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We consider a braneworld scenario in the simplest setting, M, x S!, with a four-dimensional (4D)

Minkowski metric induced on the brane, and establish the possibility of superluminal propagation. If the

brane is at rest, the 4D Lorentz symmetry of the brane is exact, but if the brane is in motion, it is broken
globally by the compactification. By measuring bulk fields, an observer on the brane sees a slice through a
higher-dimensional field profile, which carries an imprint of the extra dimensions even when the brane is at

rest. If the brane is in motion, we find that bulk fields can propagate outside the brane light cone by a
parametrically large amount set by the brane velocity. We mention observational tests and possible

applications to cosmology.
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I. INTRODUCTION

Imagine living on a brane with a single extra transverse
dimension compactified on a circle. Suppose a high-
priority signal needs to be sent by massless messenger
between two points on the brane. Since the bulk spacetime
is multiply connected, there is a choice: is it better to send
the signal along the brane or launch it into the bulk? If the
brane is at rest, it is clearly optimal to send the signal along
the brane. One might guess that sending along the brane is
also optimal if the brane is in motion, but we will see that
this is not the case; signals sent into the bulk can beat
signals sent along the brane, by an amount that depends on
the brane velocity and can be arbitrarily large.

To describe this in more detail, consider a braneworld
scenario with a single circular extra dimension. We begin
with a higher-dimensional Minkowski space with d space-
time dimensions and split the coordinates as x* = (¢, X, z).
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We compactify the z coordinate on a circle of radius R so
that

x € R42 7~ 7+ 2nR.

(1)

dst = —di* + |dx|* + dz?

This defines a preferred frame in which the identification is
purely spatial. In this frame, there is an exact Lorentz
symmetry acting on the (7, X) coordinates, the usual lower-
dimensional Lorentz symmetry that is preserved by Kaluza-
Klein compactification.

We will be interested in the effects of brane motion, so
instead of working in the preferred frame, we consider a
frame moving in the compact direction. We introduce
boosted coordinates (¢, x’,z) by setting X" = x and

-0 -G

Locally, these coordinates have the same metric as (1),
ds* = —(dr')* + |dx|* + (dZ')?, although the identification
is no longer purely spatial. Instead, it is given by trans-
forming (0,0, 2zR) into the boosted frame, which means
the identification is

Published by the American Physical Society
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I g —yB2xR
X |~ | x| + 0 . (3)
4 4 y2nR

For a braneworld located at 7/ = 0, meaning a moving
brane located at position z = ft in the preferred frame, the
induced metric is

dSpeane = —(dr')? + |dx']. (4)

The brane metric is invariant under Lorentz transformations
of the (¢, x") coordinates, and brane-localized matter would
presumably respect this symmetry. This could lead a brane
observer to believe that world volume Lorentz invariance is
fundamental. And yet, not only is it not fundamental, but
for f#0, it is not even a symmetry since it does not
preserve the identification (3). The would-be Lorentz
symmetry on a moving brane is broken by global effects.

Our goal is to explore a few of the consequences of this
global breaking. For reviews of Lorentz violation, see
Refs. [1,2], and for related previous work, see Ref. [3].
We will examine how bulk signals—excitations which
propagate causally in the bulk—are perceived by a brane
observer. We will see that violation of the would-be Lorentz
symmetry on the brane allows for some curious effects.

We start in Sec. II by examining causality, the crudest
aspect of signal propagation. Brane-localized observers
could be misled into thinking that causality with respect to
the brane metric is fundamental. This can be phrased as the
requirement that in time ¢ a signal can spread on the brane
according to

brane causality : Ix'| < 7. (5)
In truth, only causality with respect to the bulk metric is
fundamental. We will see that bulk causality allows signals
to spread on the brane at a faster rate given by

bulk causality : |x'| <yt (6)
The bulk bound is generically saturated at late times (large
t'). In short, causal signals in the bulk become tachyons on
the brane; they travel faster than light with respect to the
brane metric, by an amount which can be parametri-
cally large.

