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Optimal Placement of PMUs in Power Networks:
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Abstract— This paper revisits the optimal phasor measure-
ment unit (PMU) placement problem (P3) in transmission
networks. We examine P? from a control-theoretic and dynamic
systems perspectives. Relevant prior literature studied this
problem through formulations that are based on empirical ob-
servability maximization for nonlinear dynamic power system
models. While such studies addressed a plethora of challenges,
they mostly adopt a simple representation of system dynamics,
ignore basic algebraic equations modeling power flows, forgo
including renewables and their uncertainty. This paper offers
a fresh perspective on this problem by leveraging the observ-
ability matrix’s modularity property under a moving horizon
estimation theoretic. A nonlinear differential algebraic repre-
sentation of the system is implicitly discretized while explicitly
accounting for uncertainty. To that end, the posed challenges
are addressed for the optimal P® via a computationally tractable
integer program formulation. The validity of the approach is
illustrated on an IEEE 39-bus power system.

I. INTRODUCTION

HE optimal sensor placement problem exists widely in
T various dynamic networks such as water distribution
networks, electric power systems, and transportation networks.
In power systems, PMU placement is critical for accurate
fast monitoring and control of the transmission network [1].
The placement refers to the process of selecting the buses
or nodes on which PMUs should be installed—naturally an
offline design problem. Signal fault detection, communication
channel limitations, static power flow considerations, topolog-
ical network changes, and some socio-economics are several
factors that are a basis for P [2]. However, in the scope
of this work we focus on the problem from observability-
and systems-theoretic perspectives. That being said, a sys-
tem can have PMUs located at each bus and achieve full
observability, however this is not feasible economically [3].
As such, it is necessary to solve for optimal PMU placement
that achieves maximum observability given a fixed number of
to-be-installed PMUs [4].

From a dynamic system perspective, P> can be understood
as obtaining the minimal number of PMUs such that the power
network model is observable—or at least detectable. For linear
dynamic systems modeled as ¢ = Ax + Bu,y = Cu,
this translates to the observability matrix being full rank
or that the pair (A, C) satisfy the Popov-Belevitch-Hautus
(PBH) test [5]—a classical linear systems theory result. Matrix
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C encodes the binary PMU placement variables. This also
extends to nonlinear, multi-machine network model through
the empirical observability Gramian [6], [7] which is more
cumbersome and, as its adjective suggests, is empirical.
Nonetheless, not much research has been conducted on
PMU placement jointly with dynamic state estimation (DSE).
The literature that addresses optimal PMU placement from a
DSE approach in power networks establish that such PMU
selection problem is not well understood and is solved via
heuristics or greedy approach [8]. Consequently, conventional
schemes for observing and estimating power networks are
not computationally efficient for larger networks. In [9], the
authors formulate P3 as a maximization of the empirical ob-
servability Gramian metrics, however (7) it is performed under
typical flow conditions and is then assessed for robustness, (1)
it is computationally expensive, and (i4¢) it doesn’t consider
the joint estimation of differential and algebraic states.
Several studies [8]-[12] have extended the P? formulation
developed in [9], but the studies also neglected the afore-
mentioned drawbacks. Commonly, the differential equations
are included in the state system representation of the model,
whereas the algebraic equations are neglected due to the
computational burden and overall stability implications [13].
A complete representation of a power system includes both
differential and algebraic equation forming a system of nonlin-
ear differential algebraic equations (NDAE). The advantages
of using an NDAE formulation of the power system are: (4)
linking of network dynamics with power flow equations [3],
(44) incorporating renewables and loads, whilst modeling their
uncertainty in DSE routines [14], and (ii¢) rendering the
selection of non-generator buses feasible. It is to the best of our
knowledge that the observability-based P* in power systems
represented as a NDAE has not yet been investigated.

