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We previously proposed that entanglement across a planar surface can be obtained from the partition
function on a Euclidean hourglass geometry. Here we extend the prescription to spherical entangling
surfaces in conformal field theory. We use the prescription to evaluate log terms in the entropy of a
conformal field theory in two dimensions, a conformally coupled scalar in four dimensions, and a Maxwell
field in four dimensions. For Maxwell we reproduce the extractable entropy obtained by Soni and Trivedi.
We take this as evidence that the hourglass prescription provides a Euclidean technique for evaluating
extractable entropy in quantum field theory.
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I. INTRODUCTION

A prescription for defining entanglement entropy was
introduced in [1], building on an earlier proposal by
Solodukhin [2,3]. The main motivation was to discuss
entanglement between two regions A and Ā without attempt-
ing to tensor-factor the Hilbert space intoHA ⊗ HĀ. Instead
a single density matrix ρϵ was introduced, defined on the
entire Hilbert space. The parameter ϵ is a UV regulator that
cuts off the large quantum fluctuations present near the
entangling surface. Such a regulator is necessary to make ρϵ
a well-defined density matrix on the entire Hilbert space.
Our proposal is that regulated entanglement entropy

should be defined as half of the von Neumann entropy of
ρϵ. As a heuristic motivation for this proposal, in the limit
ϵ → 0 the density matrix ρϵ formally approaches the tensor
product of the reduced density matrices associated with
regions A and Ā,

ρϵ ⟶
ϵ→0

ρA ⊗ ρĀ: ð1Þ

This is only a heuristic motivation since the subregion
density matrices ρA, ρĀ are not well-defined. The proposal

to work in terms of ρϵ avoids any need to tensor-factor the
Hilbert space and is therefore well-defined in continuum
quantum field theory. It is manifestly gauge invariant and
has a direct geometric interpretation as evaluating the
partition function on a Euclidean “hourglass” geometry.
In a seemingly unrelated line of development, several

authors have shown that standard replica methods when
applied to Maxwell theory do not give the correct (quantum)
entanglement entropy [4–6]. That is, they do not count the
number of Bell pairs split by the entangling surface. This
was clarified by Soni and Trivedi [5], who argued that replica
methods include a classical or Shannon contribution to the
entropy associated with classical correlations across the
entangling surface required by the Gauss constraint. Soni
and Trivedi were able to correct the replica result, subtracting
the Shannon contribution to obtain what they referred to as
extractable entropy. They obtained the log divergence in the
extractable entropy for a spherical entangling surface in four
dimensions, reproducing a coefficient previously obtained
by other authors [4,7,8]. The mismatch between replica
methods (which lead to anomaly coefficients) and the
coefficient of the log term in the entanglement entropy of
a Maxwell field has been further clarified by Casini et al. [6].
The present paper has three main goals.
1. Our previous work [1] considered planar entangling

surfaces andevaluated the entropy in avariety of simple
theories, both conformal and nonconformal. Here we
specialize to conformal field theories and extend the
prescription to spherical entangling surfaces.

2. As a warm-up we evaluate the log divergence in the
entropy for a general conformal field theory in 2D
and for a conformally coupled scalar field in 4D.
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3. We evaluate the log divergence in the entropy for a
Maxwell field in 4D and show that the coefficient of
the log agrees with the extractable entropy obtained
by Soni and Trivedi [5].

We take this agreement as strong evidence that the hourglass
prescription provides a direct geometric method for calcu-
lating extractable entropy in quantum field theory. Using a
slightly different method fields with spin on a hyperbolic
cylinder were considered by David and Mukherjee [9], who
showed that this approach reproduces the log coefficient in
the extractable entropy even for gravity [10].
An outline of this paper is as follows. We develop the

hourglass prescription for a 2D conformal field theory
(CFT) on a spatial circle in Sec. II, where the entangling
surface consists of two points. In Sec. III we extend the
prescription to spherical regions in conformal field theories
in higher dimensions. We illustrate the prescription in four
dimensions in Secs. IV and V by calculating the log
divergence in the entropy for a conformally coupled scalar
field and for a Maxwell field. In the latter case we find
agreement with the extractable entropy computed by Soni
and Trivedi. We conclude in Sec. VI.

II. HOURGLASS PRESCRIPTION IN 2D

We begin by considering a 2D CFT on a unit spatial
circle and make a division of the circle into A ∪ Ā where

Ā ¼ f−π < ϕ < 0g A ¼ f0 < ϕ < πg: ð2Þ

To study entanglement between A and Ā we introduce the
operator,

V ¼
Z

π

−π
dϕjsinϕjT00ðϕÞ: ð3Þ

The operator V is singular on the boundary between the two
regions (meaning at ϕ ¼ 0; π) where jsinϕj is not smooth,
but this is easy to regulate. We introduce a parameter ϵ → 0
and define

