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Abstract—Due to the rapid developments in synchronized mea-
surement technologies, there exist enormous opportunities to at-
tenuate disturbances in future power grids with high penetration
of renewables and complex load demands. To that end, this article
investigates the effectiveness of new robust feedback controllers for
interconnected power systems with advanced power electronics-
based models of photovoltaic (PV) power plants, composite load
dynamics, and detailed higher-order synchronous generator mod-
els. Specifically, we design new, advanced control-theoretic wide-
area controllers to improve the transient stability of nonlinear
differential-algebraic models. Thorough simulation studies are car-
ried out to assess the performance of the proposed controllers.
Several fundamental questions on the proposed controllers’ com-
putational complexity and disturbance attenuation performance
are raised and addressed. Simulation results demonstrate that with
the proposed controllers as a secondary control layer, the overall
transient stability and system robustness against load and re-
newables disturbances/uncertainties can be significantly improved
compared to the state-of-the-art.

Index Terms—Robust control, grid-forming inverters, nonlinear
differential-algebraic models, renewables-heavy power systems.

I. INTRODUCTION AND MOTIVATION

TO limit frequency nadir and the rate of change of fre-
quency (RoCoF), and to bring a power system back to

its steady-state/equilibrium conditions after a large disturbance,
traditionally there have been three main control layers in the elec-
trical grid: primary, secondary, and tertiary layers. The primary
control layer which commonly consists of a power system stabi-
lizer (PSS), automatic voltage regulator (AVR), generator droop
control, and generator inertial response, is usually responsible
for regulating the frequency dynamics by providing damping
to the system oscillation. The secondary control layer which
consists of an automatic generation control (AGC), removes the
steady-state error and tries to bring the system back to its nominal
value, while the tertiary control layer is used for economic
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dispatch [1]. For decades, this control architecture has worked
very well because of the flexibility of power generation from
synchronous generators and the mostly predictive overall load
demand curve.

However, with the massive penetration of complex load de-
mands and uncertain solar/wind-based inverter-based resources
(IBRs), power systems are facing significant challenges, and
the overall transient stability and dynamic response of the sys-
tem are deteriorating. This requires rethinking how the power
system needs to be secured, protected, and operated [2], [3].
Unlike synchronous generators, IBRs are intermittent, they do
not provide rotational inertia, and they are connected to the
grid via power electronics-based technologies. Thus, this leads
to increased frequency nadir, faster dynamical behavior, and
system oscillations.

To handle these uncertainties and transient stability-related is-
sues in the future power grid, there exist enormous opportunities
in real-time wide-area monitoring and control of power systems.
This has been highly encouraged by the recent developments in
synchronized measurement technologies in power systems and
advanced robust state/output feedback controller designs that
can handle the complex load demands and uncertain dynamics
of renewables. These state/output feedback controllers can play
a crucial role in the future interconnected power grids as they can
send real-time control signals to the power plants based on the
actual measurement received from the system [4], [5], [6]. Many
studies have been carried out in the recent decade accordingly
proposing centralized, localized, and distributed/decentralized
feedback controllers.

As an example of localized and distributed feedback con-
trollers, researchers in [7] have designed a distributed 3rd-order
sliding mode load frequency controller for a multi-machine
power system model. Similarly, in [8], a robust feedback con-
troller for load frequency control based on H∞ stability has
been proposed. In [9], a decentralized frequency controller
based on Lyapunov stability theory has been proposed for syn-
chronous machines. In [10], a decentralized controller based
on the dissipative-Hamiltonian realization of the power system
has been proposed for a multi-machine nonlinear differential
algebraic equation (NDAE) model power system. In [11], a
linear matrix inequality (LMI) based controller derived via
Lyapunov stability has been proposed for a highly simplified
multi-machine model of a power system. This LMI-based appli-
cation has later been extended in [12] where 2nd-order generator
model has been considered along with excitation and governor
dynamics.
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Centralized feedback control architectures have also been
proposed extensively in the past decades, such as [13] wherein an
optimal wide-area controller (WAC) has been proposed to damp
inter-area oscillations in a multi-machine power system model.
Similarly, in [14] a WAC for a linearized ordinary differential
equation (ODE) model of a power system has been proposed
to improve inter-area oscillations. In [15], a model predictive
control (MPC) based WAC has been proposed for a linearized
and simplified power system model to improve inter-area os-
cillations. In [16], a classical linear-quadratic Gaussian (LQG)
based centralized feedback controller has been proposed for
a multi-machine ODE-based power system model. In [17], a
classical linear-quadratic regulator (LQR) type WAC has been
designed for a linearized ODE-based power system model to
damp electromechanical oscillations. Recently, some learning-
based centralized feedback controllers have also been presented,
such as, in [18], a (reinforcement learning)-based WAC has been
designed for a simplified multi-machine power system model.
In [19], a temporal difference learning-based WAC has been
proposed to improve the dynamic stability of the power system.
Similarly, in [20], a hybrid WAC based on Lyapunov stability
and reinforcement learning has been designed for multi-machine
power systems with wind energy resources.

It is noteworthy that the majority of the studies in the afore-
mentioned feedback control of power systems mostly linearize
the dynamics and consider a simplified representation of the
electrical grid. This can cause serious stability issues as sim-
plified controller designs may only work around the vicin-
ity of the equilibrium point [21]. Also, algebraic constraints
(power/current balance equations), dynamics of loads, and
power electronics-based models of renewable energy resources
are not taken into account while designing a feedback controller.
Furthermore, in the current literature, most of the feedback
controllers are designed only for synchronous generators and
very few feedback controllers have been proposed that can also
control RERs in a real-time manner.

Recently, some efforts have been carried out to address these
limitations. In [21], the authors propose a nonlinear feedback
controller with algebraic constraints modeled in the controller
architecture. However, a simplified 4th-order generator model
is considered, uncertainties from load and renewables are not
modeled in the controller design, load dynamics are ignored, and
renewables are just considered as negative loads. Furthermore,
in some recent studies feedback controllers for RERs have also
been proposed such as [22] in which MPC-based feedback
controller has been designed to adjust the power set points of PV
plants operating in grid-forming (GFM) mode so that they can
support the grid after a large disturbance. However, the proposed
feedback controller only considers the dynamics of the PV plant
and sends control signals based on them, and the rest of the power
system dynamics (dynamics of the network and synchronous
machines) are completely neglected. Also, solving an MPC
online in a real-time manner can highly be inefficient and require
too much computational power. A study that is close to the work
presented here is [23] in which a two-layer (decentralized for
wind/solar and centralized for synchronous machines) feedback
control architecture has been proposed for multi-machine power

system model with advanced (power electronics)-based models
of wind farms, solar farms, and higher order synchronous gener-
ator model. However, power system algebraic constraints, load
dynamics, and uncertainties from load and renewables are not
considered in the controller architecture.