Paper’s Approach and Contributions: Motivated by the afore-
mentioned limitations within the literature, we revisit P>
by performing the optimal PMU placement while jointly
estimating both dynamic and algebraic states of the NDAE
representation of a power system. Compared to [8], [9] we
approach formulating P>—for a NDAE power system—on the
basis of exploiting the modularity of the observability matrix.
The significance of such optimal PMU placement formulation
proposed within the scope of this work are as follows.

o We formulate an approximate implicit discrete-time rep-
resentation of the NDAE system that retains the structure
of NDAEs while attaining mathematical properties of a
nonlinear ordinary differential equations (ODE) model.
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o We perform joint state estimation on dynamic and al-
gebraic states by adopting a moving horizon estimation
(MHE) framework. We approach solving the state es-
timation problem—posed as a nonlinear least-squares
problem—using the Gauss-Newton (GN) algorithm.

o We leverage the modularity of the observability matrix
to extract a priori observability information in order to
pose P? as an integer program (IP). The use of the a
priori contribution from each PMU placement extenuates
the computational complexity of an optimization in-
stance and therefore results in a computationally tractable
approach for PMU placement in lager networks. We
demonstrate P> on an IEEE 39-bus power system.

The remainder of this paper is structured as follows. In

Section II, we introduce the NDAE power system and develop
its discrete-time approximate model. The optimal P® under the
MHE framework is formulated in Section III. The proposed
optimization scheme is validated in Section IV and the paper
is concluded in Section V.
Paper’s Notation: Let R, R™, and RP*? denote the set of real
numbers, and real-valued row vectors with size of n, and p-by-
q real matrices. The symbol ® denotes the Kronecker product.
The cardinality of the a set N is denoted by |NV|. The operators
det(A) and trace(A) return the determinant and trace of A,
and blkdiag(A) constructs a block diagonal matrix.

II. NONLINEAR POWER SYSTEM DAE MODEL

The power system dynamics(N, £) can be represented as
a nonlinear descriptor system, where £ C A x N is the set
of transmission lines, N' = G U L is the set of buses within
the network such that |A] := N, while G and L are the set of
generator and load buses where |G| := G, and |£| := L.

In this work, we consider the standard two axis 4*" order
transient model of a synchronous generator [15], meaning that
each generator has four states and two control inputs. The state-
space formulation of the NDAE system representing generator
dynamics and algebraic constraints can be written as

generator dynamics : &q = f(Tq, Tq,U) (1a)
algebraic constraints : 0= g(xq,x,), (1b)

T
where x4 == x4(t) = [6" w' E Ty'|T € R* and
Ty = x(t) = [Pd Qf v’ 07]T € R2G+2N represent

the differential and algebraic states of the system, and u :=
u(t) = [E; T,"]T € R2¢ represents the system inputs. f(-) :
R4 x R?¢ x R?¢ — R“ and g(-) : R*¢ x R?¢ x R?2N —
R2G+2N are nonlinear mapping functions. Readers can refer
to [15, Ch. 7] for the full description of the power network
utilized in this work. The generator states x4 are: d the rotor
angle, w rotor speed, E' transient voltage, and T3 mechanical
torque. Generator inputs w are: Egq generator internal field
voltage, T} governor reference signal. The algebraic states x,
are: Pg and Qg, the real and reactive power, 6 the bus angle,
and v the bus voltage.

A. Discrete-Time Modeling of the NDAE

This section describes the discrete-time modeling methodol-
ogy of the nonlinear descriptor dynamics. Several methods that
solve DAEs have been presented and analyzed in the literature.

An efficient and stable approach for simulating stiff nonlinear
descriptor systems refers to the use of implicit numerical meth-
ods. Those of which include: Backward differential formulas
(BDF) known as Gear’s method [16], Implicit Runge-Kutta
(IRK) [17] and Trapezoidal Implicit (TI) methods [18].

