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Abstract

Topological solitons are exciting candidates for the physical implementation of next-generation
computing systems. As these solitons are nanoscale and can be controlled with minimal energy
consumption, they are ideal to fulfill emerging needs for computing in the era of big data
processing and storage. Magnetic domain walls (DWs) and magnetic skyrmions are two types of
topological solitons that are particularly exciting for next-generation computing systems in light of
their non-volatility, scalability, rich physical interactions, and ability to exhibit non-linear
behaviors. Here we summarize the development of computing systems based on magnetic
topological solitons, highlighting logical and neuromorphic computing with magnetic DWs and
skyrmions.

1. Introduction

Topological solitons are particle-like solutions in which a mathematical or physical field reaches a stable
minimal energy state [1]. Depending on the dimension of the solution, there are several types of topological
solitons, such as kinks, lumps, vortices, monopoles, and skyrmions. The skyrmion is one example of a
topological soliton model [2], and has been experimentally observed to be stabilized and able to be moved at
room temperature [3]. A magnetic domain wall (DW), on the other hand, is an kink-like soliton [1, 4] that
has also been experimentally nucleated and moved in numerous hardware configurations [5, 6]. Moreover,
both skyrmions and DWs in ferromagetic films can be electrically detected through magnetic tunnel
junctions (MT]s) [7]. Combined, skyrmions and DWs as topological solitons satisfy the requirements for a
computing system and thus can be considered as a novel approach to implement the next-generation
spintronic computing system [8].

This survey is structured as follows: section 2 presents an overview of the fundamental spintronic physics
related to magnetic skyrmion and DW devices; section 3 covers skyrmion logic, including skyrmion
reversible computing and skyrmion clocking schemes; section 4 covers unconventional skyrmion computing
systems such as skyrmion neuromorphic and probabilistic computing systems; sections 5 and 6 cover
DW-MT] logical and neuromorphic computing systems, respectively; and section 7 concludes this survey.

2.Background

Topological solitons, also known as topological defects, have attracted much attention from the scientific
community. Specifically, the study of topological defects and phase transitions was recognized with the Nobel

© 2023 The Author(s). Published by IOP Publishing Itd
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Prize in Physics in 2016 [9, 10]. Among the variety of topological solitons, magnetic skyrmions and magnetic
DWs are particularly intriguing as information carriers for next-generation computing systems. As
background to this review, this section covers the physics of magnetic skyrmions and DWs that underlies the
topological soliton computing in later sections.

2.1. Magnetic skyrmions
Magnetic skyrmions are magnetic textures that have topological characteristics that enable them to be
identified as quasiparticles. The magnetization of a skyrmion contains all possible orientations within a
sphere. At the same time, they are chiral, which means that rotation of the magnetization can happen only in
one direction.

Skyrmions were first proposed in particle physics as a model in field theory for hadrons by Skyrme [11].
In magnetic systems, they were predicted by Bodganov and RéBler [12], and they were finally observed in
2009 in MnSi [13]. Later, they were also observed in thin magnetic metallic film layers with perpendicular
magnetocrystalline anisotropy (PMA), which are more suitable for applications as the skyrmions exist also at
room temperature [14-16].

As topological structures, magnetic skyrmions possess charge, known as the skyrmion number:
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where 7 is the normalized magnetization. The skyrmion number is an integer number that is conserved
under continuous transformations, which means that the skyrmion cannot be destroyed without an energy
discontinuity or without leaving the system by a boundary. This conservation is commonly known as
topological protection. However, the continuous model does not apply to discrete models such as those
based on lattices, the size of a skyrmion may be finite, and the presence of defects can result in a finite energy
barrier for their creation or destruction, which affects their stability [17].

To have skyrmions one needs a special type of exchange proposed originally by Dzyaloshinskii and
Moriya as an explanation for weak ferromagnetism, now known as the Dzyaloshinskii-Moriya interaction
(DMI) [18, 19]. As that exchange is originated by spin—orbit coupling, one of the requirements to have
skyrmions is to have strong spin—orbit coupling. The second requirement is to have reduced symmetry in the
system. The interaction is chiral, so the local moments have a fixed relative orientation that depends on the
sign of the DMI constant. At the atomic level, the DMI energy per spin pair can be represented as:

- -
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where _Dy is the DMI vector, QS ; the spin 7 and QS/-. This produces an orthogonal alignment of neighboring
spins and the chirality of the spin arrangement is given by the direction of QS  This is in contrast to the usual
ferromagnetic Heisenberg exchange, Ery = —J (_)S ;+S)), which favors a parallel alignment of the spins.

Regarding the type of materials where DMI appears, they can be distinguished by how the broken
symmetry originates. DMI can originate in the lattice, which is non-centrosymmetric in compounds with a
B20 lattice, in which case it is referred to as bulk DMI. In other materials, the DMI comes from interfacing
with a heavy metal, which is the source of spin—orbit coupling, typically Pt. Due to this fact, it is known as
interfacial DMI. Being a surface effect, the DMI strength is inversely proportional to the thickness of the
ferromagnetic layer. Usually, in these systems, the ferromagnetic layers also have PMA, with the preferred
magnetization direction perpendicular to the film plane, which is usually labeled as the g axis. In such
systems, the continuous version of the energy density has the following form [12]:
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where D is usually known as the DMI constant and has units of ] m™2.

These two types of DMI generate two types of skyrmions: Néel skyrmions in interfacial DMI systems (see
figure 1(a)) and Bloch skyrmions for bulk DMI in confined geometries (see figure 1(b)). In Néel skyrmions,
the magnetization is contained in the cross section of the skyrmion, as in figure 1(a). On the other hand, in
Bloch skyrmions, the magnetization is perpendicular to the cross section. In both cases, the DMI is chiral
and the direction of rotation (clockwise or anticlockwise in figure 1(a)) is fixed for a given material sample
and is determined by the DMI sign. In interfacial systems with PMA, the magnetization out of the skyrmion
is pointing in the direction favored by the PMA, which coincides with the outer ring of figure 1(a). The
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Figure 1. (a) Néel skyrmion and a cross section of the magnetization through the center of the skyrmion. (b) Bloch skyrmion and
a cross section of the magnetization through the center of the skyrmion.

measured skyrmion size in such systems is around 100 nm [16], although it can be reduced to around 50 nm
in confined geometries [20]. In systems composed of multiple layers and low temperatures, the skyrmion size
can be below 10 nm [21].

