the optimal PMU placement while jointly

estimating both dynamic and algebraic states of the NDAE

representation of a power system. Compared to [8], [9] we

approach formulating P3—for a NDAE power system—on the

basis of exploiting the modularity of the observability matrix.

The significance of such optimal PMU placement formulation

proposed within the scope of this work are as follows.

• We formulate an approximate implicit discrete-time rep-

resentation of the NDAE system that retains the structure

of NDAEs while attaining mathematical properties of a

nonlinear ordinary differential equations (ODE) model.
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• We perform joint state estimation on dynamic and al-

gebraic states by adopting a moving horizon estimation

(MHE) framework. We approach solving the state es-

timation problem—posed as a nonlinear least-squares

problem—using the Gauss-Newton (GN) algorithm.

• We leverage the modularity of the observability matrix

to extract a priori observability information in order to

pose P3 as an integer program (IP). The use of the a

priori contribution from each PMU placement extenuates

the computational complexity of an optimization in-

stance and therefore results in a computationally tractable

approach for PMU placement in lager networks. We

demonstrate P3 on an IEEE 39–bus power system.

The remainder of this paper is structured as follows. In

Section II, we introduce the NDAE power system and develop

its discrete-time approximate model. The optimal P3 under the

MHE framework is formulated in Section III. The proposed

optimization scheme is validated in Section IV and the paper

is concluded in Section V.

Paper’s Notation: Let R, Rn, and R
p×q denote the set of real

numbers, and real-valued row vectors with size of n, and p-by-

q real matrices. The symbol ⊗ denotes the Kronecker product.

The cardinality of the a set N is denoted by |N |. The operators

det(A) and trace(A) return the determinant and trace of A,

and blkdiag(A) constructs a block diagonal matrix.

II. NONLINEAR POWER SYSTEM DAE MODEL

The power system dynamics(N , E) can be represented as

a nonlinear descriptor system, where E ⊆ N × N is the set

of transmission lines, N = G ∪ L is the set of buses within

the network such that |N | := N , while G and L are the set of

generator and load buses where |G| := G, and |L| := L.

In this work, we consider the standard two axis 4th order

transient model of a synchronous generator [15], meaning that

each generator has four states and two control inputs. The state-

space formulation of the NDAE system representing generator

dynamics and algebraic constraints can be written as

generator dynamics : ẋd = f(xd,xa,u) (1a)

algebraic constraints : 0 = g(xd,xa), (1b)

where xd := xd(t) = [δ⊤ ω⊤ E
′⊤

TM
⊤]⊤ ∈ R

4G and

xa := xa(t) = [P⊤
G Q⊤

G v⊤ θ⊤]⊤ ∈ R
2G+2N represent

the differential and algebraic states of the system, and u :=
u(t) = [E⊤

fd T⊤
r ]⊤ ∈ R

2G represents the system inputs.f(·) :
R

4G ×R
2G ×R

2G → R
4G and g(·) : R4G ×R

2G ×R
2N →

R
2G+2N are nonlinear mapping functions. Readers can refer

to [15, Ch. 7] for the full description of the power network

utilized in this work. The generator states xd are: δ the rotor

angle, ω rotor speed, E
′

transient voltage, and TM mechanical

torque. Generator inputs u are: Efd generator internal field

voltage, Tr governor reference signal. The algebraic states xa

are: PG and QG, the real and reactive power, θ the bus angle,

and v the bus voltage.

A. Discrete-Time Modeling of the NDAE

This section describes the discrete-time modeling methodol-

ogy of the nonlinear descriptor dynamics. Several methods that

solve DAEs have been presented and analyzed in the literature.

An efficient and stable approach for simulating stiff nonlinear

descriptor systems refers to the use of implicit numerical meth-

ods. Those of which include: Backward differential formulas

(BDF) known as Gear’s method [16], Implicit Runge-Kutta

(IRK) [17] and Trapezoidal Implicit (TI) methods [18].

In this work, the implicit TI method is used to simulate

the discrete-time dynamics of the nonlinear descriptor power

system. TI method has been shown to be an efficient method for

simulating power systems for transient stability analysis [19].

Further investigation of the other methods in-particular, Gear’s

method, is important but outside the scope of this work.