In this work, the implicit TI method is used to simulate
the discrete-time dynamics of the nonlinear descriptor power
system. TI method has been shown to be an efficient method for
simulating power systems for transient stability analysis [19].
Further investigation of the other methods in-particular, Gear’s
method, is important but outside the scope of this work.
Accordingly, the discrete-time representation of (1) can be
written as (2) for time step k with step size h, such that

T, = T,. We define vectors zj, = [a:d,l?,ma,k,uk]—r and
Ty = [Tak,Tax|' for time step k, and h := 0.5h as the

discretization constant.
xqp — a1 = h(f(ze) + f(ze-1)) (2a)
0=g(xx). (2b)

The solvability of the discretized system in (2) entails
finding a solution to a set of implicit nonlinear equations, i.e,
finding x4 and x, for each time step k. The Newton-Raphson
(NR) method [19] is implemented at each time-step to solve the
set of equations under iteration index ¢. The method is iterated
until a convergence criterion—that is, a relatively small error
of the £5 norm of the iteration increment—is attained.

Before showcasing how the NR method is used to simulate
the NDAE power system, we introduce a mathematical struc-
tural transformation to the NDAE. This transformation entails
formulating the system in (2) from an NDAE into a nonlinear
ODE representation. A descriptor system of index-n 1 can be
represented as an ODE system by differentiating the algebraic
equations until a set of differential equations is obtained.

Definition 1: The index-n of descriptor system (2) is the
number of times needed to differentiate the DAEs with respect
to independent time variable (¢) to obtain system of ODE:s.

For the power system (1) it has been presented that it is
of index-1 [3]. As such, only one differentiation is required
to transform system (1) from a DAE to an ODE represen-
tation. However, constructing the observability Gramian of
the resulting ODE system is rather complex for reasons that
are beyond the scope of this work. On such basis, we move
forward with transforming the NDAE system by replacing the
left hand side in (1) by ux, where p is a relatively small
factor that simulates the nonlinear descriptor dynamics while
satisfying the algebraic constraint equations. The plausibility
of such approximation stems from the low index of the power
system model. The validity of this approach is showcased in
Section IV of this paper. Given such approximation of the
NDAE that we refer to as u-NDAE system, the discrete-time
representation of the power system in (2) can be rewritten in
implicit form as ~

0=xakr — Tap—1 — h(f(zk) + f(zr-1)) (3a)

0=pZak — pTap-1 — h(g(xr) + g(xr-1)). (3b)

We solve the system using NR method by first represent-
ing (3) under iteration index ¢ denoted by qS(z,(;), Tp_1) =
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gb(zl(f)), where z,(f) retains the same previous definition how-
ever under the NR iteration index ¢. The NR method entails
calculating the Jacobian of the nonlinear dynamics. At each
time step k the increment Ang), defined as (4), is computed
and is then used to update state variable :cffﬂ) = a:,(f) +Aw,(:)

for each iteration until the convergence criterion is satisfied.
-1

Az =4,z [e=] )
where the Jacobian Ag(z,(j)) = [%} is given as

. 7 (2) 7 (1)
Ag (Z;(J)) _ I”d - thd (:)]g ) 7hF33a (zk )(i) . (5
—hGg,(z;”) pln, — WGy, (z))

We define ng := 4G and n, := 2G + 2N as the number
of differential and algebraic states, and n := ng + n, as the
total number of states. Matrices F,, € R"¢*"¢ and F,_ €
R™@*Ma represent the Jacobian of (3a) with respect to x4 and
Z,. Matrices G, € R"*" and G5, € R"*"= represent
the Jacobian of (3b) with respect to x4 and x,,. Matrices I,,, €
R™@x"d and I,,, € R™*"= are identity matrices.

III. OBSERVABILITY-BASED PMU PLACEMENT

In this section, we discuss the framework under which we
address the P? of the descriptor power system (1). Based on
the discretized p-NDAE model developed in Section II-A,
the discrete-time power system dynamics with measurements
takes the following form

fzr) + f(zp-1)

E,z.=E,x._1+hl, (
ph = Enh-1 g(xr) +g(xp—1)

(6a)

yr = Cxy + Ty, (6b)
we define V, C NV as the set of buses at which PMUs can be
installed, such that |[\V},| = N,,. Diagonal matrix E,, € R"*"
has ones on its diagonal for x4 and u for x,.