After their first experimental observation, skyrmions quickly received interest as a possible means of
magnetic storage [22]. In such applications, skyrmions are information carriers with binary values
represented through the presence or absence of skyrmions. Several challenges must be overcome for efficient
skyrmion memory. First, one needs to create and destroy skyrmions at will. However, as mentioned above,
this is a process that requires energy. Nevertheless, several processes allow the creation of skyrmions by
means of in-plane or out-of-plane electrical currents [23, 24]. Another requirement is the detection of
skyrmions by electrical means. After the initial observation of a magnetic skyrmion, it was soon reported
that a bulk DMI system presents a contribution to the resistance if a lattice of skyrmions is present [25].
More recently, it was reported to be possible to identify the existence of skyrmions by their electrical
signature in thin films containing skyrmions [206]. Finally, to propagate the information, the skyrmions
should be moved along the wire.

Skyrmions, as well as DWs, can be moved by electrical currents applied through the magnetic system,
which will produce a torque on the magnetic texture. One can distinguish spin-transfer torque (STT) or
spin—orbit torque (SOT). In STT, the source of the torque is the polarization of the spin by the ferromagnetic
domain adjacent to the magnetic texture and it is proportional to the gradient of the local magnetization
[27]. In the SOT case, the torque corresponds to a source of spin polarization created by the presence of a
layer of a heavy metal with large spin orbit coupling. Different mechanisms have been proposed such as the
spin Hall effect (SHE) [15] or inverse spin galvanic effect [28], which all share the spin—orbit origin, and,
consequently, are grouped under the denomination SOT. In the experiment, all contributions can be present,
and the final strength of each mechanism depends on the actual material parameters, such as the magnitude
of the resistances of all the layers involved.

To analyze the motion of a skyrmion the best tool is the Thiele model [29]. In this model, the skyrmion is
a rigid object of in-plane coordinates "X = {X1, X5}, whose dynamics can be desctibed by:

-
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where G is the gyrotropic vector which is proportional to the skyrmion number N, ais the damping
constant, D is the dissipation dyadic, and "Fisa driving force applied to the skyrmion. Both in STT and SOT,
the force direction is parallel to the current direction [30]. Due to the gyrotropic character of the skyrmion
motion, when there is a driving force applied to the skyrmion F, in the X direction, there will be a transversal
component X . 2 perpendicular to the force and larger than X ' 1,with the velocity parallel to the force. Using this
model, the deflection angle can be calculated as 6 = arctan(X ) 2/ X ’ 1) = G./aD,., which does not depend
explicitly on the force strength. Due to this fact, the skyrmion will not move parallel to the applied electrical
current; this has been verified experimentally [31]. This effect is known as the skyrmion Hall effect, and the
deflection angle as the skyrmion Hall angle. This is reminiscent of the Magnus force acting on a spinning ball
in a fluid, as the skyrmion linear movement is linked to a rotation around its center. In absence of a driving
force or for low currents, the skyrmion is confined in the sample by the potential created by the boundary
conditions associated to DMI [32], which is derived from equation (3). Eventually, if the electrical current
exceeds some threshold, the skyrmion collides with the sample border and disappears [30]. Finally, one
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Figure 2. Schematic cartoon of DW-MTJ device, showing a logical ‘0’ (left) and a logical ‘1’ state (right). Reproduced from [36].
CC BY 4.0.

characteristic of skyrmions in DMI systems with PMA is that the skyrmion—skyrmion interaction is repulsive
[33]. That fact will be exploited in some of the potential applications explained below.

2.2.DW-MT]

As mentioned before, DWs are kink solitons. They separate magnetic domains of opposite orientations. They
are topological magnetic textures, which means they can only be removed through continuous
transformations if they reach the sample border. That fact means the DW can be annihilated and that the
sample will contain only one of the two original domains. In a system with PMA, the domains will be
oriented perpendicular to the plane, in the Z direction, and the two domains correspond to the regions
where the magnetization is z, = *1. The expression for the domain profile is the standard Bloch solution
m, = xtanh(x/A) where A is the DW width. Equivalent to the skyrmion case, in PMA DWs can be either of
Neéel type (as the cross section of the skyrmion in figure 1(a)) or Bloch type (as the cross section of the
skyrmion in figure 1(b)). In PMA, the presence of DMI favors Néel type over Bloch type. DWs can be moved
by STT or SOT, as explained in the previous section. The main difference between the SHE and other
mechanisms is that when moved by the SHE, the DWs need to be of Néel type, because Bloch walls do not
move under efficiently under the SHE [34]. In principle, this is not a limiting requirement, because the same
heavy metal used to induce SOT can also provide the DMI to favor Néel walls.

The DW-MT] device is a novel nonvolatile logic device comprising a DW racetrack and a MT] for
magnetoresistance readout. Unlike a standard MT], the DW-MT] device has an extended free layer in the
shape of a racetrack that allows for current-driven DW motion. The DW-MT] device finds applications in
in-memory computing and is shown to be stable against radiation [35], which makes it promising for space
applications as well.

A cartoon of the DW-MT]J device is shown in figure 2. The DW racetrack is typically a heavy
metal/magnet/oxide (e.g. Ta/CoFeB/MgO) thin film trilayer. An MT] hard reference layer is patterned atop
the track, with additional pinning layers (typically a synthetic antiferromagnet layer) to ensure a higher
switching field of the hard layer compated to the free layer racetrack. To prevent the DW from escaping the
racetrack, antiferromagnets can be used to exchange-bias the ends of the ferromagnetic track in opposing
directions. Several methods and device components can be used to inject/maintain a DW inside the
racetrack: an electrode (i.e. Oersted field line) can be placed across the track to inject a single DW in the
track; an additional M'T] can be placed to nucleate the DW electrically; and pinning notches can be
fabricated along the track to keep the DW in the track.

