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from asymptotics
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I present a general method for determining the massive cusp anomalous dimension in QCD to a very
high degree of accuracy using its asymptotic behavior at small and large quark velocities. I show that the
method works exceedingly well at two and three loops where exact results are already known. I then
present a calculation of the massive cusp anomalous dimension using its asymptotics at four loops, and I
provide a detailed study of the results for different values of the number of flavors and for separate color
structures. The method can be further extended and applied to higher numbers of loops.
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I. INTRODUCTION

The cusp anomalous dimension [1-25] controls the
infrared behavior of perturbative QCD scattering ampli-
tudes. It is the simplest soft anomalous dimension in QCD
and an essential ingredient of all calculations of soft
anomalous dimensions for processes with more compli-
cated color structures; see, e.g., Refs. [26-30], and see
Ref. [31] for a review.

Wilson or eikonal lines describe the radiation of soft
gluons by partons (i.e., quarks or gluons). The partons are
represented by ordered exponentials in which the path is a
straight line in the direction of the parton four-velocity v as

b
W (s, 41;x) = P exp <—ig/

’ d/lv-A(/lv+x)>, (1.1)
A

where P is an operator that orders group products in the
same sense as ordering in the integration variable 4, and A is
the gauge field in the appropriate representation of the
gauge group. The pattern of soft radiation is determined by
the charge currents a long time before the scattering event
and after it, which underlies the concept of factorization in
QCD hard-scattering cross sections.

The cusp angle 6 between two eikonal lines with
four-velocities »; and v, is defined by the relation
0 = cosh™! (v} - vy/y/v}03). In simple processes such as
eTe™ — 1, we have two eikonal lines meeting at a color
singlet vertex. This vertex is associated with ultraviolet
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divergences which are dealt with by renormalization. The
anomalous dimension in the corresponding renormalization
group equation is the cusp anomalous dimension, Iy, and
it is the same for all color singlets.

While the case of T'y, with massless eikonal lines
essentially involves only color coefficients and con-
stants [32-35] and is known fully through four loops,
the massive case has a complicated structure in terms of
(harmonic) polylogarithms involving the masses of the
eikonal lines [12,13,16—18] and is only known fully
through three loops, with some terms as well as limits
for small and large cusp angles known at four loops (see
Ref. [25] for a recent review).

We consider eikonal lines representing massive quarks
that have the same mass m and momentum p! =
(V/s/2)7, with i =1, 2 and s = (p, + p,)*—i.e., the
case of production of a heavy quark-antiquark pair. Then,
we have v, v, =1+ and v? = v3 =1 — 2, where
B = +/1—4m?/s is the quark speed. Then, the cusp angle
is @=In[(1+p)/(1-p)], and in reverse we have
f = tanh(0/2). Clearly, the range of /3 is from 0 (at absolute
threshold with s = 4m?) to 1 (the massless case with
m = 0), and the corresponding range for 6 is from zero
to infinity.

The perturbative series for the cusp anomalous dimen-
sion in QCD is written as

M= (“;) "o,

n=1

(1.2)

where a, is the strong coupling. Beyond one loop, the
expressions involve the number of light-quark flavors, 7.

We will show how to determine I'™) to a superb precision
from its asymptotic behavior at large and small . The two-
loop and three-loop cases provide a stringent test of the
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method for all physical choices (and beyond) for ny, and
the method allows precise predictions at four loops. It is
important to note that while we will derive results using the
speed f, the results are not limited to the case of eikonal
lines representing two quarks with the same mass. Once the
method is used and the results are then reexpressed in terms
of 6, those results are valid for a given 6 even when it
reflects cases with two different masses for the two
eikonal lines.

In Sec. II, we briefly review results for the cusp
anomalous dimension at one, two, and three loops. In
Sec. III, we discuss the small-§ expansions of the cusp
anomalous dimension through four loops. In Sec. 1V,
we discuss the large-f behavior of I'yep. In Sec. V, we
introduce expressions that use the asymptotic behavior at
small and large f, and that numerically describe the cusp
anomalous dimension exceedingly well for the full § range
at two and three loops, and we make a corresponding
prediction at four loops. We study in detail the numerical
aspects of the expressions through four loops for n; = 3,
ny =4, and n; = 5, and we make brief comments for other
ny values. We also study separate color structures and
discuss various extensions of the method. We conclude in
Sec. VI. Appendix A assembles known expressions for the
lightlike cusp anomalous dimension where color factors
and various other constants are also defined, while
Appendix B shows the detailed expression for the three-
loop massive cusp anomalous dimension.

II. MASSIVE CUSP ANOMALOUS DIMENSION
IN QCD AT ONE, TWO, AND THREE LOOPS

We begin with a brief overview of results for the massive
[eusp in QCD through three loops.

@ _ g.r ST
el e(120)

el ()

A. One loop

The QCD cusp anomalous dimension at one loop [1] is
given by
'Y = Cp(6 coth 6 — 1). (2.1)

This result can be straightforwardly reexpressed in terms

of the quark speed f3. Noting that cothd = (1 + °)/(2f),
we define
(1+p), (1-5
L= \ . 2.2
P op T+ p (22)

Then, the one-loop cusp anomalous dimension written as a
function of f is given by

) = —Cp(Ly+1). (2.3)

B. Two loops

Calculations of the QCD cusp anomalous dimension at
two loops have a long history. Results for the relevant two-
loop diagrams were presented in Ref. [3] in terms of
unevaluated double and triple integrals. The two-loop cusp
anomalous dimension was calculated in terms of three
unevaluated single integrals in Refs. [5-7], with n; terms
added in Refs. [8,9]. The result was further refined into one
with a single unevaluated integral in Ref. [11]. All these
results were given in terms of the cusp angle, 6.