Matrix C := I'C € R™*" is the mapping of states
variables under the selected sensor configuration, which in
this case measures [v' 7] " such that, n, := 2N, represents
the number of measured states. Diagonal matrix I" defines the
placement of PMUs within the network which is defined as
I' := diag(v,) with v, = [0, 1]?, whereby, v, = 1, if a PMU
bus is selected and -y, = 0, otherwise. Variable p < n,, is the
number of selected PMUs within the transmission network and
v € R™ is the measurement noise.

We formulate the observability-based P* based on the
concept of observability under a MHE approach developed
in [20]. The reasons for choosing this approach are two-fold.
() MHE is robust against measurement noise [21], and (%)
as argued by [20], this framework is most scalable for stiff
nonlinear networks amongst the other approaches in literature.

A. Initial State Estimation

MHE is a state estimation approach that uses a series of
past measurements that contain noise and inaccuracies to
estimate the states of a dynamic system. As such, we begin
with denoting the observation horizon as N,. Then, we define
a nonlinear vector function of the initial state g(T', xg) :=
g(xg) : R x R™ — R", such that the objective here is

minimize the nonlinear least-square error on g(x() posed as

(P1) minimize ||g(z0)|[3 (7a)
xo
subjectto zy < T < T, (7b)

where x, and T, are the lower and upper bounds on initial
state variables. From a power systems perspective, the upper
and lower bounds on algebraic variables are obtained from
MATPOWER [22]. The vector function g(-) represented in
(8) is defined as g(xo) := y(xo) — w(T, xo).

col {g(wi)}?:"o_l = col{yi}ii"(;1 — col {C’xz}
where y(x;) € R"» represents the set of observations over N,

of the discretized system and w(T', o) := w(xzg) : R™ x
R™ — R"r is the measurement mapping vector function.

No—1
; (8)
0

1=

Remark 1: Vector g(+) is a function of initial state . This
is due to the coupling of the k-th state x; to initial state xg
through the postulated discrete state-space representation.

Accordingly, we can define the observability of system (6)
such that for all inputs uy, the initial state o can be uniquely
determined from a set of measurements over observation
horizon N,,. A sufficient condition for g(-) to be injective with
respect to @ is that the Jacobian of g(-) around x is of full
rank; rank (J(g())) =ng+ng, =nVY xo [23].

We move forward with solving the nonlinear least squares
objective function (7) by exploiting the discrete nature of the
system using a numerical GN algorithm. The reason for choos-
ing a numerical approach rather than using an existing least-
square solver are two-fold. (7) GN approach is computationally
more efficient, and (4¢) for large systems (e.g., IEEE 200-bus
case) MATLAB’s Isgminorm solver could not converge to an
initial state estimate.

To that end, in order to solve P1 using GN, we re-define
the objective—posed in P2—as minimizing the L£4-norm of
the residual function vector formed from (¢) measurement
equation and (%) discretized NDAE model.

(P2) minimize ||7(T,q)|[3, 9)
q0

where the vector ¢ € RNe™ concatenates the differen-
tial and algebraic states over horizon N,. Such that ¢ :=
[€go Tao - Tin,_1 4N, 1) The residual 7(T,q) :=
r(q) € RNem»tNom is defined as r(q) = [ry 74|7 where
ry = y(xo) = [ry, ... r;—Nwl] € RNe™ and 7, =
w(xy) = [rg, ... T4 ] € RN The vector r, €
RNo"» s the residual function of the measurement equation
for N, observations that is defined as 7y, = yi — C’a:k
and r,, € RNe defined in (10), is the residual of the TI

discretized ;1-NDAE model represented in (3).
[ @i — xap-1 — h(f(zk) + fzr-1))

T, = ~
U | @ak — pxa -1 — h(g(xk) + g(zK-1))
Now that the residual has been defined, we move forward
with solving the minimization problem using GN iterative
method by updating state vector g such that (9) is minimized.
The GN update for iteration ¢ is given as (11) with a GN step

size denoted by h.
q(H_l):q(i)_hg(Jg(q(i))TJg(q(i)))—ng(q(i))Tr(q(i)), (11

(10)
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The Jacobian matrix in (11) is defined as