Vϵ ¼
Z

π

−π
dϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 ϕþ ϵ2

q
T00ðϕÞ: ð4Þ

We define a partition function by

ZϵðβÞ ¼ Tr e−βVϵ ; ð5Þ

and propose to define a regulated entanglement entropy by

Sϵ ¼
1

2

�
β
∂

∂β
− 1

�����
β¼2π

ð− log ZϵÞ: ð6Þ

The regulator function we have introduced
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 ϕþ ϵ2

p
is

a convenient explicit choice, but it is not unique. Any
function which is smooth and nonzero near ϕ ¼ 0; π would

do equally well. The partition function (5) corresponds to
putting the theory on a Euclidean geometry,1

ds2 ¼ dϕ2 þ ðsin2ϕþ ϵ2Þdθ2
ϕ ≈ ϕþ 2π θ ≈ θ þ β: ð7Þ

When ϵ ¼ 0 the geometry looks like two spheres (two
American footballs if β ≠ 2π) touching at their tips. The
regulator smooths the geometry into an “hourglass” shape
that is topologically a torus, as shown in Fig. 1.
Having presented our proposal we should give some

motivation and connect it to discussions in the literature. To
do this we start from the modular Hamiltonian appropriate
to the division into A ∪ Ā [11],

K ¼
Z

π

−π
dϕ sin ϕT00ðϕÞ: ð8Þ

In the ground state K is formally related to the reduced
density matrices for regions A and Ā by e−2πK ¼ ρA ⊗ ρ−1Ā .
This is only a formal relation in continuum field theory,
since the Hilbert space does not admit a tensor factoriza-
tion, and for that reason the following motivation is purely
heuristic. Given the absolute value we introduced in (3),
which amounts to a sign change in region Ā, we see that V
is formally related to the reduced density matrices by

e−2πV ¼ ρA ⊗ ρĀ: ð9Þ

If we define a partition function,

ZðβÞ ¼ Tr e−βV; ð10Þ

then formally the entanglement entropy is given by

S ¼ 1

2

�
β
∂

∂β
− 1

�����
β¼2π

ð− log ZÞ: ð11Þ

The factor of 1
2
compensates for the overcounting of having

two regions, so that (11) gives the von Neumann entropy
for just one of the reduced density matrices. This provides a
heuristic motivation for the proposal (6).
Two comments regarding this prescription are in order.
1. From a geometric perspective, note that the hour-

glass has a freely acting Killing vector ∂

∂θ. In this
sense it is similar to an ordinary thermal system in
the imaginary-time formalism.

2. From a canonical perspective the partition function
(5) corresponds to a density matrix,

1We explain this connection in more detail in Appendix A,
where we show that Vϵ is the Hamiltonian that generates
translations of the Euclidean time coordinate θ.
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ρ ¼ 1

ZϵðβÞ
e−βVϵ : ð12Þ

This can be thought of as a thermal density matrix
with a position-dependent proper temperature,

Tproper ¼
1

β
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 ϕþ ϵ2

p : ð13Þ

Note that the density matrix is defined on the entire
Hilbert space. Thus we are able to discuss entangle-
ment without introducing a tensor factorization of
the Hilbert space, thereby avoiding a problematic
issue in continuum quantum field theory [12].

For completeness we evaluate the hourglass entropy in a
general 2D CFT. With a change of coordinates dϕ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 ϕþ ϵ2

p
dχ the metric becomes conformal to a flat

torus,

ds2 ¼ ðsin2 ϕþ ϵ2Þðdχ2 þ dθ2Þ: ð14Þ

We can neglect the conformal factor since it does not
contribute to the entropy [13]. The periodicity has changed,
from ϕ ≈ ϕþ 2π to χ ≈ χ þ Lϵ where

Lϵ ¼
Z

2π

0

dϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2ϕþ ϵ2

p ¼ 4 log
1

ϵ
þ finite: ð15Þ

On a long cylinder the partition function per unit length
is − log Z=Lϵ ¼ − πc

6β [14], so the log divergence in the
entropy is given by

S ¼ 1

2

�
β
∂

∂β
− 1

�����
β¼2π

�
−
πcLϵ

6β

�

¼ c
3
log

1

ϵ
: ð16Þ

Thus we recover the standard result for the entanglement of
an interval in 2D CFT [15,16].

III. HOURGLASS PRESCRIPTION
IN HIGHER DIMENSIONS

In what follows we will denote the number of spacetime
dimensions by d and (less frequently) the number of spatial
dimensions by n.

To generalize the hourglass prescription to higher
dimensions we begin from the modular Hamiltonian for
a spherical region in conformal field theory. As shown
by [17] and reviewed in Appendix B, this leads us to the
Euclidean de Sitter metric written in static coordinates,

ds2sphere ¼ R2½dϕ2 þ sin2ϕdθ2 þ cos2ϕdΩ2
d−2�

0 ≤ ϕ ≤ π=2 θ ≈ θ þ 2π: ð17Þ

This describes a round sphere of radius R, as one can see
by parametrizing the hypersurface fu2 þ v2 þ j  wj2 ¼ 1g ∈
Rdþ1 as

u ¼ sinϕ cos θ

v ¼ sinϕ sin θ

 w ¼ cosϕ  n with  n ∈ Rdþ1;  n ¼ 1: ð18Þ

To obtain a singular football geometry analogous to (7) we
extend the range of ϕ to −π=2 ≤ ϕ ≤ π=2 and modify the
periodicity to θ ≈ θ þ β,

