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We discuss the problem of suppression of singularity via flow advection in
chemotaxis modeled by the Patlak—Keller—Segel (PKS) equations. It is well-known
that for the system without advection, singularity of the solution may develop at
finite time. Specifically, if the initial condition is above certain critical threshold,
the solution may blow up in finite time by concentrating positive mass at a
single point. In this work, we mainly focus on the global regularity and stability
analysis of the PKS system in the presence of flow advection in a bounded domain
2 C R%, d = 2,3, by using a semigroup approach. We will show that the global well-
posedness can be obtained as long as the semigroup generated by the associated
advection—diffusion operator has a rapid decay property. We will also show that for
cellular flows in rectangle-like domains, such property can be achieved by rescaling
both the cell size and the flow amplitude. This is analogous to the result established
by Iyer, Xu and Zlatos (2021) on the torus T¢,d = 2, 3.

©2023 Elsevier Ltd. All rights reserved.

1. Introduction

This work is concerned with the global regularity of the parabolic—elliptic Patlak—Keller—Segel system

proposed in [1] and its asymptotic behavior in the presence of flow advection in a bounded domain. The

Patlak—Keller—Segel system is one of the classical models that describe the chemotaxis on the movement of

cells in response to a chemical stimulus. Specially, the movement has a preference directed by the gradient

of the chemo-attractant, which is emitted by the cells. The detailed study of this model and reviews can be

found in (e.g. [1-11]).

Let 2 C R% d = 2,3, be an open bounded and connected domain with a smooth boundary I" (corners

may be allowed (see Section 3)). Consider that the motion of the cells is advected by the ambient fluid flow.

The flow velocity v is assumed to be divergence-free and time-independent. Let 6 be the density of the cells
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and c¢ be the concentration of a chemoattractant produced by the cells, then the motion of the cells can be
described by

% = A0 —Av-VO -V -(0xVe) in 0, (1.1)
—Ac+c=6 in 12, (1.2)
V-v=0 in £, (1.3)

with Neumann boundary conditions for both 6 and ¢, no-penetration condition for v

00 Oc
%—%—O and v.-n=0 on [, (1.4)
and the initial condition
0(x,0) =6p(x) in £, (1.5)

where x > 0 is a sensitivity parameter of the cells to the chemo-attractant ¢, A € R is a parameter regulating
the strength of the flow, and n is the outward unit normal vector to the domain boundary I'. Here we set
A > 0. The case with A < 0 can be treated similarly by letting v be —v. Without the advection term
or the drift, the solution of the PKS equations can exhibit dramatic collapsing behavior. It is shown in
(e.g.[4,12-15]) that if the initial density is above certain critical threshold, the solution may blow up in
finite time by concentrating positive mass at a single point. However, in the presence of flow advection, it is
proven in [16] that for any initial condition there exists an incompressible fluid flow such that the solution
to (1.1)—(1.5) remains globally regular. In particular, two classes of flows are shown to be able to prevent
the singularity formation in the solutions. One is the relaxation-enhancing flow based on [17] which is time-
independent, and the other one is the time-dependent exponentially mixing flow based on the construction
n [18]. However, these flows are rather complicated to generate. A recent work by Iyer, Xu and Zlatos
in [19] proved that as long as the flows have small dissipation times, the global well-posedness result can be
obtained. They further showed that the flows with arbitrarily small dissipation times can be constructed by
rescaling a general class of smooth (time-independent) cellular flows. Other related work, for example, on
shear flows can be also found in (e.g. [20]).