We also want to mention here that, in this study GFM solar
plants are used and secondary controller has been designed for
them. The GFM strategy here is based on the conventional
droop-controlled strategy [24], [25] and the solar plants are
acting as a voltage sources and are regulating their terminal
voltages similar to synchronous generators. The complete de-
tailed explanation of the control strategy and dynamics of the
solar power plant used in this study can be found in [26], [27].
On the other hand, grid-following (GFL) solar power plants are
designed to simply follow grid voltage and frequency generated
by synchronous generators and thus they also commonly require
modeling of PLL dynamics in their design [28]. The overall
difference between the control strategy of the GFM PV plant
model used in this study and the GFL model can be visualized
from their block diagrams given in Figs. 1 and 2 of [28]. Notice
that GFM designs are more preferred because of their black start
capabilities and ability to independently regulate their voltage
and frequency [25].

Article Contributions: In the light of the above discussion and
aforementioned limitations, in this work, we propose a robust
wide-area controller for a highly interconnected power system
model with a power electronics-based model of PV plants, com-
posite load dynamics, and comprehensive 9th-order synchronous
generator dynamics. The proposed wide-area controller sends
additional control signals not only to synchronous generators
but also to PV power plants to adjust their power outputs after
large disturbances so that the power system remains stable and
the overall transient stability can be improved. The key article
contributions are as follows:
� This is the first work to propose a feedback controller

for an advanced interconnected power system model. The
system considered here comprises (a) advanced (power
electronics)-based models of PV plants, (b) comprehen-
sive 9th-order synchronous machine dynamics, (c) motor
loads, (d) constant power loads, and (e) constant impedance
loads. In addition to synchronous generators, the proposed
feedback controller here also sends control signals to PV
power plants and actively adjusts their power output during
a disturbance so that the overall transient stability of the
system can be improved.

� The proposed controller design explicitly models the alge-
braic constraints of the power systems and also considers
nonlinearity in the controller architecture by modeling it as
an L2-norm bounded uncertainty, which is more realistic
as compared to completely neglecting it through lineariza-
tion.

� To handle uncertainty from load and renewables, we uti-
lize robust H∞ notion in the controller design. The main
advantage of H∞ based controller design is that it does not
require any statistical knowledge of the disturbance and can
minimize the impact of any sort of bounded disturbance on
the system dynamics [6].
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� The performance of the proposed feedback controller has
been analyzed on IEEE 9-bus and 39-bus test systems
by running extensive simulation studies. Specifically, a)
we assess the performance of the proposed robust WAC
under different severity of disturbances from load and
renewables. The advantages of the proposed feedback
controller are also presented by comparing the dynamic
response of the power network with conventional con-
trol (primary controllers of power systems) and with ro-
bust WAC acting on top of them, b) we also reduced
the initial complete NDAE power system model to an
NODE system and the simplified versions of the pro-
posed WAC have also been designed based on the NODE
system model. Then, the overall performance and com-
putational efficiency among them have been thoroughly
discussed.

All derivations of models and mathematical proofs are omitted
from this article and included in the online preprint [29].

Notations: The sets are represented in calligraphic such as
G,U , etc. All the vectors and matrices are bold-faced. The
notation I denotes an identity matrix while O represents a zero
matrix of appropriate dimensions. The notation R

x denotes a
column vector withx elements. The notationRx×y denotes a real
matrix of size x-by-y. Similarly, Sx×y

++ denotes a positive definite
matrix of size x-by-y. The symbol ∗ represents symmetric
entries in a symmetric matrix. We denote the Frobenius norm of
a matrix M by ‖M‖F .

II. PV AND LOAD-INTEGRATED SYSTEM MODEL

We consider a power system model with G synchronous
generators, R solar power plants, and Lz , Lp, Lk number of
constant impedance, constant power, and motor loads, respec-
tively. The overall power system is represented as a graph
(N , E), where N = {1, . . . , N} denotes the set of buses and
E represents the set of transmission lines. Notice that N =
G ∪ R ∪ U ∪ L, where G = {1, . . . , G} denotes the set of buses
connected to synchronous generators, R = {1, . . . , R} repre-
sents set of buses with solar power plants, U represents set of
non-unit buses, and L collects set of buses connected to Lz , Lp,
and Lk.

We model the power system as a set of nonlinear differential
equations (detailing the dynamic models of synchronous gener-
ators, grid-forming PV plants, and dynamic loads) and algebraic
equations (describing power/current balance equations) as fol-
lows:

Differential equations: ẋ(t) = f(xd,xa,u,w) (1a)

Algebraic equations: 0 = h(xd,xa,w) (1b)

where xd ∈ R
nd represents dynamic variables and it lumps

the states of generators, PV plants, and loads, xa ∈ R
na rep-

resents algebraic variables of the power network, u ∈ R
nu

models the control inputs and steers the system to its equi-
librium after a disturbance, and w ∈ R

nw denotes exogenous
disturbances such as uncertainties in load demand and solar
irradiance.

In (1), vector xa is modeled as:

xa := xa(t) =
[
I�
Re I�

Im V �
Re V �

Im

]�
∈ R

na (2)

where IRe={IRei}i∈N , IIm={IImi
}i∈N ,V Re={VRei}i∈N ,

V Im = {VImi
}i∈N represent the real and imaginary parts of

current and voltages, respectively. The vector u models the
control inputs of synchronous generators and solar PV plants
and is represented as

u := u(t) =
[
u�
G u�

R

]�
∈ R

nu (3)

where uG =
[
V ∗�

g P ∗�
v

]� ∈ R
2G with V ∗

g and P ∗
v denoting

reference set-points for voltages (pu) and turbine valve posi-
tions (pu) of the synchronous generator, respectively. Similarly,

uR =
[
V ∗�

s P ∗�
s

]� ∈ R
2R, where P ∗

s and V ∗
s are the power

(pu) and voltage (pu) reference set points for solar PV plants.

Also, we define w in (1) as w =
[
I�
r P�

d

]� ∈ R
nw where Ir

is the solar irradiance (W/m2) on the PV plants and P d is the
system real power load demand (pu).

Moreover, in (1), we represent xd as

xd := xd(t) =
[
x�
G x�

R x�
m

]�
∈ R

nd (4)

wherexG are the dynamic states of the conventional power plant
(states of synchronous generator, excitation system, governor,
and turbine dynamics), xR represents the dynamic states of the
solar power plant, and xm denotes the states of motor loads.
We model the conventional power plant via a comprehensive
9th-order model, and thus vector xG can be expressed as fol-
lows [26], [30]:

xG =
[
δ�g ω�

g E�
q E�

d T�
M P�

v E�
fd r�f v�

a

]�
∈ R

9G

where δg denotes generator rotor angle (pu),ωg is the generator
speed (pu), Eq, Ed, represent transient voltages along dq-axis
(pu), TM denotes turbines prime mover torque (pu), P v is the
turbine valve position (pu), Efd is the generator field voltage
(pu), rf denotes stabilizer output (pu), and va represents am-
plifier voltage (pu). Readers are referred to [29, Appendix A]
for the detailed description of synchronous generator dynamics.

