
Astronomy and Computing 44 (2023) 100711

Contents lists available at ScienceDirect

Astronomy and Computing

journal homepage: www.elsevier.com/locate/ascom

Full length article

Removing aliases in time-series photometry
D. Kramer a,b,⇤, M. Gowanlock a,b, D. Trilling b,a, A. McNeill b,c, N. Erasmus d

a School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ 86011, USA
b Department of Astronomy and Planetary Science, Northern Arizona University, Flagstaff, AZ 86011, USA
c Department of Physics, Lehigh University, 16 Memorial Drive East, Bethlehem, PA 18015, USA
d South African Astronomical Observatory, Cape Town, 7925, South Africa

a r t i c l e i n f o

Article history:
Received 30 October 2022
Accepted 24 April 2023
Available online 2 May 2023

Keywords:
Time series
Lomb–Scargle
Light curves
Aliasing
LSST
ZTF

a b s t r a c t

Ground-based, all-sky astronomical surveys are imposed with an inevitable day–night cadence that
can introduce aliases in period-finding methods. We examined four different methods — three from
the literature and a new one that we developed — that remove aliases to improve the accuracy of
period-finding algorithms. We investigate the effectiveness of these methods in decreasing the fraction
of aliased period solutions by applying them to the ZTF and the SSPDB asteroid datasets. We find that
the VanderPlas method had the worst accuracy for each survey. The mask and our newly proposed
window method yields the highest accuracy when averaged across both datasets. However, the Monte
Carlo method had the highest accuracy for the ZTF dataset, while for SSPDB, it had lower accuracy than
the baseline where none of these methods are applied. Where possible, detailed de-aliasing studies
should be carried out for every survey with a unique cadence.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

Determining periodic behavior among astrophysical sources is
useful for describing their physical properties. For example, the
internal strength of an asteroid can be determined using, among
other observed properties, its rotation period (McNeill et al.,
2018) and light curves have been used to categorize different
stellar types (Barbara et al., 2022).

Ground-based telescopic surveys that produce sparse data in-
evitably have signals in the object’s periodogram— typically at or
near 12 h, 24 h, 48 h, and 96 h — related to the day–night cycle
of the Earth. These cadences cause aliasing, an effect where there
are peaks in a periodogram that are not at the real period of an
observed object.

If the output of a period-finding method and its corresponding
light curve is visually examined, an astronomer can potentially
make a judgment if a derived period is an alias or not. With large-
scale surveys, like the Legacy Survey of Space and Time (LSST), too
many objects will be observed for humans to manually confirm
each derived period. This requires automating both deriving the
periods and determining if the period is correct.

The problem of period-finding at scale will become more acute
when LSST is producing data, as more than 100 million periodic
sources are expected in the LSST catalog (Abell et al., 2009). If,
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for example, 20% of period solutions are aliases, then 20 million
sources would have incorrectly derived periods. The incorrect
periods would either (1) be naively included in a catalog, (2)
have solutions at common alias periods discarded, or (3) have
to be examined with some verification algorithm. Any method
that reduces the total number of alias results improves the three
outcomes by (1) reducing the number of bad solutions, improving
the overall accuracy, (2) increasing the overall number of cor-
rect solutions, or (3) decreasing the amount of computation to
verify/score the periods.

While this is an important problem for ongoing and upcom-
ing surveys, there has been little progress on de-aliasing meth-
ods for sparse data. For instance, Carbonell et al. (1992) have
examined the de-aliasing properties of past methods, notably
CLEAN (Roberts et al., 1987). However, those methods only work
on time series data with uniform observations during the night.
Since modern ground-based surveys generate sparse data that
is not uniform, these methods are unsuitable for these surveys.
Recently, several papers have used some de-aliasing techniques
using large scale survey data (Erasmus et al., 2021; Coughlin et al.,
2021; Heinze et al., 2018), but none tested the improvement their
method had over no de-aliasing.

