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I present a general method for determining the massive cusp anomalous dimension in QCD to a very

high degree of accuracy using its asymptotic behavior at small and large quark velocities. I show that the

method works exceedingly well at two and three loops where exact results are already known. I then

present a calculation of the massive cusp anomalous dimension using its asymptotics at four loops, and I

provide a detailed study of the results for different values of the number of flavors and for separate color

structures. The method can be further extended and applied to higher numbers of loops.
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I. INTRODUCTION

The cusp anomalous dimension [1–25] controls the

infrared behavior of perturbative QCD scattering ampli-

tudes. It is the simplest soft anomalous dimension in QCD

and an essential ingredient of all calculations of soft

anomalous dimensions for processes with more compli-

cated color structures; see, e.g., Refs. [26–30], and see

Ref. [31] for a review.

Wilson or eikonal lines describe the radiation of soft

gluons by partons (i.e., quarks or gluons). The partons are

represented by ordered exponentials in which the path is a

straight line in the direction of the parton four-velocity v as

Wðλ2; λ1; xÞ ¼ P exp

�

−ig

Z

λ2

λ1

dλ v · Aðλvþ xÞ
�

; ð1:1Þ

where P is an operator that orders group products in the

same sense as ordering in the integration variable λ, and A is

the gauge field in the appropriate representation of the

gauge group. The pattern of soft radiation is determined by

the charge currents a long time before the scattering event

and after it, which underlies the concept of factorization in

QCD hard-scattering cross sections.

The cusp angle θ between two eikonal lines with

four-velocities v1 and v2 is defined by the relation

θ ¼ cosh−1ðv1 · v2=
ffiffiffiffiffiffiffiffiffi

v21v
2
2

p

Þ. In simple processes such as

eþe− → tt̄, we have two eikonal lines meeting at a color

singlet vertex. This vertex is associated with ultraviolet

divergences which are dealt with by renormalization. The

anomalous dimension in the corresponding renormalization

group equation is the cusp anomalous dimension, Γcusp, and

it is the same for all color singlets.

While the case of Γcusp with massless eikonal lines

essentially involves only color coefficients and con-

stants [32–35] and is known fully through four loops,

the massive case has a complicated structure in terms of

(harmonic) polylogarithms involving the masses of the

eikonal lines [12,13,16–18] and is only known fully

through three loops, with some terms as well as limits

for small and large cusp angles known at four loops (see

Ref. [25] for a recent review).

We consider eikonal lines representing massive quarks

that have the same mass m and momentum p
μ
i ¼

ð ffiffiffi

s
p

=2Þvμi , with i ¼ 1, 2 and s ¼ ðp1 þ p2Þ2—i.e., the

case of production of a heavy quark-antiquark pair. Then,

we have v1 · v2 ¼ 1þ β2 and v21 ¼ v22 ¼ 1 − β2, where

β ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 4m2=s
p

is the quark speed. Then, the cusp angle

is θ ¼ ln½ð1þ βÞ=ð1 − βÞ�, and in reverse we have

β ¼ tanhðθ=2Þ. Clearly, the range of β is from 0 (at absolute

threshold with s ¼ 4m2) to 1 (the massless case with

m ¼ 0), and the corresponding range for θ is from zero

to infinity.

The perturbative series for the cusp anomalous dimen-

sion in QCD is written as

Γcusp ¼
X

∞

n¼1

�

αs

π

�

n

Γ
ðnÞ; ð1:2Þ

where αs is the strong coupling. Beyond one loop, the

expressions involve the number of light-quark flavors, nf.

We will show how to determine ΓðnÞ to a superb precision

from its asymptotic behavior at large and small β. The two-

loop and three-loop cases provide a stringent test of the
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method for all physical choices (and beyond) for nf, and

the method allows precise predictions at four loops. It is

important to note that while we will derive results using the

speed β, the results are not limited to the case of eikonal

lines representing two quarks with the same mass. Once the

method is used and the results are then reexpressed in terms

of θ, those results are valid for a given θ even when it

reflects cases with two different masses for the two

eikonal lines.

In Sec. II, we briefly review results for the cusp

anomalous dimension at one, two, and three loops. In

Sec. III, we discuss the small-β expansions of the cusp

anomalous dimension through four loops. In Sec. IV,

we discuss the large-β behavior of Γcusp. In Sec. V, we

introduce expressions that use the asymptotic behavior at

small and large β, and that numerically describe the cusp

anomalous dimension exceedingly well for the full β range

at two and three loops, and we make a corresponding

prediction at four loops. We study in detail the numerical

aspects of the expressions through four loops for nf ¼ 3,

nf ¼ 4, and nf ¼ 5, and we make brief comments for other

nf values. We also study separate color structures and

discuss various extensions of the method. We conclude in

Sec. VI. Appendix A assembles known expressions for the

lightlike cusp anomalous dimension where color factors

and various other constants are also defined, while

Appendix B shows the detailed expression for the three-

loop massive cusp anomalous dimension.

II. MASSIVE CUSP ANOMALOUS DIMENSION

IN QCD AT ONE, TWO, AND THREE LOOPS

We begin with a brief overview of results for the massive

Γcusp in QCD through three loops.

A. One loop

The QCD cusp anomalous dimension at one loop [1] is

given by

Γ
ð1Þ ¼ CFðθ coth θ − 1Þ: ð2:1Þ

This result can be straightforwardly reexpressed in terms

of the quark speed β. Noting that coth θ ¼ ð1þ β2Þ=ð2βÞ,
we define

Lβ ¼
ð1þ β2Þ

2β
ln

�

1 − β

1þ β

�

: ð2:2Þ

Then, the one-loop cusp anomalous dimension written as a

function of β is given by

Γ
ð1Þ ¼ −CFðLβ þ 1Þ: ð2:3Þ

B. Two loops

Calculations of the QCD cusp anomalous dimension at

two loops have a long history. Results for the relevant two-

loop diagrams were presented in Ref. [3] in terms of

unevaluated double and triple integrals. The two-loop cusp

anomalous dimension was calculated in terms of three

unevaluated single integrals in Refs. [5–7], with nf terms

added in Refs. [8,9]. The result was further refined into one

with a single unevaluated integral in Ref. [11]. All these

results were given in terms of the cusp angle, θ.

An independent calculation directly in terms of the quark

velocity β was presented in Ref. [12]. This calculation

provided the first fully analytical result for the two-loop

massive cusp anomalous dimension in QCD without any

unevaluated integrals. The cusp anomalous dimension at

two loops written as a function of β is given by [12–14]

Γ
ð2Þ ¼ K2Γ

ð1Þ þ CFCA

�

1

2
þ ζ2

2
þ 1

2
ln2

�

1 − β

1þ β

�

þ ð1þ β2Þ
4β

�

ζ2 ln

�

1 − β

1þ β

�

− ln2
�

1 − β

1þ β

�

þ 1

3
ln3

�

1 − β

1þ β

�

− Li2

�

4β

ð1þ βÞ2
��

þ ð1þ β2Þ2
8β2

�

−ζ3 − ζ2 ln

�

1 − β

1þ β

�

−

1

3
ln3

�

1 − β

1þ β

�

− ln

�

1 − β

1þ β

�

Li2

�ð1 − βÞ2
ð1þ βÞ2

�

þ Li3

�ð1 − βÞ2
ð1þ βÞ2

���

; ð2:4Þ

where K2 [32] is given in Eq. (A2) of Appendix A.