We leverage the 12th-order grid-forming PV plant model i ∈
R in [26], [27]. The overall model describes, DC side dynamics
(DC link and PV array dynamics), AC side dynamics (DC/AC
converter and LCL filter dynamics), and voltage/current regu-
lators models, thus the state vector xR for solar plants can be
written as:

xR=
[
E�

dc i�dqf v�
dqc δ�c P�

e Q�
e z�

dqo z�
dqf

]�
∈R

12R

(5)

where Edc is the energy stored in the DC side capacitor, idqf =
[i�df

i�qf ]
� represent the currents (pu) at the terminals of the

inverter along dq-axis, vdqc = [v�
dc

v�
qc
]� are the voltages (pu)

across the AC capacitor along dq-axis, δc represents the inverter
angle (pu) of solar power plants, P e, Qe are the total real and
reactive power injected by solar plants to the grid, and zdqo =
[z�

d0
z�
q0
]�, zdqf = [z�

df
z�
qf
]� are the dynamic states of the

voltage and current regulator of PV plants. To obtain further
information and detailed description of the solar plant model
used in this study, readers are referred to [29, Appendix B].
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The dynamical model (4) for the motor loads is defined
as [31]:

ω̇mi
=

1

2Hmi

(Tei − Tmi
) (6)

whereωmi
is the motor speed,Hmi

is the motor inertia constant,
and Tmi

, Tei , represent mechanical and electromagnetic torques
of the motor, respectively [31]. Furthermore, constant power
and constant impedance loads satisfy the following relation-
ships [32]:

conj(Ipi
)Vpi

+ (Ppi
+Qpi

) = 0 (7a)

Vzi + IziZi = 0 (7b)

where conj represents complex conjugate operator, Ipi
, Vpi

are
the current and voltage phasor of bus connected to constant
power loads, and Ppi

, Qpi
are the real and reactive power of

constant power loads, respectively. Similarly, in (7b), Vzi , Izi
are the current and voltage phasor of the bus connected to a
constant impedance load Zi. This completes the modeling of
system dynamics (1a).

Now, the model for the algebraic constraints (1b) is expressed
as [30]: ⎡

⎢⎣IG

IR

IL

⎤
⎥⎦

︸ ︷︷ ︸
I(t)

−

⎡
⎢⎣Y GG Y GR Y GL

Y RG Y RR Y RL

Y LG Y LR Y LL

⎤
⎥⎦

︸ ︷︷ ︸
Y

⎡
⎢⎣V G

V R

V L

⎤
⎥⎦

︸ ︷︷ ︸
V (t)

= 0 (8)

where V denotes bus voltages, I represents net injected cur-
rent, and Y is the network admittance matrix. In (8), V R =
{VRei}i∈R + j{VImi

}i∈R denotes voltage phasors at the ter-
minal of buses connected with PV power plant and IR =
{IRei}i∈R + j{IImi

}i∈R represents current phasors injected by
the PV power plant. Similarly IG, IL, and V G, V L denote cur-
rent and voltage phasors of all loads and synchronous generators,
respectively.

That being said, by considering (2)–(8) and including the
associated dynamic models given in [29, Appendices A and B],
we can express the overall interconnected model of the power
system in a compact state-space format as:

NDAE : Eẋ = Ax+ f (x,u,w) +Bu+Bww (9)

where E is a binary singular matrix and it encodes algebraic
equations with rows of zeros andx(t) =

[
x�
d x�

a

]� ∈ R
n rep-

resents the overall state vector. The constant state-space matrices
A,B, and Bw in (9) are computed via capturing the linear
components of NDAE model (1) while the function f(x,u,w)
represents the encompassed nonlinearities.

Notice that (9) models the complete NDAE representation of
the power system without any assumptions. Ideally, the feed-
back controller should be designed for this complete NDAE
representation of the power system without any simplifications
so that the controller has knowledge about all the uncertainties
and nonlinearities to provide robust performance. However, in
literature commonly the algebraic variables are usually elimi-
nated by converting the system to a nonlinear ODE (NODE)
model. This is mainly because of the better understanding and
rich control theoretic literature about the NODE system as
compared to NDAE models. Furthermore, it has been shown that

NODE-based controller designs are also effective in controlling
the initial complete NDAE system [33], [34]. However, further
study is required to compare the performance of both types of
controller architectures. In this work, we design a controller
based on both the complete NDAE representation of power
system (9) and also its NODE counterpart given below.

Notice that in both types of controller design, the final im-
plementation is done on the complete power system model
without any simplifications or assumptions. In the NODE-based
controller design, the controller takes information only from
NODE system matrices while in the NDAE-based controller, the
controller utilizes information from NDAE state-space system
matrices.

With that in mind, considering

x =
[
x�
d x�

a

]�
, A =

[
Add Ada

Aad Aaa

]

B =
[
B�

d B�
a

]�
, Bw =

[
B�

wd B�
wa

]�
and assuming Aaa to be invertible (which is common in the
area of power systems—see [23], [33]), then the algebraic vari-
ables xa can be eliminated from (9) and the equivalent NODE
representation of model (9) can be written as

NODE: ẋd = Ãxd+fd (xd,u,w)+B̃u+B̄ww (10)

where fd is the corresponding nonlinear mapping and the rest
of the constant matrices Ã, B̃, and B̄w are given as follows:

Ã = Add −AdaA
−1
aaAad, B̃ = Bd −AdaA

−1
aaBa

B̄w = Bwd −AdaA
−1
aaBwa.

In the following section, we discuss H∞ stability criterion and
present the architecture of the proposed wide-area controller
based on both NDAE (9) and NODE (10) systems.

III. ROBUST FEEDBACK CONTROLLER DESIGNS

In this section, we present a host of novel wide-area controllers
for both NDAE (9) and NODE (10) models with varying prop-
erties. In particular, our proposed WACs are of three different
types: 1) H∞ NDAE-based, 2) H∞ NODE-based, and 3) H2

NODE-based feedback controller designs.