An independent calculation directly in terms of the quark
velocity f was presented in Ref. [12]. This calculation
provided the first fully analytical result for the two-loop
massive cusp anomalous dimension in QCD without any
unevaluated integrals. The cusp anomalous dimension at
two loops written as a function of f is given by [12—14]

AR )

4p 1+p "3
22
P - an(55) -3 (45

where K, [32] is given in Eq. (A2) of Appendix A.
Furthermore, it was first shown in Ref. [12] that one can
construct an excellent approximation to the complete two-
loop result for the cusp anomalous dimension, Eq. (2.4), by
using its asymptotic behavior at small and large . We note
that the method uses the results for ', in terms of /3, and it
would not work as well if one used expressions directly in

5)-n (55 () o)) e

|
terms of @ due to the infinite range of the cusp angle, as we
will explain in Sec. V, although obviously one can later
reexpress both the exact and the approximate results in
terms of 6.

The result of Eq. (2.4) for the two-loop cusp anomalous
dimension was also rewritten in Ref. [12] in terms of € and
is given by
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r®=g,r+cp.c 6,0
UV HCrCy 2+2+2

1 6
—ECOthe |:é’26+ 92 +§+L12(1 —6_29):|

1 6 . .
+§coth29 [—CB, +529+§+9le(€_29) +Li; (6_29)]}-

(2.5)

C. Three loops

The QCD cusp anomalous dimension at three loops was
calculated in Refs. [16,17]. The result was expressed in
terms of a number of harmonic polylogarithms of up to
weight 5. The result from Refs. [16,17] was later reex-
pressed in terms of regular polylogarithms and single
integrals of them in Ref. [18], and written as

r® = k) 4 2K,(1? — K, D) 4¢3, (2.6)
where K [33] is given in Eq. (A3) of Appendix A, and C®)
has a long expression which can be found in Eq. (2.13)
of Ref. [18].

The cusp anomalous dimension at three loops,
Eq. (2.6), can also be written as a function of . We have
CP) = CxCAC'"® with ') given explicitly in Eq. (62) of
Ref. [31]. We also provide C'®) in a somewhat improved
form in Appendix B.

Furthermore, it was first shown in Ref. [18] that one can
construct an excellent approximation to the complete three-
loop result for the cusp anomalous dimension by using its
asymptotic behavior at small and large f, analogously to
the two-loop case of Ref. [12]. Again, we note that the
method uses the results for I, written in terms of f, and it
would not work as well if one used expressions directly in
terms of 4.

IIL. SMALL-$ EXPANSION OF T,
THROUGH FOUR LOOPS

For small 6, we can expand the cusp anomalous
dimension around 8 = 0 [5-7,9,12,13,16-18,24] as

re =1l + 1% + o). (3.1)
Expansions at one and two loops were given in
Refs. [5-7,9,12,13], and at three loops in Refs. [16-18].
The small-0 expansion at four loops was recently derived
in Ref. [24].

We note that for small 6, we have 6 =2+
(2/3)8° + O(f), and thus 6> = 44> + (8/3)p* + O(p°),
so the small-6 expansion formulas can easily be rewritten in
terms of S [12,18]. Equivalently, we have f=0/2—
63/24 + O(6%), and thus, > = 6%/4 — 0*/24 + O(6°).

For small f, we can expand the cusp anomalous
dimension around f = 0 [12,13,18] as

I =1+ T + 0(8°), (3.2)
and we find at one loop
) = —CFﬁ2 (3.3)
r =8 o p (3.4)
/s e '

and at two loops

94 4 20
/;2 =p? |:CFCA (27 3§2> __CF”fTF]v (3.5)

64 8 8
[,4 =p |:CFCA (45 552) _27CanTF:|- (3.6)

We note that if we define F/(}z)4 = F/g? + T (1) and F(%L =

F;z) + F(4>, we have the relation

2
Féz)zt - Kzr 2.4 +ﬂ2C CA (1 _3§2>

+ p*CrCy ( 8 _ 4 §2> : (3.7)

135
At three loops, we have

473 170 5
/,z =p l:CFCZ (72 752 + —C3 + 5§4>

389 40 14
+50 353)

CrCan,T
+CrCany F( 162" 27

36 3 81

88351
=p |:CFCi (2430%) *é'z 53 +2§4>

1207 16
P e 553)

55 4
+C12pnfTF< L4 43) an;T%}, (3.8)

T —
+CrCany F( 1215 ' 27

11 8

Using the small-6 expansion given in Ref. [24], we
can derive the small-# expansion at four loops, which is
given by