The basic DW-MT] device has three terminals, but the four-terminal version has been proposed as well
[37, 38]. Here, we focus on the operation of the three-terminal MT] device: the three terminals are referred
to as input (IN), clock (CLK), and output (OUT), with IN and CLK being the two ends of DW racetrack and
output (OUT) the top of the MT]. The device operates as follows: (a) wrrite operation: a voltage applied
between IN and CLK induces DW motion either through STT and/ot SOT; (b) tead opetration: a voltage
applied between CLK and OUT measures the magnetoresistance state of the MT] which determines the DW
position relative to the MTJ, and this output current can drive subsequent devices. One logic application of
the device is an analog universal NAND gate: the IN of a device is connected to the OUT of two previous
devices, such that only if both are in a low-resistance state (logical ‘1) will there be sufficient current to depin
the DW and drive it past the M'T], switching it from a low-resistance state (logical ‘1’) to high-resistance state
(logical 0%); other combinations of the resistance states of the previous devices cannot provide enough
current to depin the DW, leaving the output resistance state low (logical 1°).
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Experimental device prototypes have demonstrated single-device operation and three-device NAND gate
operation. PMA along with SOT-driven DW motion brings switching current density down to the order of
101" Am 2 [39]. A PMA device integrating MT] read/write of DW and SOT dtiving has been applied to
majority logic [40]. In simulation, other functions, such as a shift register and full adder, have been modeled
in micromagnetics and benchmarked [41-43], and a simulation program with integrated circuit emphasis
(SPICE) model has been developed for large-scale simulations [44]. System-level analysis revealed the
power—performance trade-offs. For example, one study found undesirable DW pinning and thermal noise
caused by ultra-low-voltage operation [45], but thermal noise limitations can be mitigated by increasing
tunnel magnetoresistance (TMR).

We now briefly discuss the key metrics of DW-MT] logic devices, including area, switching current
density, DW speed, TMR, resistance-area product, cycle-to-cycle, and device-to-device variation. It has been
calculated that a NAND device has a cell size of 182, whete F is the pitch size [40]. For the following
calculations, we assume a scaled pitch size of F'= 15 nm, which corresponds to an area density of 2.5 x 1010
devices cm™ 2. Based on a previously reported switching current density of 1 x 10'© A m™2 for pitch size I of
150-450 nm, a scaled device of F'= 15 nm requires switching voltage U = 100 mV and switching time 7= 5
ns, corresponding to a switching energy of 7.5 x 10713 J. Recent reports on new DW racetrack materials find
ultra-high DW speed up to 5700 ms™! in the ferrimagnetic CoGd alloys [47], which will result in switching
speeds of 8 GHz when eventually integrated to DW-MT] logic. A major challenge in large-scale system
integration is device-to-device variation, which has been addressed in [48]. Efforts in thin film stack growth
and device fabrication techniques are still required to reduce TMR variation and related limitations and
errofrs.

3. Skyrmion logic

Magnetic skyrmions as topological information carriers have been widely explored for integration in
emerging computing systems. Specifically, [22, 30, 49-52] use skyrmions for memory, [53—60] use
skyrmions for logic gates, and [61—65] use skyrmions for neuromorphic computing applications. This
section focuses on skyrmion logic gates and the associated driving scheme, while the following section shifts
the focus to skyrmions in neuromorphic computing systems.

3.1. Reversible computing overview

Landauer [66] was the first person to point out that the loss of (known or correlated) information from a
digital system implies a corresponding irreducible entropy increase (and thus energy expenditure)—this can
be understood to follow as a direct consequence of basic statistical physics and information theory [67]. This
fact motivated the early conceptual development of the reversible computing paradigm [68—70], which
avoids information loss by composing computations out of information-preserving primitive
transformations. In principle, one can construct computing mechanisms on this basis allowing
computations to be carried out with arbitrarily little energy expenditure. The development of engineering
concepts working toward the realization of this principle in concrete electronic systems began in the late
1970s [71, 72]. Such research has continued, albeit at a low level of intensity, to this day, yielding concrete
examples of low-power digital design techniques utilizing reversible computing principles for both
semiconducting [73—76] and superconducting [77] technology platforms. Estimates of the minimum energy
dissipation per reversible logic operation in leading-edge Complementary metal-oxide semiconductor
(CMOS) technologies extend down to the sub-attojoule (order ~100 £T, with T' = 300 K) range [78]. But
simulations of reversible superconducting circuits suggest that dissipation levels even below £T" (with

T = 4K) are possible [77]. Might it be possible to approach or even breach £7T dissipation levels at room
temperature by using skyrmion interactions to do logic? We explore this question in subsequent sections.

3.2. Reversible skyrmion logic gates
The concept of reversible computing inspites the design of energy-conserving logical computing systems.
Compared to microfluidic logic [79] or magnetic bubble logic [80, 81], magnetic skyrmions demonstrate the
potential of implementing such reversible computing systems in a scalable manner for compact and
energy-efficient design. Researchers have proposed many designs and systems for skyrmion logic: [53, 56, 82]
utilize skyrmion—DW conversions or interactions for logical operations; [54] nucleates skyrmions through
MT]s then drives the skyrmions with the SHE; [57] switches logic gate functions through manipulating the
driving current density, and [83] reconfigures the gate through voltage-controlled magnetic anisotropy
(VCMA).

While these proposals of skyrmion logic systems are intriguing, it is important that a computing system
be scalable and compute with minimal energy. Hu ez a/[55, 84] proposed a scalable reversible skyrmion logic

5
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Figure 3. Micromagnetic simulation results for skyrmion AND/OR gate with input combinations (a) .4 = 0, B= 1;(b) A =1,
B=0;(c). A= 1, B= 1 (with constant current density ] = 5 X 10! Jm=2 in +y direction). Reprinted figure with permission
from [55], Copyright (2019) by the American Physical Society.

Figure 4. Micromagnetic simulation results for skyrmion Ressler—Feynman switch gate with input combinations

@) A=1,B=0;(b).A=0,B=1;(c).A=1, B=1 (with constant current density ] = 5 X 101 J m~2 in +/—y direction).
Skyrmion trajectory under positive and negative current is represented by cyan and magenta colored paths, respectively;
(d) Ressler—Feynman switch gate truth table. © [2022] IEEE. Reprinted, with permission, from [84].

system that computes with nanoscale topological solitons in an energy-efficient manner. The reversible
AND/OR gate shown in figure 3, one of the basic skyrmion logic gates, utilizes a symmetric structute in
which skyrmions are propagated by an applied electrical curtent. This AND/OR gate consetves all skyrmions
provided as input without destroying any during the logical operation, and exhibits conditional logical
reversibility [85].