Furthermore, it was first shown in Ref. [12] that one can

construct an excellent approximation to the complete two-

loop result for the cusp anomalous dimension, Eq. (2.4), by

using its asymptotic behavior at small and large β. We note

that the method uses the results for Γcusp in terms of β, and it

would not work as well if one used expressions directly in

terms of θ due to the infinite range of the cusp angle, as we

will explain in Sec. V, although obviously one can later

reexpress both the exact and the approximate results in

terms of θ.

The result of Eq. (2.4) for the two-loop cusp anomalous

dimension was also rewritten in Ref. [12] in terms of θ and

is given by
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Γ
ð2Þ¼K2Γ

ð1ÞþCFCA

�

1

2
þζ2

2
þθ2

2

−

1

2
cothθ

�

ζ2θþθ2þθ3

3
þLi2ð1−e−2θÞ

�

þ1

2
coth2θ

�

−ζ3þζ2θþ
θ3

3
þθLi2ðe−2θÞþLi3ðe−2θÞ

��

:

ð2:5Þ

C. Three loops

The QCD cusp anomalous dimension at three loops was

calculated in Refs. [16,17]. The result was expressed in

terms of a number of harmonic polylogarithms of up to

weight 5. The result from Refs. [16,17] was later reex-

pressed in terms of regular polylogarithms and single

integrals of them in Ref. [18], and written as

Γ
ð3Þ ¼ K3Γ

ð1Þ þ 2K2ðΓð2Þ − K2Γ
ð1ÞÞ þ Cð3Þ; ð2:6Þ

whereK3 [33] is given in Eq. (A3) of Appendix A, and C
ð3Þ

has a long expression which can be found in Eq. (2.13)

of Ref. [18].

The cusp anomalous dimension at three loops,

Eq. (2.6), can also be written as a function of β. We have

Cð3Þ ¼ CFC
2
AC

0ð3Þ with C0ð3Þ given explicitly in Eq. (62) of

Ref. [31]. We also provide C0ð3Þ in a somewhat improved

form in Appendix B.

Furthermore, it was first shown in Ref. [18] that one can

construct an excellent approximation to the complete three-

loop result for the cusp anomalous dimension by using its

asymptotic behavior at small and large β, analogously to

the two-loop case of Ref. [12]. Again, we note that the

method uses the results for Γcusp written in terms of β, and it

would not work as well if one used expressions directly in

terms of θ.

III. SMALL-β EXPANSION OF Γcusp

THROUGH FOUR LOOPS

For small θ, we can expand the cusp anomalous

dimension around θ ¼ 0 [5–7,9,12,13,16–18,24] as

Γ
ðnÞ ¼ Γ

ðnÞ
θ2

þ Γ
ðnÞ
θ4

þOðθ6Þ: ð3:1Þ

Expansions at one and two loops were given in

Refs. [5–7,9,12,13], and at three loops in Refs. [16–18].

The small-θ expansion at four loops was recently derived

in Ref. [24].

We note that for small θ, we have θ ¼ 2βþ
ð2=3Þβ3 þOðβ5Þ, and thus θ2 ¼ 4β2 þ ð8=3Þβ4 þOðβ6Þ,
so the small-θ expansion formulas can easily be rewritten in

terms of β [12,18]. Equivalently, we have β ¼ θ=2−

θ3=24þOðθ5Þ, and thus, β2 ¼ θ2=4 − θ4=24þOðθ6Þ.