+ C%npr <
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= | (T g G+ g Tag 6y G 3 fom g
+C%CAnfTF< % —Cz 70(: —254-1—%@5—55253)
+ CrCingTr <_ 478717661 * 12%1436 62~ 3362141 B % Cat i_g &+ 2978 CZ§3)
s (i e ) cim (- 0+ 6,
+ CpCan; T (;222 274635 1410 C4> + Cpn} T3( 2334- 53)
+WW <— 29OC C4 +—= 524'3) d“"‘dd“”“’ <—§§2 +?C4 + 146 —638524'3)] (3.10)

and

42813919 286153

507971

68987 2351 35

4 C C’%
ﬂ“ =/ [ g (4374000 36450

26603
9720
17835961 18821

60750

692
5400 4 T 540 S5 TG % +ﬁCZC3>

116 16
+5€72 4'3——54 —Cs—ﬁézé's)

CrCinTp| -
+CrCany F( 4374000 6075

143 37 4
Cin,T -
+Crny F<540 45 3C5>+
17123 152 152, 4_56
87480 1215 °2
d%ded%de . ~ 2 ~ @
N, T\ 225 225
dibedqabed (33 6892
+ - a4 -
N, 243 1215

81
1136
225
2264
405

+ CFCAn2T2 (
G+

{H+

IV. LARGE-f BEHAVIOR OF T,

The massless limit, m — 0, of the cusp anomalous
dimension, which is the limit 0 — oo, is given in
Eq. (Al). Equivalently, this is the limit f — 1, and it
can be written as

lim (")

lim (4.1)

= K",l}i_rf}r(l) +P,,

where K, for n =1, 2, 3, 4 are given in Appendix A,
and the constants P, at one, two, and three loops are
given, respectively, by P, =0, P, = (1/2)CrCy(1 —3),
and

_C3_

{3 —

g3+

16969 2164 181 776
276750 {3— {4+ 5265 +ﬁ52§3)

(29 16, 4
T( {3+ 15€4>

675 135

1215 27
8 16
—_ 33 - — 4
45€4) +Crny F( 12154_405C3)
12 64 1088
gC4 - 355 + 225§2C3>
56 28 104
—C4—355 +?C6+EC2€3>:|' (3.11)
|
Py = K,CpCy(1 =C3)
1 3 ¢
+CFC2< 2+452——3+ {s— 4:243)- (4.2)
The limit can also be rewritten as
) . 1-p
lim"") = —CpK, lim In + R,
p—1 p—1 2
m2
::—CFKnhg}n(——>4—Rm (4.3)
nm—> S

where the constants R, are given by R, = P, — CpK,,.
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V. EXPRESSIONS FOR I';,,, THROUGH FOUR
LOOPS FROM ASYMPTOTICS

As first shown in Ref. [12] for the two-loop case, we can
construct simple expressions based on the asymptotics of
[eusp that provide excellent approximations which are valid
for all values of f. At all orders, the cusp anomalous
dimension vanishes at f = 0 and is infinite at f = 1. The
expansion around f = 0 gives very good approximations to
") at small 8. The expression in Eq. (4.1) gives the large-$
limit, which shows that in that limit the higher-loop results
are essentially proportional to the one-loop result. Thus, we
can derive an approximate expression from asymptotics,

denoted as FX’), for all f§ values by starting with the small-$

expansion of I'"), then adding K,I"(") and subtracting from
it its small- expansion:

ry) =18 -k, + K10,

(5.1)

2)

'Y = —0.386490845 2 — 0.036077819 f* + (3.115932233 — 0.277777778 n,) TV,

where F};l = ;;) + F;ff). We note that the last two terms

on the right in the above equation cancel precisely against
each other at small , and quite well even at medium f,
while the first two terms largely cancel against each other at
large p.

Equivalently, using Egs. (2.3), (3.3), and (3.4), we can
write Eq. (5.1) as

; . 4 8
m%ﬂ%—@m@ﬁ+gﬁ+%+ﬁ-6@

We note that for the one-loop case, we have FS) =1
identically. Applying Eq. (5.1) to higher loops, setting the
number of colors N. = 3, and numerically evaluating all
constants, we find very simple expressions in terms of f
and n ¢ at two, three, and four loops:

(5.3)

Ff) = (—0.981370903 + 0.214717136 nf)ﬂ2 + (—0.141381392 + 0.020043233 nf)ﬂ4

+ (13.76833912 — 2.146727700 n; — 0.009259259 n%)F(l),

4)

(5.4)

Fg = (—3.749290323 +- 1.186688634 n; — 0.022664587 n%)ﬂ2

+ (=0.290594150 + 0.156331101 n; — 0.002115675 n})ﬁ“

+ (60.65142489 — 15.15209803 n; + 0.572980154 n?c -+ 0.009586947 n;.)l“(l),

where T'() is given by Eq. (2.3) with C = 4/3 in QCD.

. 2
We note that the n, terms in F/(f) are Fg nr

—(5/9)n;TT'V, so they are identically the same as in
the exact result, but the CrC, terms are not exact. We

also note that the n, terms in Ff) are Ff)”f =

KT +2K’§f(r;§?4 - KZFI(;ZL), where K5’ and K}’

denote the n; terms in K, and Kj. Thus, in Ff), the
Cny and the Cpn terms are exact, but the CxC; and
the CrCyny terms are not exact. Finally, at four loops, the
Cyny, Cgny, and Cpnj terms in T are exact, but all the
rest of the terms are not exact.