Accordingly, the discrete-time representation of (1) can be

written as (2) for time step k with step size h, such that

xk := xkh. We define vectors zk := [xd,k,xa,k,uk]
⊤ and

xk := [xd,k,xa,k]
⊤ for time step k, and h̃ := 0.5h as the

discretization constant.

xd,k − xd,k−1 = h̃
(

f(zk) + f(zk−1)
)

(2a)

0 = g(xk). (2b)

The solvability of the discretized system in (2) entails

finding a solution to a set of implicit nonlinear equations, i.e,

finding xd and xa for each time step k. The Newton-Raphson

(NR) method [19] is implemented at each time-step to solve the

set of equations under iteration index i. The method is iterated

until a convergence criterion—that is, a relatively small error

of the L2 norm of the iteration increment—is attained.

Before showcasing how the NR method is used to simulate

the NDAE power system, we introduce a mathematical struc-

tural transformation to the NDAE. This transformation entails

formulating the system in (2) from an NDAE into a nonlinear

ODE representation. A descriptor system of index-n 1 can be

represented as an ODE system by differentiating the algebraic

equations until a set of differential equations is obtained.

Definition 1: The index-n of descriptor system (2) is the

number of times needed to differentiate the DAEs with respect

to independent time variable (t) to obtain system of ODEs.

For the power system (1) it has been presented that it is

of index-1 [3]. As such, only one differentiation is required

to transform system (1) from a DAE to an ODE represen-

tation. However, constructing the observability Gramian of

the resulting ODE system is rather complex for reasons that

are beyond the scope of this work. On such basis, we move

forward with transforming the NDAE system by replacing the

left hand side in (1) by µẋa where µ is a relatively small

factor that simulates the nonlinear descriptor dynamics while

satisfying the algebraic constraint equations. The plausibility

of such approximation stems from the low index of the power

system model. The validity of this approach is showcased in

Section IV of this paper. Given such approximation of the

NDAE that we refer to as µ-NDAE system, the discrete-time

representation of the power system in (2) can be rewritten in

implicit form as
0=xd,k − xd,k−1 − h̃

(

f(zk) + f(zk−1)
)

(3a)

0=µxa,k − µxa,k−1 − h̃
(

g(xk) + g(xk−1)
)

. (3b)

We solve the system using NR method by first represent-

ing (3) under iteration index i denoted by φ(z
(i)
k ,xk−1) :=
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φ(z
(i)
k ), where z

(i)
k retains the same previous definition how-

ever under the NR iteration index i. The NR method entails

calculating the Jacobian of the nonlinear dynamics. At each

time step k the increment ∆x
(i)
k , defined as (4), is computed

and is then used to update state variablex
(i+1)
k = x

(i)
k +∆x

(i)
k

for each iteration until the convergence criterion is satisfied.

∆x
(i)
k =

[

Ag(z
(i)
k )

]−1 [

φ(z
(i)
k )

]

, (4)

where the Jacobian Ag(z
(i)
k ) :=

[

∂φ(z
(i)
k

)

∂x

]

is given as

Ag(z
(i)
k )=

[

Ind
− h̃Fxd

(z
(i)
k ) −h̃Fxa

(z
(i)
k )

−h̃Gxd
(x

(i)
k ) µIna

− h̃Gxa
(x

(i)
k )

]

. (5)

We define nd := 4G and na := 2G + 2N as the number

of differential and algebraic states, and n := nd + na as the

total number of states. Matrices Fxd
∈ R

nd×nd and Fxa
∈

R
nd×na represent the Jacobian of (3a) with respect to xd and

xa. Matrices Gxd
∈ R

na×nd and Gxa
∈ R

na×na represent

the Jacobian of (3b) with respect to xd and xa. Matrices Ind
∈

R
nd×nd and Ina

∈ R
na×na are identity matrices.

III. OBSERVABILITY-BASED PMU PLACEMENT

In this section, we discuss the framework under which we

address the P3 of the descriptor power system (1). Based on

the discretized µ-NDAE model developed in Section II-A,

the discrete-time power system dynamics with measurements

takes the following form

Eµxk=Eµxk−1+h̃In

[

f(zk) + f(zk−1)
g(xk) + g(xk−1)

]

(6a)

yk= C̃xk + Γvk, (6b)

we define Np ⊆ N as the set of buses at which PMUs can be

installed, such that |Np| = Np. Diagonal matrix Eµ ∈ R
n×n

has ones on its diagonal for xd and µ for xa.