The aforementioned work on suppression of singularity via flow advection mainly considered the problem
in R? or T, d = 2,3. The objective of this work is to establish the global regularity and stability results in
general bounded domains by employing the tools of analytic semigroup theory, which will pave a way for
addressing more practical questions such as how to optimally control the flow advection for preventing finite
time blow-up or for steering the chemotaxis towards the desired trajectory. In this work, we first focus on
the properties of the semigroup generated by the advection—diffusion operator A — v 4 - V, where the flow
velocity v 4 continues to be divergence-free and time-independent and depends on the parameter A, but does
not necessarily take the form of v4 = Av as in (1.1). For example, in the case of cellular flows, we can set
va = Av(Az) and adjust A to rescale both the cell size and the flow amplitude (see Section 3). We will
show that the global well-posedness of the PKS system can be established in an appropriate Hilbert space
H if the analytic semigroup generated by A — v4 -V, denoted by S4(t),t > 0, has a rapid decay property
on H. That is, there exist My > 0 and w4 > 0 such that

1Sa(t)]l.2(ay < Moe™ 4%, >0, (1.6)

where w4 can be made arbitrarily large by choosing a suitable parameter A and M, is independent of w 4.
Here #?(H) stands for the set of bounded linear operators on H and || - || 2z stands for the operator
norm. In fact, the rapid decay property can be achieved for vy = Av by increasing A with the help of
the Gearhart-Priiss type theorem established in [21], if the flow v is relazation-enhancing [17, Def. 1.1]. It is
clear that one can enhance the dissipation of the solution in time if the semigroup has such a property. In
the last section of this work, we will show that for cellular flows in rectangle-like domains, one can obtain
the rapid decay property by rescaling the flows.
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1.1. Enhancement of diffusion via flow advection

We first recall some well-established results on enhancement of diffusion via flow advection for the
advection—diffusion equation with Neumann boundary condition (e.g.[17,21])

aa%-l-VA Viag=AYs in {2, (1,7)
V-va=0 in £, (1.8)
0

%:0, va-n=0 on I, (1.9)
Ya(z,0) =1 in L. (1.10)

Let &/ = A with domain D(«/) = {4y € H*(12): g%‘[' = 0}. Define the advection—diffusion operator L4 by
LA = — AV \Y%

with domain D(L4) = D(&7). For 1y € L?*({2), using the variation of parameters formula we can express
the solution to (1.7)—(1.10) as

Ya(w,t) = Sa(t)vo(z), (1.11)

where Sa(t) = elAl t > 0, is the analytic semigroup generated by operator L on L?(2). It is well-known
that the solution ) (x,t) will converge to its average

- 1 1
P |Q|/QwA v |Q|/Qwo .,

as t goes to infinity, which is the constant eigenfunction corresponding to the zero eigenvalue of L 4. In fact,
by Stokes formula it is easy to see that

8wiAd$

:_/ vA-wAder/ Aoy dz
ot .,

(/ Vg - m/JAdJ:—/V VAl dx) /—dm—O

so [o¥adr = [, 1o dx for any t > 0.
For v4 = Av, one of the major questions in the existing literature is to understand how the convergence

rate of the solution to its average depends on the properties of the flow, especially how this relates to the
parameter A (e.g. [17,22,23]). It is shown in [17] that the solution 14 can be arbitrarily close to its average
at any given finite time by increasing A if and only if the operator v-V has no eigenfunctions in H'(§2) other
than the constant function. In this case, the incompressible flow v is relaxation enhancing. The proof of this
result utilizes dynamical estimates based on the RAGE theorem (e.g.[24]). A recent work in [21] provided
an alternative proof by using a Gearhart-Priiss type theorem and showed how the parameter A is related to

Lt

the decay property of e“A* ¢t > 0. To be more precise, first note that the advection—diffusion operator L 4

in L?(£2) is m-accretive as the left open half-plane is contained in its resolvent set o(L ) and
(La+MN)"1e Z2L2(0), (La+ N7 <RI for RA > 0.