As mentioned earlier, the method would not work well
directly in terms of 6, i.e., if the above expressions used 6>
and 6* expansions and I'(") in terms of @; this is due to the
infinite range of the cusp angle which would result in
incomplete cancellations and poor results at large 6. Thus,
the method has to be used exactly as described above,
which benefits from the finite and small § range of O to 1.
Of course, at the end one can still reexpress Egs. (5.1)

(5.5)

through (5.5) in terms of @ with the simple substitution
B = tanh(0/2).

A. Results for n,=3

We begin our numerical study of the cusp anomalous
dimension through four loops for the case ny = 3, i.e., three
light-quark flavors. This would, for example, be relevant to
charm pair production via e"e™ — c¢.

In Fig. 1, we plot the cusp anomalous dimension for
ny = 3 at one, two, three, and four loops as a function of .

The one-loop TV, two-loop I'®, and three-loop I'®)

results are exact, while the four-loop result F,(44) is the
expression from the asymptotics in Egs. (5.1) and (5.5). To
better show the behavior for small 3, we plot the results in a
logarithmic scale over several orders of magnitude in
the lower inset plot. On the other hand, to better show
the behavior near f = 1, we plot the results as functions
of the cusp angle @ in the upper inset plot. For example, a
value of # = 0.99999 corresponds to 0 = 12.2. Thus, the
three different ways of plotting the results give an overall
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Cusp anomalous dimension n =3
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FIG. 1. The cusp anomalous dimension for ny = 3.

picture of the behavior of ', for small-, medium-, and  ratios at two loops. The ratio K,I'") /T®) approaches the
large-f values through four loops. value 1 at large f, as expected, but it is considerably larger

In Fig. 2, we plot ratios of the various terms in Eq. (5.1) than that for most of the f range, so by itself it is not an
to the exact result for the cusp anomalous dimension at two  adequate approximation of the exact two-loop result. The
and three loops for ny = 3. The upper plot of Fig. 2 shows  small-f approximation is a good approximation at small 3,

Ratios to exact results for n ¢ = 3
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FIG. 2. Ratios for the cusp anomalous dimension with n, = 3 at two loops (upper plot) and three loops (lower plot).
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as expected, but it begins to fail at larger values. The
F;) /T?) ratio shows that the > terms by themselves

provide a description of the exact result by better than one
part in ten thousand (i.e., 0.1 per mille) up to f = 0.015, and

better than 1 per mille up to = 0.05. The F[(;Z /T ratio

shows that the sum of the 4> and $* terms provides a
description better than 0.1 per mille up to f =~ 0.14, and
better than 1 per mille up to # ~ 0.24. The expansions begin

. . ~ )
to fail at higher values of . By a value of f ~ 0.6, even I Pt

differs by four percent from I'®. The result for Ff),

however, provides an excellent description throughout
the S range, as the ratio FE? /T shows. The difference

between Ff) and T® is less than 1 per mille over the entire
p range from O to 1; in fact, it is less than one part per
million from f=0 up to f=~0.17, and better than
0.1 per mille for most of the f range, from f =0 to
f = 0.6, and also for values between f ~ 0.8 and f = 0.9, as
well as for f values extremely close to 1. The inset of the
upper plot of Fig. 2 shows the same two-loop ratios as

functions of @ for n = 3. Thus, we see that Ff) performs
exceptionally well, by any reasonable standard, in giving
the correct prediction for the two-loop cusp anomalous
dimension for all § values or, equivalently, for all 8 values.
The line Fﬁf) /T2 is practically indistinguishable from 1 in
the plots.

The lower plot of Fig. 2 shows ratios at three loops for
ng = 3. The ratio KsI')/T'®) approaches the value 1 at
large S, as expected, and it actually remains within three
percent of the exact result over the entire f range. As also
expected, the small-# approximation is a good approxima-

tion at small § but not at larger values. The r}),? /T0) ratio

shows that the 8% terms by themselves provide a description
of better than 0.1 per mille up to f = 0.016, and better than
1 per mille up to f =~ 0.05, which is very similar to what we

saw at two loops above. The I“le /TG ratio shows that the

sum of the 4 and * terms provides a description of better
than 0.1 per mille up to f = 0.14, and better than 1 per mille
up to =~ 0.25, which again is very similar to the behavior

at two loops. By a value of = 0.6, however, F;;L differs
by four percent from I'®). On the other hand, as the ratio
Ff) /TG shows, I’ f) provides an excellent description over

the entire  range. The difference between F/(f) and TG
stays well below 1 per mille everywhere; in fact, it is less
than one part per million from =0 up to f ~0.16, and
better than 0.1 per mille for the majority of the  range,
from =0 to above f~0.5, as well as for f values
extremely close to 1. The inset of the lower plot of Fig. 2

shows the same three-loop ratios as functions of 6 for

)

ny = 3. Thus, we see that Ff performs exceptionally well

in giving the correct prediction for the three-loop
cusp anomalous dimension over all # or 6 values. The
line Ff) /T3 is virtually indistinguishable from 1 in
the plots.

The great similarity between the two-loop and three-loop
cases in the behavior of the expansions with > and p*
terms and, more importantly, of the approximate expres-
sions from asymptotics (despite the difference in the ratios
K, T /T and K;TW/T®), indicates a very strong
robustness of our method for calculating Fg"). The fact

that I" /(42) and Ff) are practically indistinguishable from the
corresponding exact results highlights the success of the
formula in Eq. (5.1) and gives strong confidence for its
success at higher loops.