In this paper, we analyze the performance of four approaches
to de-aliasing, with performance and period-finding accuracy in
mind.

The paper is organized as follows: Section 2 discusses the
Lomb–Scargle periodogram, Section 3 gives an overview of the
datasets used, Section 4 gives an overview of the four methods
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that were tested, Section 5 discusses the results of the four
methods, Section 6 provides our discussion of the results of the
paper, and Section 7 presents our conclusions and some future
work on this and related problems.

2. Period finding algorithms

For testing the accuracy of the different de-aliasing methods,
a period finding algorithm is needed. In this section, we will
discuss four different methods, Lomb–Scargle (L-S, Lomb 1976,
Scargle 1982), SuperSmoother (Friedman, 1984), Conditional En-
tropy (Graham et al., 2013), and Bootstrap �2 (Ñurech et al.,
2022), and why L-S is used as the method for this analysis.

2.1. Lomb–Scargle

L-S is a period-finding method first developed by Lomb (1976)
and later improved by Scargle (1982). It is one of the most
popular period-finding algorithms used in astronomy. The gen-
eral approach is to calculate the periodogram power, essentially
a measure of the goodness of the solution, through Eq. (1) as
follows.
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Here, P(f ) is the power for an angular frequency f , gn is the
observed telescopic magnitude of observation n and tn is the time
of observation n. Higher powers indicate a greater likelihood that
f is the angular frequency of the observed object. Note that the
LSP has a time complexity of O(nm), where n is the number of
observations used and m is the number of frequencies examined.

A periodogram is typically computed by calculating powers
for a range of frequencies (or periods) in [fmin, fmax] that are
sampled over a uniform frequency space. Ideally, there would
only be a peak in the periodogram at the angular frequency f
that corresponds to the object’s physical rotation state, with all
other values of P(f ) having a value of zero. In reality, because
of uncertainties in the measurements, a non-uniform cadence,
and aliasing, the periodogram is often noisy with multiple peaks,
so determining the correct peak is not always straightforward.
Fig. 1 shows how a periodogram generated with a uniformly
sampled sine wave with a small �t compares to a randomly
sampled sine wave’s periodogram. The randomly sampled sine
wave’s periodogram is noisy around P(f ) = 0 while the uniformly
sampled sine wave only has a peak at the sine curve’s frequency.

2.2. Other algorithms

Other period finding algorithms exist, like SuperSmoother
(Friedman, 1984), Conditional Entropy (Graham et al., 2013),
Bootstrap �2 (Ñurech et al., 2022), among others. With all of
these algorithms, there is a trade-off between accuracy, speed,
space, and light-curve shape flexibility. We summarize the three
algorithms above as follows:

• SuperSmoother is especially useful for periodic signals that
are not sinusoidal (Becker et al., 2011; Huber et al., 2005),
has a time complexity and space complexity of O(nm), and
it is susceptible to aliasing (Gowanlock et al., 2022).

Fig. 1. The periodograms for a uniformly sampled sine wave and a random
sample of it. The x-axis is the angular frequency and the y-axis is the normalized
power. The sine wave was given an angular frequency of 2⇡/7 (period of 7) and
an amplitude of 0.3. The pure sine wave used 1000 points and the sampled sine
wave used 0.5% of those points, for about 50 total points used.

• Conditional Entropy also has time complexity of O(nm), is
less accurate than L-S for fast periods, and is susceptible to
aliasing (Coughlin et al., 2021).

• Bootstrap �2 is the slowest, with a time complexity of
O(snm), where s is the number of bootstrap samples, but
it is the most accurate, with aliasing having the smallest
effect on this method compared to the others described
above (Ñurech et al., 2022).