A. WAC Based on NDAE System Model

Here we design an LMI-based wide-area robust state feedback
controller for an interconnected model of a power system having
9th-order generator dynamics, grid-forming PV plant model, and
composite load dynamics as detailed in Section II. The overall
objective of the controller design is to improve the transient
stability of the system by providing damping to the frequency os-
cillation after a large fault/disturbance. The proposed controller
act as a secondary control layer and provides additional control
signals to the primary control layer of the interconnected power
network which comprises of PSSs, AVRs (for the synchronous
generators), and PI controllers (voltage and current regulators)
of grid-forming PV power plants. To that end, the power system
model (9) with the proposed controller (the closed-loop system)
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can be written as follows:

Eẋ = Ax+ f (x,ucl,w) +Bucl +Bww (11)

in which the closed-loop state feedback control input ucl for
kT ≤ t < (k + 1)T is given as:

ucl := ucl(t) = uk
ref (t) +K

(
x(t)− xk(t)

)
whereuk

ref is the reference set point of the control inputuwhich
is commonly determined for every kth-dispatch time-period by
running power flow (PF) or optimal power flow (OPF), xk is
the steady state value of the state vector before the occurrence
of disturbances/fault, and K ∈ R

nu×n is the controller gain
matrix. The main objective of this article is to design a controller
gain matrixK such that after a fault/disturbance occurrence, the
controller minimizes the impact of fault/disturbance on the state
dynamics via the state feedback information and consequently
improves the transient stability of the system.

To proceed with the computation of K, let us assume
there is a large perturbation caused by fault/disturbance in
load/renewables and the new steady-state value of vector w
is we. This fault/disturbance will eventually push the system
states to a new equilibrium, let us denote that by xe. Then, the
system dynamics (11) with the proposed controller at this new
equilibrium point can be rewritten as:

0 = Axe + f (xe,ucl,w
e) +B(uk

ref +K(xe − xk))

+Bww
e.

With that in mind, to analyze the system behavior after the
fault, let us define Δx = x− xe and Δw = w −we as the
deviations around the new equilibrium (xe,we), respectively.
Then the perturbed closed-loop system dynamics can be ex-
pressed as follows:

EΔẋ = (A+BK)Δx+Δf(Δx,ucl,Δw)+BwΔw (12)

where Δf(Δx,ucl,Δw) = f(x,ucl,w)− f(xe,ucl,w
e).

Notice that Δw represents the deviation of load demand and
solar irradiance from their respective steady-state values we.
The objective of the controller gain K is to drive all the solution
trajectories of the NDAE model (12) to zero and attenuate
the impact of uncertainty Δw on the power system dynamics
which is equivalent to saying that the controller ensures that the
power system model (11) asymptotically converges to the new
equilibrium point (xe, we) after a fault/disturbance occurrence.
We now discuss H∞ stability criterion and present the theory of
the proposed controller which is posed as a convex semi-definite
program (SDP).
H∞ control is a well-established and powerful mathematical

tool in modern control theory literature. It provides stability and
guaranteed performance (for a particular H∞ criterion) of the
dynamical system under large uncertainties/disturbances. The
basic idea in H∞ control is that first a performance criterion
for the control law is considered. Then, via a state feedback
architecture, a controller gain is determined subject to the atten-
uation of the impact of disturbances on the designed performance
criterion [35].

To that end, let us assume z1 := z1(t) = Cx(t) +
Ducl(t) +Dww(t) ∈ R

n be the performance index of the con-
trol lawucl, whereC ∈ R

n×n,D ∈ R
n×nu , andDw ∈ R

n×nw

are constant penalizing matrices. Similar to the matrices Q and
R in the vintage LQR control, matrices C, D, and Dw can
be determined based on the grid operator preferences, meaning
how much and which state or control input should be penalized
while designing the controller gain K. Now similar to as done
previously the perturbed performance index around equilib-
riumxe can be written asΔz1 = z1 − ze

1 = (C +DK)Δx+
DwΔw.

With that in mind, for the sake of notation simplicity,
from now on, with a little abuse of notation, let Δx = x,
Δf(Δx,ucl,Δw) = f(x,ucl,w), Δz1 = z1, and Δw = w.
Then, the perturbed closed-loop dynamics (12) with perfor-
mance index z1 can be rewritten as:

Eẋ = (A+BK)x+ f(x,ucl,w) +Bww (13a)

z1 = (C +DK)x+Dww. (13b)

To that end, the H∞ stability criterion can be expressed as
follows:

Definition 1: The performance z1 of the control action ucl is
robust in the sense of H∞ with performance level μ if, (a) the
perturbed system dynamics (13) are asymptotically stable when
w = 0 for all t > 0 and (b) ‖z1‖2L2

< μ2‖w‖2L2
for zero initial

perturbation (e.g., x(0) = 0) and for any L2-norm bounded
uncertainty w.

Definition 1 can be interpreted as follows: when disturbance
w = 0 for all t > 0 then the power system rests in a steady-
state status and is thus stable. However, when there is some
unknown L2-norm bounded uncertainty w, then, H∞ stability
guarantees that the magnitude of the performance output z1 of
the closed-loop dynamics always evolves in a way such that it
is less than μ times the magnitude of uncertainty w, where μ
here is an optimization variable and is commonly called as the
performance level of z1. In H∞-based controllers, one tries to
minimize μ to get robust performance from the controller under
various sources of disturbances.

We now present a systematic approach, based on Lyapunov
stability theory, to synthesize a controller gainK that guarantees
H∞ stability for the closed-loop dynamics (13) under distur-
bance w. Before that, we consider the following assumption
throughout the article:

Assumption 1: The pair (E,A) is regular and the triplet
(E,A,B) is finite dynamics stabilizable and impulse control-
lable.

The above assumption is standard in control theoretic liter-
ature [36], [37], and various power system models have been
showcased to be indeed regular and stabilizable—see [21], [23].
To that end, we now present the following main result.

Theorem 1: Suppose that Assumption 1 holds. Then, the
perturbed closed-loop dynamics (13) with performance indexz1

is H∞ stable if there exists matrices X ∈ S
n×n
++ , W ∈ R

na×n,
H ∈ R

nu×n and a scalar λ ∈ R++ such that the following
convex semi-definite optimization program is feasible

(OP1) minimize
λ,H,X,W

λ

subject to LMI (14), X 	 O, λ > 0
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where LMI (14) is as follows:⎡
⎢⎣ Ψ ∗ ∗

B̃
�
w −λI ∗

C�(XE� +E⊥W ) +DH D̂w −I

⎤
⎥⎦ ≺ O (14)

and Ψ is given as:

Ψ = (XE� +E⊥W )�A� +A(XE� +E⊥W )

+H�B� +BH

where E⊥ ∈ R
n×na is the orthogonal complement of E. Upon

solving OP1 the controller gain can be computed as K =
H(XE� +E⊥W )−1.