At a more refined level, bulk fields propagate in a space
with additional compact dimensions. In Sec. III, we discuss
the imprint this has on observations made on the brane. By
measuring a bulk field, a brane observer can directly see a
slice through a field propagating in higher dimensions. The
extra dimensions leave an observable imprint, even if the
brane is at rest, simply because the retarded Green’s
function is dimension dependent and sensitive to the
compactification geometry. We illustrate this in a simple
example and also show how the signal observed on the

brane is modified when the brane is in motion. This lets us
illustrate the full range of imprints of a compact dimension,
from early times to late times. In Sec. IV, we mention some
observational tests and directions for further development.
Relevant facts about the Green’s functions are collected in
Appendix.

II. BULK CAUSALITY ON A MOVING BRANE

In this section, we examine bulk causality from the brane
point of view and show that it allows for apparent faster-
than-light travel on the brane. We first show this from
simple geometric considerations involving light cones, then
study the effect in more detail in terms of retarded Green’s
functions.

A. Light cones

The geometric argument runs as follows. Imagine a
source of light at the origin t = x = z = 0. In the covering
space where the z coordinate is unwrapped, this source
corresponds to an infinite series of image charges at

t, =%, =0 2,y = 2xRwW we”Z. (7)

At time ¢, the light cones of these image charges form a
series of circles,

x>+ (z —z,)* = 1% (3)
In the boosted frame, the image charges are located at
tl, = —yp2raRw x, =0 Z, = y2zRw, (9)

and their light cones expand as

XP+ (2 —2,) = —1) (10)
Noting that ¢, = —fz],, this can also be written as
X'P+ (2 = 2,)* = (1 +pz,)% (11)

As shown in Fig. 1, the envelope forms a cone along the
7' axis with the tip of the cone at 7/ = — % ¢ and an opening

angle a satisfying

radius of light cone

— B (12)

sina@ = — - =
tip-to-center distance

At any given 7/, the envelope has an extent in the directions
parallel to the brane

x| = (z’+%t’> tana—%. (13)

In particular, on a brane located at 7/ = 0, the envelope
expands according to
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FIG. 1. Blue circles: light cones produced by image charges on
a slice of constant 7. At time 7/, the light cone centered at 7/, has
radius ¢ + fz},. The envelope of the light cones forms a cone
along the 7/ axis with tip at 77 = —7/f and opening angle
a =sin"! .

x| =yt (14)

This exceeds the speed limit suggested by the induced
brane metric by a factor of y. The reason for the super-
luminal propagation can be seen in Fig. 2. Wave fronts
produced by image charges to the right hit the brane and
eventually spread farther along the brane than the wave
front produced by the image charge at the origin. The effect
becomes more pronounced as f§ increases, since the open-
ing angle a — 7/2 as f — 1.

For later reference, it is useful to note the time at which
the various image charges first becomes visible to observers
on the brane. The wth image charge can first be seen on the
brane at position X' = 7/ = 0 at a time

o / 27Rw }5/;, for w> 0
=1t,+]z,| = (15)
—27Rw, /L for w < 0.

These are nothing but the usual relativistic Doppler for-
mulas. Image charges in the direction of motion are seen at

.Z‘/

R Z
J

FIG. 2. Blue circles: light cones produced by image charges on
a slice of constant . The brane is at 7/ = 0. The wave front
centered to the right has spread farther along the brane than the
one centered at the origin.

a blueshifted frequency, while image charges behind the
observer are redshifted. It is worth noting that as g — 1 all
of the image charges with w > 0 appear instantly on the
brane; the time delay one might expect, due to the travel
time around the compact dimension, gets completely
Doppler-shifted away.

We can also be more explicit about how the light cones
of the image charges appear on the brane. Setting 7/ = 0 in
(11), we see that the light cone of the wth image charge
spreads along the brane according to

X' = (¢ +B2,)* = (z,)*. (16)

This defines a spacelike hyperboloid on the brane, illus-
trated in Fig. 3, with the special case w = 0 being the brane
light cone |x’| = . The hyperboloid is asymptotic to a light
cone originating from ¢ = —fz,,, so all image charges
produce signals that asymptotically expand at the speed of
light on the brane. If the brane velocity is nonzero, the
image charges with w > 0 have origins at ¥ <0 and
eventually spread outside the brane light cone, while image
charges with w < 0 produce hyperboloids that forever
remain inside the brane light cone.