Beyond conditional logical reversibility, the Ressler—Feynman gate of figure 4 provides logical
reversibility and a form of physical reversibility for all input combinations [84]. As this gate is functionally
complete, it allows for the logically reversible computation of any Boolean expression. Its physical
reversibility is limited, however, by the existence of hysteresis related to differing skyrmion trajectories under
forward- and reverse-current conditions; to achieve dissipation below that predicted by Landauer for
itreversible computing schemes, this physical reversibility needs to be improved. However, this technology is
still early in its development, and future work will increase its reversibility, resulting in drastic improvements
in energy efficiency.
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Figure 5. A comparison of the two skyrmion clocking technologies. (a) Electronic current density applied to (b) demonstration of
notch-based synchronization. (c) Electrode voltage applied to VCMA region in (d) demonstration of voltage-based
synchronization (with constant current density / = 5 X 101° ] m=2). Reprinted from [86], with the permission of AIP Publishing.

3.3. Skyrmion clocking

In cascaded skyrmion logic circuits, the path length varies significantly between skyrmion trajectories. As
skyrmions need to be synchronized upon gate entry for proper logical operation, active control is required to
eliminate the timing differences caused by varying path lengths. Skyrmion clocking elements are thus
included to impede the propagation of skyrmions until a global synchronizing pulse allows for their
progression. By placing these synchronizers prior to logical gates, skyrmions can be effectively clocked,
allowing for proper logical computation.

The first proposed skyrmion clocking mechanism (figures 5(a) and (b)) harnessed the relationship
between skyrmion radii and current density for skyrmion synchronization [55]. These current-based
synchronizers simply consisted of a constriction in the skyrmion racetrack. At normal current densities, the
skyrmion radii are too large to pass the constriction, resulting in skyrmion pinning. However, a large spike in
current density is able to reduce the skyrmion radii, allowing global skyrmion depinning. The simplicity of
this scheme is its key advantage, with its primary drawback being the large current density spike: the current
spike is energetically expensive and the resulting large skyrmion acceleration can cause skyrmion
annihilation, thus preventing reversible computation.

Voltage-controlled synchronizers aim to alleviate the challenges associated with current-based
synchronization. Via the VCMA effect, the PMA of the ferromagnetic track can be modulated with an
electric field applied perpendicular to the track surface [87]. As skyrmions can be pinned by gradients in
PMA, the VCMA effect allows for voltage-controlled synchronization [53] (figures 5(c) and (d)). The
VCMA-based synchronizers of Walker e a/ introduce a preexisting PMA barrier at the synchronization
region [86]. Through this mechanism, skyrmions are pinned without an applied electric field. Similarly, a
negative voltage applied to the region’s electrode can eliminate the PMA bartrier, depinning skyrmions
globally. This voltage-based skyrmion clocking methodology reduces the total power associated with
reversible skyrmion logic, allowing for a ~2x reduction in energy dissipation.

4. Skyrmions for unconventional computing

In logic devices, skyrmions are carriers of logical bits that must be deterministically created, synchronized,
and read out for the devices to properly function. Such applications can be considered the more compact and
energy-efficient alternatives of CMOS logic devices. In this section, we go beyond the classical von Neumann
architecture and survey the advances in skyrmion devices for unconventional computing paradigms.

4.1. Skyrmion neurons and synapses

The manipulation of skyrmions with magnetic field or electrical current gave rise to a large number of
proposals of biomimetic skyrmion devices. The first category of these devices includes those emulating
various neuron models. In the skyrmion racetrack-type device, device tunability can be achieved by applying
VCMA gating to vary the threshold current density of skyrmion depinning [64]. Another type of more
realistic neuron model, namely the leaky integrate-and-fire (LIF) spiking neuron, can be implemented with a
PMA gradient along the racetrack [49] such that the motion of skyrmions is governed by a competition
between the PMA gradient-facilitated leaking and current-induced integration (figure 6(a)). To mitigate the
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Figure 6. Four types of skyrmion devices for unconventional computing. (A) Artificial LIF neuron based on skyrmion motion in
aracetrack. Reproduced from [49]. © IOP Publishing I.td All rights reserved. (B) Artificial skyrmion synapse exhibiting synaptic
potentiation and depression. Reproduced from [62], with permission from Springer Nature. (C) Skyrmion fabrics for physical
reservoir computing and the calculated corresponding current density distribution. Reproduced from [88]. CC BY 4.0.

(D) Skyrmion reshuffler device for probabilistic computing. Reproduced from [3], with permission from Springer Nature.

SHE, the authors further proposed using an antiferromagnetically exchange-coupled bilayer for the
skyrmion racetrack [50]. Besides racetrack-type devices based on translational skyrmion motion, oscillatory
skyrmion dynamics in a confined structure has been exploited to emulate the resonant and fire model, which
describes a neuron’s periodic firing when the frequency of stimuli matches its sub-threshold oscillation [89].
It should be noted that due to the narrow parameter window for skyrmion-hosting materials and the
difficulties in deterministic write, read, and control of single skyrmions, the aforementioned works are
carried out in simulations only.

The second category of biomimetic skyrmion devices are artificial skyrmion synapses. In contrast to
skyrmion neuron devices which are based heavily on the control of single skyrmions, skyrmion synapse
devices often consist of a skyrmion ensemble to emulate the potentiation and depression of synapses. In one
proposed implementation [61], synaptic plasticity is facilitated by the collective migration of skyrmions from
one device region to another, and synaptic weight is proportional to the number of skyrmions within the
device region of interest. Because the functioning of such devices is more resilient to the uncertainty of
individual skyrmion behaviors, these devices have been more successfully implemented experimentally. The
exemplary experimental work in this area by Song ez a/ [62] uses a Hall bar structure to create skyrmions by
current pulses, and the synaptic weight is represented by the measured topological Hall resistance, directly
proportional to the number of skyrmions (figure 6(b)). The measured skyrmion synapse characteristics are
used in an artificial neural network (ANN) to learn the modified national institute of standards and
technology database (MINIST) data set; while the classification accuracy does not reach that of a software
ANN, it can be further improved with smaller skyrmions (larger number of resistance levels) and MT]
readout (larger on/off ratio).