L-S has the same time complexity as SuperSmoother and Con-
ditional Entropy, all three being smaller than Bootstrap �2. As
SuperSmoother has a space complexity of O(nm) while L-S and
Conditional Entropy have a space complexity of O(n+m) ⇡ O(m),
SuperSmoother was not used. Finally, since L-S and Conditional
Entropy are similar, and L-S is the standard algorithm used for
deriving the periods in astronomy, we elect to use L-S in this
paper. However, any period finding algorithm that produces a
periodogram is capable of implementing the methods described
in Section 4.
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3. Data used

The upcoming LSST — to be carried out with the Vera C.
Rubin Observatory that is presently under construction in Chile
— will revolutionize many fields of astronomy (Ivezi¢ et al.,
2019). LSST will generate sparse photometry on the around 500–
1000 measurements over ten years for some 40 billion astronom-
ical sources. The vast majority of these will be sidereal objects
(stationary on the sky); around 5 million of them will be moving
objects. Many of these LSST-observed sources will be variable,
with regular periods, so it is of interest to develop and implement
accurate period-finding algorithms that can operate at the vast
LSST scale.

The ongoing all-sky survey being carried out by the Zwicky
Transient Facility (ZTF; Bellm et al. 2018) acts as a kind of LSST
precursor. ZTF is carrying out a public survey that is very LSST-
like in terms of cadence, data type, and data accessibility, but at
something like one-tenth the LSST scale.

The work presented here has its origin in Solar System science
and asteroid period finding but is relevant for period-searching
for any kind of astrophysical source in either ZTF or LSST data. For
ZTF, we used asteroid data from SNAPShot1 (Trilling et al., 2023),
which used ZTF observations from 2018–07–19 to 2020–05–19,
using only numbered asteroids with more than 50 observations
with Real-Bogus scores � 0.55 (Duev et al., 2019); the Real-Bogus
cut eliminated about 9% of all observations.

There is no actual LSST data yet as science operations will
commence in 2024, so we used the LSST Solar System Products
Data Base (SSPDB; Juric et al. 2021), a complete simulation of
asteroid observations over the 10 year nominal lifetime of LSST, as
our LSST testbed. However, the objects in this synthetic database
are all assumed to be spherical and thus, unlike almost all real
asteroids, do not show shape-induced periodic variability in the
lightcurves. We therefore assigned lightcurve amplitudes and
rotation periods to each SSPDB object, as described in Appendix A.

4. Methods

In this section, we present our de-aliasing analysis on the
ZTF and SSPDB asteroid datasets. We use three methods from
the literature — masking; MC; and VP— and present our new
approach, the window method. Broadly speaking, the MC method
tries to remove aliasing through subsampling (with multiple tri-
als), whereas the other methods attempt to remove signals at the
expected alias periods.

One method that will not be tested is the False Alarm Proba-
bility (Baluev, 2008). False Alarm Probability is sometimes incor-
rectly used as a proxy for the goodness of a L-S solution. However,
False Alarm Probability is a way of calculating the probability
p = (power|noise): the probability that a given periodogram
power is part of the noise of the periodogram (Baluev, 2008;
VanderPlas, 2018). If there is an alias peak with a larger P(f ) than
the real peak, then it would have a lower False Alarm Probability.
Because False Alarm Probability is not testing for the authenticity
of a signal related to the physical period in the system being
monitored, it is not a useful method for determining if a peak
is a real period or an alias.

4.1. Masking

Masking is the most straightforward approach presented in
this paper: solutions near the known alias solutions are simply
rejected. The alias periods or a small range around the alias can be
removed (masked out) from the periodogram so the real period’s
peak would therefore have the largest remaining P(f ). Usually,

Fig. 2. Visualization of the mask ranges from Table 1. The black bars indicate
the masked regions where all solutions are rejected. ZTF and SSPDB have similar,
but not exactly the same, ranges.

there are multiple aliases, so several masks are needed to remove
them.