The expression (16) is useful for understanding how a
particular image charge appears on the brane, but to
understand the envelope effect discussed above, it is better
to rewrite (16) in the equivalent form

X[ = () = (B = 27Rw)2. (17)

In this form, we see that for any given ¢ the leading-edge
signal on the brane is produced by the image charge with
w = ypt'/2zR. For this particular image charge, the final
term vanishes, and the signal has spread a distance

x'
_5_
FIG. 3. An image charge with w > 0 produces the spacelike

hyperbola shown in blue. The signal first appears on the brane at a
time given by the Doppler formula (15) and asymptotically
approaches the light cone with origin at #/ = —fz], shown in solid
black. It eventually spreads outside the brane light cone shown in
dotted black. The plotis forw =1, R=1, = 0.6.
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|x'| ~ yt', showing that a succession of image charges with
increasing values of w are responsible for the envelope
discussed above.

B. Green’s functions

The effect can be understood in more detail from a study
of the retarded Green’s function for a bulk field. In parallel
with our split of the coordinates as x* = (¢, x, z), we split
the momenta as k* = (o, K, q).

Consider a bulk scalar field of mass m. We denote the

retarded Green’s function G;d)(t,x,z), where d is the
number of spacetime dimensions and R is the radius of
the circle. We start from the retarded Green’s function in the
covering space which satisfies

(=0,0" + mz)GSg)(t, x,z) = 8(1)6%%(x)8(z)
G9(t.x,2)=0  fort<O0.

This Green’s function has a representation
d dd—Zk d —iwt ,iK-X ,iqz
G((,g)(t X, 2) _/_60 d_z_q 26 62 62 2
2n 2m) 2 —w* + K|+ g +m
(18)

where the @ contour is deformed to pass above the poles.
Although it is not obvious from the integral representation,
causality requires

G (t,x,2) =0 fort < \/|x]>+ 2. (19)

To compactify the z direction, we introduce an image
sum which can also be thought of as a sum over winding
numbers,

ZG

weZ

t X,7) = (t,x,z —27Rw). (20)

Alternatively, we can compactify the z direction by making
the sum over momentum modes discrete,1

G(d)(t, X, Z)

dw dd 2 e~iot g ik-x inz/R
. 21
ZT[RZ/ZJT 27) 47— + K| + ()2 + m? 1)

'To see the equivalence of the winding and momentum
forms consider 3, o, ¢'?“=27R%)_ This is periodic in z and so
can be expanded in a Fourier series Y., c,e™/® with coef-
flclents given by ¢, =iz [FRdze IR, elal2mRy) —
e I dze= /R elas = ]5(q——) This leads to the identity

Zwez elal2nRw) — 187 5 8(q —)e™/R. Using this for the
sum in (20) leads to (21).

Now, we can see how the field responds to a source at the
origin. At early times ¢ < 2zR, only the w = 0 term in the
winding sum contributes, so

Gﬁed)(t, X,7) = Gg)(t, X,7) for t < 2zR. (22)
This is an exact statement, enforced by causality. It means
that at early times the field propagates as though the theory
had full d-dimensional Lorentz invariance.

As time goes by, more and more image charges will
contribute. At late times, the winding sum becomes
continuous, Y, .., — [dw. Making this replacement in
(20) and using (18), we see that the winding sum leads to

. 1
/dwe"‘ﬂ”RW = Eé(q). (23)

This freezes the ¢ integral and leads to the late-time
behavior

d L (a1
G\ (1, x.7) > M—RGEX, (1, x). (24)

An equivalent statement is that the late-time behavior is
dominated by the Kaluza-Klein mode with n = 0. At late
times, the z dependence drops out, and the behavior is
governed by the Green’s function in d — 1 dimensions.

The late-time Green’s function has the expected (d — 1)-
dimensional Lorentz symmetry of the preferred frame. In
particular, at late times, signals propagate causally in the
preferred frame with

x| < t. (25)

But clocks on a moving brane run slow. The coordinates
appropriate to a brane observer are obtained by setting
t =yt and x = X/, and in these coordinates, the bound
becomes

x| <yt (26)

To a brane observer, it appears that bulk fields can
propagate superluminally, in agreement with (14).