As in [21], we let
U(La) = nf{[|(La —iN)ollp2:¢ € D(La), A €R, ¢l 2 =1} (1.12)

Then it is proven in [21, Theorems 1.3] that for the m-accretive operator L4 in L?(2),

le"a%| g2 (p2(ay) < Moe™ " Fa)E ¢ >0, (1.13)
3
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/2

where My = e™/“. Moreover, let

H=1I130)={ycL*(2): / Y dr =0} (1.14)
2

be the subspace of mean zero functions and set £4 = L4 with D(L4) = D(L4) N H. Then zero is no longer
the eigenvalue of £4 and the proof of [21, Theorem 1.3] yields that for v4 = Av,

U(Ly) = +o00, as A — +oo, (1.15)

if and only if
v - V has no eigenfunctions in H*(£2) N H. (1.16)

On the other hand, applying a direct L?-estimate to (1.7)—(1.10) follows

[Dallr2 = le“4*ollL2 < e|ldholl2, ¢ 20,
for any 19 € H, where A; < 0 is the first Neumann eigenvalue of the Laplacian operator &/ on X. Therefore,

le“at| gy < €M1, > 0. (1.17)

Remark 1.1. The relations (1.13) and (1.15)—(1.16) indicate that if the velocity v satisfies (1.16),
i.e., relaxation enhancing, in defining the advection—diffusion operator £4 = &/ — Av-V, then the semigroup
e£4 t > 0, generated by such operator possesses the rapid decay property (1.6) on H.

In the current work, we will mainly employ the rapid decay property together with the analytic
semigroup theory to establish the global regularity and stability property of the PKS system governed by
(1.1)—(1.5). The results are presented in Section 2. However, constructing relaxation enhancing flows is not
straightforward and the flow geometries are rather complex (e.g.[17,18,25]). Iyer, Xu and Zlatos in [19]
constructed cellular flows with arbitrarily small dissipation times by rescaling the cell size and the flow
amplitude. This operation essentially transfers the energy of the solution from the lower to the higher
frequencies, and thus enhances dissipation. The proof was based on the probabilistic method. Alternatively,
using a direct estimate in Section 3 we show that in rectangle-like domains, one can make ¥(L,4) arbitrarily
large by rescaling the cellular flows so that the rapid decay property holds.

2. Well-posedness of the PKS system

To start with, we let ¥ = 6§ — 6, then ¥ = 0. In the rest of our discussion, we set y = 1. According to
(1.1)=(1.5), v satisfies

%fszm-wfv.((wé)w) in 02, (2.1)
~Actec=9+60 in 0 (2.2)
V.va=0 in £, (2.3)
09  Oc

%_%_0 an_d va-n=0 on T, (2.4)
Ix,0) =0p(x) — 0 in . (2.5)

We further introduce the operator A = —A + I with domain D(A) = {¢ € H?(2): g—ibg = 0}. Then A is
strictly positive and A~10 = 0. Thus
c= AW+ 0)=A"9+0. (2.6)

In the sequel, we always consider the state space H = L2(§2) defined by (1.14). The symbol C denotes a
generic positive constant, which is allowed to depend on the domain as well as on indicated parameters.

4
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2.1. Local in time regularity

In this section, we first show the local in time regularity of the PKS system (2.1)—(2.5) using a direct

L?-estimate.

Proposition 2.1. Let 99 € H and va € L>®(2) be a divergence-free vector field satisfying va -n|lr = 0. If
¥ is the solution to (2.1)~(2.5), then there exists a t* = t* (99, 0,d) > 0 such that

t*
1972 < 2190)l72 +1  and /0 IVII1Z2 dt < 2[|9oll72 +1. (2.7)

Proof. Taking the inner product of (2.1) with o yields

1d]o]2,
2 dt

+ VIR, :—/ V- (94 6)Ve)d de
2
z/(19+9_)Vc~m9da:—/(19+9_)VC-V19d33
r 0
:7/(19+9_)VC~V19(1:E
2

:—/ wc.wczx—é/ Ve Vidx
(7 (7

=I5+ I, (2.8)

where

1 1
L :7/ VC-VﬂQdZ‘:*(/ (Vc-n)192dx—/ 0? Acdx)
2 0 2 I 2

:—1/192Acdz:1/192(19+§—c)dx
2/)a 2J)a

:l/ﬁSd:ﬂ—{—}é/ ﬂzdx—l/ﬁ%dx.
2 /o 2 Jo 2 Ja

Using the Gagliardo—Nirenberg and Young’s inequalities follows

3_d

d
/Q 9 dz < |9)35 < Cl9|I>, 2 V012,

12—2d

1
< IVl +Cll, 2 d=2,3.