Matrix C̃ := ΓC ∈ R
np×n is the mapping of states

variables under the selected sensor configuration, which in

this case measures [v⊤ θ⊤]⊤ such that, np := 2Np represents

the number of measured states. Diagonal matrix Γ defines the

placement of PMUs within the network which is defined as

Γ := diag(γz) with γz = [0, 1]p, whereby, γz = 1, if a PMU

bus is selected and γz = 0, otherwise. Variable p ≤ np is the

number of selected PMUs within the transmission network and

vk ∈ R
np is the measurement noise.

We formulate the observability-based P3 based on the

concept of observability under a MHE approach developed

in [20]. The reasons for choosing this approach are two-fold.

(i) MHE is robust against measurement noise [21], and (ii)
as argued by [20], this framework is most scalable for stiff

nonlinear networks amongst the other approaches in literature.

A. Initial State Estimation

MHE is a state estimation approach that uses a series of

past measurements that contain noise and inaccuracies to

estimate the states of a dynamic system. As such, we begin

with denoting the observation horizon as No. Then, we define

a nonlinear vector function of the initial state g(Γ,x0) :=
g(x0) : Rnp × R

n → R
np , such that the objective here is

minimize the nonlinear least-square error on g(x0) posed as

(P1) minimize
x0

||g(x0)||
2
2 (7a)

subject to x0 ≤ x0 ≤ x0, (7b)

where x0 and x0 are the lower and upper bounds on initial

state variables. From a power systems perspective, the upper

and lower bounds on algebraic variables are obtained from

MATPOWER [22]. The vector function g(·) represented in

(8) is defined as g(x0) := y(x0)−w(Γ,x0).

col {g(xi)}
No−1
i=0 = col {yi}

No−1
i=0 − col

{

C̃xi

}No−1

i=0
, (8)

where y(xi) ∈ R
np represents the set of observations over No

of the discretized system and w(Γ,x0) := w(x0) : Rnp ×
R

n → R
np is the measurement mapping vector function.

Remark 1: Vector g(·) is a function of initial state x0. This

is due to the coupling of the k-th state xk to initial state x0

through the postulated discrete state-space representation.

Accordingly, we can define the observability of system (6)

such that for all inputs uk the initial state x0 can be uniquely

determined from a set of measurements over observation

horizon No. A sufficient condition for g(·) to be injective with

respect to x0 is that the Jacobian of g(·) around x0 is of full

rank; rank
(

J(g(·))
)

= nd + na = n ∀ x0 [23].

We move forward with solving the nonlinear least squares

objective function (7) by exploiting the discrete nature of the

system using a numerical GN algorithm. The reason for choos-

ing a numerical approach rather than using an existing least-

square solver are two-fold. (i)GN approach is computationally

more efficient, and (ii) for large systems (e.g., IEEE 200-bus

case) MATLAB’s lsqminorm solver could not converge to an

initial state estimate.

To that end, in order to solve P1 using GN, we re-define

the objective—posed in P2—as minimizing the L2-norm of

the residual function vector formed from (i) measurement

equation and (ii) discretized NDAE model.

(P2) minimize
q0

||r(Γ, q)||22, (9)

where the vector q ∈ R
No·n concatenates the differen-

tial and algebraic states over horizon No. Such that q :=
[x⊤

d,0 x⊤
a,0 . . . x⊤

d,No−1 x⊤
a,No−1]. The residual r(Γ, q) :=

r(q) ∈ R
No·np+No·n is defined as r(q) = [ry rx]

T where

ry := y(x0) := [r⊤y0
. . . r⊤yNo−1

] ∈ R
No·np and rx :=

w(x0) := [r⊤x0
. . . r⊤xNo−1

] ∈ R
No·n. The vector ry ∈

R
No·np is the residual function of the measurement equation

for No observations that is defined as ryk
:= yk − C̃xk

and rxk
∈ R

No·n, defined in (10), is the residual of the TI

discretized µ-NDAE model represented in (3).

rxk
:=

[

xd,k − xd,k−1 − h̃
(

f(zk) + f(zk−1)
)

xa,k − µxa,k−1 − h̃
(

g(xk) + g(xk−1)
)

]

. (10)

Now that the residual has been defined, we move forward

with solving the minimization problem using GN iterative

method by updating state vector q such that (9) is minimized.