ds2football ¼ R2½dϕ2 þ sin2ϕdθ2 þ cos2ϕdΩ2
d−2�

− π=2 ≤ ϕ ≤ π=2 θ ≈ θ þ β: ð19Þ

One can think of this as two Euclidean de Sitter spaces at
inverse temperature β that touch at their common horizon,
that is, at the Sd−2 located at ϕ ¼ 0. Finally to smooth the
geometry into an hourglass we take

ds2hourglass ¼ R2dϕ2 þ ðR2sin2ϕþ ϵ2Þdθ2 þ R2cos2ϕdΩ2
d−2

− π=2 ≤ ϕ ≤ π=2 θ ≈ θ þ β: ð20Þ

Here ϵ → 0 is a dimensionful regulator with units of length.
We recognize the first and last terms in (20) as the metric on
a round (d − 1)-sphere,2 so

ds2hourglass ¼ ðR2 sin2 ϕþ ϵ2Þdθ2 þ R2dΩ2
d−1

θ ≈ θ þ β: ð21Þ

FIG. 1. Two touching footballs, smoothed out into an hourglass geometry. The two football tips that do not touch should be identified.
Likewise the two open ends of the hourglass should be identified.

2In Rd with coordinates ð  x; zÞ set  x ¼ cosϕ  n and z ¼ sinϕ.
Here − π

2
≤ ϕ ≤ π

2
and j  nj is a unit vector.
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Regarding θ as the Euclidean time direction, this describes
a spherical space of radius R with a temperature that
depends on the azimuthal angle ϕ,

Tproper ¼
1

β
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 sin2 ϕþ ϵ2

p : ð22Þ

The temperature is lowest at the poles ϕ ¼ �π=2 (the
centers of the static patches) and highest at the equator
ϕ ¼ 0 (the common de Sitter horizon).

For calculational purposes it is convenient to switch to a
different conformal frame in which the proper temperature
is constant. This is the so-called optical geometry of [18],
applied in this context in [13,19,20],3

ds2optical ¼
1

gθθ
ds2hourglass

¼ dθ2 þ 1

sin2ϕþ ðϵ=RÞ2 ðdϕ
2 þ cos2ϕdΩ2

d−2Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
dΩ2

d−1

θ ≈ θ þ β −
π

2
≤ ϕ ≤

π

2
: ð23Þ

The proper temperature is now 1=β everywhere, but the
spatial geometry is no longer a round Sd−1. Instead it can be
thought of as two copies of hyperbolic space Hd−1, cut off
at large radius and smoothly attached to each other. To see
this we change coordinates on the northern hemisphere and
set sinh ρ ¼ 1=tan ϕ. The northern hemisphere π

2
≥ ϕ > 0

corresponds to 0 ≤ ρ < ∞. This puts the metric on the
northern hemisphere in the form,

ds2optical ¼ dθ2 þ 1

1þ ðϵRÞ2 cosh2 ρ
ðdρ2 þ sinh2 ρdΩ2

d−2Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ds2

Hd−1

:

ð24Þ

We recognize dρ2 þ sinh2 ρdΩ2
d−2 as the metric on a unit

Hd−1. Thus we can approximate the spatial geometry as
two copies of hyperbolic space with unit radius of curvature
that are

(i) cut off at a radial coordinate ρ0 ∼ log 2R
ϵ , and

(ii) connected by a neck region which, as can be seen
from (23), is approximately a strip − ϵ

R < ϕ < ϵ
R

around the equator of a round sphere of radius R=ϵ.
Thus for a conformal field theory in any number of

dimensions we are instructed to compute a thermal partition

function ZϵðβÞ on the spatial geometry (24). Entanglement
entropy is then given by a formula analogous to (6),

Sϵ ¼
1

2

�
β
∂

∂β
− 1

�����
β¼2π

ð− log ZϵÞ: ð25Þ

Although the prescription applies in any number of
dimensions, in the examples that follow we specialize to
d ¼ 4 and focus on obtaining the log divergent terms in the
entropy.

IV. CONFORMAL SCALARS IN 4D

In this section we consider a massless conformally
coupled scalar field in the optical geometry (23). We
specialize to four spacetime dimensions, d ¼ 4. Our goal
is to calculate the partition function on this space as ϵ → 0.
There is a leading quadratic divergence ∼R2=ϵ2 that
depends on the choice of regulator function in (20) which
we will largely ignore. Instead we are interested in keeping
track of the subleading ∼ logðR=ϵÞ divergence since it is
universal.
We begin by studying the spatial 3-geometry in more

detail. One quantity of interest is the spatial volume,
which can be evaluated in terms of elliptic integrals and
expanded for small ϵ,4

vol3 ¼ 4π

Z
π=2

−π=2
dϕ

cos2 ϕ

ðsin2 ϕþ ðϵ=RÞ2Þ3=2

¼ 8πR2

ϵ2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ ϵ2

p

R
E

�
Rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 þ ϵ2
p

�

−
ϵ2

R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ ϵ2

p K

�
Rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 þ ϵ2
p

��

¼ 8πR2

ϵ2
− 4π log

R
ϵ
þ finite: ð26Þ

As expected the volume diverges as ϵ → 0. In general the
quadratic divergence gets contributions from both the
hyperbolic and neck regions of the geometry, which is
another way of saying that it is sensitive to the choice of
regulator function. But we are particularly interested in the
log divergence, and it is important to recognize that the log
divergence only comes from the hyperbolic part of the
geometry. As a direct test of this, consider the volume of
hyperbolic space with a radial cutoff at ρ0 ∼ log R