4.2. Skyrmion devices for neural networks

While most proposed spintronic neural networks employ DW-based synapse and neuron devices (as
discussed in section 6.5), skyrmion devices have attracted much interest in deep neuron network
applications, with various device/system level simulations reported. He and Fan [64] demonstrated the
application of skyrmion devices in convolutional neural networks (CNNs). Here, the depinning current
threshold of the skyrmion is fine-tuned by the VCMA effect, and the sigmoid activation function can be
approximated by connecting N skyrmion devices as a skyrmion neural cluster. The resulting CNN shows a
promising 98.74% classification accuracy on the MNIST data set, with energy consumption as low as

3.1 {] step™!. Furthermore, mixed synaptic plasticity (long- and short-term plasticity) could be implemented
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by combining different control mechanisms, as shown by [90] using SOT and VCMA controls. The deep
CNN utilizing these skyrmionic synapses approaches software accuracy levels when classifying the static
canadian Institute for advanced research (CIFAR)-10 data set, and more interestingly, the short-term
plasticity (STP) feature enables dynamic learning. Skyrmion devices have also been built into a binary neural
network accelerator [91], as well as a synaptic architecture of a ternary neural network [92], both exhibiting
excellent energy and accuracy benefits.

Skyrmion neurons/synapses have also been applied to the mote bio-realistic spiking neural network
(SNN) architectures. Room temperature simulations show that the skyrmionic synapse device can perform
spike timing-dependent plasticity learning in an SNN [93]. Although a fully connected two-layer SNN only
achieves 78% classification accuracy on MNIST images due to the limited synaptic weight resolution, this
limitation can be mitigated by using a deep SNN with two additional hidden layers. With only 13 synaptic
states, the proposed network achieves almost the same level of accuracy as a SNN with full-precision weights.
Chen e al [94] proposed an all-spin skyrmionic SNN that employs skyrmion devices as both synapses and
neurons, achieving a competitive 96% accuracy with ~117% energy improvement compared to baseline
CMOS implementation in the 45 nm technology. Furthermore, skyrmion LIF neurons can be connected to
implement smaller building blocks for SNNs, such as winner-take-all (WTA) modules [95].

4.3. Skyrmion resetrvoir computing
A recurrent neural network (RNN) contains cycles or feedback loops in neuron connections and is a more
realistic representation of the biological brain than simpler feed-forward neural networks. One special type
of RNN, referred to as a reservoir, consists of neurons connected by random weights that are not updated
during training; the corresponding computing paradigm, reservoir computing (RC), generates output
through a linear combination of the reservoir outputs [96]. There are two primary requirements for a
reservoir: non-linearity and short-term memory. In particular, physical RC implementations have attracted
significant attention due to the fact that many physical processes inherently provide these two features [97].
Skyrmion-hosting materials are highly promising for RC because of its flexibility in supporting various
configurations of skyrmion ensembles. Prychynenko e a/leveraged the nonlinear anisotropic
magnetoresistance (AMR) arising from the motion of a single skyrmion [98]. Jiang ¢/ @/ demonstrated the
potential of temporal signal processing using the nonlinear skyrmion motion with time [99]. Each training
sample is encoded in temporal pulse sequences that are fed into the skyrmion racetrack, and the resulting
skyrmion positions at each time interval are recorded. Another approach to skyrmion RC is to use a
skyrmion fabric instead of individual skyrmions. Bourianoff ¢z a/ [88] proposed the use of a skyrmion fabric
as an echo state machine, and [100, 101] proposed the use of a skyrmion reservoir for more advanced
applications, such as audio or spatial analysis. Compared to systems containing only isolated skyrmions, the
skyrmion fabric results in a more random and complicated current flow and can be tuned by the external
magnetic field (figure 6(c)). In addition, inherent material inhomogeneities can help a random skyrmion
texture used as a reservoir, as shown in [102]. Here, the strongly nonlinear response of AMR to different
input waveforms is used to perform pattern recognition.

4.4. Skyrmion probabilistic computing

Skyrmion dynamics, like all spin dynamics, is intrinsically stochastic due to forces such as thermal activation,
material inhomogeneity, and skyrmion—skyrmion repulsion. These factors modulate the size, location, and
pinning strength of skyrmions and are often difficult to control during device fabrication and operation.
While randomness poses a significant challenge to deterministic skyrmion devices, unconventional
computing paradigms can benefit from such stochasticity. One such application is a true random number
generator based on local stochastic skyrmion dynamics [103]. Here, due to the moderate pinning sites in the
skyrmion stack material, the size of the skyrmion fluctuates randomly as it moves around the Hall cross
structure, modifying the Hall resistance.

Random dynamics of the skyrmion ensemble have also found applications in probabilistic computing. In
probabilistic computing, a numerical value is represented by the probability of reading a “1” or ‘0’ bitin a
bitstream. One crucial requirement of probabilistic bit logic operation is that the input bitstreams must be
uncorrelated. In [3], the bitstreams consisting of skyrmions are first deterministically created by MT]s.
Following their creation, the skyrmions pass through the ‘skyrmion reshuffler’, a chamber that allows
sufficient skyrmion—skyrmion interactions to randomize their motions (figure 6(d)). Therefore, the time at
and order in which the skyrmions leave the reshuffler to be read out are also randomized, and two such
devices create two uncorrelated bitstreams that can be used for logic operations. Experimental
implementation of this device concept shows the great promise of skyrmions for probabilistic computing [3].



10P Publishing Neuromorph. Comput. Eng. 3 (2023) 022003 X Hu et al

A Input oscillatory field H.
Insulator Strip line antenna (Au)
Substrate
(sGGG or GGG)
, Yy
Spin Hall metal (Pt)
Insulator hosting Skyrmions (TmIG) %
Insulator carrying oscillatory output (YIG)
- Modulatory or Control y; = 0, Configuration |
input (y,) (AAAAA)
Presynaptic

Adaptive neuron
T-SKONE

y; = 0, Configuration Il
(ABABA)

Direct input

Postsynaptic
terminal

Modulatory
input
Figure 7. T-SKONE: an adaptive neuron based on coupled skyrmions. (A) Schematics of the proposed device. (B) The biological

post-neuron receives direct inputs from a pre-neuron as well as modulatory inputs from a neuromodulator. (C) Two
configurations of T-SKONE, controlled by modulatory input. Reproduced from [105]. CC BY 4.0.