Moreover, by Agmon’s inequalities we have
/Qﬁ%dx < 19ll72llcllzee < ClIONZ2 llel grasave
< CIN72010 + 01l gaj—2ve < CUINZ2 + 10]19]172)

for any € > 0. Therefore,

12—2d

1 = _
Lo < 29Iz + ClNL2™ + CAI9IZ2 + 1O1I9I1Z2)- (2.9)

For Iy, with the help of (2.6) we get

IVell 2 = V(AT + )] 2 < ClII]| 2,
5
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SO
_ _ 1
L < 10| Vell 2Vl 22 < CO* 917 + 71 VIIIZ2

Combining (2.8) with (2.9)—(2.10) follows

1d[[9]72 E=3 5 1alol2
5 at +||V19||L2<*||V19||2+CH19||L2 + Oz +10119]172)

~ 1
+ ORI, + 7190)3,

which implies

dl|9]]7 9 2= A\ 912 3
g T IVOlL2 < ClI™ + CO)IIIIz2 + ClIPLe,
and hence
iz _ o 3
TS Clol 2 +CON972 + ClIIIl2
Let X = [[9]2, 4+ 1. Then
X _ _
ddT < € (B)X T

for some C,,(#) > 0. Integrating this inequality with respect to t yields

and thus

Choose ty > 0 such that

SEOWE=

then for any ¢ € [0, to],

By (2.11)—(2.13) we have

R.Q.

6—
/||wuL2dt<c (6)(2119]122 + 25t + 0] + 1.

for any ¢ € [0,%0]. Choose ¢* > 0 such that

190172
Crn(0)(2][90]17 > +2)

t* <min< tg

)

(=]
Y

Y

then

t*
/ IV0]122 dt < 2[90]2 + 1,
0

which completes the proof. [J

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)
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2.2. Global regularity

We now show the global regularity of the PKS system using a semigroup approach. First define the
nonlinear operator N': H1(2) — H by

N =—V-((¥+6)Ve). (2.16)
Then system can be rewritten as an abstract Cauchy problem in the state space H

D= La0+ NV, (2.17)
9(0) = . (2.18)

We will investigate the well-posedness and stability of the nonlinear system (2.17)—(2.18) by applying the
classic tools of analytic semigroup theory for semilinear equations. To this end, we first define the map

(TO)(t) = eFat9y + /t LA (N (1) dr (2.19)

0
for any 99 € H and ¢ € C([0,00); H). Recall that if ¥ is a mild solution to (2.17)—(2.18), then by the
variation of parameters formula (e.g. [26, Def. 2.3, p.106])

9(t) = (TY)(t). (2.20)

Note that the mild solution is a weak solution. The following theorem states the main result of this section.
For simplicity, we denote ¥(L4) by ¥4.

Theorem 2.2. Let ¥y € H and va € L™(R2) be a divergence-free vector field satisfying va - n|p = 0. If

Ua = Wa(Yo,0) > 0 is sufficiently large, then there exists a unique mild solution ¥ to (2.17)—(2.18) satisfying
0 € C([0,00); H) N L, (0, 003 H' (£2))

and
sup |62 < 2|90l 2 + 1. (2.21)
>0

Moreover, there exist constants M, > 1 and wg > 0 such that

191l L2 < Mie™ 0" [[ 9ol 2 (2.22)