Jy(T.q") = Jy(q") = B\ﬂ : (12)
where M := blkdiag(—C) € RNe»*No js the Jacobian
matrix of residual function ry, and N := blkdiag(A,) €
RNenxNon g the Jacobian matrix of residual function 7.
Here A, € R™*"™ is the Jacobian of the discretized NDAE (6a)
which is evaluated for observation horizon N,. The GN method
is performed until the £o—norm of the residual is minimized.
B. Optimal PMU Placement

In this section, the observability-based optimal PMU place-
ment under a MHE framework is formulated. The concept of
observability Gramian is used to quantify the NDAE system’s
observability under a PMU placement. Quantifying observ-
ability that is based on the Gramian matrix can be evaluated
under several well-known metrics: condition number, rank,
trace, etc. A more elaborate study on the different metrics
that quantify observability of the Gramian matrix is presented
in [9]. For our formulation, we focus on studying the trace
of the observability Gramian matrix. The trace quantifies the
average observability in all directions of the state-space.

For observability-based sensor selection problem within
networks, the optimal P* can be posed as a set function
optimization problem. This is acommon approach widely used
in combinatorial optimization that leverages the submodularity
of the objective function. In particular for power systems, the
work of [8] presented proofs that the observability metrics
retain submodularity, defined as follows.

Definition 2: A function F : 2V — R is submodular if for
every A, B C V it holds that

F(ANB)+ F(AUB) < F(A) + F(B). (13a)

In other words, a submodular function has an incremental
additive property. Accordingly, P* can be formulated under a
set function optimization framework that can be posed as

— trace (W,(Z,x0)) (14a)

subjectto |Z| =p, Z CN,, (14b)

where Z is the set of selected sensors. Such that, Z C N,

is subset of the total number of buses at which PMUs can be
placed, and p is the number of PMUs selected.

The mapping of PMUs in set Z is encoded by the matrix

C. As such, we define W, (2, o) := W,(T',z) € R™"

in (15) as the observability Gramian of the nonlinear system.

W, (T, z0) = JT(T, 20)J (T, x0), (15)

where J(-) € RNem»X7 g the Jacobian over observation
horizon N, of function g(-) = 0 around x and is given by

J(T Lo {0
(T, x0) = [I, ® C] co {3wo}i_0 .
Expressing the Jacobian requires the knowledge of &, V i =
1,...,N,—1, which can be obtained by simulating the system
dynamics over N,. Applying the chain rule, the j-th partial
derivative can be evaluated as 522 = aifil . %'
However given the implicit nature of the discretized system
presented in (3), representing the partial derivative for sys-

tem is not straightforward and depends on the discretization

(P3) minimize
Z

(16)

method followed [20]. We note here that if we use of the NDAE
system instead of the approximate u-NDAE representation—
that retains an ODE structure—the process of expressing

Oxzq, . .. . .
5z, In explicit form for the algebraic variable becomes
j—1

non’trivial and hence the main reason for such approximate
transformation. The procedure for explicitly expressing the
partial derivative and therefore the Jacobian has been omitted
for brevity.

We note that submodular set minimization problem is NP-
hard to solve. A greedy heuristics approach is a tractable
approach that achieves a sub-optimal solution for maximizing
monotone increasing” submodular functions. Although being
considered a computationally tractable approach, it yields a
sub-optimal solution that is at least (1 — 1/e) = 63% of the
optimal solution [24].

Based on the above considerations, we revisit P3 and
instead solve the submodular set optimization problem using
an a priori set optimization program that is considered a
convex integer program (IP). The framework revolves around
computing the observability matrix’s singular contribution
resulting from each sensor placement and then performing
the optimal placement based on the a priori contribution
of from each sensor. The plausibility of this approach is a
result of the fact that the observability Gramian W, (-) is a
modular T set function. Summers et al. [8] provided proof
pertaining to the structural property—modular set function—
of the observability matrix for linear models. In the context
of nonlinear systems, we prove that the observability matrix
under PMU placement is modular with respect to decision
variable I', however for brevity the proof is omitted.