For small β, we can expand the cusp anomalous

dimension around β ¼ 0 [12,13,18] as

Γ
ðnÞ ¼ Γ

ðnÞ
β2

þ Γ
ðnÞ
β4

þOðβ6Þ; ð3:2Þ

and we find at one loop

Γ
ð1Þ
β2

¼ 4

3
CFβ

2; ð3:3Þ

Γ
ð1Þ
β4

¼ 8

15
CFβ

4; ð3:4Þ

and at two loops

Γ
ð2Þ
β2

¼ β2
�

CFCA

�

94

27
−

4

3
ζ2

�

−

20

27
CFnfTF

�

; ð3:5Þ

Γ
ð2Þ
β4

¼ β4
�

CFCA

�

64

45
−

8

15
ζ2

�

−

8

27
CFnfTF

�

: ð3:6Þ

We note that if we define Γ
ð1Þ
β2;4

¼ Γ
ð1Þ
β2

þ Γ
ð1Þ
β4

and Γ
ð2Þ
β2;4

¼
Γ
ð2Þ
β2

þ Γ
ð2Þ
β4
, we have the relation

Γ
ð2Þ
β2;4

¼ K2Γ
ð1Þ
β2;4

þ β2CFCA

�

1 −
2

3
ζ2

�

þ β4CFCA

�

58

135
−

4

15
ζ2

�

: ð3:7Þ

At three loops, we have

Γ
ð3Þ
β2

¼ β2
�

CFC
2
A

�

473

72
−

170

27
ζ2 þ

5

18
ζ3 þ 5ζ4

�

þ CFCAnfTF

�

−

389

162
þ 40

27
ζ2 −

14

9
ζ3

�

þ C2
FnfTF

�

−

55

36
þ 4

3
ζ3

�

−

4

81
CFn

2
fT

2
F

�

; ð3:8Þ

Γ
ð3Þ
β4

¼ β4
�

CFC
2
A

�

88351

24300
−

20

9
ζ2 −

251

225
ζ3 þ 2ζ4

�

þ CFCAnfTF

�

−

1207

1215
þ 16

27
ζ2 −

28

45
ζ3

�

þ C2
FnfTF

�

−

11

18
þ 8

15
ζ3

�

−

8

405
CFn

2
fT

2
F

�

: ð3:9Þ

Using the small-θ expansion given in Ref. [24], we

can derive the small-β expansion at four loops, which is

given by
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Γ
ð4Þ
β2

¼ β2
�

CFC
3
A

�

89011

7776
−

17953

972
ζ2 þ

1189

324
ζ3 þ

4841

144
ζ4 −

155

72
ζ5 −

175

12
ζ6 −

8

9
ζ2ζ3

�

þ C2
FCAnfTF

�

−

25943

3888
þ 55

18
ζ2 þ

170

27
ζ3 −

11

6
ζ4 þ

5

3
ζ5 −

8

3
ζ2ζ3

�

þ CFC
2
AnfTF

�

−

48161

7776
þ 1846

243
ζ2 −

3611

324
ζ3 −

55

9
ζ4 þ

55

18
ζ5 þ

28

9
ζ2ζ3

�

þ C3
FnfTF

�

143

216
þ 37

18
ζ3 −

10

3
ζ5

�

þ C2
Fn

2
fT

2
F

�

299

486
−

40

27
ζ3 þ

2

3
ζ4

�

þ CFCAn
2
fT

2
F

�

1835

3888
−

76

243
ζ2 þ

140

81
ζ3 −

7

9
ζ4

�

þ CFn
3
fT

3
F

�

−

4

243
þ 8

81
ζ3

�

þ dabcdF dabcdF

Nc

nf

�

−

20

9
ζ2 −

50

3
ζ4 þ

32

3
ζ2ζ3

�

þ dabcdF dabcdA

Nc

�

−

2

9
ζ2 þ

80

3
ζ4 þ 14ζ6 −

68

3
ζ2ζ3

��

ð3:10Þ

and

Γ
ð4Þ
β4

¼ β4
�

CFC
3
A

�

42813919

4374000
−

286153

36450
ζ2 −

507971

60750
ζ3 þ

68987

5400
ζ4 þ

2351

540
ζ5 −

35

6
ζ6 þ

692

675
ζ2ζ3

�

þ C2
FCAnfTF

�

−

26603

9720
þ 11

9
ζ2 þ

116

45
ζ3 −

11

15
ζ4 þ

2

3
ζ5 −

16

15
ζ2ζ3

�

þ CFC
2
AnfTF

�

−

17835961

4374000
þ 18821

6075
ζ2 −

16969

6750
ζ3 −

2164

675
ζ4 þ

181

135
ζ5 þ

776

675
ζ2ζ3

�

þ C3
FnfTF

�

143

540
þ 37

45
ζ3 −

4

3
ζ5

�

þ C2
Fn

2
fT

2
F

�

299

1215
−

16

27
ζ3 þ

4

15
ζ4

�

þ CFCAn
2
fT

2
F

�

17123

87480
−

152

1215
ζ2 þ

56

81
ζ3 −

14

45
ζ4

�

þ CFn
3
fT

3
F

�

−

8

1215
þ 16

405
ζ3

�

þ dabcdF dabcdF

Nc

nf

�

−

92

225
−

752

225
ζ2 þ

1136

225
ζ3 −

12

5
ζ4 −

64

9
ζ5 þ

1088

225
ζ2ζ3

�

þ dabcdF dabcdA

Nc

�

32

243
−

6892

1215
ζ2 þ

2264

405
ζ3 þ

56

45
ζ4 −

56

9
ζ5 þ

28

5
ζ6 þ

104

225
ζ2ζ3

��

: ð3:11Þ

IV. LARGE-β BEHAVIOR OF Γcusp

The massless limit, m → 0, of the cusp anomalous

dimension, which is the limit θ → ∞, is given in

Eq. (A1). Equivalently, this is the limit β → 1, and it

can be written as

lim
β→1

Γ
ðnÞ ¼ Kn lim

β→1
Γ
ð1Þ þ Pn; ð4:1Þ

where Kn for n ¼ 1, 2, 3, 4 are given in Appendix A,

and the constants Pn at one, two, and three loops are

given, respectively, by P1 ¼ 0, P2 ¼ ð1=2ÞCFCAð1 − ζ3Þ,
and

P3 ¼ K2CFCAð1 − ζ3Þ

þ CFC
2
A

�

−

1

2
þ 3

4
ζ2 −

ζ3

4
þ 9

8
ζ5 −

3

4
ζ2ζ3

�

: ð4:2Þ

The limit can also be rewritten as

lim
β→1

Γ
ðnÞ ¼ −CFKn lim

β→1
ln

�

1 − β

2

�

þ Rn

¼ −CFKn lim
m→0

ln

�

m2

s

�

þ Rn; ð4:3Þ

where the constants Rn are given by Rn ¼ Pn − CFKn.
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V. EXPRESSIONS FOR Γcusp THROUGH FOUR

LOOPS FROM ASYMPTOTICS

As first shown in Ref. [12] for the two-loop case, we can

construct simple expressions based on the asymptotics of

Γcusp that provide excellent approximations which are valid

for all values of β. At all orders, the cusp anomalous

dimension vanishes at β ¼ 0 and is infinite at β ¼ 1. The

expansion around β ¼ 0 gives very good approximations to

Γ
ðnÞ at small β. The expression in Eq. (4.1) gives the large-β

limit, which shows that in that limit the higher-loop results

are essentially proportional to the one-loop result. Thus, we

can derive an approximate expression from asymptotics,

denoted as Γ
ðnÞ
A , for all β values by starting with the small-β

expansion of ΓðnÞ, then adding KnΓ
ð1Þ and subtracting from

it its small-β expansion:

Γ
ðnÞ
A ¼ Γ

ðnÞ
β2;4

− KnΓ
ð1Þ
β2;4

þ KnΓ
ð1Þ; ð5:1Þ

where Γ
ðnÞ
β2;4

¼ Γ
ðnÞ
β2

þ Γ
ðnÞ
β4
. We note that the last two terms

on the right in the above equation cancel precisely against

each other at small β, and quite well even at medium β,

while the first two terms largely cancel against each other at

large β.

Equivalently, using Eqs. (2.3), (3.3), and (3.4), we can

write Eq. (5.1) as

Γ
ðnÞ
A ¼ Γ

ðnÞ
β2;4

− CFKn

�

4

3
β2 þ 8

15
β4 þ Lβ þ 1

�

: ð5:2Þ

We note that for the one-loop case, we have Γ
ð1Þ
A ¼ Γ

ð1Þ

identically. Applying Eq. (5.1) to higher loops, setting the

number of colors Nc ¼ 3, and numerically evaluating all

constants, we find very simple expressions in terms of β

and nf at two, three, and four loops:

Γ
ð2Þ
A ¼ −0.386490845 β2 − 0.036077819 β4 þ ð3.115932233 − 0.277777778nfÞΓð1Þ; ð5:3Þ

Γ
ð3Þ
A ¼ ð−0.981370903þ 0.214717136nfÞβ2 þ ð−0.141381392þ 0.020043233 nfÞβ4

þ ð13.76833912 − 2.146727700nf − 0.009259259n2fÞΓð1Þ; ð5:4Þ

Γ
ð4Þ
A ¼ ð−3.749290323þ 1.186688634nf − 0.022664587n2fÞβ2

þ ð−0.290594150þ 0.156331101nf − 0.002115675n2fÞβ4

þ ð60.65142489 − 15.15209803nf þ 0.572980154n2f þ 0.009586947n3fÞΓð1Þ; ð5:5Þ

where Γð1Þ is given by Eq. (2.3) with CF ¼ 4=3 in QCD.

We note that the nf terms in Γ
ð2Þ
A are Γ

ð2Þnf
A ¼

−ð5=9ÞnfTFΓ
ð1Þ, so they are identically the same as in

the exact result, but the CFCA terms are not exact. We

also note that the nf terms in Γ
ð3Þ
A are Γ

ð3Þnf
A ¼

K
nf
3 Γ

ð1Þ þ 2K
nf
2 ðΓð2Þ

β2;4
− K2Γ

ð1Þ
β2;4

Þ, where K
nf
2 and K

nf
3

denote the nf terms in K2 and K3. Thus, in Γ
ð3Þ
A , the

C2
Fnf and the CFn

2
f terms are exact, but the CFC

2
A and

the CFCAnf terms are not exact. Finally, at four loops, the

C3
Fnf, C

2
Fn

2
f, and CFn

3
f terms in Γ

ð4Þ
A are exact, but all the

rest of the terms are not exact.