We will mainly employ the Banach fixed-point theorem to establish the proof. To proceed, we first recall
some basic properties of £ 4. Since —L 4 is a strictly positive elliptic operator, the fractal powers (—£4)° for
o > 0 are well-defined with domain D((—£L4)?) dense in H (e.g. [26, p. 69]). Moreover, D((—L4)?) equipped
with the norm ||@||p((—z )7) = [[(=L£a)7¢| 2 for ¢ € D((=L4)?) is the completion of the Hilbert space H
under this norm (e.g.[26, p.195]). By interpolation (e.g. [27-29] and the references cited therein) we know
that

D((=£4)™7) = (D((=£4)"))", o =0, (2.23)

where (D((—£4)7))’ is the dual space of D((—£4)?). Furthermore, according to (e.g. [28,30]), the Neumann
boundary condition allows us to identify the domains of (—=£4)? for 0 <o <1 as

D((—La)°)=H*(2)NH, 0<o< % (2.24)
D((—La)**) c H¥*(2)n H, (2.25)
D((—L£A)%) = {¢€H2U(Q)ﬂHzg—i r=0}, §<gg 1. (2.26)

The concrete characterization of D((—L4)3/*) can be found in [30, Theorem 2, p. 83].
7
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The following results are concerned with the properties of the analytic semigroup generated by £4 and
the nonlinear operator A/ defined by (2.16).
Lemma 2.3. For a > 0, there exists a constant My, > 0 only dependent on My = e™/? and o such that

[(—La)*e“At ||y < Mot~ YAt ¢ >0. (2.27)
The proof can be easily shown by using (1.13) and [26, Theorem 6.13, p. 74].

Lemma 2.4. For 9 € H'({2), then there is a constant Cy > 0 such that
INOll 2 < Coll0lF + 101]19]] 22).- (2.28)
Moreover, for 9 € L?(12), there is a constant Cy > 0 such that

I(=£a) TN 2 < Co([19]132 + 16]]19] 2). (2.29)

Proof. The estimate (2.28) has been established in the proof of [19, Lemma 3.1] on T¢, d = 2, 3. We provide
a complete proof for the convenience of the reader. First we have
NIl = [V - (0 + O) V)l 2
<|IV9 - Vel g2 +1I(9 +0) Ac| 2
< VOl 2 [VAT 0l oo + [[9AATI]| 2 + 01| AATH 2
< a1Vl 219 rasz-1ve + 191170 + 10119 £2)
< Cr(I9l3 + 1011191 2)

for some constants ¢;, C; > 0 only dependent on §2, d and e. Moreover, by (2.23) we know that
(L) "F VD)2 = IV (@ + OV 43/
_ sup Jo V- ((9+0)Ve)pdx
0#pED((—L4)3/4) ||(_£A)3/4¢”L2
19+ é”Lz”vcHL?d”vaHL%

IN

sup

0£peD((—L4)3/4) [(=L£a)3/40]| 2
19 + 0| .2 || 2 HVCHH% VOl /2
= 0¢¢ED?£pEA)3/4) [(=L£a)3/%¢|| 12 (2:30)
< g9+ 0 2| Vel g (2.31)
< Co(||19172 + 1011191 £2), (2.32)

for some constants cg,c3,C2 > 0 only dependent on {2 and d, where from (2.30) to (2.31) we used
Vol 12 < Cllollgzz < Cll(—La)344|| 2 based on Poincaré inequality and (2.25). This completes the
proof. O

With Lemmas 2.3-2.4 at our disposal, we are in a position to show that the map 7 defined by (2.20) has
a fixed point in C([0, 00); H).

Proposition 2.5. For ¥y € H, let O(0,7) C C([0,00); H) be the ball centered at the origin with any radius
r > 2||Yo]| 12, that is,
0(0,7) = {¢ € C([0, 00); H): sup [[¢l| 2 < r}-

8
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Then there exists W4 = W4(9,0) > 0 large enough such that

(1) O(0,r) is invariant under T ;
(2) T defined in (2.19) is a contraction mapping on O(0,r).