Modular functions form positive linear combinations of
the single elements that form the modular set. Intuitively,
this means that a modular function is analogous to linear
functions and that each element of the set has an independent
contribution to the function value. Accordingly, the next
proposition formulates the observability matrix W, () as a
linear combination of its individual elements—the proof'is also
omitted for brevity. Readers can check the extended version
of this manuscript; Google Scholar is your best friend.

Proposition 1: The observability matrix W, (-) can be writ-
ten as a linear combination of the individual contributions on
observability from each PMU placement as follows

NIJ
VVO1 (Z, :E()) = Z Wo,i(Zi7 iL‘()).

Given this result, the a prioZ;i 1set optimization program for

optimal PMU placement denoted by P4 can be posed as

(P4) minizmize — trace (W, (Z,m0)) (17a)

subjectto |Z|=p, Z C N, (17b)

where Z; corresponds to the selected i-th sensor that is encoded
in matrix C, such that I" has a 1 on the diagonal corresponding

*A set function F : 2¥ — R is monotone increasing if V A, B C V the
following holds true; A C B — F(A) < F(B)

TA set function is modular if it is both submodular and supermodular,
such that V A, B C V the following holds true; F(ANB)+ F(AUB) =
F(A)+ F(B).
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Fig. 1. RMSE for dynamic and algebraic states between the NDAE and

p-NDAE discrete-time models of the power system.

to that sensor location, and zeros elsewhere.

The idea of a priori optimization was introduced by [25] as
a strategy when solving optimization problems in randomly
distributed networks. The concept entails having a priori
knowledge of instance contributions and then solving the
combinatorial problem without exponentially complex com-
putations at each optimization instance. This allows one to
perform combinatorial optimization with minimal computing
power. Having provided a priori information on an particular
instance which is possible given the modular nature of the
observability matrix, then P4 which is categorized as a convex
integer program (IP) is therefore computational less exhaustive
and scalable.

IV. CASE STUDY

In this section, we first validate the discrete-time model
of the u-NDAE system developed in Section II-A and then
demonstrate the proposed PMU placement problem P4. The
PMU placement program is interfaced on MATLAB R2021b
through YALMIP [26] and implement using a standard brand
and bound method (BNB) with Gurobi [27] as the solver.

We investigate the proposed approach on an IEEE 39-
Bus system with 10 generators. The generator parameters
are extracted from PST case file datane.m. Regulation and
chest time constants for the generators are chosen as Rp; =
0.2 Hz/sec and Tcp; = 0.2 sec, since they are not included
in the PST case file. The steady state initial conditions for
the power system are generated from the power flow solution
obtained from MATPOWER. The synchronous speed is set to
wo = 1207 rad/sec and a power base to 100 MVA.

A. Simulating the Discrete u-NDAE Dynamics

We set the discretization step size h = 0.1 and simulations
time t = 15 sec for the discrete time-modeling of the power
system. Starting from the initial steady state conditions, we
introduce a load disturbance at ¢ > 0 on initial load (P¢,QY)
and on initial renewables loads (P%, Q%) = (0.2P?,0.2QY)
that are modeled as a negative load into the network. The
load disturbance magnitude (a,) is computed as (P9, Q¥) =
(1 + 2&)(PY,QY) and renewables disturbance magnitude

100
(ag) is computed as (P2, Q0) = (1 + i) (PR, QR)- Under
the scope of this paper, we demonstrate simulating the system
dynamics with load disturbance magnitude o = (2, 3,4)% of
the unperturbed initial loads and with renewable disturbance

magnitude ap = aj of the unperturbed initial renewable

PMUs Selected
. p=38
. =16

p=39

7
2873530 31

Fig. 2. PMU placements for varying number of PMUs p.

loads. We implement the NR method to simulate the dis-
cretized dynamics under the TI method. We demonstrate the
validity of the approximate ;-NDAE for the three load cases
over a range of 1 = (1072,107?). It is worth mentioning that
for any 1 < 1072 the system does not converge to a solution
i.e, the power balance equations are not satisfied.