Readers are referred to [29, Appendix C] for the complete
proof of Theorem 1. We name the controller that is based on
solvingOP1 asH∞-DAE controller. In Theorem 1, we pose the
controller design as a convex semi-definite optimization problem
and thus, can easily be solved via commercial optimization
solvers such as MOSEK [38]. The calculated controller gain K
guarantees that the deviation in the magnitude of performance
indexz1 is robust in the sense ofH∞ as discussed in Definition 1,
while also satisfying the budget constraint on the control inputs
(which is enforced via matrices C and D) or in other words, it
ensures that ‖z1‖2L2

always lies within a tube having an origin at
zero and a radius of μ2‖w̃‖2L2

. Theorem 1 also makes sure that
after a large disturbance, the closed-loop interconnected NDAE
model of power system (11) is asymptotically stable as t → ∞
and the system dynamics converges to a new steady-state value
xe.

Additionally and in comparison to the method in [23], which
proposes a feedback controller for highly interconnected power
systems model, Theorem 1 includes the explicit modeling of al-
gebraic equations and uncertainty from vector w̃ in the controller
design, composite load dynamics, and an SDP optimization
routine (given above in OP1) that seeks to obtain an optimal
solution to the design of controller gain K. In comparison, the
method in [23] only seeks a feasible solution.

In the following section, we propose a variety of other state
feedback controllers based on the NODE system model repre-
sentation (10).

B. WAC Based on NODE System Model

Since a rich control theoretic literature exists for ODE sys-
tems, a variety of robust state feedback controllers can be
designed based on the state-space model (10). To that end, we
first design the perturbed dynamics for model (10). Similar to
as done in the previous section, assuming that the perturbation
in nonlinear function in the closed-loop dynamics (13) is L2-
norm bounded and can be written as Δf(x,ucl,w) = Bfwf ,
where Bf = Bw and by defining B̃w =

[
B̄w Bf

]
, then the

perturbed closed-loop dynamics of the NODE model (10) can
be expressed as follows:

ẋd = (Ã+ B̃Kd)xd + B̃ww̃. (15)

Now, in a similar fashion by considering C =
[
Cd Ca

]
, we

can eliminate xa from the performance index z1 and thus, the
equivalent ODE representation of z1, namely z2 ∈ R

nd , can

also be written as:

z2 = (C̃ + D̃Kd)xd + D̄ww

where

C̃ = Cd −CaA
−1
aaAad, D̃ = Bd −CaA

−1
aaBa

D̄w = Dw −CaA
−1
aaBwa.

To that end, the overall perturbed NODE system dynamics along
with its performance index can be expressed as follows:

ẋd =
(
Ã+ B̃Kd

)
xd + B̃ww̃ (16a)

z2 =
(
C̃ + D̃Kd

)
xd + D̃ww̃ (16b)

where D̃w =
[
D̄w Df

]
with Df = Bf .

Now, based on the perturbed dynamics (16) in this work, we
design the following types of state feedback controllers:

1) H-Infinity-Based ODE State-Feedback Controller Design:
Here, we design an H∞-based ODE controller to determine the
feedback controller gain matrix K. These types of feedback
controllers are highly popular in the modern control theory—
see [39], [40]. This is mainly because of their robustness toward
noise/disturbance and due to the availability of computationally
efficient algorithms in the literature to design them. Notice
that in this design, the controller only takes the information
of the state-space matrices given in model (10). To that end,
H∞ NODE-based controller can be designed by solving the fol-
lowing well-known continuous-time algebraic Riccati equation
(CARE) (with a bit of abuse of notation, the dependency on μ
has been removed due to space limitation):

Ā
�
P d + P dĀ+ P dGP d

−(P dB̄ + S)R−1(B̄
�
P d + S�) +Q = O

where the matrices Ā, B̄,Q, . . . are given in [29, Appendix D].
We compute the H∞ state-feedback controller K as

K(μ) =
[
−R(μ)−1(B̄(μ)�P d(μ) + S(μ)�) O

]
. (17)

Utilizing the MATLAB built-in function icare() and setting
E = I , we can efficiently solve the above CARE. Then, utilizing
the bisection method for the following optimization problem:

(OP2) minimize
µ

μ

subject to K(μ) in (17) exists

we compute the optimal μ∗ and K(μ∗). We use the structure
info.Report of icare() in MATLAB to verify the ex-
istence of K(μ) in our bisection method. If info.Report
= 0 and P d 	 O, then a unique accurate K(μ) in (17) exists.
We name the controller computed from OP2 as H∞-ODE. The
complete derivation for this controller design is given in [29,
Appendix D], which is similar to the derivation in [41].

2) H-2-Based ODE State-Feedback Controller Design: Sim-
ilarly, for the perturbed NODE dynamics (16), the H2-based
state-feedback controller can also be designed as follows:

(OP3) minimize
ud

J(ud)

subject to Dynamics (16), D̃w = O
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where J(ud) is given as follows:

J(ud)=

∫ ∞

0

z�
2 z2dt=

∫ ∞

0

(
C̃xd+D̃ud

)�(
C̃xd+D̃ud

)
dt

=

∫ ∞

0

x�
d Q̄xd + u�

d R̄ud + 2x�
dNud dt

with

Q̄ = C̃
�
C̃, R̄ = D̃

�
D̃, N = C̃

�
D̃.

It is a classical result [42] that the optimal solution of OP3 has
the form of ud = Kdxd with Kd = −R̄

−1
(B̄

�
Xd +N�)

where Xd denotes the unique solution of the following CARE:

Ā
�
Xd +XdĀ− (XdB̄ +N)R̄

−1
(B̄

�
Xd +N�)

+ Q̄ = O (18)

where in this case the controller gain matrix K can be retrieved
as:

K =
[
−R̄

−1
(
B̄

�
Xd +N�

)
O
]
. (19)

Utilizing the MATLAB built-in function lqr(), we can ef-
ficiently solve the CARE (18). We name this controller as
H2-ODE feedback controller.

Notice that the above ODE type controllers proposed in
this section are widely applied in the modern control theory—
see [23], [34], [43]. However, to the best of the authors’
knowledge, no such work has still been carried out to access
their applicability in controlling renewable heavy interconnected
power system models. Moreover, as compared to [23], [43] the
ODE controller designed in this work considers robust H∞
or H2 stability notion to handle uncertainties in load demand
and renewables. Furthermore as compared to [34] we also con-
sider nonlinearity in the controller architecture by modeling it
as an L2-norm-bounded disturbance. In particular, the above-
formulated ODE controller architectures are unique on their own
as it includes constraints and objectives that allow for the ODE
controllers to be practically implemented on renewable heavy
NDAE state-space representation of power systems.