III. BULK FIELDS ON A MOVING BRANE

We have seen that the retarded Green’s function under-
goes crossover from the Green’s function in d noncompact
dimensions at early times to the Green’s function in d — 1
noncompact dimensions at late times. The timescale for the
crossover is set by 2zR in the preferred frame, the moment
at which bulk fields first notice the compactification. Here,
we study the crossover in more detail and point out some of
the observational consequences.

Brane motion is not essential to most of the discussion in
this section. The crossover phenomenon is present even for
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a brane at rest, so we begin by illustrating it in that context,
then present the straightforward generalization to a mov-
ing brane.

Closely related phenomena have been studied in the
literature. For a brane at rest, the crossover in the static
(purely spatial) Green’s function is responsible for the
famous modification of the Newtonian potential at short
distances in the large extra dimension scenario [4], while
modifications to the Newtonian potential on a moving
brane have been studied in Ref. [3]. In a sense, our goal
here is merely to extend the analysis from a static Green’s
function to a retarded Green’s function. This will allow us
to make contact with our previous discussion of causality
on a moving brane.

Let us imagine that an observer on the brane has access
to a source J(x) that can excite a bulk field ¢(x) (and for
definiteness, we set d = 5). The source should be well
localized, both on the brane and in the compact dimension.
The bulk field will then propagate in all dimensions
according to the retarded Green’s function,

P(x) = /dsx’Gg)(x = x)J(x). (27)

We have in mind the simplest setting where the bulk field is
massless and the compact dimension is a circle of radius R.
The appropriate Green’s function GES) is given by the image

sum (20),

G (1.x.2) = > G (t.x.2 - 2zRw).  (28)

wezZ

)

is

where the Green’s function in the covering space Gg
given in (AS),

i 1
g0 [(|x|2 + 2= (1—ie)?)P

_ ! } _ (29)

(X[ +2% = (1 + ie)*)*/?

Gg)(t,x,z) =

Here, ¢ — 0" serves to define the singularities in the
Green’s function. At late times ¢ > 2zR, we expect to have

1
GS)(I,X,z) —>—Ggg)(t,x) =

— 0B =IxP)  (30)

47°R
by the arguments of Sec. II B. This should be understood as
convergence in the sense of a distribution.

To present explicit results, we need to choose a source
function J(x). This introduces a great deal of freedom. A
convenient choice is simply to keep ¢ small but nonzero in
(29). This smooths out the Green’s function and defines a
corresponding source J,(x) through

(07 -V:-A)GR (1.x.2) = Jo(x).  (31)

As € — 0", we are guaranteed that J.(x) — 6%(x), but for
finite €, the source is smeared over a length scale ~e.

At this point, we present some numerical results. We
imagine that the source J.(x) is centered at the origin,
t=x=1z=0, and we start by considering a stationary
brane located at z = 0. An observer on the brane could
measure the field profile produced by the source. This can
be obtained by setting z = 0 in (28),

¢Stati0nary (t ’ X)

i 1
:S_ﬂe(t)v;ﬂxlz 2R = (1= i) +cc. (32)

This is illustrated in the left panel of Fig. 4. A few
comments are in order. First, since the brane is stationary,

FIG. 4. The field profile on a brane at rest (left panel) and a brane in motion with = 0.6 (right panel). Note the resemblance to Fig. 3.
When the brane is in motion, the image charges in the direction of motion are blueshifted and spread outside the light cone of the induced
metric on the brane. In both figures, the compactification radius is R = 1, and the source is smeared with € = 0.5.
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there is an unbroken Lorentz symmetry that acts on the
(t,x) coordinates. The field would look the same to any
inertial observer on the brane, and the naive brane causality
bound |x| <t is obeyed. However, at early times, an
observer on the brane sees a slice through the five-
dimensional (5D) Green’s function which—unlike the
4D Green’s function—is nonvanishing inside the future
light cone (the so-called Hadamard tail; see Ref. [5] for a
recent discussion). Thus, even at early times, a brane
observer can see an imprint of the extra dimension. At
t = 2zR, the observer can start to see image charges, an
even more dramatic signal of the extra dimension. At late
times, the image charges accumulate, and the signal
approaches the 4D Green’s function. In other words, the
signal approaches what one would expect from Kaluza-

|

¢m0ving(ﬂv X/) = LG(I’)Z

Klein reduction, which means that for observers on a
stationary brane the imprint of the extra dimension goes
away at late times.