To further assess the accuracy of this transformation we
obtain the root mean square error (RSME) of the TI dis-
cretization over time period ¢ that is calculated as RSME :=

\/2221 ey where ey, := |& — x| is the difference between
the states of the two system representation with & corre-
sponding to the NDAE system and xy, to the 4-NDAE system.
The RMSE for the different load disturbances and p values
is depicted in Fig. 1. It is obvious that the u-NDAE system
approximates the NDAE with a relatively small error and that
this error tends to decrease as p approaches zero, which is
intuitive since with p reaching zero we go back to having a
NDAE. As such, the discrete-time modeling methodology for
the power system has been validated. We choose u to be equal
10~% moving forward; evidently from Fig. 1 one can discern
that for each of the different load perturbations the RSME is
small when p = 1076,

B. Optimal PMU Placement: IEEE 39-Bus system

We now solve the optimal P® posed as P4. The objective
is to obtain an optimal configuration of PMU placement
represented by set Z* that is constraint by the maximum
number of PMUs p to be employed within the network. We
initialize the power system under assumed initial conditions
X and then simulate the discretized measurement model in (6)
and under v = 2% measurement noise over observation
horizon N,,. Then, we perform initial state estimation assuming
full PMU placement, that is | Z| = n,,, using the GN method to
obtain initial state estimate &o. The GN algorithm constants
are: (i) time step constant h;, = 0.1 and (¢%) tolerance on
residual as 10~%. Based on the initial state estimate, P? is
solved to obtain optimal set Z*. Finally the estimation error
resulting from the optimal PMU placement is computed as
€= % We note here that P4 is classified as a convex
integer program (IP) since the presumed initial state estimate
&y is fixed and binary vector I is the optimization variable.

P4 is successfully solved while being constraint by number
of PMUs to be employed within the network. Two cases are
taken into consideration: (1) with p = 8 PMU =~ 0.2 X n,
and (2) with p = 16 PMUs =~ 0.4 x n,,. The optimal PMU
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Fig. 3. Dynamic and algebraic state trajectories under load disturbance.

placement over the generator and buses node locations for the
two case are depicted in Fig. 2.

Two key aspects can be pointed out from the observability-
based PMU placement program solved. The first is through
the coupling of dynamics and algebraic states, load buses are
selected and thus included in the optimal set Z*. The second is
that it is evident that modularity is retained with the increase of
PMUs selected. Whereby, the optimal set for p = 16 PMUs
included the same buses chosen from the optimal set of the
p = 8 PMUs optimization case.

Moreover, the initial state estimation error on the PMU
placements decreases as the number of PMUs placed on the
buses with the power system increases. Bus angles 6; and
generator rotor speeds w; for case with p = 8 PMUs are
depicted in Fig. 3. The estimation error in this case is € =
1.294 x 10~ which then decreased to e = 1.088 x 10~* under
p = 16 PMUs. This concurs with the observability based
estimation framework that the state estimation is based on. As
such, the results altogether validate our approach and prospects
future investigations with regards to this observability-based
framework approach for NDAE power systems. Future work
will include investigating P> under different discretization
techniques, under other observability metrics on the place-
ment, and under the effects of structural system change re-
sulting from fault lines and on that note we end this section.

V. CONCLUSION

This paper revisits the P® for power system. The power
system is based on a NDAE representation which allows
coupling of the differential and algebraic states within the
network. The NDAE system is discretized using TI method and
is transformed into a u-NDAE which retains the mathematical
structure of an ODE. We adopt a MHE approach to perform
optimal PMU placement with such network by exploiting the
modularity of the observability matrix. As such, we posed P?
as an a priori set optimization program which extenuates the
computational burden from performing complex computation
at each optimization instance of the combinatorial problem.
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