This method was used in Erasmus et al. (2021), which pre-
sented asteroid photometry from Asteroid Terrestrial-impact Last
Alert System and ZTF where they masked out periods of {8, 12,
16, 24, 48} h. The remaining periodogram peaks with the largest
power were then found to be those representing super-slow
rotation periods. Erasmus et al. (2021) showed that the masking
method is a viable way of removing alias period solutions so we
incorporate this method into our analysis. This method was also
used in Coughlin et al. (2021), which used a similar method to
derive the mask ranges as described below. The Coughlin et al.
(2021) mask ranges, in rotation period space, are [(0.5, 0.5), (0.51,
0.51), (0.52, 0.52), (5.93, 6.08), (7.87, 8.14), (11.71, 12.31), (22.86,
25.26), (46.15, 50.0), (600.0, 800.0)] hours.

Table 1 and Fig. 2 show the period ranges that are masked
out for each dataset. The mask ranges were derived through the
following steps:

1. Generate a histogram of the derived periods.
2. Create a new mask range by selecting the bin with the

highest number of objects. For example, if the bin with the
most objects is [23.9 h, 24.1 h], then it would be added as
a mask range.

3. Re-derive the periods with this new mask range.
4. Repeat steps 1 through 3 consecutively, adding new masks.

Then select the mask ranges that provide the maximum
match percentage to a database of accurate periods for the
objects. For example, Fig. 3 shows percent match against
the Light Curve Database (LCDB; Warner et al. 2021) as a
function of the number of masks for ZTF.

The ranges for both ZTF and SSPDB are similar (Table 1 and
Fig. 2), but not all surveys will have these same ranges because
they will have different cadences and different observational
errors. Despite this, we expect that all ground-based surveys will
have the 24 h alias.

Advantage: The primary advantage of this approach is that it
is the fastest to compute. The time complexity for the method is
O(nm), where n is the number of data points used and m is the
number of frequencies examined. If the masks are pre-computed,
the run time is slightly faster compared to a normal LSP because,
with the same frequency range and �f , fewer frequencies (m)
would have to be examined as the frequencies in the mask ranges
would be excluded.

Disadvantage: This method has the disadvantage that true
periods that are within one of the masked ranges will never be
identified. The LCDB contains a large number of curated asteroid
rotation periods and only about 1% � 2% of objects in the LCDB
have rotation periods that are in the masked ranges of Table 1, so
only a low number of objects would be impacted.
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Table 1
The period ranges (exclusive) for each of the datasets to be excluded from the (light-curve) period
space. Note that these ranges are light curve periods, not rotation periods, where an object’s light
curve period is half its rotation period.
Dataset Mask Ranges
ZTF (4.789, 4.814), (5.989, 6.014), (7.972, 8.014), (11.947, 12.039), (23.764, 24.164)
SSPDB (4.789, 4.839), (5.939, 6.039), (7.939, 8.039), (11.889, 12.039), (23.639, 24.239)

Fig. 3. The match percentage for each new mask range. The x-axis is the number
of 0.05 h size mask ranges. The y-axis is the match percentage.

4.2. Monte Carlo (MC)

Since aliases are generated by the observing cadence inter-
vals, randomly subsampling the observations, across many tri-
als, might suppress the signal from the aliases. An overall peri-
odogram for each asteroid can then be found either by finding the
most common peak power from each trial’s periodogram, or by
summing over all the periodograms. Some attention must be paid
to ensure that the time baseline of the subsample (Tsub) is greater
than Pmax, the period corresponding to the minimum frequency
examined, otherwise, L-S will derive the period of a partial light-
curve, causing an incorrect period to be derived. For large scale
surveys, like ZTF and LSST, that produce sparse photometry over
years, this is not an issue as Tsub will always be greater than Pmax
for any reasonable Pmax.

For the calculations in this paper, we used 100 selection sam-
ples/trials (i) per object with 50 random observations (n). SSPDB
objects had to have at least 200 observations while ZTF objects
only had to have 90 observations so there would be enough
objects to get a large statistical sample. These parameters were
found via an ad hoc process of changing the minimum num-
ber of observations required, the number of observations per
subsample, and the number of MC trials to find a high match
percentage.

Finally, we sum the un-normalized periodograms over all trials
to yield the overall periodogram. The highest peak from this
periodogram is used as the derived period.