As mentioned earlier, the method would not work well

directly in terms of θ, i.e., if the above expressions used θ2

and θ4 expansions and Γð1Þ in terms of θ; this is due to the

infinite range of the cusp angle which would result in

incomplete cancellations and poor results at large θ. Thus,

the method has to be used exactly as described above,

which benefits from the finite and small β range of 0 to 1.

Of course, at the end one can still reexpress Eqs. (5.1)

through (5.5) in terms of θ with the simple substitution

β ¼ tanhðθ=2Þ.

A. Results for nf = 3

We begin our numerical study of the cusp anomalous

dimension through four loops for the case nf ¼ 3, i.e., three

light-quark flavors. This would, for example, be relevant to

charm pair production via eþe− → cc̄.
In Fig. 1, we plot the cusp anomalous dimension for

nf ¼ 3 at one, two, three, and four loops as a function of β.

The one-loop Γ
ð1Þ, two-loop Γ

ð2Þ, and three-loop Γ
ð3Þ

results are exact, while the four-loop result Γ
ð4Þ
A is the

expression from the asymptotics in Eqs. (5.1) and (5.5). To

better show the behavior for small β, we plot the results in a

logarithmic scale over several orders of magnitude in

the lower inset plot. On the other hand, to better show

the behavior near β ¼ 1, we plot the results as functions

of the cusp angle θ in the upper inset plot. For example, a

value of β ¼ 0.99999 corresponds to θ ≈ 12.2. Thus, the

three different ways of plotting the results give an overall
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picture of the behavior of Γcusp for small-, medium-, and

large-β values through four loops.

In Fig. 2, we plot ratios of the various terms in Eq. (5.1)

to the exact result for the cusp anomalous dimension at two

and three loops for nf ¼ 3. The upper plot of Fig. 2 shows

ratios at two loops. The ratio K2Γ
ð1Þ=Γð2Þ approaches the

value 1 at large β, as expected, but it is considerably larger

than that for most of the β range, so by itself it is not an

adequate approximation of the exact two-loop result. The

small-β approximation is a good approximation at small β,
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as expected, but it begins to fail at larger values. The

Γ
ð2Þ
β2
=Γð2Þ ratio shows that the β2 terms by themselves

provide a description of the exact result by better than one

part in ten thousand (i.e., 0.1 per mille) up to β ≈ 0.015, and

better than 1 per mille up to β ≈ 0.05. The Γ
ð2Þ
β2;4

=Γð2Þ ratio

shows that the sum of the β2 and β4 terms provides a

description better than 0.1 per mille up to β ≈ 0.14, and

better than 1 per mille up to β ≈ 0.24. The expansions begin

to fail at higher values of β. By a value of β ≈ 0.6, even Γ
ð2Þ
β2;4

differs by four percent from Γ
ð2Þ. The result for Γ

ð2Þ
A ,

however, provides an excellent description throughout

the β range, as the ratio Γ
ð2Þ
A =Γð2Þ shows. The difference

between Γ
ð2Þ
A and Γð2Þ is less than 1 per mille over the entire

β range from 0 to 1; in fact, it is less than one part per

million from β ¼ 0 up to β ≈ 0.17, and better than

0.1 per mille for most of the β range, from β ¼ 0 to

β ≈ 0.6, and also for values between β ≈ 0.8 and β ≈ 0.9, as

well as for β values extremely close to 1. The inset of the

upper plot of Fig. 2 shows the same two-loop ratios as

functions of θ for nf ¼ 3. Thus, we see that Γ
ð2Þ
A performs

exceptionally well, by any reasonable standard, in giving

the correct prediction for the two-loop cusp anomalous

dimension for all β values or, equivalently, for all θ values.

The line Γ
ð2Þ
A =Γ2Þ is practically indistinguishable from 1 in

the plots.

The lower plot of Fig. 2 shows ratios at three loops for

nf ¼ 3. The ratio K3Γ
ð1Þ=Γð3Þ approaches the value 1 at

large β, as expected, and it actually remains within three

percent of the exact result over the entire β range. As also

expected, the small-β approximation is a good approxima-

tion at small β but not at larger values. The Γ
ð3Þ
β2
=Γð3Þ ratio

shows that the β2 terms by themselves provide a description

of better than 0.1 per mille up to β ≈ 0.016, and better than

1 per mille up to β ≈ 0.05, which is very similar to what we

saw at two loops above. The Γ
ð3Þ
β2;4

=Γð3Þ ratio shows that the

sum of the β2 and β4 terms provides a description of better

than 0.1 per mille up to β ≈ 0.14, and better than 1 per mille

up to β ≈ 0.25, which again is very similar to the behavior

at two loops. By a value of β ≈ 0.6, however, Γ
ð3Þ
β2;4

differs

by four percent from Γ
ð3Þ. On the other hand, as the ratio

Γ
ð3Þ
A =Γð3Þ shows, Γð3ÞA provides an excellent description over

the entire β range. The difference between Γ
ð3Þ
A and Γ

ð3Þ

stays well below 1 per mille everywhere; in fact, it is less

than one part per million from β ¼ 0 up to β ≈ 0.16, and

better than 0.1 per mille for the majority of the β range,

from β ¼ 0 to above β ≈ 0.5, as well as for β values

extremely close to 1. The inset of the lower plot of Fig. 2

shows the same three-loop ratios as functions of θ for

nf ¼ 3. Thus, we see that Γ
ð3Þ
A performs exceptionally well

in giving the correct prediction for the three-loop

cusp anomalous dimension over all β or θ values. The

line Γ
ð3Þ
A =Γ3Þ is virtually indistinguishable from 1 in

the plots.

The great similarity between the two-loop and three-loop

cases in the behavior of the expansions with β2 and β4

terms and, more importantly, of the approximate expres-

sions from asymptotics (despite the difference in the ratios

K2 Γ
ð1Þ=Γð2Þ and K3 Γ

ð1Þ=Γð3Þ), indicates a very strong

robustness of our method for calculating Γ
ðnÞ
A . The fact

that Γ
ð2Þ
A and Γ

ð3Þ
A are practically indistinguishable from the

corresponding exact results highlights the success of the

formula in Eq. (5.1) and gives strong confidence for its

success at higher loops.

Since we do not know the full exact result for Γð4Þ, we
cannot create an exact analog of Fig. 2 at four loops.