The GN update for iteration i is given as (11) with a GN step

size denoted by hg .

q
(i+1)=q

(i)
−hg(Jg(q

(i))⊤Jg(q
(i)))−1

Jg(q
(i))⊤r(q(i)). (11)
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The Jacobian matrix in (11) is defined as

Jg(Γ, q
(i)) := Jg(q

(i)) =

[

M

N

]

, (12)

where M := blkdiag(−C̃) ∈ R
No·np×No·n is the Jacobian

matrix of residual function ry , and N := blkdiag(Ag) ∈
R

No·n×No·n is the Jacobian matrix of residual function rx.

HereAg ∈ R
n×n is the Jacobian of the discretized NDAE (6a)

which is evaluated for observation horizonNo. The GN method

is performed until the L2–norm of the residual is minimized.

B. Optimal PMU Placement

In this section, the observability-based optimal PMU place-

ment under a MHE framework is formulated. The concept of

observability Gramian is used to quantify the NDAE system’s

observability under a PMU placement. Quantifying observ-

ability that is based on the Gramian matrix can be evaluated

under several well-known metrics: condition number, rank,

trace, etc. A more elaborate study on the different metrics

that quantify observability of the Gramian matrix is presented

in [9]. For our formulation, we focus on studying the trace

of the observability Gramian matrix. The trace quantifies the

average observability in all directions of the state-space.

For observability-based sensor selection problem within

networks, the optimal P3 can be posed as a set function

optimization problem. This is a common approach widely used

in combinatorial optimization that leverages the submodularity

of the objective function. In particular for power systems, the

work of [8] presented proofs that the observability metrics

retain submodularity, defined as follows.

Definition 2: A function F : 2V → R is submodular if for

every A,B ⊆ V it holds that

F(A ∩B) + F(A ∪B) ≤ F(A) + F(B). (13a)

In other words, a submodular function has an incremental

additive property. Accordingly, P3 can be formulated under a

set function optimization framework that can be posed as

(P3) minimize
Z

− trace (Wo(Z,x0)) (14a)

subject to |Z| = p, Z ⊆ Np, (14b)

where Z is the set of selected sensors. Such that, Z ⊆ Np

is subset of the total number of buses at which PMUs can be

placed, and p is the number of PMUs selected.

The mapping of PMUs in set Z is encoded by the matrix

C̃. As such, we define Wo(Z,x0) := Wo(Γ,x0) ∈ R
n×n

in (15) as the observability Gramian of the nonlinear system.

Wo(Γ,x0) = JT (Γ,x0)J(Γ,x0), (15)

where J(·) ∈ R
No·np×n is the Jacobian over observation

horizon No of function g(·) = 0 around x0 and is given by

J(Γ,x0) =
[

In ⊗ C̃
]

col

{

∂xi

∂x0

}No−1

i=0

. (16)

Expressing the Jacobian requires the knowledge ofxk ∀ i =
1, . . . ,No−1, which can be obtained by simulating the system

dynamics over No. Applying the chain rule, the j-th partial

derivative can be evaluated as
∂xj

∂x0
=

∂xj

∂xj−1
. . . ∂x1

∂x0
.

However given the implicit nature of the discretized system

presented in (3), representing the partial derivative for sys-

tem is not straightforward and depends on the discretization

method followed [20]. We note here that if we use of the NDAE

system instead of the approximate µ-NDAE representation—

that retains an ODE structure—the process of expressing
∂xdj

∂xdj−1
in explicit form for the algebraic variable becomes

non-trivial and hence the main reason for such approximate

transformation. The procedure for explicitly expressing the

partial derivative and therefore the Jacobian has been omitted

for brevity.

We note that submodular set minimization problem is NP-

hard to solve. A greedy heuristics approach is a tractable

approach that achieves a sub-optimal solution for maximizing

monotone increasing* submodular functions. Although being

considered a computationally tractable approach, it yields a

sub-optimal solution that is at least (1 − 1/e) = 63% of the

optimal solution [24].