Advantage: This method has the advantage that, compared to
the other methods, it is the most oblivious to aliases like those in
Table 1. Unlike the masking method, the MC method could derive
a correct rotation period that happens to be an alias.

Disadvantage: This method also requires more observations
than the other methods discussed because in order to produce

a credible periodogram, the number of observations in each sub-
sample needs to be sufficiently large while also being significantly
smaller than the total number of data points. This is needed so
that pairs of observations that are, for example, 24 h apart are
excluded from the same subsample.

This method is also the slowest, with a time complexity of
O(nmi), where n is the number of data points used for each
iteration, m is the number of frequencies checked, and i is the
number of selection samples.

4.3. Window

The window function derives aliases caused by the observa-
tional cadence. It takes the temporal data from an object’s obser-
vations to produce a periodogram-like output where a frequency
having a high power corresponds to high aliasing (VanderPlas,
2018).

Pw(f ; {tn}) =
�����

NX

n=1

e�2⇡ iftn
�����

2

(2)

Eq. (2) shows the window function, but VanderPlas (2018) showed
that a LSP can be used as an approximation of the window func-
tion if in Eq. (1), gn = 1; this simulates a completely spherical,
homogeneous object. Therefore, any signal present in the window
periodogram would be aliasing caused by the underlying cadence.

Fig. 4 provides an example of how an object’s LSP and window
periodogram relate. There are three key observations from Fig. 4:
(1) there are peaks in the LSP that do not correspond to the real
period, (2) all of the significantly strong peaks that are in the
window periodogram also appear in the LSP, and (3) there exist
peaks in the LSP that are not the real period or in the window
periodogram; these are pseudo-aliases. The example pseudo-alias
marked in Fig. 4 is ((1/P)� (1/24 h))�1 where P is the real period
for the object (Ñurech et al., 2022).

Previous algorithms that use the window function, like de-
convolution and CLEAN, do not work for removing aliases (Van-
derPlas, 2018) because they assume that the strongest peak in
the periodogram is the peak that corresponds to the real period.
Here we present a new way to use the window function to
remove aliases, where the pseudocode can be found in Algorithm
1. This differs from deconvolution and CLEAN because they rely
on deconvolution for their alias removal while Algorithm 1 does
not.

Algorithm 1 takes an object’s time of observation T = {t1,
t2, . . . , tn} (time), observed magnitudes G = {g1, g2, . . . , gn}
(mag) where n is the number of observations, and the frequency
grid on [fmin, fmax] (freqs) as arguments. The LS and Window func-
tions on lines 2 and 3 calculate the L-S and window periodograms
respectively. The findPeaks methods on lines 4 and 5 find the
peaks in those periodograms and return the peak frequencies
and their powers. Line 6 sorts the LSP peaks by their power in
descending order. Line 9 loops until the current LSP peak is not
contained in the window peaks. If the LSP peak is in the set of
window peaks, the index of the current peak is incremented. Line
12 tests if all of the detected LSP peaks have been compared
against the set of window peaks. If they have, then the peak with
the highest power is used as the correct peak (although this is

4
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Fig. 4. The LSP and window periodogram for an object from SSPDB. The LSP is in red and the window periodogram is in blue. The given period for the object is
marked by the dash–dot–dash line and its peak is only present in the LSP. The dashed line marks an example pseudo-alias which is also only present in the LSP.
The peaks in the window periodogram are the aliases which are also all present in the LSP.