The situation becomes more interesting if the brane is in
motion. Suppose the brane is moving in the z direction,
z = ft. In the boosted frame (2), the moving brane is
located at 7/ = 0. Coordinates on the brane (#,x’,7 = 0)
correspond to coordinates in the bulk via the inverse
Lorentz transformation

z=ypr. (33)
To get the field profile on a moving brane, we simply plug

these coordinates into our general expression for the
Green’s function (28). This gives

1

2
87 weZ

which is illustrated in the right panel of Fig. 4.

(X']* + (Bt = 22Rw)? = (' — i€)?)

377 Tcc. (34)

Again, a few comments are in order. The term with w = 0 has 5D Lorentz invariance and is not sensitive to the motion of

the brane, so at early times, we have

early times: Bmoving (. X') =

At early times, the would-be 4D Lorentz symmetry on the
brane is respected, and the naive brane causality bound
|x'| <7 is obeyed. The field is still a slice through a 5D
Green’s function, hence nonzero in the future light cone;
however, there is no sign that the brane is in motion. But
-5
T+p
become visible, and these do violate the would-be Lorentz
symmetry of the brane. In particular, at late times, when the
winding number becomes continuous, there is always an
image charge with yf' — 2zRw ~ 0. From (34), we can see
that these image charges have light cones that spread on the
brane at a rate that saturates the bulk causality bound
Ix'| <yt

after a time 7 = 2zR the image charges start to

IV. FURTHER DEVELOPMENTS

In this paper, we have examined the behavior of bulk
fields from the perspective of a brane observer. For a brane
at rest, world volume Lorentz transformations are an exact
symmetry, but even so, a brane observer can see an imprint
of the extra dimensions since the bulk field profile is
sensitive to the compactification. If the brane is in motion,
the world volume Lorentz symmetry is broken by global
effects, with the curious consequence that bulk fields can
propagate faster than the speed of light that is induced on
the brane. These phenomena are most likely to be relevant

82

1
(X = (-

PSEEE +c.c. (35)

[
if there are large extra dimensions [4,6,7], a scenario
recently revisited in Ref. [8].

Related studies have been carried out in the literature. In
particular, Ref. [3] considered the Kaluza-Klein tower seen
by a moving brane, obtaining the dispersion relation from
the brane point of view

2
a/:y¢mw%+m2+<%>-—%?. (36)

The effects of brane motion are encoded in this dispersion
relation. Note that world volume Lorentz invariance is
violated when the brane is in motion. Also a Kaluza-Klein
mode propagates on the brane with group velocity

, = do' v|k’
IdK 2
VKPR + 2 4 (22

(37)

Not surprisingly, at large |k’|, the group velocity saturates
the propagation speed we found for brane-localized sources
at late times, v, — y as |k'| = co.

We conclude with a few further developments which can
also be viewed as directions for future work.
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A. Observational tests

To detect the effects we have discussed, a brane observer
must be able to interact with a bulk field. Various
candidates for bulk fields have been proposed including
gravity [4,9] and sterile neutrinos [8,10,11]. The Hadamard
tail of the higher-dimensional Green’s function [5] would
provide a clear signal of extra dimensions, as would the so-
called fireworks associated with image charges [4] which
are modified if the brane is in motion [3].

More generally, on a moving brane, the world volume
Lorentz symmetry is broken by global effects. Lorentz
violation has been investigated extensively; for reviews,
see Refs. [1,2]. As a direct and dramatic signal of Lorentz
violation, we focus on the possibility of faster-than-light
travel on the brane. Here, the constraints from multimes-
senger astrophysics [12,13] can be very stringent. Assuming
that light travels on the brane with speed ¢ while a bulk field
propagates with speed ¢ + Ac, the velocity bound (6)
directly translates to

Ac

=7 1. (38)
The speed of electron antineutrinos compared to photons was
measured in the time-of-flight experiment conveniently
provided by supernova SN1987a which led to bounds
Ac/c <1078 [14]and Ac/c <2 x 107 [15]. These bounds
were later improved to Ac/c < 10719 [1,16]. The speed of
gravitational waves compared to photons was likewise

measured using the binary neutron star merger
GW170817/GRB 170817A with the result [17]
A
3% 10715 <2 < 17 % 10715, (39)

c

If we entertain the possibility that these are bulk degrees of
freedom, the bounds on brane velocity become very strict.