Based on the above considerations, we revisit P3 and

instead solve the submodular set optimization problem using

an a priori set optimization program that is considered a

convex integer program (IP). The framework revolves around

computing the observability matrix’s singular contribution

resulting from each sensor placement and then performing

the optimal placement based on the a priori contribution

of from each sensor. The plausibility of this approach is a

result of the fact that the observability Gramian Wo(·) is a

modular † set function. Summers et al. [8] provided proof

pertaining to the structural property—modular set function—

of the observability matrix for linear models. In the context

of nonlinear systems, we prove that the observability matrix

under PMU placement is modular with respect to decision

variable Γ, however for brevity the proof is omitted.

Modular functions form positive linear combinations of

the single elements that form the modular set. Intuitively,

this means that a modular function is analogous to linear

functions and that each element of the set has an independent

contribution to the function value. Accordingly, the next

proposition formulates the observability matrix Wo(·) as a

linear combination of its individual elements—the proof is also

omitted for brevity. Readers can check the extended version

of this manuscript; Google Scholar is your best friend.

Proposition 1: The observability matrixWo(·) can be writ-

ten as a linear combination of the individual contributions on

observability from each PMU placement as follows

W 1
o (Z,x0) =

Np
∑

i=1

Wo,i(Zi,x0).

Given this result, the a priori set optimization program for

optimal PMU placement denoted by P4 can be posed as

(P4) minimize
Z

− trace
(

W 1
o (Z,x0)

)

(17a)

subject to |Z| = p, Z ⊆ Np, (17b)

whereZi corresponds to the selected i-th sensor that is encoded

in matrix C̃, such that Γ has a 1 on the diagonal corresponding

*A set function F : 2V → R is monotone increasing if ∀ A,B ⊆ V the
following holds true; A ⊆ B → F(A) ≤ F(B)

†A set function is modular if it is both submodular and supermodular,
such that ∀ A,B ⊆ V the following holds true; F(A∩B)+F(A∪B) =
F(A) + F(B).
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Fig. 1. RMSE for dynamic and algebraic states between the NDAE and
µ-NDAE discrete-time models of the power system.

to that sensor location, and zeros elsewhere.

The idea of a priori optimization was introduced by [25] as

a strategy when solving optimization problems in randomly

distributed networks. The concept entails having a priori

knowledge of instance contributions and then solving the

combinatorial problem without exponentially complex com-

putations at each optimization instance. This allows one to

perform combinatorial optimization with minimal computing

power. Having provided a priori information on an particular

instance which is possible given the modular nature of the

observability matrix, then P4 which is categorized as a convex

integer program (IP) is therefore computational less exhaustive

and scalable.

IV. CASE STUDY

In this section, we first validate the discrete-time model

of the µ-NDAE system developed in Section II-A and then

demonstrate the proposed PMU placement problem P4. The

PMU placement program is interfaced on MATLAB R2021b

through YALMIP [26] and implement using a standard brand

and bound method (BNB) with Gurobi [27] as the solver.

We investigate the proposed approach on an IEEE 39-

Bus system with 10 generators. The generator parameters

are extracted from PST case file datane.m. Regulation and

chest time constants for the generators are chosen as RDi =
0.2 Hz/sec and TCHi = 0.2 sec, since they are not included

in the PST case file. The steady state initial conditions for

the power system are generated from the power flow solution

obtained from MATPOWER. The synchronous speed is set to

ω0 = 120π rad/sec and a power base to 100 MVA.

A. Simulating the Discrete µ-NDAE Dynamics

We set the discretization step size h = 0.1 and simulations

time t = 15 sec for the discrete time-modeling of the power

system. Starting from the initial steady state conditions, we

introduce a load disturbance at t > 0 on initial load (P0
L,Q

0
L)

and on initial renewables loads (P0
R,Q

0
R) = (0.2P0

L, 0.2Q
0
L)

that are modeled as a negative load into the network. The

load disturbance magnitude (αL) is computed as (P̃0
L, Q̃

0
L) =

(1 + αL

100 )(P
0
L,Q

0
L) and renewables disturbance magnitude

(αR) is computed as (P̃0
r , Q̃

0
r ) = (1 + αR

100 )(P
0
R,Q

0
R). Under

the scope of this paper, we demonstrate simulating the system

dynamics with load disturbance magnitude α = (2, 3, 4)% of

the unperturbed initial loads and with renewable disturbance

magnitude αR = αL of the unperturbed initial renewable
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Fig. 2. PMU placements for varying number of PMUs p.

loads. We implement the NR method to simulate the dis-

cretized dynamics under the TI method. We demonstrate the

validity of the approximate µ-NDAE for the three load cases

over a range of µ = (10−2, 10−9). It is worth mentioning that

for any µ < 10−2 the system does not converge to a solution

i.e, the power balance equations are not satisfied.