Proof (1). We first show that O(0, r) is invariant under 7. Using the variation of parameters formula (2.19)
together with (1.17) follows

t
sup [|(T9)(t)] 2 < sup [|e“A*dg]| .2 + sup ||/ FAUTD(N) () dr | 2
£>0 t>0 t>0 Jo

t
< (|9l 2 +sup/ [(=La)**eEAt=T) (=L 0) 34N (1) 2 dr
t>0 Jo

b= Wa(t—T) e

< [Poll2 + MSUP/O m”(—ﬁxﬂ (NI)(7)|[ g2 dr (2.33)
—lI/At

< dolla +01 [ S -sup [(~La) )0 (231

o~ Pat o~ Pat ) _
< [0l 2 + M / e+ [ S dt) - sup1913s + 81912

N 1 _
< |[Boll 2 + MCo(48/* + =7 ) ((up 0] 12)% + 18] sup [[9] .2), (2.35)
t Uy t>0 t>0

for some ¢ > 0, where M = Mj;4 > 0 given by (2.27). From (2.33) to (2.34) we used Young’s inequality.
Letting ¥4 > t~*1, we have ﬁ < t~1/4, and therefore
A

L 5o, (2.36)
Ua

If ¢ is chosen such that

5MCot* /4 (r? +10)r) < e, < (2.37)

,
-, R ~\14’
2 [10MCa (2[00I 2 + 16])]

then from (2.35) it follows that

N =

r
sup [[(TO) ()2 < 5+ 5=
t>0

and hence T € O(0,r). In this case, we need

~ 14
Wa > [10MCo(2][90] 2 + 16])] - (2.38)
Next we show that
T € C([0,00); H). (2.39)
Since e£At ¢t > 0, is an analytic Cy-semigroup on H,

efat: X — C(]0,00); H)
is continuous. Moreover, recall that
t t
/ AN D)(r) dr = / (=La)Fefat=(—L4)" (W) () dr
0 0

By (2.29) in Lemma 2.4 we have (—EA)’%./\/%? € C([0,00); H) for ¥ € C([0,00); H). Furthermore, by the
property of convolution we know that

/t(—EA)ieLA(tT) - dr:C([0,00); H) — C([0,00); H)
0

is continuous (e.g. [29, Prop. 01, p.4]). Thus fot eLAt=m)(NY)(7) dr € C([0,00); H) and hence (2.39) holds.
9
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(2) Now we show that 7T is a contraction mapping on O(0,r). For any ¢;,9s € C([0,00); H),
t
sup [ T01 = Toalla = sup | [ €40 (W) (r) = Vo))
>0 >0 Jo

< sup / 1(—L4) 24D ) [ (—La) "IN (1) — (—La) " IND2) ()| 12 dr

t>0

00 e—LPAt 3 3
L 3;13 1~y N0 () = (L) IND) () 2, (2.40)

where by (2.33)—(2.36) we have [ 3/4 " dt < 581/4 for W, > 1. Using the similar estimates as in (2.32)
follows

I(—£A)" N0y — (—£ >-%M92||L2

. Jo V- ((01+ 0)Ve, — (93 + 0)Vep)o dx

" ossen(oLan 1074l 12

- sup Jo|[(91 4 6)Ver — (02 + 0)Ver] - Vo da
0£pED((—L4)3/4) [(=L£a)3/4¢]| 2

_ - Jo |91+ 60 = (92 4 0))Ver + (02 + 0)(Vey — Vea)] - V| da
0£¢ED((—L.4)3/4) [(=L£4)3/4¢]| 2

<z (91 = Dol r2lIVerll g + 192 + 0]l 2[|V (e1 = e2) [l 71)

< Cy (191 = Dol 2l g2 + (|92 + 0]l 2|91 — Dl 12)