B. Applications to cosmology

Although observational tests suggest stringent con-
straints on brane motion today, the situation could be
different in the early Universe. This raises an interesting
possibility for addressing the horizon problem.

To illustrate the idea, we consider the same static bulk
geometry with an extra dimension compactified on a circle
of radius R, but we allow the brane velocity to depend on
time,  — f(¢). Assuming the brane velocity changes
adiabatically, the induced metric on the brane is approx-
imately Minkowski, and for brane-localized matter, the
particle horizon—the distance a particle can travel from
time 7| to time r,—is simply

dogne — ¢ — ;. (40)

However, bulk fields travel at speed y, so for bulk fields, the
particle horizon is

t/
iy = / Cy(e"dr. (41)
,/

1

If the brane is in motion, we have d2'* > gt Tn this way,
bulk fields could in principle thermalize regions which a brane
observer might think are out of causal contact. The mecha-
nism has the flavor of variable-speed-of-light cosmology,
with different effective propagation speeds for different
species of particles, although in our case the various
speeds have a unified higher-dimensional description. For
arecent discussion of variable-speed-of-light cosmology, see
Ref. [18]. As a direction for further work, it would be
interesting to extend the above analysis beyond a static bulk
geometry and consider cosmological metrics on the brane and
in the bulk. In particular, it would be interesting to see if it can
be applied to the ekpyrotic scenario [19].

C. Other compactifications

We considered the simplest possibility of a single extra
dimension compactified on a circle, but it would be
interesting to consider the effects of brane motion in more
general and realistic compactifications. Simple toroidal
compactifications should be straightforward to analyze
as they amount to replacing the winding sum in (20) with
a sum over a lattice. More ambitiously, it would be
interesting to consider the effects of brane motion in
realistic string or F-theory compactifications, perhaps
including the scenario outlined in Ref. [8]. An intermediate
step might be to consider brane motion on orbifolds or
simple Calabi-Yau manifolds such as a K3 surface.
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APPENDIX: RETARDED GREEN’S FUNCTIONS

The Green’s functions for the wave equation may be a
venerable topic [20], but properties of the Green’s functions
are not so familiar especially in position space in higher
dimensions. For this reason, we collect a few results in this
Appendix. A pedagogical review for physicists has been
prepared by Balakrishnan [21,22], and lecture notes for
mathematicians are available from Oh [23].

We begin with the Fourier representation of the retarded
Green’s function,

d dd—lk —iwt ,ik-x
Ggg)(f,x):/_w a1 : 2 . 2"
27 (27) —w* + K|

(A1)

This is the Green’s function in d noncompact dimensions.
(We have lumped all the spatial coordinates into X.)
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To simplify the expressions that follow, we have set the
mass to zero. To produce a retarded Green’s function, the
contour for the @ integral is deformed to pass above
the poles at @ = £|k|. This ensures that the Green’s
function satisfies

(02 — V2)GW(1,x) = 5(1)5*" (x)

G¥(t.x)=0 forr<0. (A2)

For t < 0, the @ contour can be closed in the upper half-
plane, and the Green’s function vanishes. For 7 > 0, it can
be closed in the lower half-plane where it encircles the

poles and leads to

d—1 —i[k|t pikx k|t Hikex
(@) . d* 'k [e e e'lklle
@t x) = - . (A3
Geo (1. %) ’/<2n>d-1< 2/K] 2/K] ) (A3)

This expresses the Green’s function as a difference of two
distributions. The first term is the boundary value of a
function analytic in the lower half of the complex ¢ plane,
which means it can be defined by a t — ¢ — ie prescription.
The second term is the complex conjugate of the first. It is
analytic in the upper half of the complex ¢ plane and can be
defined by t — ¢ + ie.