However, we can do something similar and study the ratio

K4Γ
ð1Þ=Γð4ÞA , as well as the ratios of the small-β expansions

to Γ
ð4Þ
A . In the top plot of Fig. 3, we plot these ratios for

nf ¼ 3. We also plot the dashed line identically equal to 1

for reference, and note that we expect it to be practically

indistinguishable from the ratio Γ
ð4Þ
A =Γð4Þ. The K4Γ

ð1Þ term

by itself is very close to Γ
ð4Þ
A , around one percent or better

over the entire range. We observe that the behavior of the

small-β expansions is very similar to the two-loop and

three-loop cases, again displaying consistency across dif-

ferent orders. The Γ
ð4Þ
β2
=Γ

ð4Þ
A ratio shows that the β2 terms

provide a description better than 0.1 per mille up to

β ≈ 0.016, and better than 1 per mille up to β ≈ 0.05,

which is very similar to what we saw at two and three loops

above. The Γ
ð4Þ
β2;4

=Γ
ð4Þ
A ratio shows that the sum of the β2 and

β4 terms provides a description better than 0.1 per mille up

to β ≈ 0.14, and better than 1 per mille up to β ≈ 0.25,

which again is very similar to the behavior at two loops and

at three loops. By a value of β ≈ 0.6, Γ
ð4Þ
β2;4

differs by four

percent from Γ
ð4Þ
A . Again, all this behavior is very similar to

the situation at two and three loops, and it highlights the

robustness of the approach and provides strong confidence

that the result for Γ
ð4Þ
A is numerically essentially the same as

that for Γð4Þ for all practical purposes.

B. Results for nf = 4

We continue our numerical study of the cusp anomalous

dimension through four loops for the case nf ¼ 4, i.e., four

light-quark flavors. This would, for example, be relevant to

b-quark pair production via eþe− → bb̄.
In Fig. 4, we plot the cusp anomalous dimension for

nf ¼ 4 as a function of β. As before, the one-loop Γð1Þ, two-

loop Γ
ð2Þ, and three-loop Γ

ð3Þ results are exact, while the
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four-loop result Γ
ð4Þ
A is the expression from the asymptotics.

Of course, since the one-loop result is independent of nf,

it is identical to what we already plotted in Fig. 1, but for

higher loops the results differ, and thus, the vertical scales

used in the plots of Fig. 4 are different from those in Fig. 1.

Again, to better show the behavior for small β, we plot

the results in a logarithmic scale over several orders of

magnitude in the lower inset plot, while to better show the
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behavior near β ¼ 1, we plot the results as functions of the

cusp angle θ in the upper inset plot.

In Fig. 5, we plot ratios of the various terms in Eq. (5.1)

to the exact result for the cusp anomalous dimension at two

and three loops for nf ¼ 4. The upper plot of Fig. 5 shows

ratios at two loops. The ratio K2Γ
ð1Þ=Γð2Þ approaches the

value 1 at large β, as expected, but it is considerably larger

than that for most of the β range. Γ
ð2Þ
β2

differs from Γ
ð2Þ by

less than 0.1 per mille up to β ≈ 0.015, and less than

1 per mille up to β ≈ 0.05. Γ
ð2Þ
β2;4

differs from Γ
ð2Þ by less

than 0.1 per mille up to β ≈ 0.14, and less than 1 per mille

up to β ≈ 0.24. By a value of β ≈ 0.6, Γ
ð2Þ
β2;4

differs by more

than four percent from Γ
ð2Þ. This is all very similar to the

small-β asymptotic behavior for nf ¼ 3, as we saw in the

previous subsection. Moreover, the result for Γ
ð2Þ
A provides

an excellent description throughout the β range as the ratio

Γ
ð2Þ
A =Γð2Þ shows. The difference between Γ

ð2Þ
A and Γ

ð2Þ is

1 per mille or less over the entire β range from 0 to 1; in

fact, it is less than one part per million from β ¼ 0 up to

β ≈ 0.16, and 0.1 per mille or better for most of the β range,

from β ¼ 0 to β ≈ 0.6, and also for values between β ≈ 0.8

and β ≈ 0.9, as well as for β values extremely close to 1.

Again, these results are very similar to the corresponding

ones for nf ¼ 3. The inset of the upper plot of Fig. 5 shows

the same two-loop ratios as functions of θ for nf ¼ 4.

The lower plot of Fig. 5 shows ratios at three loops

for nf ¼ 4. The ratio K3Γ
ð1Þ=Γð3Þ approaches the value 1

at large β, as expected, and it actually remains within

one-and-a-half percent of the exact result over the entire β

range. The Γ
ð3Þ
β2

terms differ from Γ
ð3Þ by less than

0.1 per mille up to β ≈ 0.016, and less than 1 per mille

up to β ≈ 0.05, which is very similar to what we saw at

two loops. The Γ
ð3Þ
β2;4

terms differ from Γ
ð3Þ by less than

0.1 per mille up to β ≈ 0.14, and less than 1 per mille

up to β ≈ 0.25, which again is very similar to the behavior

at two loops. The result for Γ
ð3Þ
A provides an excellent

description over the entire β range. The difference between

Γ
ð3Þ
A and Γ

ð3Þ is 1 per mille or better everywhere; it is

actually less than one part per million from β ¼ 0 up to

β ≈ 0.15, and 0.1 per mille or better for half of the β range,

from β ¼ 0 to β ≈ 0.5 as well as for β values extremely

close to 1. Again, this is very similar to what we saw for the

nf ¼ 3 case. The inset of the lower plot of Fig. 5 shows the

same three-loop ratios as functions of θ. Thus, Γ
ð3Þ
A again

performs exceptionally well in giving the correct prediction

for the three-loop cusp anomalous dimension for nf ¼ 4.

Again, since we do not know the full exact result for Γð4Þ,
we cannot create a direct analog of Fig. 5 at four loops.

However, we can study the ratio K4Γ
ð1Þ=Γð4ÞA as well as the

ratios of the small-β expansions to Γ
ð4Þ
A . In the middle plot

of Fig. 3, we plot these ratios for nf ¼ 4, with the dashed

line identically equal to 1 for reference. The K4Γ
ð1Þ term by

itself is somewhat smaller than Γ
ð4Þ
A . Also, Γ

ð4Þ
β2

differs from

Γ
ð4Þ
A by less than 0.1 per mille up to β ≈ 0.016, and less than

1 per mille up to β ≈ 0.05, which is very similar to what we
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saw at two and three loops. Γ
ð4Þ
β2;4

differs from Γ
ð4Þ
A by less

than 0.1 per mille up to β ≈ 0.14, and less than 1 per mille

up to β ≈ 0.25. Once again, all this behavior is very similar

to the situation at two and three loops for both nf ¼ 3 and

nf ¼ 4, as well as the four-loop results for nf ¼ 3, and it

provides strong confidence that the result for Γ
ð4Þ
A is

numerically essentially the same as that for Γð4Þ also for

nf ¼ 4 for all practical purposes.

C. Results for nf = 5

We continue our numerical study of the cusp anomalous

dimension through four loops for the case nf ¼ 5, i.e., five

light-quark flavors. This would, for example, be relevant to

top-quark pair production via eþe− → tt̄.
In Fig. 6, we plot the cusp anomalous dimension for

nf ¼ 5 as a function of β. As in the previous cases of

Figs. 1 and 4, the one-loop Γð1Þ, two-loop Γð2Þ, and three-

loop Γð3Þ results are exact, while the four-loop result Γð4ÞA is

the expression from the asymptotics. As we have discussed,

the one-loop result is the same as before, but for higher

loops the results differ, and the vertical scales used in the

plots of Fig. 6 are different from those in the other cases.

The lower inset plot shows more clearly the small-β

asymptotics in a logarithmic scale, while the upper inset

plot shows the results versus θ in order to show more

clearly the behavior near β ¼ 1.