Since we do not know the full exact result for I'®), we
cannot create an exact analog of Fig. 2 at four loops.
However, we can do something similar and study the ratio

K,/ Fff), as well as the ratios of the small-$ expansions

to FX‘). In the top plot of Fig. 3, we plot these ratios for
ny = 3. We also plot the dashed line identically equal to 1
for reference, and note that we expect it to be practically
indistinguishable from the ratio F/(f) /T®. The K,I'V) term
by itself is very close to ', around one percent or better
over the entire range. We observe that the behavior of the
small-f# expansions is very similar to the two-loop and
three-loop cases, again displaying consistency across dif-

ferent orders. The F;;)/ F/(f) ratio shows that the 4 terms
provide a description better than 0.1 per mille up to
p~0.016, and better than 1 per mille up to f=0.05,
which is very similar to what we saw at two and three loops
above. The I ;)4 / Ff) ratio shows that the sum of the 5> and

p* terms provides a description better than 0.1 per mille up
to f~0.14, and better than 1 per mille up to = 0.25,
which again is very similar to the behavior at two loops and
at three loops. By a value of = 0.6, F(‘;L differs by four
(4)

percent from I A4 . Again, all this behavior is very similar to
the situation at two and three loops, and it highlights the
robustness of the approach and provides strong confidence
that the result for Ff) is numerically essentially the same as
that for T for all practical purposes.

B. Results for n,=4

We continue our numerical study of the cusp anomalous
dimension through four loops for the case ny = 4, i.e., four
light-quark flavors. This would, for example, be relevant to
b-quark pair production via ete™ — bb.

In Fig. 4, we plot the cusp anomalous dimension for
ny = 4 as afunction of 8. As before, the one-loop M, two-

loop I'®), and three-loop I'®) results are exact, while the
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Ratios to four-loop prediction n =3
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FIG. 3. Ratios with respect to FX‘) for ny = 3 (top plot), ny = 4 (middle plot), and n, = 5 (lower plot).

four-loop result F/(f) is the expression from the asymptotics. useq in the plots of Fig. 4 are diffe.rent from those in Fig. 1.
Of course, since the one-loop result is independent of 7y, Again, to better show the behavior for small /3, we plot

it is identical to what we already plotted in Fig. 1, but for the re.sults 1 a logantl}nnc slcale %Yfr several oilders of
higher loops the results differ, and thus, the vertical scales magnitude in the lower inset plot, while to better show the

Cusp anomalous dimension n_ =4
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FIG. 4. The cusp anomalous dimension for ny = 4.
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behavior near f = 1, we plot the results as functions of the
cusp angle € in the upper inset plot.

In Fig. 5, we plot ratios of the various terms in Eq. (5.1)
to the exact result for the cusp anomalous dimension at two
and three loops for ny = 4. The upper plot of Fig. 5 shows
ratios at two loops. The ratio K,I'") /T®) approaches the
value 1 at large f3, as expected, but it is considerably larger

2) 4 2
than that for most of the f range. r/;? differs from I'® by

less than 0.1 per mille up to f=0.015, and less than
1 per mille up to B~ 0.05. F[(;l differs from I'® by less
than 0.1 per mille up to f ~ 0.14, and less than 1 per mille

up to f =~ 0.24. By a value of f = 0.6, F/%L

than four percent from I'"®). This is all very similar to the
small-$ asymptotic behavior for ny = 3, as we saw in the

differs by more

previous subsection. Moreover, the result for FE‘Z) provides
an excellent description throughout the f range as the ratio

'Y /T shows. The difference between I' and T'@) is
1 per mille or less over the entire f range from O to 1; in
fact, it is less than one part per million from f = 0 up to
f = 0.16, and 0.1 per mille or better for most of the 5 range,
from f = 0 to f =~ 0.6, and also for values between f ~ 0.8
and f~ 0.9, as well as for # values extremely close to 1.
Again, these results are very similar to the corresponding
ones for ny = 3. The inset of the upper plot of Fig. 5 shows
the same two-loop ratios as functions of 6 for n; = 4.
The lower plot of Fig. 5 shows ratios at three loops
for ny = 4. The ratio K5I /T3) approaches the value 1
at large f, as expected, and it actually remains within

one-and-a-half percent of the exact result over the entire
range. The Ffz) terms differ from I'®) by less than

0.1 per mille up to = 0.016, and less than 1 per mille
up to = 0.05, which is very similar to what we saw at

two loops. The 1“1(332_)4 terms differ from ') by less than

0.1 per mille up to f~0.14, and less than 1 per mille
up to = 0.25, which again is very similar to the behavior

at two loops. The result for Ff) provides an excellent
description over the entire ff range. The difference between

Ff) and T'®) is 1 per mille or better everywhere; it is
actually less than one part per million from =0 up to
f ~0.15, and 0.1 per mille or better for half of the f range,
from f =0 to f=0.5 as well as for § values extremely
close to 1. Again, this is very similar to what we saw for the
ny = 3 case. The inset of the lower plot of Fig. 5 shows the

same three-loop ratios as functions of 8. Thus, Fg’z) again
performs exceptionally well in giving the correct prediction
for the three-loop cusp anomalous dimension for n; = 4.