Algorithm 1 Our method of using the peaks in the window
periodogram to check if a peak in the LSP is an alias.
1: procedure windowMethod(time, mag, freqs)
2: pgramLS LS(time, mag, freqs)
3: pgramWindow Window(time, freqs)
4: LSPeaks findPeaks(pgramLS)
5: WindowPeaks findPeaks(pgramWindow)
6: sort(LSPeaks)
7: NPeaks length(LSPeaks)
8: index 0
9: while index < NPeaks and LSPeaks[index] 62 Window-

Peaks do
10: index index+1
11: end while
12: if index � length(LSPeaks) then
13: correctPeak LSPeaks[0]
14: else
15: correctPeak LSPeak[index]
16: end if
17: return correctPeak
18: end procedure

probably an alias), otherwise, the peak at the current index is
used as the correct peak. The correct peak is then returned. A
python implementation is available as a GitHub gist here.1

Advantage: This method has a distinct advantage over the
masking method. The window function exposes aliases on a per-
object basis, whereas the masking method uses a single set of
masks for all objects in a catalog. Consequently, the window
method may enable finding correct periods that are typical aliases
(e.g., those defined in Section 1), whereas the masking method
excludes all of these periods.

Disadvantage: Using Algorithm 1, this method has the same
time complexity for L-S as the other methods, which is O(nm).
It also has an additional time complexity for the peak finding
algorithm,  , which we describe below. However, since this
method requires two LSP to be calculated, it is at least twice as
many operations as the LSP. The implementation for the window
periodogram peak finding function considered any power greater
than 5� from 0, where � is the standard deviation of all the

1 https://gist.github.com/drk98/6b15633e8fc43e8daf6b628548006376

Table 2
The parameters for the window/VanderPlas methods. ‘‘L-S Min.
Peak Height’’ is the minimum power of a peak, relative to the
highest power, to still be considered a peak. For example, for LSST,
if the highest peak’s power was 0.8, then the peak power cutoff
would be 0.08. ‘‘L-S Peak Order’’ is the ‘‘order’’ argument to the
argrelmax function in scipy/cuSignal.

L-S
Min. Peak Height

L-S
Peak Order

ZTF 1/7 10 000
SSPDB 1/10 3000

powers in the window periodogram, a peak. The LSP peaks were
found using the argrelmax function in SciPy/cuSignal (Virtanen
et al., 2020; RAPIDS Development Team, 2018), which has a time
complexity  of O(om) where m is the number of frequencies
examined and o is the order parameter. The order parameter
for argrelmax and the minimum peak height, relative to the
strongest peak, is located in Table 2.

4.4. VanderPlas (VP) method

VanderPlas (2018) describes a method for removing aliases
that also utilizes the window function. The difference between
this method and the window method is that it compares more
peaks between the LSP and window periodogram and in particu-
lar it considers pseudo-aliases.

The VP method steps are as follows, where fpeak = max(P(f )):

1. Check if there are any peaks in the LSP at fpeak/m, where
m 2 {2, 3} which checks if the found peak is an integer
multiple of the real peak.

2. Check for peaks at fpeak ± n�f , where n 2 {1, 2} and
where �f is the frequency having the highest window
periodogram power.

3. Manually check the highest peaks and fit a model to find
the best one. We ignore this step as this requires human
intervention, which is not feasible for large-scale survey
data.

This method has the same time complexity as the window
method at O(nm) +  , where  , when using argrelmax, is
O(om) and it shares its advantages and disadvantages since the
methods are similar. The implementation also uses the same
parameters as the Window method, located in Table 2.

5

https://gist.github.com/drk98/6b15633e8fc43e8daf6b628548006376
https://gist.github.com/drk98/6b15633e8fc43e8daf6b628548006376
https://gist.github.com/drk98/6b15633e8fc43e8daf6b628548006376
https://gist.github.com/drk98/6b15633e8fc43e8daf6b628548006376
https://gist.github.com/drk98/6b15633e8fc43e8daf6b628548006376
https://gist.github.com/drk98/6b15633e8fc43e8daf6b628548006376
https://gist.github.com/drk98/6b15633e8fc43e8daf6b628548006376
https://gist.github.com/drk98/6b15633e8fc43e8daf6b628548006376
https://gist.github.com/drk98/6b15633e8fc43e8daf6b628548006376
https://gist.github.com/drk98/6b15633e8fc43e8daf6b628548006376
https://gist.github.com/drk98/6b15633e8fc43e8daf6b628548006376
https://gist.github.com/drk98/6b15633e8fc43e8daf6b628548006376
https://gist.github.com/drk98/6b15633e8fc43e8daf6b628548006376
https://gist.github.com/drk98/6b15633e8fc43e8daf6b628548006376
https://gist.github.com/drk98/6b15633e8fc43e8daf6b628548006376