In Fig. 7, we plot ratios of the various terms in Eq. (5.1)

to the exact result for the cusp anomalous dimension at two

and three loops for nf ¼ 5. As before, the upper plot of

Fig. 7 shows ratios at two loops. The ratio K2Γ
ð1Þ=Γð2Þ is

considerably larger than 1 for most of the β range but tends

to 1 at large β. The Γ
ð2Þ
β2

terms differ from Γ
ð2Þ by less than

0.1 per mille up to β ≈ 0.015, and less than 1 per mille up to

β ≈ 0.05. The Γ
ð2Þ
β2;4

terms differ from Γ
ð2Þ by less than

0.1 per mille up to β ≈ 0.14, and less than 1 per mille up to

β ≈ 0.24. Also, the result for Γ
ð2Þ
A provides an excellent

description throughout the β range. The difference between

Γ
ð2Þ
A and Γð2Þ is 1 per mille or less over the entire β range

from 0 to 1; indeed, it is less than one part per million from

β ¼ 0 up to β ≈ 0.16, and better than 0.1 per mille for most

of the β range, from β ¼ 0 to above β ≈ 0.5, and also for

values between β ≈ 0.8 and β ≈ 0.9, as well as for β values

extremely close to 1. These results are very similar to the

corresponding ones for nf ¼ 3 and nf ¼ 4, again high-

lighting the robustness and success of the method. The inset

of the upper plot of Fig. 7 shows the same two-loop ratios

as functions of θ for nf ¼ 5.

The lower plot of Fig. 7 shows ratios at three loops for

nf ¼ 5. The ratio K3Γ
ð1Þ=Γð3Þ approaches the value 1 at

large β, as expected, and it remains within 2% of the exact

result over the entire β range. Γ
ð3Þ
β2

differs from Γ
ð3Þ by less

than 0.1 per mille up to β ≈ 0.016, and less than 1 per mille

up to β ≈ 0.05, which is very similar to what we saw at two

loops. Γ
ð3Þ
β2;4

differs from Γ
ð3Þ by less than 0.1 per mille up to

β ≈ 0.14, and less than 1 per mille up to β ≈ 0.25, which is
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also very similar to the behavior at two loops. Γ
ð3Þ
A provides

an excellent description over the entire β range. The

difference between Γ
ð3Þ
A and Γð3Þ is well below 3 per mille

everywhere; it is actually less than one part per million from

β ¼ 0 up to β ≈ 0.14, and 0.1 per mille or better for half of

the β range, from β ¼ 0 to β ≈ 0.5 as well as for β values

extremely close to 1. Again, this is similar to what we

observed in the nf ¼ 3 and nf ¼ 4 cases. The inset of the

lower plot of Fig. 7 shows the same three-loop ratios as

functions of θ. Thus, we observe that Γ
ð3Þ
A performs

exceptionally well in giving the correct prediction for

the three-loop cusp anomalous dimension for nf ¼ 5.

As discussed before, since we do not know the full exact

result for Γð4Þ, we do not have a direct analog of Fig. 7 at

four loops. In the bottom plot of Fig. 3, we plot ratios at

four loops for nf ¼ 5, with the dashed line identically equal

to 1 for reference. The Γ
ð4Þ
β2

terms differ from Γ
ð4Þ
A by less

than 0.1 per mille to β ≈ 0.018, and less than 1 per mille up

to β ≈ 0.06. The Γ
ð4Þ
β2;4

terms differ from Γ
ð4Þ
A by less than

0.1 per mille up to β ≈ 0.18, and less than 1 per mille up to

β ≈ 0.32. All this is again similar to the previous cases, and

it provides strong confidence in the result for Γ
ð4Þ
A for

nf ¼ 5.

D. Results for other values of nf

Finally, we consider other values for nf, even ones not

realized in nature but possibly used in toy models or in

models of physics beyond the Standard Model. In fact, we

have calculated the cusp anomalous dimension for integer

values of nf ranging from 0 to 10. The results are

remarkably consistent, in that Eq. (5.1) always provides

an excellent approximation to the exact results at two and

three loops, throughout the β range, and we derive robust

and precise four-loop predictions for the cusp anomalous

dimension from its asymptotics via Eq. (5.1).

E. Extensions of the expressions and method

The method presented in this paper can be extended in a

number of ways. One obvious extension is to include more

(or fewer) terms in the small-β expansion contribution to

Eq. (5.1). We can write that relation more generally as

Γ
ðnÞ
A ¼ Γ

ðnÞ
small-β − KnΓ

ð1Þ
small-β þ KnΓ

ð1Þ; ð5:6Þ

where we can keep as many terms in the small-β expansion

as we wish.

For example, in Ref. [12], results were presented using

Eq. (5.6) for nf ¼ 5 at two loops with a couple of different

choices. On one hand, results were given with only β2 terms

included in Eq. (5.6). As shown in Ref. [12], this is still a

good approximation over all β values, only about half of

one percent or better from the exact value. On the other

hand, results were also given in Ref. [12] with terms

included through β12, which of course provide a better

approximation. However, there is an issue of diminishing

returns. While the inclusion of both β2 and β4 terms

provides small but significant improvements relative to

only β2 terms in the numerical result from Eq. (5.6), further
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additional terms provide negligible impact while affecting

the simplicity of our approach.

We also note that in Ref. [18] results were presented

using Eq. (5.6) for nf ¼ 5 at three loops with only β2 terms

included, which still gave a good approximation, about half

of one percent or better from the exact value, though of

course not as good as the one discussed in this paper where

β4 terms are also included.

Another possible extension is to include further exact

results (in addition to the exact terms already present) for

some color structures and/or other combinations of terms

(when those are known) in the approximate expression. For

example, at three loops we can include the full two-loop

results in our expression and only have a small-β expansion

in Cð3Þ; i.e., we could consider the alternative expression

2K2ðΓð2Þ − K2Γ
ð1ÞÞ þ C

ð3Þ
β2;4

þ K3Γ
ð1Þ. This, again, makes a

negligible difference over the entire β range, at the level of

parts per million for much of it, with details depending on

the number of flavors.

Our method is also clearly applicable to higher numbers

of loops, and it could be utilized when the necessary

information becomes available. For example, for a five-

loop prediction, we would need to know the small-β

expansion of the cusp anomalous dimension at five loops

as well as the result for the lightlike K5.

F. Further study of color structures

We can also study the approximation separately for each

color structure in the cusp anomalous dimension at each

perturbative order.

At two loops, the CFCA terms are not exact in Γ
ð2Þ
A , as

mentioned earlier, while the CFnf terms are exact.

Studying the approximation from asymptotics just for

the CFCA terms alone, we find excellent agreement with

the exact result for those terms, better than 1 per mille

everywhere in the β range, and much smaller than that for

most of the range. This is consistent with and expected

from the excellence of the approximation for the total Γ
ð2Þ
A .

At three loops, the C2
Fnf and the CFn

2
f terms are exact in

Γ
ð3Þ
A , as mentioned earlier, but the CFC

2
A and CFCAnf terms

are not exact. We study the approximation from asymp-

totics separately for those terms. We find excellent agree-

ment with the exact result for both the CFC
2
A and CFCAnf

terms, within a fraction of 1 per mille everywhere in the β

range, smaller than 0.1 per mille for the majority of the β

range, and smaller than one part per million at small speeds.