Again, since we do not know the full exact result for r“,
we cannot create a direct analog of Fig. 5 at four loops.
However, we can study the ratio K,I'(1)/ Ff:) as well as the
ratios of the small-# expansions to F£‘4). In the middle plot
of Fig. 3, we plot these ratios for n; = 4, with the dashed

line identically equal to 1 for reference. The K,I"") term by
itself is somewhat smaller than Fﬁf). Also, F/(;) differs from

F£\4) by less than 0.1 per mille up to f ~ 0.016, and less than
1 per mille up to f =~ 0.05, which is very similar to what we

Ratios to exact results for n ¢= 4

ratios at two loops

70}
o
o
<2
Q
(0]
E : 0 2.4
g 1.05F 6= = . r® A
» s ]
= 1F _—— _—_——— e — — — ]
s F el T
= [ 1 1 I~ 1 1
0'95 1 1 1 1 1 1 1
0 0.2 0.4 0.6 0.8 1

FIG. 5.

Ratios for the cusp anomalous dimension with n, = 4 at two loops (upper plot) and three loops (lower plot).

054006-9



NIKOLAOS KIDONAKIS

PHYS. REV. D 107, 054006 (2023)

4
2

saw at two and three loops. F}} 4

L differs from Fg
than 0.1 per mille up to = 0.14, and less than 1 per mille
up to f ~ 0.25. Once again, all this behavior is very similar
to the situation at two and three loops for both n; = 3 and
ny = 4, as well as the four-loop results for ng= 3, and it

by less

provides strong confidence that the result for Fﬁf) is

numerically essentially the same as that for I'*) also for
ny = 4 for all practical purposes.

C. Results for ny= 5

We continue our numerical study of the cusp anomalous
dimension through four loops for the case ny =5, i.e., five
light-quark flavors. This would, for example, be relevant to
top-quark pair production via ete™ — fi.

In Fig. 6, we plot the cusp anomalous dimension for
ny =35 as a function of f. As in the previous cases of

Figs. 1 and 4, the one-loop I'")), two-loop I'®, and three-

loop I'®) results are exact, while the four-loop result Fﬁf) is
the expression from the asymptotics. As we have discussed,
the one-loop result is the same as before, but for higher
loops the results differ, and the vertical scales used in the
plots of Fig. 6 are different from those in the other cases.
The lower inset plot shows more clearly the small-f
asymptotics in a logarithmic scale, while the upper inset
plot shows the results versus € in order to show more
clearly the behavior near f = 1.

In Fig. 7, we plot ratios of the various terms in Eq. (5.1)
to the exact result for the cusp anomalous dimension at two

and three loops for ny = 5. As before, the upper plot of
Fig. 7 shows ratios at two loops. The ratio K,I'(1) /T2 js
considerably larger than 1 for most of the §f range but tends

to 1 at large 8. The I ;%) terms differ from I'® by less than
0.1 per mille up to # ~ 0.015, and less than 1 per mille up to
p~0.05. The F/(;l terms differ from I'® by less than
0.1 per mille up to # =~ 0.14, and less than 1 per mille up to

p =~ 0.24. Also, the result for FE‘Z) provides an excellent
description throughout the  range. The difference between

Ff) and T'® is 1 per mille or less over the entire /3 range
from O to 1; indeed, it is less than one part per million from
f = 0upto f = 0.16, and better than 0.1 per mille for most
of the S range, from f = 0 to above f ~ 0.5, and also for
values between f ~ 0.8 and f = 0.9, as well as for § values
extremely close to 1. These results are very similar to the
corresponding ones for ny =3 and ny = 4, again high-
lighting the robustness and success of the method. The inset
of the upper plot of Fig. 7 shows the same two-loop ratios
as functions of 0 for n; = 5.

The lower plot of Fig. 7 shows ratios at three loops for
ng =5. The ratio KT /T'®) approaches the value 1 at
large f3, as expected, and it remains within 2% of the exact

result over the entire f range. F(? differs from I'®) by less

than 0.1 per mille up to f = 0.016, and less than 1 per mille
up to S =~ 0.05, which is very similar to what we saw at two

loops. F/(;L differs from I"® by less than 0.1 per mille up to

f =~ 0.14, and less than 1 per mille up to f =~ 0.25, which is

Cusp anomalous dimension n =35

14

10

FIG. 6. The cusp anomalous dimension for ny = 5.
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Ratios to exact results for n ¢= 5
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FIG. 7. Ratios for the cusp anomalous dimension with n; =5 at two loops (upper plot) and three loops (lower plot).

also very similar to the behavior at two loops. Ff) provides

an excellent description over the entire f range. The

difference between Ff) and T'® is well below 3 per mille

everywhere; it is actually less than one part per million from
f =0up to f=0.14, and 0.1 per mille or better for half of
the f range, from ff = 0 to =~ 0.5 as well as for # values
extremely close to 1. Again, this is similar to what we
observed in the ny = 3 and ny = 4 cases. The inset of the

lower plot of Fig. 7 shows the same three-loop ratios as

functions of 6. Thus, we observe that FP performs

exceptionally well in giving the correct prediction for
the three-loop cusp anomalous dimension for n, = 5.