To further assess the accuracy of this transformation we

obtain the root mean square error (RSME) of the TI dis-

cretization over time period t that is calculated as RSME :=
√

∑t
k=1 ek where ek := |x̂k − xk| is the difference between

the states of the two system representation with x̂k corre-

sponding to the NDAE system and xk to the µ-NDAE system.

The RMSE for the different load disturbances and µ values

is depicted in Fig. 1. It is obvious that the µ-NDAE system

approximates the NDAE with a relatively small error and that

this error tends to decrease as µ approaches zero, which is

intuitive since with µ reaching zero we go back to having a

NDAE. As such, the discrete-time modeling methodology for

the power system has been validated. We choose µ to be equal

10−6 moving forward; evidently from Fig. 1 one can discern

that for each of the different load perturbations the RSME is

small when µ = 10−6.

B. Optimal PMU Placement: IEEE 39-Bus system

We now solve the optimal P3 posed as P4. The objective

is to obtain an optimal configuration of PMU placement

represented by set Z∗ that is constraint by the maximum

number of PMUs p to be employed within the network. We

initialize the power system under assumed initial conditions

x̃0 and then simulate the discretized measurement model in (6)

and under v = 2% measurement noise over observation

horizonNo. Then, we perform initial state estimation assuming

full PMU placement, that is |Z| = np, using the GN method to

obtain initial state estimate x̂0. The GN algorithm constants

are: (i) time step constant hg = 0.1 and (ii) tolerance on

residual as 10−4. Based on the initial state estimate, P3 is

solved to obtain optimal set Z∗. Finally the estimation error

resulting from the optimal PMU placement is computed as

ε :=
‖x̂0−x0‖2

‖x0‖2
. We note here that P4 is classified as a convex

integer program (IP) since the presumed initial state estimate

x̂0 is fixed and binary vector Γ is the optimization variable.

P4 is successfully solved while being constraint by number

of PMUs to be employed within the network. Two cases are

taken into consideration: (1) with p = 8 PMU ≈ 0.2 × np

and (2) with p = 16 PMUs ≈ 0.4 × np. The optimal PMU
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Fig. 3. Dynamic and algebraic state trajectories under load disturbance.

placement over the generator and buses node locations for the

two case are depicted in Fig. 2.

Two key aspects can be pointed out from the observability-

based PMU placement program solved. The first is through

the coupling of dynamics and algebraic states, load buses are

selected and thus included in the optimal set Z∗. The second is

that it is evident that modularity is retained with the increase of

PMUs selected. Whereby, the optimal set for p = 16 PMUs

included the same buses chosen from the optimal set of the

p = 8 PMUs optimization case.

Moreover, the initial state estimation error on the PMU

placements decreases as the number of PMUs placed on the

buses with the power system increases. Bus angles θi and

generator rotor speeds ωi for case with p = 8 PMUs are

depicted in Fig. 3. The estimation error in this case is ε =
1.294×10−4 which then decreased to ε = 1.088×10−4 under

p = 16 PMUs. This concurs with the observability based

estimation framework that the state estimation is based on. As

such, the results altogether validate our approach and prospects

future investigations with regards to this observability-based

framework approach for NDAE power systems. Future work

will include investigating P3 under different discretization

techniques, under other observability metrics on the place-

ment, and under the effects of structural system change re-

sulting from fault lines and on that note we end this section.

V. CONCLUSION

This paper revisits the P3 for power system. The power

system is based on a NDAE representation which allows

coupling of the differential and algebraic states within the

network. The NDAE system is discretized using TI method and

is transformed into a µ-NDAE which retains the mathematical

structure of an ODE. We adopt a MHE approach to perform

optimal PMU placement with such network by exploiting the

modularity of the observability matrix. As such, we posed P3

as an a priori set optimization program which extenuates the

computational burden from performing complex computation

at each optimization instance of the combinatorial problem.
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