This behavior is fully consistent with the behavior and

excellence of the approximation for the total Γ
ð3Þ
A .

At four loops, as mentioned earlier, the C3
Fnf, C

2
Fn

2
f, and

CFn
3
f terms in Γ

ð4Þ
A are exact, but all the rest of the terms in

Γ
ð4Þ
A —i.e., the CFC

3
A, C

2
FCAnf, CFC

2
Anf, CFCAn

2
f, dFdF,

and dFdA terms—are not exact. There exist exact results for

some of these color structures, so one can make compar-

isons to them. The exact results for the dFdF terms are very

complicated [23], but it is easier to make comparisons with

the conjectured results for the C2
FCAnf and CFCAn

2
f

terms [16,17].

The C2
FCAnf terms in Γ

ð4Þ are conjectured to be

2K
CFnf
3 ðΓð2Þ − K2Γ

ð1ÞÞ þ K
CFCAnf
4 Γ

ð1Þ, while the CFCAn
2
f

terms are conjectured to be ð19=81Þn2fT2
FðΓð2Þ − K2Γ

ð1ÞÞ þ
K

CAn
2
f

4 Γ
ð1Þ [16,17,25], where the superscripts in K3 and K4

denote the corresponding terms in them, and both of these

conjectured expressions are consistent with the small-β

expansions in Eqs. (3.10) and (3.11), so they seem to be

correct. We find superb agreement for both of these color

structures between the conjectured results and our results

from asymptotics. The difference is at the level of parts per

million up to β ≈ 0.3, less than 0.03 per mille for the vast

majority of the β range, and less than a small fraction of

1 per mille (0.3 per mille for C2
FCAnf, and 0.2 per mille for

CFCAn
2
f) for all β. We note that β6 terms are also available

in the small-β expansion for the CFCAn
2
f terms [22], but as

can easily be seen from the above comparison, there is

negligible room for improvement.

Furthermore, even though the dFdF exact results [23]

are very complicated, one can investigate further known

terms of this color structure at small speeds [22]. Using the

results in Ref. [22], we find that the β6 terms in the

small-β expansion of the dFdF color structure at four loops

are β6ð−904=1225−10132ζ2=3675þ53248ζ3=11025−
718ζ4=735−2816ζ5=441þ38944ζ2ζ3=11025Þ. Their con-
tribution does not materially change the four-loop predic-

tion: a difference of less than one part per million for much

of the β range, and everywhere less than 0.02 per mille for

nf ¼ 3, 0.05 per mille for nf ¼ 4, and 0.7 per mille for

nf ¼ 5. Once again, this highlights the robustness of our

approach and the reliability of our method.

Finally, we can also investigate the effect of including the

exact form of the conjectured C2
FCAnf and CFCAn

2
f terms

in our four-loop expression. Again, we find remarkable

robustness in our method, consistent with all the previous

checks. The difference between the results is negligible, of

the order of parts per million for much of the β range (with

exact numbers depending on the number of flavors) and at

the level of per mille for the entirety of the β range. Thus,

there can be no reasonable doubt that our four-loop result is

very precise, and the inclusion of any future exact results or

more terms in the small-β expansion would make very little

numerical difference.

VI. CONCLUSIONS

An expression for the massive cusp anomalous dimen-

sion has been derived from its asymptotic behavior at small

and large quark velocities through four loops. At two and
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three loops, the expression predicts numerically the known

exact results astonishingly well, and new calculations

have been presented at four loops. The consistency and

excellence of the results across different orders and number

of flavors as well as color structures illustrates the success

and robustness of the method. The expression is in general

applicable to an arbitrary number of loops, so it can be

utilized at five loops or higher once the small-β behavior

and the lightlike cusp anomalous dimension are determined

at those loops.

The method presented has been developed in terms of

the quark velocity for the case of equal mass for the two

eikonal lines, but the results can afterwards be reexpressed

in terms of the cusp angle θ; then, those results are valid for

a given θ even when it describes cases with different masses

for the two eikonal lines. Thus, the method is completely

general and applies to any situation. The method can be

readily extended to higher-term β expansions as well as to

higher loops once the necessary ingredients are known.

Calculations of soft anomalous dimensions, which are

used in resummations for various processes, involve the

cusp anomalous dimension as an essential component.

Soft-gluon resummation has been very successful in

approximating and predicting higher-order corrections

for top-quark production and other heavy-quark processes

and beyond. Thus, the derivation of highly accurate results

for the cusp anomalous dimension at four loops is an

important step towards more precise theoretical predictions

for hard-scattering processes as well as a better under-

standing of the infrared behavior of QCD.
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APPENDIX A: LIGHTLIKE CUSP

ANOMALOUS DIMENSION

The massless limit of the cusp anomalous dimension,

i.e., the limit θ →∞, can be written as

lim
θ→∞

Γ
ðnÞ ¼ AðnÞ lim

θ→∞

θ þ Rn; ðA1Þ

where AðnÞ ¼ CFKn is the lightlike cusp anomalous

dimension, and CF ¼ ðN2
c − 1Þ=2Nc, with Nc the number

of colors.

At one loop, K1 ¼ 1, and at two loops [32],

K2 ¼ CA

�

67

36
−

ζ2

2

�

−

5

9
nfTF; ðA2Þ

where CA ¼ Nc, ζ2 ¼ π2=6, TF ¼ 1=2, and nf is the

number of light-quark flavors.

At three loops [33],

K3 ¼C2
A

�

245

96
−

67

36
ζ2þ

11

24
ζ3þ

11

8
ζ4

�

þCFnfTF

�

−

55

48
þζ3

�

þCAnfTF

�

−

209

216
þ5

9
ζ2−

7

6
ζ3

�

−

1

27
n2fT

2
F; ðA3Þ

with ζ3 ¼ 1.202056903… and ζ4 ¼ π4=90.

At four loops [34,35],

K4 ¼ C3
A

�

42139

10368
−

5525

1296
ζ2 þ

1309

432
ζ3 þ

451

64
ζ4 −

451

288
ζ5 −

313

96
ζ6 −

11

24
ζ2ζ3 −

ζ23
16

�

þ C2
FnfTF

�

143

288
þ 37

24
ζ3 −

5

2
ζ5

�

þ CFCAnfTF

�

−

17033

5184
þ 55

48
ζ2 þ

29

9
ζ3 −

11

8
ζ4 þ

5

4
ζ5 − ζ2ζ3

�

þ C2
AnfTF

�

−

24137

10368
þ 635

324
ζ2 −

361

54
ζ3 −

11

24
ζ4 þ

131

72
ζ5 þ

7

6
ζ2ζ3

�

þ CFn
2
fT

2
F

�

299

648
−

10

9
ζ3 þ

ζ4

2

�

þ CAn
2
fT

2
F

�

923

5184
−

19

162
ζ2 þ

35

27
ζ3 −

7

12
ζ4

�

þ n3fT
3
F

�

−

1

81
þ 2

27
ζ3

�

þ dabcdF dabcdF

CFNc

nf

�

ζ2 −
ζ3

3
−

5

3
ζ5

�

þ dabcdF dabcdA

CFNc

�

−

ζ2

2
þ ζ3

6
þ 55

12
ζ5 −

31

8
ζ6 −

3

2
ζ23

�

; ðA4Þ

where ζ5 ¼ 1.036927755…, ζ6 ¼ π6=945, dabcdF dabcdF =ðCFNcÞ ¼ ðN4
c − 6N2

c þ 18Þ=ð48N2
cÞ, and dabcdF dabcdA =ðCFNcÞ ¼

NcðN2
c þ 6Þ=24.
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APPENDIX B: THREE-LOOP MASSIVE CUSP ANOMALOUS DIMENSION