D. Kramer, M. Gowanlock, D. Trilling et al. Astronomy and Computing 44 (2023) 100711

Table 3
The percentage match between the derived period and the real period for the
three surveys and the percentage change from the baseline. The ‘‘None/Baseline’’
row is when none of the methods were used and the highest LSP power was
used as the derived period. SSPDB used a sample of 10 000 objects.
Method Percentage match Percentage change

ZTF SSPDB ZTF SSPDB
None/Baseline 64.8% 57.9% – –
Mask 65.8% 74.5% 1.56% 28.6%
MC 70.1% 53.5% 8.08% �7.61%
Window 69.0% 71.5% 6.39% 23.4%
VP 14.0% 8.91% �78.4% �84.6%

5. Results

All L-S and window functions used the implementations from
SciPy/cuSignal, using 5⇥ 106 frequencies on a uniform period
grid on [1 h, 150 h].

As a baseline, Fig. 6 shows the period distribution when no
dealiasing is applied and Figs. 7–10 show the period distributions
for the four methods presented above.

Each of the distributions has spikes at aliases, meaning that
none of the approaches are completely successful at removing all
aliases because we assume that the true period distributions for
our population are continuous .

Our next step is to compare the derived results with known
values. For ZTF period solutions, the known values are provided
by the LCDB (Section 4.1), which contains few alias solutions
because of human curating and/or observational cadence that do
not have aliasing at the derived periods. There are 2544 objects
that are in both the LCDB and ZTF; all of them were used for the
calculations. For the SSPDB, since we assigned rotation periods
for every object, verifying the correct periods in aliased and
de-aliased solutions for this case is straightforward.

The percentage match between the derived period and the
real period is shown in Table 3. Objects were considered to have
matching periods if their period, half their period, or double
their period was within 10% of the LCDB (for ZTF) or assigned
period (for SSPDB). The baseline method for both surveys had
a match rate of over 50%, so most objects have their correct
period derived. Once the methods were applied, the masking
and window methods increased the match percentage over the
baseline for both surveys while the MC method only increased
the match percentage for ZTF, and the VP method decreased the
match percentage for both surveys.

6. Discussion

We begin by examining ZTF and excluding the VP method
(which will be described later). The best match percentage using
ZTF is with the MC method; however, all of the methods are
within ⇡ 6% of each other, including the baseline. At a minimum,
if de-aliasing is needed for a ZTF-like survey, the masking method
should be implemented as it incurs no extra cost. If computational
cost is not prohibitive, then the MC should be implemented. In
all cases (except where VP is implemented), our results suggest
that around two-thirds of all reported solutions are likely to be
correct.

For SSPDB, the variation among non-VP approaches is greater
than for ZTF, ranging from barely better than 50% (MC) to almost
75% accurate (masking). Notably, the MC method performs worse
than the baseline. We hypothesize that the long baseline of the
SSPDB observations leads to the points in each subsample being

too temporally distant2 for L-S to reliably derive the correct
period.

The VP method was the worst performing of the methods as
it seems to incorrectly select aliases/pseudo-aliases, causing the
method to ‘‘overcorrect’’. Fig. 10 shows that there are regions
where no periods are detected and periods tend to be derived
at longer periods, meaning that the correct periods get derived a
small percentage of the time. With the VP and window methods
being similar, we hypothesize that the reason the VP method is
worse is that the pseudo-alias check causes an overcorrection of
the periods.

One may wonder whether the match percentages found here
could be improved since all of the methods still have derived
periods at or near aliases. It is possible that better parameters for
the methods could be found with a more exhaustive search of the
parameter space, like those in Table 2. However, such a search is
impractical due to the large volume of data in the catalogs.