As discussed before, since we do not know the full exact
result for I'®), we do not have a direct analog of Fig. 7 at
four loops. In the bottom plot of Fig. 3, we plot ratios at
four loops for ny = 5, with the dashed line identically equal

4) 4)

to 1 for reference. The I ﬂi terms differ from I'),” by less

than 0.1 per mille to # =~ 0.018, and less than 1 per mille up
to f~0.06. The F[(;il terms differ from I’
0.1 per mille up to f ~ 0.18, and less than 1 per mille up to
F =~ 0.32. All this is again similar to the previous cases, and

i)

by less than

it provides strong confidence in the result for for

D. Results for other values of n,

Finally, we consider other values for n > even ones not
realized in nature but possibly used in toy models or in
models of physics beyond the Standard Model. In fact, we

have calculated the cusp anomalous dimension for integer
values of n, ranging from O to 10. The results are
remarkably consistent, in that Eq. (5.1) always provides
an excellent approximation to the exact results at two and
three loops, throughout the S range, and we derive robust
and precise four-loop predictions for the cusp anomalous
dimension from its asymptotics via Eq. (5.1).

E. Extensions of the expressions and method

The method presented in this paper can be extended in a
number of ways. One obvious extension is to include more
(or fewer) terms in the small-f# expansion contribution to
Eq. (5.1). We can write that relation more generally as

k.Y

n+ small

1—‘/(4”) — r(”)

small-p — -p + Knr(1)7

(5.6)
where we can keep as many terms in the small-/ expansion
as we wish.

For example, in Ref. [12], results were presented using
Egq. (5.6) for ny = 5 at two loops with a couple of different
choices. On one hand, results were given with only % terms
included in Eq. (5.6). As shown in Ref. [12], this is still a
good approximation over all f values, only about half of
one percent or better from the exact value. On the other
hand, results were also given in Ref. [12] with terms
included through $'2, which of course provide a better
approximation. However, there is an issue of diminishing
returns. While the inclusion of both $*> and p* terms
provides small but significant improvements relative to
only #* terms in the numerical result from Eq. (5.6), further
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additional terms provide negligible impact while affecting
the simplicity of our approach.

We also note that in Ref. [18] results were presented
using Eq. (5.6) for n; = 5 at three loops with only p? terms
included, which still gave a good approximation, about half
of one percent or better from the exact value, though of
course not as good as the one discussed in this paper where
p* terms are also included.

Another possible extension is to include further exact
results (in addition to the exact terms already present) for
some color structures and/or other combinations of terms
(when those are known) in the approximate expression. For
example, at three loops we can include the full two-loop
results in our expression and only have a small-f expansion
in C®); i.e., we could consider the alternative expression

2K,(T® — K, M) + C;;l + K5IV, This, again, makes a

negligible difference over the entire  range, at the level of
parts per million for much of it, with details depending on
the number of flavors.

Our method is also clearly applicable to higher numbers
of loops, and it could be utilized when the necessary
information becomes available. For example, for a five-
loop prediction, we would need to know the small-$
expansion of the cusp anomalous dimension at five loops
as well as the result for the lightlike Ks.

F. Further study of color structures

We can also study the approximation separately for each
color structure in the cusp anomalous dimension at each
perturbative order.

At two loops, the CrC4 terms are not exact in Ff), as
mentioned earlier, while the Cpn; terms are exact.
Studying the approximation from asymptotics just for
the CrC, terms alone, we find excellent agreement with
the exact result for those terms, better than 1 per mille
everywhere in the f range, and much smaller than that for
most of the range. This is consistent with and expected

from the excellence of the approximation for the total Ff).
At three loops, the Cny and the Cpn7 terms are exact in

Ff), as mentioned earlier, but the CC3 and CCyn ¢ terms
are not exact. We study the approximation from asymp-
totics separately for those terms. We find excellent agree-
ment with the exact result for both the CC2 and CrCyn ¢
terms, within a fraction of 1 per mille everywhere in the
range, smaller than 0.1 per mille for the majority of the j
range, and smaller than one part per million at small speeds.
This behavior is fully consistent with the behavior and

excellence of the approximation for the total Ff).
At four loops, as mentioned earlier, the Cyny, C%n%, and

C Fn? terms in FI(:) are exact, but all the rest of the terms in

Y —ie. the C;C}, ChCans, CpCing, CpCan?, dpdy,
and drd, terms—are not exact. There exist exact results for

some of these color structures, so one can make compar-
isons to them. The exact results for the dpd terms are very
complicated [23], but it is easier to make comparisons with
the conjectured results for the CECyn; and CpCan;
terms [16,17].

The C3Cyn; terms in I'® are conjectured to be

2K (1) — K,T0) + KyF T, while the CrCyn’

terms are conjectured to be (19/81)n7T7(I — K,I'V) +

2
KEA""F(I) [16,17,25], where the superscripts in K5 and K,
denote the corresponding terms in them, and both of these
conjectured expressions are consistent with the small-j
expansions in Egs. (3.10) and (3.11), so they seem to be
correct. We find superb agreement for both of these color
structures between the conjectured results and our results
from asymptotics. The difference is at the level of parts per
million up to f = 0.3, less than 0.03 per mille for the vast
majority of the § range, and less than a small fraction of
1 per mille (0.3 per mille for C%Cyn +» and 0.2 per mille for
CpCany) for all f. We note that /#° terms are also available
in the small-$ expansion for the CrC An% terms [22], but as

can easily be seen from the above comparison, there is
negligible room for improvement.