C. Implementation of the Proposed Feedback Controllers

All the proposed feedback controllers can be implemented
in a similar fashion. Notice that the only major difference
among them is the computation of the controller gain K. Each
controller utilizes a different optimization problem to compute
its corresponding K. With that in mind, the proposed feedback
controllers can be implemented as follows: First, using constant
system matrices given in model (9) or (10) the feedback con-
troller gain matrixK is determined by solving the corresponding
optimization problem. Then, based on the given/forecast overall
load demand and solar irradiance (i.e., vector wk) power flow is
carried out, and algebraic variables of the system xk

a are deter-
mined. Afterward, by setting Eẋ = 0 in (9) and using xk

a, wk,
the reference set points for control inputs uref and steady-state
values of dynamic variables xd(0) can be determined. Using
these steady-state values (i.e., xd(0), xk

a, wk, and uref ) the
real-time values of system state vector x has been determined.
This state vector has then been used as state feedback in the
controller design as shown in Fig. 1. This process can be repeated
for every dispatch time period.

Fig. 1. Integrated framework of the proposed controllers. x represents the
overall state vector and encapsulates all algebraic and dynamic states while w
models load demand and solar irradiance.

Fig. 2. One line diagram of the modified WECC test power system with a
motor load at Bus 8, a synchronous generator at Bus 1, and two solar power
plants S1 and S2 at Buses 2 and 3, respectively.

IV. CASE STUDIES

Here, we demonstrate the effectiveness of the proposed feed-
back controllers in improving the transient stability of an in-
terconnected power system model after a large disturbance. In
specific, we try to answer the following questions:

– Q1: How do the proposed controllers affect the dynamic
response of an interconnected power system model after a
large disturbance? How is the system’s transient stability
with and without the proposed feedback controllers?

– Q2: Does the feedback controller based on the knowledge
of the complete NDAE model outperform the NODE model
counterpart in terms of damping system oscillations? How
important is the knowledge of dynamic and algebraic states
in the feedback control of power systems?

– Q3: How much are NDAE and NODE-based feedback
controllers robust against unknown faults/disturbances in
load demand and renewables?

– Q4: How computationally scalable are these feedback con-
trollers when applied to a larger power system model?

The proposed feedback controllers have been tested on mod-
ified IEEE 9-bus and 39-bus power systems [1], [44]. The
one-line diagrams of these test systems are shown in Figs. 2
and 3. All the parameters for the motor load and synchronous
generators along with its excitation system can be found in [30],
[31], while the detailed description of the solar farm model and
its parameters can be seen in [26], [45].

The numerical case studies have been carried out in MATLAB
R 2022a running on a PC with an Intel i9− 11980HK processor
and 64 GB of RAM. The power system model (9) is solved using
MATLAB’s DAEs system solver ode15s with settings chosen
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Fig. 3. One line diagram of the modified IEEE 39-bus test power system with
a motor load at Bus 14, and two solar power plants S1 and S2 at Buses 34 and
36, respectively.

to be: i) maximum step size = 1× 10−5 ii) absolute tolerance =
1× 10−7, and iii) relative tolerance = 1× 10−7. The optimiza-
tion problem OP1 is solved in YALMIP [46] using MOSEK
solver [38]. The power system volt-ampere base is considered
as Sb = 100MVA while the frequency base is chosen to be
wb = 120πrad/s. The initial conditions and steady-state values
of the power system before any disturbance/fault are determined
using power flow studies carried out in MATPOWER [47] via
function runpf. Furthermore, in all the case studies we assume
that all states of the power system are available in realtime. This
is reasonable as there exist efficient observers that can estimate
all the states including the states of solar plants and motor loads
via few PMUs optimally placed in the network as detailed in [48].

A. Performance Under Large Disturbance in Load Demand

In this section, we discuss the performance of the proposed
controller under large-step disturbance in the overall load de-
mand of the power system. With that in mind, the simulations
are carried out as follows: In the beginning, the system operates
with the overall load demand of P 0

d +Q0
d = 0.77 + j0.25 pu

for Case 9-bus system and P 0
d +Q0

d = 19.8 + j7.10 pu for the
39-bus system. The total power generation (from both renew-
ables and conventional power plants) is equal to the load demand
and thus there are no transients in the power system and all
the states of the network rest at their equilibrium values. Then,
suddenly after t > 0, the load demand is abruptly changed and
their new value is given as P e

d +Qe
d = (1 +Δd)(P

0
d +Q0

d),
where Δd represent the amount of the disturbance. In this work,
two simulations studies have been carried out for Case 9-bus
system withΔd chosen to be−0.4 and 0.4 while for Case 39-bus
system we select Δd = 0.001. Notice that selecting Δd to be
negative means that the overall load demand has been decreased
(or a load trip event occurred in the system) while choosing Δd

positive shows an abrupt increase in the system load demand
(which can roughly be presumed as a generator trip event in

Fig. 4. Performance under sudden decrease in load demand for IEEE 9-bus
system: angular speed of both solar plants S1 and S2, both inverters relative
slip, DC link voltage, and generator slip.

Fig. 5. Performance under a sudden increase in load demand for IEEE 9-bus
system: inverters relative speed for both S1 and S2, generator slip, DC link
voltage, and relative slip for both inverters.

the power network). To mimic realistic changes in load demand
a Gaussian noise qd(t) with zero mean and variance of 0.01Δd

has also been added and thus the overall system load disturbance
can be written as P e

d +Qe
d = (1 +Δd)(P

0
d +Q0

d) + qd(t).
When this disturbance is applied, it will trigger the power

system to depart from its steady-state conditions and push it to
a new equilibrium or even possibly make it lose synchrony. The
main objective of the controller is to minimize the impact of
the disturbance Δd on the system dynamics and thus provide
damping to the system oscillations during transient conditions
and restore the system back to its nominal value as soon as
possible.

The results of these simulation studies are presented in
Figs. 4, 5, and 8. To showcase the performance of the proposed
controllers a comparison between the system response after a
large disturbance with only conventional control (or primary
control) and with proposed feedback controllers acting on top
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Fig. 6. Performance under Δd = 0.5 and ΔI = 0.2 for IEEE 9-bus system:
generator speed, power supplied by a synchronous generator, both inverters
relative speed, and power supplied by PV plant S1.

Fig. 7. Performance under Δd = 0.6 and ΔI = 0.3 for IEEE 9-bus system:
generator speed, DC link voltage, both inverters relative speed, and power
supplied by PV plant S2.

of them has also been presented. Notice that, by conventional
control, we refer to the legacy primary controllers of the power
system, which for the synchronous generator in this test system
consists of AVRs, PSSs, and governors. Similarly, solar farms
are acting in grid-forming mode and their primary controller
consists of droop and proportional-integral (PI) type controllers.
Further details about these conventional controllers can be found
in [30], [49] for synchronous generators and in [26], [27] for
solar farms. Notice that these conventional controllers are al-
ready present in the test system and the proposed feedback
controllers are acting on top of them and are sending additional
control signal uwac to effectively mitigate the effect of distur-
bance Δd on power system dynamics.