To proceed, it is convenient to set x =0 so the
momentum integral is spherically symmetric; the depend-
ence on x can be restored later by Lorentz invariance. For
the first term in (A3), this gives

/ 491k e—ilkl(t=ie) iVOl(Sd_z) /°° dkckd=3 p—ik(i=ie)
i = ¢
et 2k 200 o
&) (A4)
477 (it + €)72

In the second line, we used vol(S%-2) = 275 /T’ (451), and

in the final line, we made use of some I"-function identities.
Restoring Lorentz invariance and recalling that the Green’s
function is only nonzero for ¢t > 0, this means

ir(42 1

@, 4 — T(7)
G (t’ ) A7d/2 9(2‘) l(|x|2 — (- ie)Z)%

1
— (|X|2 _ (l+ l€)z)d_§2‘| . (AS)

A few key features are now transparent. The Green’s
function vanishes at spacelike separation, where the ie
prescription is not needed and the two terms in (A5) exactly
cancel. When the spacetime dimension d is even, the
Green’s function only has poles, meaning it only has
support on the future light cone, but when d is odd, there
is a branch cut, and it also has support in the interior of the
future light cone.

For future reference, it is convenient to work in terms

of proper time 7=/t —|x|*> and write the Green’s
function as

GO (1.x) = 0()(H D (2)| i +cc).  (A6)
where
4k e—i\k\r
H@(g) = i / 47k e
=1 ] a2
i d-2 s
= WF<T) (—72) 2, (A7)

There is an amusing relation between Green’s functions in
different dimensions, since it is straightforward to check
that H9)(z) satisfies

1 d
H@) ()= = _H A8
(z) 22(d - 1) d2 =) (A3)
(a second derivative with respect to z) as well as
H+) (1) = 14 H'9 (1) (A9)
nd(7%)

(a first derivative with respect to 7°).

Explicit Green’s functions in low dimensions are listed in
Table I. For d = 1, 2 the momentum integral in (A3) diverges
in the IR. In these cases, one can obtain the Green’s function
by introducing a mass m as a regulator and sending m — 0 at
the end of the calculation; alternatively, one can check
directly that the differential equation (A2) is satisfied. The
result in d =3 follows from the discontinuity across
the branch cut in (A5). To obtain the result in d = 4, we
used the identity - = PV 1 — iz6(x).

However, our main interest is in higher dimensions,
where the Green’s function (AS) becomes increasingly
singular on the light cone. To make sense of the singularity,
note that our real goal is to find the field produced by a
source J(x). That is, we must regard the Green’s function as
a distribution and interpret the integral

TABLE I. Retarded Green’s functions for a massless field in d
noncompact dimensions.

Spacetime dimension d
1 10(t)

2
3 1
4
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H(x) = / dG 9 (x— V(). (AL0)

To do this, we use the recursion relation (A9). The aim is to
write G@ as a differential operator acting on a lower-
dimensional, hence less singular, Green’s function and

integrate by parts. To do this, we must promote -4 to a

d(z%)
vector field on spacetime. There is no unique way to do
this, and the most obvious choice (making the vector field
orthogonal to hypersurfaces of constant 7) is badly
behaved.? Instead, it is convenient to note that for any

function of 7> = (t — #')> — |x — x|* we have

(A11)

This lets us write the recursion relation (A9) in the form

1 0

HOe) = = yar

H9(7).  (A12)

Although not manifestly Lorentz covariant, this can be used
in (A10) to obtain for example

Constant-7 hypersurfaces are asymptotically null, so the unit
normal vector asymptotically has divergent components.

#) =5 [ a6

1o I ,
X (mﬁj x') —l—ml(x)). (A13)

We conclude with a few additional results from the
literature. Up to an overall normalization, the massless
Green’s function is fixed by Lorentz and scale invariance

and can be written in any dimension as a fractional
derivative of a é-function [23],

1 d \%
Ot)— (- |  (z%).
0305 (i)
The extension to massive fields is straightforward but a bit
cumbersome. For example, in place of (A7), we have

(0 = /K[> +m?)
dd—lk —iw,T 1 d=2
H(d)(f):i/(e ' :_4(m> “HY (=mo),

277,')d_1 2Cl)k

GY(r) = (A14)

(A15)

)

1) . . . .
where H 5_2 is a Hankel function, and the recursion relation
T

(A8) is replaced with [21,22]

1 d

H2)(7) = “d=1) (W + m2> HY(z).  (Al6)
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