Furthermore, even though the drdr exact results [23]
are very complicated, one can investigate further known
terms of this color structure at small speeds [22]. Using the
results in Ref. [22], we find that the A° terms in the
small-f expansion of the drd color structure at four loops
are  f%(=904/1225-10132¢,/3675+53248¢5/11025 —
71884/735—2816(5/441+38944(,(5/11025). Their con-
tribution does not materially change the four-loop predic-
tion: a difference of less than one part per million for much
of the ff range, and everywhere less than 0.02 per mille for
ny =3, 0.05 per mille for ny =4, and 0.7 per mille for
ny = 5. Once again, this highlights the robustness of our
approach and the reliability of our method.

Finally, we can also investigate the effect of including the
exact form of the conjectured C3Cyny and CrCan; terms
in our four-loop expression. Again, we find remarkable
robustness in our method, consistent with all the previous
checks. The difference between the results is negligible, of
the order of parts per million for much of the f range (with
exact numbers depending on the number of flavors) and at
the level of per mille for the entirety of the f range. Thus,
there can be no reasonable doubt that our four-loop result is
very precise, and the inclusion of any future exact results or
more terms in the small-# expansion would make very little
numerical difference.

VI. CONCLUSIONS

An expression for the massive cusp anomalous dimen-
sion has been derived from its asymptotic behavior at small
and large quark velocities through four loops. At two and
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three loops, the expression predicts numerically the known
exact results astonishingly well, and new calculations
have been presented at four loops. The consistency and
excellence of the results across different orders and number
of flavors as well as color structures illustrates the success
and robustness of the method. The expression is in general
applicable to an arbitrary number of loops, so it can be
utilized at five loops or higher once the small-f behavior
and the lightlike cusp anomalous dimension are determined
at those loops.

The method presented has been developed in terms of
the quark velocity for the case of equal mass for the two
eikonal lines, but the results can afterwards be reexpressed
in terms of the cusp angle @; then, those results are valid for
a given 6 even when it describes cases with different masses
for the two eikonal lines. Thus, the method is completely
general and applies to any situation. The method can be
readily extended to higher-term £ expansions as well as to
higher loops once the necessary ingredients are known.

Calculations of soft anomalous dimensions, which are
used in resummations for various processes, involve the
cusp anomalous dimension as an essential component.
Soft-gluon resummation has been very successful in
approximating and predicting higher-order corrections
for top-quark production and other heavy-quark processes
and beyond. Thus, the derivation of highly accurate results
for the cusp anomalous dimension at four loops is an
important step towards more precise theoretical predictions
for hard-scattering processes as well as a better under-
standing of the infrared behavior of QCD.

APPENDIX A: LIGHTLIKE CUSP
ANOMALOUS DIMENSION

The massless limit of the cusp anomalous dimension,
1.e., the limit @ — oo, can be written as

Jim e = Al Jfim 0+ R, (A1)
where A = CpK, is the lightlike cusp anomalous

dimension, and Cr = (N2 —1)/2N,, with N, the number
of colors.
At one loop, K; = 1, and at two loops [32],

k=5

where Cy =N, {,=7%/6, Tr =1/2, and n; is the
number of light-quark flavors.
At three loops [33],

k=65

55
+CpnsTp <——+ §3)

5
§l’lfTF,

67 &

63)-

; (A2)

245 67
9% 36

1

Gataglatg ¢4>

209 5 7 1
ACKNOWLEDGMENTS +CAnfTF< 316 9% C) 77 F (A3)
This material is based upon work supported by the
National Science Foundation under Grant No. PHY
2112025. with ¢5 = 1.202056903... and ¢, = 7*/90.
|
At four loops [34,35],
42139 5525 1309 451 451 313 C2
3 el SR el S
=C (10368 12065 T 432 T ea ¢ Tasg s T gp 0 €2C3 )
43 37 17033 55 29 11 5
+CF”fTF<288 245 Cs) +CFCAnfTF< 35184 + 8§2+?C3_§C4+_§5_C2C3>
24137 635 361 11 13 299 10 g4
Cn Ty - 2, - - Crn2T2 4
+Cany F( 10368 324 T a3 T T §5 *s §2¢3> +Crny (648 gt 2>
923 19 35 7 1
2T2 7 _ 3T3
+ Can (5184 1622 T 7 12§4> M < 81 27 ‘:3)
dancddancd CS 5 dabcddf‘bcd C2 443 31 3 5
r % _B 2 & %4 (%2 - A4
+ CoN. 7l &2 Cs CiN., 5T 6+ §5 §6 253 ) (Ad)
where {5 = 1.036927755..., {5 = 75/945, d2edqabed /(CpN,) = (N* — 6N? + 18)/(48N2), and d@dqabed /(CpN,) =

N (N?+6)/24.
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APPENDIX B: THREE-LOOP MASSIVE CUSP ANOMALOUS DIMENSION

The cusp anomalous dimension at three loops is given by Eq. (2.6) with C®) = CC3C'"®), where C'®) written as a
function of f is given by
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where explicit expressions for the six distinct weight-five harmonic polylogarithms H in the above equation can be found in

the Appendix of Ref. [18].
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