We plot inverter frequency ωinv and slip sinv in Figs. 4 and 5
which are computed from state vector as follows:

ωinv = 1− kinv

(
P̃ e − P ∗

s

)
, sinv = (we − ωinv)/we

Fig. 8. Performance under disturbance in load demand and sun irradiance for
IEEE 39-bus system: Generator 2 rotor angle, all generators speed, S2 relative
angle, and relative speed of both S1 and S2.

where we denotes the center of inertia mean angular speed of
the overall power system [26], P̃ e is the phasor representations
of P e (active power outflows of the inverters to the grid) after
passing through low pass filter, and kinv is the droop constant
of the inverter. From Figs. 4, 5, and 8 we can clearly see
that with the proposed robust wide-area feedback controllers
there is significant damping in frequency oscillations during
the transient period (first few seconds after the disturbance)
and also the frequency nadir has been significantly improved.
For the Case 39-bus test system we can see from Fig. 8 that
after a large disturbance in load demand the generator’s angular
frequency dips to near 0.998 pu and starts oscillating, while
with robust WACs as a secondary control loop, the generator
frequency decrease very slightly and the frequency oscillations
have significantly been damped out.

Similar results have also been achieved for all synchronous
generators and inverter relative speeds for the Case 9-bus test
system as shown in Figs. 4 and 5. We can clearly see that with
the proposed robust WACs, there is a significant damping in the
system oscillations and the RoCoF is very less, thus the overall
transient stability of the power system after a large disturbance
has been improved.

To further advocate for the benefits of the proposed WACs, we
also assess their performance under a short circuit fault. To that
end, we added a line to ground fault at t = 4sec on transmission
line 4-6 which is then cleared at 50 msec and 200 msec from the
near and remote end for the 9-bus test system. The simulation
results are presented in Fig. 11. Again, we observe that with
only conventional control, the frequency nadir during the fault
is higher and there are significant system oscillations thereafter.
While with the proposed WACs on top of them, the overall
frequency dip has been improved and there are damping in the
system oscillations (particularly with H∞-DAE and H∞-ODE
controllers), thus, improving the system transient stability.

We can also see from these figures that with the proposed
robust WACs, the system quickly restores to its nominal value
(specifically with H∞-DAE) after a large disturbance while
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Fig. 9. Performance under Δd = 0.01 and ΔI = 0.3 for IEEE 39-bus sys-
tem: S2 DC link voltage, generators speed, generators slip, and relative speed
of both S1 and S2.

Fig. 10. Performance under Δd = 0.03 and ΔI = 0.4 for IEEE 39-bus
system: S2 DC link voltage, generators speed, Generator 2 rotor angle, and
relative speed of both S1 and S2.

with only conventional/primary control, the system states do
not restore to its pre-fault equilibrium values and settle to new
steady-state values. This also indicates that with the proposed
robust WACs, the work required by the AGC, later on, to restore
the system frequency to its nominal value has also been reduced.

B. Comparative Analysis of the Three Controllers

Since we have proposed three different types of wide-area
feedback controllers, then regarding comparison among them,
we notice that the H∞-DAE based controller is providing the
most damping (which can be verified from the plots of slips of
generators and inverters in Figs. 4 and 5) then H∞-ODE and
finally H2-ODE based controller performed the worst.

It is noteworthy that from a control theoretic perspective,
it is well-known that H∞ based controllers are more robust
than H2 based controllers [50] because, in H∞ stability notion,
we explicitly model the disturbance vector and the controller
makes sure that the strict H∞ stability criterion (as explained in

Fig. 11. PV power plant 1 relative angle, speed, rotor angle, and rotor slip
under line to ground fault, IEEE 9-bus system.

TABLE I
COMPARISON OF COMPUTATIONAL TIME FOR CALCULATING GAIN MATRIX

USING MOSEK AS OPTIMIZATION SOLVER

Definition 1) is always satisfied. Furthermore, the reason why
H∞-DAE controller is adding more damping as compared to
the other feedback controllers is that it is based on a complete
DAE system model and thus it sends control signals based on
the knowledge of both dynamic xd and algebraic states xa as
compared to the ODE based controllers which only take xd

as state feedback. Thus the DAE-based controller has more
knowledge of the system and can send more accurate control
signals to the system as compared to the ODE-based controllers.

However, from simulations studies, we observe that although
DAE-based controllers perform better than ODE-based ones
they are difficult to be scaled to larger power system models.
This has been shown in Table I, for Case 9-bus test system we
can see that the solver took around 4.56 s to solve OP1 and to
compute controller gain matrixK while for Case 39-bus the time
for computing K has been increased to around 4.1 hrs. Thus
solving OP1 for a larger power system model with hundreds or
thousands of buses can be problematic and not scalable. On the
other hand for both the ODE-based controllers the computation
time is less than 1 s for all the case studies.

C. Performance Under Uncertainty in Irradiance and Load
Demand

To further advocate the advantages of the proposed robust
WACs in improving the transient stability of the grid and making
it more robust, we add more disturbance in the system this
time by changing the sun’s irradiance on both PV power plants.
Notice that the disturbance in load demand from the previous
section has also been applied simultaneously and their severity
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Fig. 12. Control inputs generated via H∞-DAE controller for synchronous
generator and PV power plant 1 under case C for the 9-bus test system.

has been further increased. To that end the simulations for this
section have been carried out as follows: Initially, both PV power
plants S1 and S2 operates under standard solar irradiance of
1000 W/m2 then right after t > 0 the irradiance on both PV
plants has been decreased and their new values are given as
Ier = (1−ΔI)(I

0
r ) + qI(t), where ΔI denotes the severity of

the disturbance, qI(t) is Gaussian noise with zero mean and
variance of 0.01ΔI , and I0r , Ier represent the sun irradiance
before and after the disturbance, respectively. The disturbance
in the load demand has been applied similarly as discussed in
the previous section.