ϵ,

ds2H3 ¼ dρ2 þ sinh2ρdΩ2
2

volðρ< ρ0Þ ¼
Z

ρ0

0

dρ4πsinh2ρ¼ πR2

2ϵ2
− 2π log

R
ϵ
þ finite:

ð27Þ

3The change of frame corresponds to a change in integration
measure which, as discussed in [13], produces an anomalous term
in the effective action that does not affect the entropy. Intuitively
the change in integration measure, being local, shifts the effective
action by a term proportional to β and hence does not affect the
entropy. 4Conventions differ. Here EðkÞ ¼ R

1
0 dx

ffiffiffiffiffiffiffiffiffiffiffi
1−k2x2
1−x2

q
.
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Multiplying by 2 to account for the two copies of H3, the
coefficient of the log divergence agrees with (26).
We will also be interested in the curvature of the

spatial geometry. The optical 3-geometry is conformal to
a sphere,

ds23 ¼
1

sin2 ϕþ ðϵ=RÞ2|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
Ω2

ðdϕ2 þ cos2 ϕdΩ2
d−2Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ds2
0

; ð28Þ

where ds20 is the metric on a unit 3-sphere. The scalar
curvature can be obtained from the conformal transforma-
tion rule,

R ¼ 1

Ω2
R0 −

2ðn − 1Þ
Ω3

□0Ω −
ðn − 1Þðn − 4Þ

Ω4
gab0 ∂aΩ∂bΩ:

ð29Þ

Here n ¼ 3 is the number of spatial dimensions, and
R0 ¼ nðn − 1Þ is the scalar curvature of Sn. This leads to

R ¼ −6sin2ϕþ 4ðϵ=RÞ2cos2ϕþ 6ðϵ=RÞ4
sin2ϕþ ðϵ=RÞ2

≈
	−6 if jϕj > ϵ

R

þ4 if − ϵ
R < ϕ < ϵ

R

: ð30Þ

This is the scalar curvature in three dimensions, but since
the 4-geometry is metrically a product with S1 it is also the
scalar curvature in four dimensions. Note that the scalar
curvature is bounded everywhere. In the regions that can be
approximated by hyperbolic space we have R ≈ −6 as
expected.5 It appears that the curvature varies rapidly near
ϕ ¼ 0, but this is a coordinate artifact since the proper
length of the interval − ϵ

R < ϕ < ϵ
R is Oð1Þ.

Thus we are led to a picture where the partition
function (5) is a standard thermal partition function,
evaluated at inverse temperature β, on a spatial geometry
which has a diverging volume butOð1Þ curvature as ϵ → 0.
We consider a massless conformally coupled scalar on this
geometry for which

− log Z ¼ 1

2
Tr log ð−∂2θ −∇2

3 þ ξRÞ: ð31Þ

Here ∇2
3 is the Laplacian on the spatial geometry (28) and

for conformal coupling in 4D we set ξ ¼ d−2
4ðd−1Þ ¼ 1=6. In a

proper-time parametrization with UV cutoff Λ → ∞ we
have

− log Z ¼ −
1

2

Z
∞

1=Λ2

ds
s
Tre−sð−∂

2
θ−∇2

3
þξRÞ ð32Þ

On a product space the heat kernel in (32) factors.
(i) The factor associated with the thermal circle is

KβðsÞ ¼
X
n∈Z

e−sð2πn=βÞ2 : ð33Þ

By Poisson resummation this can be reexpressed as a
sum over winding modes,

KβðsÞ ¼
βffiffiffiffiffiffiffiffi
4πs

p þ βffiffiffiffiffi
πs

p
X∞
m¼1

e−m
2β2=4s: ð34Þ

The first term in (34) makes a contribution to − logZ
which is UV divergent but proportional to β. Such a
term does not contribute to the entropy so we will
discard it. The remaining terms are all UV finite
since the heat kernel provides a UV cutoff at s ∼ β2.

(ii) The factor associated with the optical 3-geometry is

K3ðsÞ ¼
Z

d3x
ffiffiffiffiffi
g3

p
K3ðs; x; xÞ

K3ðs; x; x0Þ ¼ hxje−sð−∇2
3
þξRÞjx0i: ð35Þ

This appears difficult to evaluate, but recall that the
optical geometry has a curvature that is Oð1Þ. We
therefore expect that the heat kernel K3ðs; x; x0Þ has
a finite limit as ϵ → 0. There is still a divergence
in (35) due to the infinite volume of optical space,
but recall that the log divergence in (26) only comes
from the hyperbolic part of the geometry. So to
extract the log divergence we replace K3 with the
heat kernel on hyperbolic space.6 In Appendix C we
show that at coincident points x ¼ x0 this replace-
ment gives

K3ðs; x; xÞ →
1

ð4πsÞ3=2 : ð36Þ

Rather remarkably this is the same result that one
would obtain for a massless field in flat space.