4.5. Computing with a coupled skyrmion array

Though the previous discussion of skyrmion devices is primarily based on the translational motion of
individual skyrmions, they further exhibit a wide range of dynamics that shows great promise for
computational applications. For example, when excited by alternating electrical current or magnetic field,
skyrmions are shown to have resonant oscillatory states known as gyration and breathing, whose frequencies
are dependent on the magnetic parameters of the skyrmion-hosting material. Moreover, coupled skyrmions
exhibit a multi-frequency resonance spectrum that can be used to carry information [104].

Jadaun e a/ exploited the flexibility of coupled skyrmions to create a reconfigurable, oscillatory neuron
reminiscent of the adaptiveness of the brain [105]. The proposed neuron, named the Tunable SKyrmion
Oscillatory Neuron (T-SKONE), consists of a two-dimensional skyrmion array sitting on artificial soft
pinning sites; current-driven skyrmion motion allows the skyrmion lattice to be transformed between two
different configurations (figure 7). Since the change of lattice configurations alters their relative positions
and, therefore, the interactions of the skyrmions, the frequencies and amplitudes of the resonant oscillations
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change accordingly. To implement the adaptable, or ‘context-aware’ input—output characteristics, the
T-SKONE takes two independent inputs: a modulatory input of electrical current that reconfigures the
skyrmion lattice, and a direct input of magnetic field that excites skyrmion oscillation; the former mimics
rewards, punishments, or other task-related factors that change the internal neuron state, and the latter
represents the normal sensory input. Using full micromagnetic simulations, they demonstrated the
oscillation frequency and amplitude modulations of T-SKONEs that can be utilized for advanced cognitive
tasks.

The computational power of the adaptive T-SKONE is demonstrated by application to context-aware
medical diagnosis. Context awareness is quite significant for decision-making in real life. In medical
diagnosis, not only are biopsy data considered but also the ‘context’ of the patient; in this case, habits (‘risk
factors’) or medical history. To demonstrate their computational power, a two-layer feed-forward ANN
consisting of T-SKONEs was designed in [105]. T-SKONE:s in the input layer take input x that encodes input
features and control or contextual input y that reconfigures the neuron input—output characteristics. Due to
the limited availability of a data set including both biopsy information and personal medical data, a
composite data set is constructed by appending personal medical information based on population statistics
to the Breast Cancer Wisconsin Dataset (Diagnostics). The biopsy features are always fed to the direct input
of the T-SKONE, and the personal medical data is fed either to the contextual input or direct input for
benchmarking purposes. The results show that the T-SKONE ANN has improved classification accuracy
when personal medical data is fed to the context input instead of the direct input, thereby demonstrating the
superiority of context-aware classification enabled by the adaptiveness of a T-SKONE. Two other advanced
neural features exhibited by T-SKONEs are cross-frequency coupling and feature binding,.

The design of the T-SKONE shows the potential of developing ‘smart materials’ using the coupled
dynamics of skyrmions. The compactness, low power consumption, and rich dynamics of these devices are
promising for the development of next-generation Al. Advances in skyrmion-supporting material design,
pinning sites engineering, and high-sensitivity skyrmion oscillation detection methods will significantly
contribute to the experimental realization of these devices.

5. DW-MT] logic

The DW-MT], also referred to as a spintronic memristor, is a type of topological soliton device that has been
fabricated in many variations [6, 39, 40, 106]. DW-MT]s are particularly intriguing for logical and
neuromorphic computing systems in light of the inherent summing behavior of a current-driven DW,
making it ideal for versatile and programmable logic gate design for high computing efficiency [6, 44, 46].
Additionally, the cross-coupling among DWs enables neuromorphic computing system design through
DW-MT]’s mimicry of the behavior of biological neurons and synapses [106—111].

5.1. DW-MT] logic concept
The DW-MT]Js introduced in figure 2 and shown experimentally in figure 8 can benefit logic in-memory
applications due to their non-volatility, high speed, and low energy dissipation. Additionally, as DW-MT]
devices are radiation-hard [35], these devices are well suited for unconventional computing at the edge.
DW-MT] logic devices have been shown experimentally to implement inverters and buffers depending
on the direction of propagation [6, 46]. Using characteristics of the devices, simulations also show that these
devices can be concatenated to form a clocking circuit. Due to the physics of the critical current density
necessary for DW movement, the device can also be used as a NAND gate. Alamdar e @/ [39] demonstrated
scaled versions of these devices with a 350 nm track width with up to 200% TMR, showing that DW-MT]
logic devices also have promising scaling characteristics. Reasonably reliable two-device concatenation was
also shown experimentally in [39].

5.2. DW-MT] logic circuits

Larger circuits, such as full adders consisting of DW-MT] devices, have been designed, simulated, and
benchmarked [36]. The DW-MT] adder architecture can be integrated with existing CMOS systems before
and after the adder block. Figure 9 shows the schematic of a DW-MT]-based one-bit full adder with the
associated simulation results, illustrating the logical computing operations driven by the multi-phase
clocking scheme [44]. Though non-volatility provides a unique advantage compared to CMOS, the slower
speed and higher currents highlight materials innovation requirements for viable integration. Firstly, larger
TMRs greater than 300% would greatly relax the requirements for device-to-device variation and increase
the reliability of the circuit. Additionally, though SOT devices approach the energy efficiency of CMOS
circuits, a low switching current for the DW-MT] devices at 6.4%x10° A m™2 is necessaty to outperform
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Figure 8. (a) Schematic of DW-MT] device with IN, CLK, and OUT terminals. (b) Top—down scanning electron microscope
image of 450 nm width and (c) 350 nm width device prototypes. Reprinted from [39], with the permission of AIP Publishing.
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Figure 9. (a) Symbol-view schematic of DW-MT] one-bit full adder schematic. (b) SPICE-based imulation result of this DW-MT]
one-bit full adder. © [2019] IEEE. Reprinted, with permission, from [44].

CMOS. This co-design-based optimization of architecture, circuit, device, and material parameters can
eventually lead to integration of DW-MT] devices for in-memory computing,.