The cusp anomalous dimension at three loops is given by Eq. (2.6) with Cð3Þ ¼ CFC
2
AC

0ð3Þ, where C0ð3Þ written as a

function of β is given by

C0ð3Þ ¼ −

1

2
þ ζ2

2
−

ζ3

2
−

9

8
ζ4 þ

ζ2

2
ln

�

1 − β

1þ β

�

−

1

4
ln2

�

1 − β

1þ β

�

þ 1

12
ln3

�

1 − β

1þ β

�

−

1

24
ln4

�

1 − β

1þ β

�

þ 1

4
ln2

�

1 − β

1þ β

�

ln

�

4β

ð1þ βÞ2
�

þ 3

4
ln

�

1 − β

1þ β

�

Li2

�ð1 − βÞ2
ð1þ βÞ2

�

−

5

8
Li3

�ð1 − βÞ2
ð1þ βÞ2

�

þ ð1þ β2Þ
2β

�

−

ζ3

4
þ 15

8
ζ4 −

�

ζ2

2
−

ζ3

2
þ 9

8
ζ4

�

ln

�

1 − β

1þ β

�

þ
�

1

4
þ ζ2

�

ln2
�

1 − β

1þ β

�

−

�

1

12
þ ζ2

3

�

ln3
�

1 − β

1þ β

�

þ 7

24
ln4

�

1 − β

1þ β

�

−

1

24
ln5

�

1 − β

1þ β

�

þ 1

2
ln2

�

1 − β

1þ β

�

ln

�

4β

ð1þ βÞ2
�

−

1

2
ln3

�

1 − β

1þ β

�

ln

�

4β

ð1þ βÞ2
�

−

3

4
ln2

�

1 − β

1þ β

�

Li2

�ð1 − βÞ2
ð1þ βÞ2

�

þ 1

4
Li2

�

4β

ð1þ βÞ2
�

þ 1

4
Li3

�ð1 − βÞ2
ð1þ βÞ2

�

þ 7

4
ln

�

1 − β

1þ β

�

Li3

�ð1 − βÞ2
ð1þ βÞ2

�

þ 1

2
Li3

�

4β

ð1þ βÞ2
�

−

15

8
Li4

�ð1 − βÞ2
ð1þ βÞ2

��

þ ð1þ β2Þ2
4β2

�

−

19

8
ζ4 þ

3

2
ζ5 −

ζ2ζ3

2
−

�

3

2
ζ3 −

15

8
ζ4

�

ln

�

1 − β

1þ β

�

−

�

ζ2 −
ζ3

4

�

ln2
�

1 − β

1þ β

�

þ 2

3
ζ2 ln

3

�

1 − β

1þ β

�

−

1

4
ln4

�

1 − β

1þ β

�

þ 11

120
ln5

�

1 − β

1þ β

�

þ ln

�

4β

ð1þ βÞ2
��

ζ3 þ ζ2 ln

�

1 − β

1þ β

�

− ζ2 ln
2

�

1 − β

1þ β

�

þ 1

3
ln3

�

1 − β

1þ β

�

−

1

6
ln4

�

1 − β

1þ β

��

− ln2
�

1 − β

1þ β

�

ln2
�

4β

ð1þ βÞ2
�

þ ln

�

1 − β

1þ β

�

ln3
�

4β

ð1þ βÞ2
�

−

1

8
ln4

�

4β

ð1þ βÞ2
�

þ
�

ζ2

2
− ζ2 ln

�

1 − β

1þ β

�

− 2 ln2
�

1 − β

1þ β

�

−

1

12
ln3

�

1 − β

1þ β

�

þ ln

�

1 − β

1þ β

�

ln

�

4β

ð1þ βÞ2
��

Li2

�ð1 − βÞ2
ð1þ βÞ2

�

−

1

4
Li22

�ð1 − βÞ2
ð1þ βÞ2

�

þ 1

2
ln2

�

4β

ð1þ βÞ2
�

Li2

�

4β

ð1þ βÞ2
�

þ 1

4
Li22

�

4β

ð1þ βÞ2
�

−

1

2
ln2

�

4β

ð1 − βÞ2
�

Li2

�

−ð1 − βÞ2
4β

�

þ
�

ζ2

2
þ 3

2
ln

�

1 − β

1þ β

�

−

1

4
ln2

�

1 − β

1þ β

�

− ln

�

4β

ð1þ βÞ2
��

Li3

�ð1 − βÞ2
ð1þ βÞ2

�

þ
�

ln

�

1 − β

1þ β

�

− ln

�

4β

ð1þ βÞ2
��

Li3

�

4β

ð1þ βÞ2
�

þ
�

2 ln

�

1 − β

1þ β

�

− ln

�

4β

ð1þ βÞ2
��

Li3

�

−ð1 − βÞ2
4β

�

þ 9

8
ln

�

1 − β

1þ β

�

Li4

�ð1 − βÞ2
ð1þ βÞ2

�

þ Li4

�

4β

ð1þ βÞ2
�

− Li4

�

−ð1 − βÞ2
4β

�

−

3

2
Li5

�ð1 − βÞ2
ð1þ βÞ2

��
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þ ð1þ β2Þ3
32β3

�

−3ζ5 − 4ζ4 ln

�

1 − β

1þ β

�

− 3ζ3 ln
2

�

1 − β

1þ β

�

−

4

3
ζ2 ln

3

�

1 − β

1þ β

�

−

1

5
ln5

�

1 − β

1þ β

�

−

2

3
ln3

�

1 − β

1þ β

�

Li2

�ð1 − βÞ2
ð1þ βÞ2

�

þ ln2
�

1 − β

1þ β

�

Li3

�ð1 − βÞ2
ð1þ βÞ2

�

− 2 ln

�
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1þ β

�

Li4
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�

þ 3Li5
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�
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�

4β
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�
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�
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16β

�

−2ζ2ζ3 − 2ζ3 ln

�
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�
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�
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2

�

þ
�

3

2
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1

6
ln4

�
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ln β
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�

−1þ β

1þ β

�
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�

2β
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−

2

3
ln3

�
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Li2

�
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�
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�
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þ 2 ln2
�
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Li3

�
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�

− Li3

�
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−1;0;1;0;0
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; ðB1Þ

where explicit expressions for the six distinct weight-five harmonic polylogarithmsH in the above equation can be found in

the Appendix of Ref. [18].
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