Now it’s a simple matter of assembling the pieces. We
have

5The scalar curvature of a unit Hn is R ¼ −nðn − 1Þ.

6This approximation is adequate to capture log divergences in
the final answer. There are also quadratic divergences coming
from the neck region of the geometry (24) which we will not
attempt to calculate. Since the neck region enters as a UV cutoff
in the original conformal frame (20) it will not contribute to a log
divergence.
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− log ZðβÞ ¼ −
βffiffiffiffiffiffi
4π

p
Z

∞

0

ds

s3=2
X∞
m¼1

e−m
2β2=4s

×
Z

d3x
ffiffiffiffiffi
g3

p
K3ðs; x; xÞ

→ −
βffiffiffiffiffiffi
4π

p
Z

∞

0

ds

s3=2
X∞
m¼1

e−m
2β2=4svol3

1

ð4πsÞ3=2

¼ −
X∞
m¼1

1

π2β3m4
vol3

¼ −
π2

90β3
vol3: ð37Þ

The entropy is then

S ¼ 1

2

�
β
∂

∂β
− 1

�����
β¼2π

ð− log ZÞ ¼ 1

360π
vol3: ð38Þ

Recalling the expression for the volume (26) we have

S ¼ #
R2

ϵ2
−

1

90
log

R
ϵ
þ finite: ð39Þ

The coefficient of the quadratic divergence is not universal
and is not determined by this calculation, but the coefficient
of the log divergence is trustworthy. It agrees with a
previous result due to Dowker [8], in which entanglement
entropy was obtained from thermodynamics in de Sitter
space. It also matches the partition function on a de Sitter
instanton evaluated by Kamenshchik [7].

V. MAXWELL FIELD IN 4D

Finally we consider a Maxwell field in four spacetime
dimensions. Entanglement in Maxwell theory has been the
subject of a long series of works [4–6,21–34]. Here we take
advantage of conformal symmetry and calculate the log
divergence in the entropy of a spherical region. The
coefficient of the log agrees with a previous calculation
by Dowker [8] and also agrees with the log term in the
extractable entropy evaluated by Soni and Trivedi [5]. We
take this as strong evidence that the hourglass prescription
provides a direct geometric way of computing physical
(extractable) entanglement entropy in quantum field theory.
Our starting point is the gauge-fixed action,

S ¼
Z

d4x
ffiffiffi
g

p �
1

4
FμνFμν þ 1

2
ð∇μAμÞ2 − ib∇2

4c

�

¼
Z

d4x
ffiffiffi
g

p �
1

2
Aμð−gμν∇2

4 þ RμνÞAν − ib∇2
4c
�
: ð40Þ

We are working in Euclidean space in Feynman gauge.
The ghost fields b, c behave as minimally coupled scalars
while the gauge field Aμ couples to the Ricci curvature Rμν.

The four-dimensional Laplacian ∇2
4 ¼ ∇μ∇μ acts in the

appropriate representation, either spin-0 or spin-1.
It is convenient to decompose the metric and

Laplacian as

ds2 ¼ dθ2 þ ds23

∇2
4 ¼ ∂

2
θ þ∇2

3: ð41Þ

We likewise decompose Aμ ¼ ðAθ; AiÞ into a Euclidean
time component Aθ and spatial components Ai. These
behave as a (scalar, vector) from the 3D point of view. In a
proper-time parametrization we have

− log Z ¼ −
1

2

Z
∞

1=Λ2

ds
s
ðTre−sð−∇2

4
Þ þ Tre−sð−gij∇2

4
þRijÞÞ

þ
Z

∞

1=Λ2

ds
s
Tre−sð−∇2

4
Þ; ð42Þ

from Aθ, Ai and the ghosts, respectively. (For Ai note that
∇2

4 acts in the spin-1 representation.) There is a partial
cancellation between Aθ and the ghosts, so we are left with

− log Z

¼ −
1

2

Z
∞

1=Λ2

ds
s
ð−Tre−sð−∇2

4
Þ þ Tre−sð−gij∇2

4
þRijÞÞ

¼ −
1

2

Z
∞

0

ds
s
KβðsÞð−Tre−sð−∇2

3
Þ þ Tre−sð−gij∇2

3
þRijÞÞ:

ð43Þ

In the second line we factored out the heat kernel for the
thermal circle (34), dropping the term with no winding
since it does not contribute to the entropy. This let us
remove the UV cutoff Λ from the calculation.
From the spatial point of view we have a massless

minimally coupled scalar and a massless vector. The scalar
heat kernel is given in (C11), while for the vector heat
kernel we borrow the result from [35].