6. DW-MT] neuromorphic computing

In addition to the logical computing blocks discussed in the previous section, DW-MTTs are also promising
for neuromorphic computing systems. Specifically, [106—109] used DW-MTJs for synaptic connections in
neural networks, [107, 110, 111] used DW-MT]s for neurons, and [112] used DW-MT]s for a
pure-spintronic neuromorphic computing system.

6.1. DW-MT] synapses
A critical requirement for emulating the behavior of a biological synapse is the ability of a device to contain
multiple conductance states. In a DW-MT] device, the DW mediates the ratio of parallel and anti-parallel
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Figure 10. (Left) Schematic of DW-MT] synapse. (Right) Scanning electron microscope image of a DW-MT] synapse. [106] John
Wiley & Sons. [© 2022 Wiley-VCH GmbH].

regions in the MT], which allows for analog representations of states between the maximum and minimum
conductance. However, experimental realization often results in defects that the DW is attracted to or
repelled from. As a result, there is a need to introduce controlled pinning sites in the device to produce
cycle-to-cycle and device-to-device reliability.

While analog switching using DWs has been demonstrated in large devices [113], controlled pinning sites
are necessary to realize nm-scaled devices. One way to do this is to lithographically pattern notches along the
track. In Liu ez a/[109], the notches provide local energy minima for the DW to relax to, allowing predictable
conductance states and preventing DW drift. The structure of the device is shown in figure 10. Additionally,
the conductance states are very stable, with only small write noise. In experiments, the average write noise for
each state was found to be 0.25% [100], indicating that a large number of states can be engineered into the
artificial synapse. This noise also mediates the inference accuracy of a network; weights that can be
programmed reliably to the same levels are most important for accuracy. For classifying the CIFAR-100
image data set [114] using ResNet56 [115], the low noise level results in near ideal accuracy at every
quantization level presented.

Notches also enable a characteristic that is critical for online learning: linearity [116]. By spacing the
notches evenly, the allowed conductance states of the DW-MTT] synapse are constrained to be evenly
distributed through the conductance range. In a straight wire, since each current pulse will drive the DW an
equal distance and a negative current pulse will drive the DW in the opposite direction to a positive current,
linear and symmetric behavior is available. However, the notches come at a cost: weights are constrained to a
discrete number of levels. When online learning is performed with quantization-aware training,
performance is far less than that of an ideal weight with floating point precision. However, this is greatly
alleviated by the stochasticity of DW movement at finite temperature [109]. This means that each current
pulse provides a probability of moving the DW to the next notch. When averaged over hundreds of
thousands of updates for all of the synapses, the network is able to achieve a precision that is higher than the
isolated precision of individual notches.

Beyond notches, the high degree of controllability regarding shape effects of the DW-MT] devices can also
be used to design synapses that have variable plasticity. Section 6.5 explores the possibilities of co-designing
synaptic plasticity and network architecture to achieve specialized networks for computing at the edge.

6.2. DW-MT] neurons

To implement a purely spintronic SNN in concert with a DW-MT]J, it is also necessary to implement
spintronic neurons. Various DW-MT] LIF neurons have been proposed using metal oxide semiconductor
field-effect transistor (MOSFET) devices to implement the leaking functionality; however, this results in
both increased area overhead and also increased static power dissipation. Because of this, three alternate
DW-MT] LIF neurons have been proposed that do not require MOSFETS for leaking,.

One DW-MT] LIF neuron uses a dipolar coupling field, which was implemented using an electrically
isolated fixed ferromagnet fabricated underneath the DW track. The magnetic field generated by this
ferromagnet is parallel to one domain in the track and anti-parallel to the other domain. This causes the
parallel domain to expand and the anti-parallel domain to shrink, thereby causing the DW to leak in the
absence of external control circuitry [110].

The second neuron takes advantage of the fact that DWs exist in lower energy states in lower anisotropy
tracks than in higher anisotropy tracks. By introducing a linear anisotropy gradient, it is possible for the DW
to thereby intrinsically shift from the region of higher anisotropy to the region of lower anisotropy. This
anisotropy gradient can be produced using either a TaO, wedge fabricated on top of the DW track or using
Ga™ ion irradiation of the track [111].
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The final neuron uses a shape variation to implement intrinsic leaking. DWs exist in lower energy states
in narrower DW tracks than in wide DW tracks. Therefore, linearly varying the DW track width will cause
the DW to intrinsically shift from the wide end of the track to the narrow end of the track [117].

Finally, in order to implement the firing mechanism as well as input/output isolation, a secondary
electrically isolated MT] can be placed above the DW track. As the DW shifts underneath this MT], the MT]’s
free layer changes states, thereby changing the resistance state of the MT]. This altered resistance can be
measured by applying a voltage across the MT], effectively adding a fourth terminal to the device. The
resulting current can then be used as an input to the next stage and will not affect the state of the neuron
[112].

6.3. Lateral inhibition

The LIF DW-MT] neuron of section 6.2 further exhibits the advanced neural function of lateral inhibition
(LI). LI is a well-known mechanism of WTA neural networks and has been implemented in CMOS neurons
[118—120], but these designs often involve complicated external circuitry that results in significant power
consumption. In contrast, LI in DW-MT] LIF neurons is intrinsic to the device due to magnetostatic
interactions [110]. Systematic device simulations have been carried out to understand the physical
mechanism of DW-MT] LI and maximize it [121]. Micromagnetic simulator mumax3 was used to model the
DW propagation in a pair of close magnetic racetracks. Due to magnetostatic interaction, the racetrack with
faster DW motion (‘winner’) exerts a magnetic stray field on its neighbor (loser’), further inhibiting its DW
motion. The simulation results reveal an optimal racetrack lateral distance that leads to the most efficient LI
This optimal distance is associated with the magnetostatic interaction strength corresponding to the Walker
breakdown field of DW motion [122]. The dependence of LI efficiency on material parameters, such as
saturation magnetization and PMA, has also been studied. These results indicate that the experimental
implementation of DW-MT] neurons with maximized LI will be made feasible by careful material
engineering.