For the masking method, since it is static and therefore unable
to react to changes in aliases, the masks might have to be re-
derived after the survey starts if an inaccurate simulation was
used or if the observational cadence of the survey changes during
the survey.

One important conclusion is that the best de-aliasing approach
is not the same for ZTF and SSPDB, which implies that a study
like this should be carried out for every large-scale survey. If
this is impractical and a single uniform approach is preferred, we
identify the masking process as the most effective, though this
conclusion is based only on the two datasets considered here.

7. Conclusions and future work

We used two sets of survey data, one real and one synthetic, to
test four de-aliasing techniques for period solutions from all-sky
surveys.

We find that the masking method provides the overall best re-
sults and should be chosen for any given survey. This method has
a relatively low time complexity. The masks for ZTF and SSPDB,
and therefore LSST, have been generated and are presented in
Table 1. The windowmethod would also be a good choice to apply
if the computational performance loss compared to the masking
method is not important as it provides aliases for each object
individually. However, we note that results may vary from survey
to survey, and the best approach is to carry out individualized
studies, such as this one.

This paper leads to several lines of future investigation:

• Improving the window method so it provides a higher
match rate.

• Use several of the methods together to see if that improves
the match rate.

• Develop a GPU version of the MC method in order to de-
crease its expensive computation time.

• Develop a method that removes the pseudo-aliases.
• Test how differences in a survey’s simulated data and its real

data change its mask ranges.
• Develop and test methods for determining a ‘‘confidence’’

in a periodogram result in order to better gauge if a derived
period result is correct.

2 This is only an issue for the MC method. Having a long baseline of
observations is beneficial for the other methods.
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Appendix A. LSST generation

For each object from the LSST Synthetic Moving Objects
Database, the following cuts/steps were taken in generating a
periodic signal in their data

1. Import all objects with at least 30 observations in at least
two filters.

2. Convert the apparent magnitudes to absolute magnitudes
using the ‘‘filterg12’’ value as that filter’s G. SSPDB uses
the Bowell HG system (Bowell et al., 1989) not the HG12
system (Muinonen et al., 2010) even though the field is
called ‘‘filterg12’’. If that filter’s ‘‘g12’’ data was NaN, then
the average of the rest of the filter ‘‘g12’’ values were used.
If all the filter’s ‘‘g12’’ values are NaN, then a value of
G = 0.15 was used for all filters.

3. A period and amplitude were generated for each object
and a sine wave with those properties was added to the
objects derived absolute magnitudes. Both were generated
using the parameters located in Table 4 and the resulting
distributions are shown in Fig. 5. The truncated normal dis-

Fig. 5. The period and amplitude distributions for SSPDB. The x-axis is the
period/amplitude and the y-axis is the probability density of each bin (the area
under the histogram is 1).

Table 4
The distributions and parameters used for the period and am-
plitude generation. Plots for these distributions are available in
Fig. 5. The distributions were approximated from the LCDB data
(Section 4.1).
Distribution Period Amplitude

Truncated normal Gamma

Parameters

a �0.1 a 0.48
b 50 1

�
0.18

µ 6
� 40

tribution used SciPy’s truncnorm function and the gamma
distribution used SciPy’s gamma function.
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Fig. 6. The derived period distribution for the given survey using the no method
(the base derived period distribution). Fig. 7. The derived period distribution for the given survey using the mask

method.
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Fig. 8. The derived period distribution for the given survey using the Monte
Carlo method. Fig. 9. The derived period distribution for the given survey using the window

method.
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Fig. 10. The derived period distribution for the given survey using the
VanderPlas method.

4. For each filter, the mean of the absolute magnitudes, µH ,
was calculated. H � µH for each filter was then concate-
nated, resulting in a single band of data with µH = 0.

5. The observation data along with the assigned period and
amplitude values were stored.

Appendix B. Derived period distributions

See Figs. 6–10.
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