Tre−sð−∇2
3
Þ ¼ vol3

e−s

ð4πsÞ3=2

Tre−sð−gij∇2
3
þRijÞ ¼ vol3

e−s þ 2þ 4s

ð4πsÞ3=2 : ð44Þ

There is an amusing cancellation, and we are left with

− log ZðβÞ ¼ −
βffiffiffiffiffiffi
4π

p
Z

∞

0

ds

s3=2
X∞
m¼1

e−m
2β2=4svol3

2þ 4s

ð4πsÞ3=2

¼ −
1

π2
X∞
m¼1

�
1

βm2
þ 2

β3m4

�
vol3

¼ −
�
1

6β
þ π2

45β3

�
vol3: ð45Þ
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The entropy is then

S ¼ 1

2

�
β
∂

∂β
− 1

�����
β¼2π

ð− log ZÞ ¼ 4

45π
vol3: ð46Þ

Recalling the expression for the volume (26) we have

S ¼ #
R2

ϵ2
−
16

45
log

R
ϵ
þ finite: ð47Þ

We have not determined the coefficient of the quadratic
divergence. The coefficient of the log agrees with the
coefficient in the extractable entropy obtained by Soni and
Trivedi [5], who wrote their result in terms of the area of the
entangling surface as D log A

ϵ2
with D ¼ − 16

90
. It also agrees

with the thermal entropy in de Sitter space evaluated by
Dowker [8] and with the partition function on a de Sitter
instanton evaluated by Kamenshchik [7].

VI. CONCLUSIONS

In this paper we extended the hourglass prescription to
spherical entangling surfaces in conformal field theory. For
a Maxwell field in four dimensions we showed that the
coefficient of the log divergence agrees with the coefficient
in the extractable entropy obtained by Soni and Trivedi [5].
We take this as strong evidence that the hourglass pre-
scription provides a direct geometric method for computing
extractable entanglement in field theory. That is, the
hourglass prescription counts the number of Bell pairs
split by the entangling surface. It avoids any Shannon
contribution to the entropy arising from classical correla-
tions across the entangling surface. (Such correlations are
present in a gauge theory due to the Gauss constraint.)
We view this as a further advantage of the hourglass
prescription, in addition to the fact that it is manifestly
gauge invariant and avoids any need to tensor-factor the
Hilbert space.
Let us mention a few connections with the literature and

directions for future work.

A. Interpreting the Maxwell result

Casini and Huerta [4] studied the entanglement of a
Maxwell field across a spherical entangling surface and
showed that the Maxwell field decomposes into two
massless scalars from which the l ¼ 0 mode has been
removed. To connect this to the present work, note that for a
massless scalar in 4D (assuming conformal coupling) we
can borrow the result (37),

− log Zscalar ¼ −
βffiffiffiffiffiffi
4π

p
Z

∞

0

ds

s3=2
X∞
m¼1

e−m
2β2=4svol3

1

ð4πsÞ3=2 :

ð48Þ

The l ¼ 0 mode has a Dirichlet boundary condition at
the origin [4]. It behaves like a field in two dimensions.
Dropping the Sd−2 in (20), we see that it propagates on a
geometry,

ds2 ¼ R2dϕ2 þ ðR2 sin2 ϕþ ϵ2Þdθ2; ð49Þ

which is nothing but the two-dimensional hourglass studied
in Sec. II. On the 2D hourglass the Dirichlet condition at the
origin (and likewise at infinity) corresponds to a Dirichlet
condition at ϕ ¼ � π

2
. We can use a conformal trans-

formation to turn the hourglass into a long cylinder with
Dirichlet boundary conditions at the ends, however in place
of (15) the length of the cylinder is

vol1 ¼
Z

π=2

−π=2

Rdϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 sin2 ϕþ ϵ2

p ¼ 2 log
R
ϵ
þ finite: ð50Þ

The partition function for the l ¼ 0 mode can be obtained
from (48) by

1. replacing vol3 with vol1
2. replacing 1=ð4πsÞ3=2 with 1=ð4πsÞ1=2, the heat

kernel appropriate to one spatial dimension.
This leads to

− logZl¼0
scalar ¼ −

βffiffiffiffiffiffi
4π

p
Z

∞

0

ds

s3=2
X∞
m¼1

e−m
2β2=4svol1

1

ð4πsÞ1=2 :

ð51Þ

It is then straightforward to check that7

− 2ðlog Zscalar − log Zl¼0
scalarÞ

¼ −
βffiffiffiffiffiffi
4π

p
Z

∞

0

ds

s3=2
X∞
m¼1

e−m
2β2=4svol3

2þ 4s

ð4πsÞ3=2 : ð52Þ

This agrees with the Maxwell result (45), as Casini and
Huerta predicted.

B. Conformal anomaly

On general grounds one expects log divergences in a
conformal field theory to be determined by the conformal
anomaly, or equivalently by the Oðs0Þ terms in the
expansion of the heat kernel [36], which when integrated
over a smooth manifold imply

Z ffiffiffi
g

p hTμ
μi ¼ aE4 þ cW2: ð53Þ

Here the integrated Euler density and square of the Weyl
tensor are

7We are retaining only log terms in the volume. For the log
terms from (26) we have vol1 ¼ − 1

2π vol3.
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E4 ¼
1

64π2

Z ffiffiffi
g

p ðRiemann2 − 4Ricci2 þ R2Þ ð54Þ

W2 ¼−
1

64π2

Z ffiffiffi
g

p �
Riemann2− 2Ricci2þ 1

3
R2

�
: ð55Þ

This leads to a connection between entanglement entropy
(calculated using the replica trick) and anomaly coefficients
[17,22,37,38]. It would be interesting to explore how the
hourglass prescription modifies this connection. In this
regard let us note that the hourglass (20) is obtained by
periodically identifying along a Killing vector ∂

∂θ. This
means integrated quantities such as (54), (55) are propor-
tional to β and therefore do not contribute to the entropy.8

However the arguments in the literature connecting entropy
and anomalies only apply when a UV regulator is intro-
duced and held fixed while a singular limit of the geometry
is taken [5]. The heat kernel on a singular hourglass
geometry may be well-defined, but this is a subtle situation
to analyze. Further subtleties with anomalies have been
studied in [6].