Cui ez a/ [123] further explored the computational potential of DW-MT] neuron LI by investigating the
LI-induced WTA behavior in an array of DW-MT] neurons. The WTA neuronal competition rule states that
in a neuron array only the most active neuron(s) are allowed to win the competition and fire. In a DW-MT]
neuron array, this is equivalent to a change in DW velocity distribution due to the LI between the neurons.
Since it is not feasible to perform full micromagnetic simulations on a large number of DW-MT] neurons, a
LI model is extracted from micromagnetic simulations on a DW-MT] neuron pair, and the DW velocity
distributions due to LI in a one-dimensional neuron array are numerically calculated. By tuning the
inhibition strength and array layouts, three different types of WTA are achieved: hard-WTA, soft-WTA, and
A-WTA, each of which suited is to different computational tasks [124]. This further demonstrates the
potential computational power of DW-MT] neuron arrays, and further work will be required to build a
standard WTA building block to be integrated into realistic neuromorphic architectures.

6.4. Configurable activation functions

In order to improve the learning characteristics of spintronic neural networks, it is beneficial for DW-MT]
neurons to implement various activation functions. It has been demonstrated that, by altering the shape of
the neurons implemented in [125], it is possible to implement several activation functions. Through these
simple shape alterations, [125] has implemented both the linear and sigmoidal activation functions. More
generally, the corollary to the results of [125] is that any activation function could be implemented using this
method.

To implement the linear activation function, [125] used a slight exponential variation in the width of the
DW track rather than a linear variation. With a particular rate of exponential decay, it was demonstrated that
the DW exhibits linear motion, as the force applied to it decays over time by virtue of the decreasing slope of
the track’s width gradient.

In a similar fashion, [125] introduced a constriction in the middle of the DW track in order to implement
the sigmoidal activation function. Much like the reduced slope of the track’s width gradient in the previous
case, the reduced slope introduced at both the narrow and wide ends of the track reduced the effective
leaking force experienced by a DW in these regions while increasing the force experienced by a DW in the
middle of the track. This caused the device to display linear leaking behavior.

6.5. DW-MT] neural network design

Due to the tunability of DW-MT] neurons and synapses, there are opportunities to design neural network
accelerators that can benefit from the characteristics outlined in the previous sections. Due to the linear and
symmetric updates that have been demonstrated for DW-MT] devices [126, 127], the devices are effective
artificial synapses for deep neural networks. On top of this, the tunability of the magnetic dynamics of the
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Figure 11. (a) Stream-learning accuracy comparison of binarized network between linear (blue), linear asymmetric (orange),
and trapezoidal (green) synapses. (b) Direct comparison of stream learning between (c) binarized trapezoidal synapses and
(d) five-bit linear synapses. [106] John Wiley & Sons. [© 2022 Wiley-VCH GmbH].

DW-MT] synapses can be leveraged for specific types of deep neural networks. For example, the shape of the
DW-MT] track can be adjusted to tune the plasticity of the artificial synapse. In Leonard ef a/ [106],
trapezoidal DW-MT] synapses were experimentally shown to have a DW depinning voltage that increased
linearly as the width of the track increased, leading to a metaplasticity effect, where plasticity is determined
by the state of the synapse. When this synapse was used to construct a multilayer perceptron (MLP) and
applied on the Fashion-MNIST clothing article classification task [128], it was shown that the trapezoidal
synapse does not provide any benefits, and performs slightly worse than a network composed of linear
synapses. However, following Laborieux e a/ [129], this type of metaplasticity has been shown to be useful in
preventing catastrophic forgetting in binarized neural networks. Since DW-MT] devices are strong
candidates for edge computing, this task is suitable for that application since data may be unreliable and
hardware will be resource-limited. With this in mind, trapezoidal DW-MT] synapses with binary readout
were used to construct the MLP and a streamed Fashion-MNIST task where the network only had access to a
subset of 1000 images (out of 60 000) at a time was constructed. The trapezoidal DW-MT] network showed
significantly improved test accuracy at 86% compared to a linear network at 83% and even reached the
accuracy obtained when the network is shown all of the data at once, shown in figure 11. This is because the
critical weights learned in previous subsets are remembered due to the larger update necessary to reduce the
critical weights in the trapezoidal synapses. This demonstrates that DW-MT] synapses can be tuned to
leverage magnetic dynamics for deep neural networks beyond linear and symmetric weights.

The DW-MT] LIF neurons have been shown to effectively accomplish inference in artificial neural
networks [110, 130], but their application as LIF building blocks for SNNSs is less explored due to the
difficulty in simulating the spatio-temporal dynamics accurately. However, because the activation functions
of DW-MT] LIF neurons can be tuned by shaping the ferromagnetic track [125], the device has promising
uses for dynamically rich neurons for SNNs. In inference, multi-domain LIF neurons have been shown to be
noise-resilient due to the filtering effect of the leaking behavior [131]. Due to the noise introduced by
thermal fluctuations, there is intrinsic uncertainty in the devices. These noisy activation functions are able to
tune the network to be tolerant of noise at training time, which results in SNNs that can maintain
effectiveness even when the data set becomes noisy. This is important for edge applications, where data is
often sourced from sensors.

7. Conclusions

Topological solitons have been explored in order to leverage their physics for next-generation computing
systems. Magnetic skyrmions and DWs are particularly appropriate for these emerging computing systems,
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especially for logical and neuromorphic computing. Compared to conventional two-terminal memristors,
skyrmions have a variety of advantages in implementing neuromorphic computing systems. In general,
memristors suffer from endurance, retention, and uniformity issues [132] that prevent them from
high-throughput, high-accuracy neuromorphic computing systems.

In contrast, the compact size of skyrmions and the rich physics of skyrmion interactions make them ideal
for large-scale biomimetic neural networks without complex interconnection overheads. Additionally, the
temperature stability of skyrmions permits them to be operated with a wider temperature range for more
versatile applications. On the other hand, skyrmions are more challenging than memristors to fabricate,
though they can be more easily integrated with other spintronic components for purely spintronic
computing systems for low-energy computing.

DW-MT]Js, meanwhile, are multi-terminal devices that, relative to memristors, provide better isolation
between the reading and writing path, which results in less disturbance between reading and writing signals.
Morteover, the inherent LI and the potential energy-free leaky’ function make DW-MT]s ideal for
implementing energy-efficient neurons [110, 111, 117].

This survey has summarized several applications of topological solitons that fully leverage the interactions
among these solitons. We believe that the interactions and synergy among these topological solitons within a
system differentiate solitons from other emerging computing devices and information carriers, leading to the
potential for topological solitons to eventually replace conventional CMOS transistors in computing systems.
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