With that in mind, numerical studies for different severity
of disturbances in load demand and sun irradiance have been
simulated for Case 9-bus and Case 39-bus test systems. For the
Case 9-bus system, we ran simulations studies for Δd = 0.5,
ΔI = 0.2 and Δd = 0.6, ΔI = 0.3, similarly for Case 39-bus
test system we ran two simulations one with Δd = 0.01, ΔI =
0.3 and for the other one we selected Δd = 0.03, ΔI = 0.4.
The results are presented in Figs. 6, 7, 9, and 10. For the Case
9-bus system from Fig. 6, we observe that as the severity of
disturbances has been increased, with only conventional/primary
controllers, the system loses its synchrony and become unstable.
Furthermore, we also observe that H2-ODE-based controller is
also unable to stabilize the system while the H∞-ODE and H∞-
DAE based controllers can still stabilize the system. Similarly,
from Fig. 7, we observe that as the severity of disturbances has
been further increased, all the controllers are unable to stabilize
the system except H∞-DAE. This can also be corroborated by
Figs. 12 and 13 where we present the control signals sent byH∞-
DAE controller to generator 1 and PV power plant 1 for both the
9-bus and 39-bus systems. We can verify that the proposed H∞-
DAE-based WAC can still send control signals during transient
conditions and thus stabilize the systems. To further assess the
robustness of H∞-DAE controller, we also add Gaussian noise
with zero mean and variance of 0.01 to the state measurements
received by the WAC. We can see that H∞-DAE can still keep
the system synchronized as shown in Fig. 14. Notice that this
is again as discussed in the previous section mainly because
the DAE controller has more knowledge and awareness of the

Fig. 13. Control inputs generated via H∞-DAE controller for generator 1 and
PV power plant 1 under case C for the 39-bus test system.

Fig. 14. PV plant 1 speed, PV plant 1 power, rotor speed, and rotor slip with
H∞-DAE controller under Δd = 0.6, ΔI = 0.3 and noisy states measure-
ments, IEEE 9-bus test system. Notice that the rest of the controllers were unable
to stabilize the system.

system and can thus make the system more robust to disturbances
as compared to the ODE-based controllers. Similar results have
been achieved for Case 39-bus system as presented in Figs. 9
and 10. We can see that with the proposed robust WACs (in
particular with H∞-DAE) the power system is more robust and
can withstand higher disturbances without losing synchrony.

D. Updated Controllers Under Norm-Bounded Parametric
Uncertainty

It is noteworthy that all the proposed robust controllers have
been designed subject to the assumption that we have access to
an exact or highly-accurate model of the DAE-modeled power
system. However, it is a strong assumption in some realistic
cases in which there could exist a modeling error or parametric
uncertainty on the state matrix A. To deal with such an issue,
we propose the following two-step procedure:

1) First, we search for the worst-case scenario norm-bounded
parametric uncertainty ΔA given the information of the
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TABLE II
VALUES OF ‖Gcl(s)‖H∞ /‖Gcl(s)‖H2

FOR THREE DIFFERENT SCENARIOS: I)
NOMINAL CONTROLLER, II) UPDATED CONTROLLER UNDER THE RANDOM

PARAMETRIC UNCERTAINTY, AND III) UPDATED CONTROLLER UNDER THE

WORST-CASE SCENARIO PARAMETRIC UNCERTAINTY

upper bound on its Frobenius norm (i.e., ρ is given such
that ‖ΔA‖F ≤ ρ holds).

2) Second, we construct A+ΔA and update the controller
via redesigning it for the perturbed A, i.e., A+ΔA.

To solve for the worst-case scenario norm-bounded paramet-
ric uncertainty ΔA, we define the following function to be
maximized:

h(ΔA) := ‖G(s;ΔA)‖H∞ + να(A+ΔA) (20)

where ‖G(s;ΔA)‖H∞ denotes the H∞ norm associated with
the perturbedAwithout any controller,α(A+ΔA) represents
the spectral abscissa (i.e., the maximum real part of the eigen-
values) of A+ΔA, and ν is a penalizing parameter. Let us
construct the following optimization problem:

(OP4) minimize
ΔA

−h(ΔA)

subject to ‖ΔA‖F ≤ ρ.

Solving OP4 for ΔA, we obtain the worst-case scenario
norm-bounded parametric uncertaintyΔAwhich ideally makes
A+ΔA unstable with ‖G(s;ΔA)‖H∞ = ∞. Note that since
matrix A intrinsically has a sparsity structure, we extract and
impose such a sparsity structure to ΔA in parameterizing ΔA
to feed into OP4.

Setting ρ = 1 and ν = 0.001, we solve OP4 for ΔA via
MATLAB built-in function fmincon() and use it to redesign
the updated H∞-DAE, H∞-ODE, and H2-ODE controllers.
Considering the 9-bus test system, Table II shows the H∞/H2

optimal values for three different cases: i) nominal controller,
ii) updated controller under the random parametric uncertainty,
and iii) updated controller under the worst-case scenario para-
metric uncertainty. As Table II reflects, the nominal controller
designs are not robust against the worst-case scenario parametric
uncertainty. The updated controllers based on the random para-
metric uncertainty are not robust against the worst-case scenario
parametric uncertainty except for the updated H∞-DAE. Again,
such an observation certifies that H∞-DAE is the best approach
among the proposed approaches. The updated controllers, taking
advantage of the worst-case scenario ΔA information, are all
robust against the worst-case scenario parametric uncertainty. In
other words, they can successfully make the perturbed closed-
loop system stable. Also, as shown by the column corresponding
to H∞-DAE in Table II, the updated H∞-DAE attains the best
H∞ performance compared to the nominal and the updated-R
controllers.

V. ARTICLE SUMMARY AND LIMITATIONS

Given the detailed numerical simulations studies in the previ-
ous section, we make the following observations and thus answer
the questions we posed in Section IV:

– A1: With the proposed robust WAC as a secondary con-
trol loop the system frequency oscillations, RoCoF, and
frequency nadir can be improved thus the overall system
transient stability and dynamic response after a large dis-
turbance can be made better.

– A2: The designed NDAE-based feedback controller can
add more damping to the system oscillations and can
improve frequency nadir more as compared to the proposed
NODE-based controllers. This shows that the more knowl-
edge the feedback controller has about the system states
(both dynamic and algebraic) the better control signal it
can send to the power plants.

– A3: The NDAE-based feedback controller is more robust
toward disturbances and can keep the system synchronized
for much higher disturbances in loads and renewables as
compared to the NODE-based ones. Also, the H∞-based
controllers outperform H2-based controller, this corrobo-
rates with control theory’s first principles.

– A4: Computing controller gain matrix for NDAE-based ro-
bust WAC can be much more challenging for a larger power
network, while NODE-based feedback controller can eas-
ily be scaled to a larger power model. This shows the trade-
off between computational tractability and performance—
see A2 and A3 above.

Next, we outline the article’s limitations and future work.
First, in this work, we designed a time-invariant feedback con-
troller. However, due to model mismatches and abnormalities
dynamic feedback controller maybe be a better option at the
cost of complexity and scalability. Second, in this work, we
did not take into account, transmission delays or cyber-attacks
in the communication network as it requires a new theoretical
treatment. Lastly, the proposed control architecture is not sparse
and requires all generators to participate in the control action
which in turn requires a good and reliable communication
network among all the power plants. Future work would be
about addressing the above limitations, implementation of the
proposed methodologies on various much bigger power systems,
and comparing it with other advanced data driven nonlinear DAE
controllers designs.
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