C. Future directions and open questions

There are many interesting directions and open questions
to explore.
In the examples we considered we focused on log terms in

the entropy in even spacetime dimensions. But the basic
prescription (24), (25) applies to spherical regions in con-
formal field theory in any number of dimensions. It would be
particularly interesting to calculate finite terms in the entropy
in odd spacetime dimensions, especially in d ¼ 3 as a
measure of topological entanglement entropy [39,40].
It would also be interesting to apply the hourglass

prescription to spherical regions in conformal field theories
that have a holographic dual. Applying the hourglass
prescription on the boundary, perhaps one could identify
the bulk dual of the calculation along the lines of [41].
More ambitiously it would be interesting to extend the

prescription to nonspherical regions. Here we face an
obstacle, that very little is known about the starting point
(the modular Hamiltonian) for non-spherical regions, even
in conformal field theory. A more tractable possibility
might be to extend the prescription to spherical regions
in non-conformal theories. Work in this direction is in
progress [42].
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APPENDIX A: HOURGLASS HAMILTONIAN

The two-dimensional hourglass geometry (7) is engi-
neered to have a Killing vector ∂

∂θ. Moreover it is designed
so that the Hamiltonian that generates shifts along the
Killing vector is the operator Vϵ. To show this we begin
from the general formula for the conserved charge asso-
ciated with a Killing vector ξμ,

Q ¼ −
Z
Σ
dd−1x

ffiffiffiffiffi
gΣ

p
Tμνnμξν: ðA1Þ

Here Tμν is the stress tensor, Σ is a hypersurface with
induced metric gΣ and nμ is a unit vector normal to the
hypersurface. The fact that Q is conserved, and generates
the transformation xμ → xμ þ ξμ, follows from the Ward
identity,9

∇μhTμνðxÞOðx1Þ � � �OðxnÞi

¼ −
Xn
i¼1

1ffiffiffi
g

p δdðx − xiÞ∇ν
i hOðx1Þ � � �OðxnÞi ðA2Þ

(multiply by the Killing vector and integrate).
Let us evaluate Q on the hourglass geometry,

ds2 ¼ dϕ2 þ ðsin2 ϕþ ϵ2Þdθ2: ðA3Þ

The Killing vector is ξ ¼ ∂

∂θ. We take Σ to be a hypersurface
of constant θ with induced metric ds2Σ ¼ dϕ2 and unit
normal,

n ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 ϕþ ϵ2

p ∂

∂θ
: ðA4Þ

Note that the Killing vector is proportional to the normal
vector, ξμ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 ϕþ ϵ2

p
nμ. This lets us write the con-

served charge purely in terms of the normal vector.

Q ¼ −
Z

dϕ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 ϕþ ϵ2

q
Tμνnμnν: ðA5Þ

We want to compare Q to the operator Vϵ defined in (4).
One complication is that Vϵ is written on the t ¼ 0 slice
of Minkowski space while Q is written in Euclidean
signature.10 We account for this by setting nμ ¼ −inμM where8The Euler number cannot vary continuously, which provides a

quick argument that the Euler number of the hourglass (topo-
logically S1 × S3) vanishes. Note the discrete difference from
Euclidean de Sitter space (topologically S4) with Euler number 2.

9A detailed discussion may be found in [43,44].
10For further discussion of this point see Sec. 7.1 of [44].
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nμM ¼ ð1; 0;…; 0Þ is a unit vector normal to the Minkowski
t ¼ 0 slice. Then in Lorentzian signature we find that

Q ¼
Z

dϕ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 ϕþ ϵ2

q
T00; ðA6Þ

which agrees with Vϵ.
An analogous calculation in higher dimensions

would show that the generator of τ translations on the
geometry (B2) is

Q ¼ −
Z

dd−1x
R2 − ρ2

2R2
Tμνnμnν: ðA7Þ

Comparing this to 1=R times the generator K defined
in (B1), we see that the two agree after Q is continued to
Lorentzian signature.

APPENDIX B: MODULAR HAMILTONIAN
FOR SPHERICAL REGIONS

In this appendix we review the steps [17] leading from
the modular Hamiltonian for a spherical region in CFTd to
the Euclidean de Sitter metric (17).
Consider dividing the t ¼ 0 slice of Minkowski space

into two regions separated by a sphere of radius R. For a
conformal field theory the modular Hamiltonian for such a
division is [45]

K ¼
Z

dd−1x
R2 − ρ2

2R
T00; ðB1Þ

where ρ is a radial coordinate. We will focus on the interior
region 0 ≤ ρ < R, although in conformal field theory there
is a symmetry ρ → R2=ρ that exchanges the interior and
exterior. The partition function ZðβÞ ¼ Tre−βK=R corre-
sponds to putting the theory on a Euclidean geometry,

ds2 ¼ ðR2 − ρ2Þ2
4R4

dτ2 þ dρ2 þ ρ2dΩ2
d−2

τ ≈ τ þ β: ðB2Þ

Defining the partition function in this way makes τ and β
dimensionful. The on shell temperature that makes the
geometry smooth is β ¼ 2πR.
Consider a Weyl transformation ds2 → 4R4

ðR2þρ2Þ2 ds
2

together with a change of coordinates r ¼ 2R2ρ
ρ2þR2. This

brings the metric to the form,

ds2 ¼ R2 − r2

R2
dτ2 þ R2

R2 − r2
dr2 þ r2dΩ2

d−2; ðB3Þ

which is Euclidean de Sitter space. Setting τ ¼ Rθ and
r ¼ R cosϕ puts the metric in the form used in Sec. III,

ds2 ¼ R2½sin2 ϕdθ2 þ dϕ2 þ cos2 ϕdΩ2
d−2�: ðB4Þ

This describes a round sphere of radius R when

θ ≈ θ þ 2π 0 ≤ ϕ ≤ π=2: ðB5Þ

Note that Euclidean time θ is now dimensionless, and the
on shell temperature corresponds to β ¼ 2π. In these
coordinates the center of the static patch is at ϕ ¼ π=2
and the de Sitter horizon is at ϕ ¼ 0. So far we have only
discussed the interior region, but really the interior and
exterior geometries are identical, and as shown in Sec. III
they can be smoothly connected once a regulator is
introduced.

APPENDIX C: HEAT KERNEL
ON HYPERBOLIC SPACE

Heat kernels in hyperbolic space have been studied in
many references. Here we give a brief treatment for scalar
fields in three dimensions. A more general treatment
including fields with spin may be found in [35,46].
Consider three-dimensional hyperbolic space H3 with

metric,

ds2H3 ¼ dρ2 þ sinh2 ρdΩ2
2: ðC1Þ

We will consider some slight generalizations below, but for
now we would like to determine the heat kernel for the
Laplacian on this space,

K3ðs; x; x0Þ ¼ hxje−sð−∇2
3
Þjx0i: ðC2Þ

Since H3 is maximally symmetric we can put x0 at the
origin; the heat kernel will only depend on the radial
coordinate of the other point. For a field of mass m2 the
Green’s function is related to the heat kernel by

Gðx; x0;m2Þ ¼ hxj 1

−∇2
3 þm2

jx0i

¼
Z

∞

0

ds e−sm
2

K3ðs; x; x0Þ: ðC3Þ

It is straightforward to construct the Green’s function by
solving the radial differential equation away from the origin
and imposing the appropriate short-distance behavior,

�
−

1

sinh2ρ
∂ρsinh2ρ∂ρ þm2

�
Gðρ;0;m2Þ ¼ 0 for ρ ≠ 0

Gðρ;0;m2Þ∼ 1

4πρ
as ρ→ 0:

ðC4Þ

This leads to
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Gðρ; 0;m2Þ ¼ e−ρ
ffiffiffiffiffiffiffiffiffi
m2þ1

p

4π sinh ρ
: ðC5Þ

The heat kernel is given by an inverse Laplace transform,

K3ðs; x; x0Þ ¼
Z

cþi∞

c−i∞

dm2

2πi
esm

2

Gðx; x0;m2Þ; ðC6Þ

where c > −1 so that the contour runs vertically to the right
of all singularities. The contour can be deformed to enclose
the branch cut at −∞ < m2 < −1. Integrating the disconti-
nuity across the cut leads to

K3ðs; ρ; 0Þ ¼ hρje−sð−∇2
3
Þj0i ¼ ρe−se−ρ

2=4s

ð4πsÞ3=2 sinh ρ
: ðC7Þ

It is trivial to extend this result to include a mass term,

Kmass
3 ðs; ρ; 0Þ ¼ hρje−sð−∇2

3
þm2Þj0i ¼ ρe−sðm2þ1Þe−ρ2=4s

ð4πsÞ3=2 sinh ρ
:

ðC8Þ

This includes the possibility of a nonminimal coupling
which behaves as a mass term with m2 ¼ ξR. Somewhat
curiously conformal coupling in 4D means m2 ¼ −1 since
ξ ¼ 1=6 while the curvature of H3 is R ¼ −6. Thus for
conformal coupling,

Kconformal
3 ðs; ρ; 0Þ ¼ ρe−ρ

2=4s

ð4πsÞ3=2 sinh ρ
: ðC9Þ

At coincident points we recover the result used in (36),

Kconformal
3 ðs; x; xÞ ¼ 1

ð4πsÞ3=2 : ðC10Þ

More generally for a massive scalar at coincident points
we have

Kmass
3 ðs; x; xÞ ¼ e−sðm2þ1Þ

ð4πsÞ3=2 : ðC11Þ

The massless limit of this result was used in (44).
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