< Co (191l + 192l 2 + 10]) 91 — Dall 2,

where ¢z and Cy are the same constants as in (2.31)—(2.32). Therefore, (2.40) becomes

sup ||[T01 — Ta|| 2 < 5MIYAC,(2r 4 |0]) - sup |91 — V2| ;2. (2.41)
t>0 t>0

With the help of (2.37) we get 5ME/4Co(2r 4 10]) < 2 - 5MTY/4Cy(r 4 10]) < 1, thus T is a contraction
mapping on O(0,7). This completes the proof. O

Proof of Theorem 2.2. Based on Proposition 2.1 and Banach fixed-point theorem, there exists a unique
solution to system (2.17)—(2.18) satisfying ¢ € C(]0,00); H) and (2.21).
To show that § € L (0, 00; H'(£2)), we make use of (2.11)—(2.13) and obtain that for any ¢f > ¢*, where

*

t* is given by (2.14),

loc

tf _ 6-d
/ V07 dt SCm(9)((t s 1972 + 1) T (tp — ) + [[9(t7) 1|72 (2.42)
t* Eft*.ty
6— d
<Cn(9)(4l100]172 + 1) 14 (ty — t*) + 4[|Jo |75 (2.43)

Combining (2.43) with (2.15) yields the desired result.
To establish the exponential decay of the solution in (2.22), using (2.28) in Lemma 2.4 we have for
0<t< ¥,

19T 22 < €47 Dol 2 + II/0 LA (NY)(5) ds|l 2

< Moe™ A7 ||| 12 + / [(—La)3/2eEAT =) (L) T3/H(N D) (5)]| 12 ds
0

10
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e~ Yt

dt- sup L3N] 2

¥
< Moe—lI/AT* 190 5 +M/ P
|| ||L 0 t3/4 0<i<rr

< Moe™ "47" ([0 g2 + AMCor™(( sup [[9]|12)? + 0] sup [[9]]2)
0<t<7* 0<t<7*

< Moe™ "A7 ||| 12 + AMCor* M * (4]06122 + 216|190 2)- (2.44)
Let 7* > 0 satisfy
AMCy 490112, + 208190l 2) < 5 Il 2
ie, 7°< ! (2.45)

[167MCa(21[s 2 +18)] "

and set ¥, large enough such that

1 *
3 + Mye=7A7 < n <1,

for some 7 satisfying % < n < 1, that is,

V> In My —In(n — 3)

& (75 —In(n - b) [16MCo(2][90ll 2 + 10])] (2.46)

T*

where In(n — 3) < 0. Then from (2.44) we have [|[9(7*)|| 2 < n|[do| 2. Note that if ¥4 satisfies (2.46), then
it also satisfies (2.38).
Finally, through an iterative process we obtain

[0(m7 )Lz < nllo((m = D752 < 0™ ([P0l 2, m=1,2,... (2.47)

for a fixed 7* satisfying (2.45). Once (2.47) is established, the exponential decay of (2.22) holds immediately
following the same procedure as in [31, Remark, p.178]. O

3. Rapid decay via rescaling the cellular flows

Many flows are not necessarily relaxation-enhancing, yet the associated semigroups can still have the
rapid decay property via rescaling the flows. To demonstrate the idea, we employ the cellular flows as
shown in [19] for generating the velocity fields in rectangle-like domains. In two dimensions, the cellular
flows have closed obits and particles away from the boundary are nearly trapped in them, and therefore are
not mixing. In this section, we present that in rectangles (d = 2) and parallelepipeds (d = 3), rescaling the
flows can make W(L,) arbitrarily large and hence the rapid decay property of the semigroup e“A? can be
achieved. Note that for such domains the interpolations results (2.24)—(2.26) also hold (e.g. [28, section 6.3]),
so do the Gagliardo—Nirenberg, Agmon’s and Sobolev inequalities used in our proofs of Proposition 2.1 and
Lemma 2.4. Therefore, Proposition 2.5 and Theorem 2.2 still hold.

Without loss of generality, we let £2 = (0,1)%,d = 2,3. Here we consider a typical 2D cellular flow given
by
—sin(27xy) cos(2mxs)

— vl g ; —
v(z1,22) = V= sin(2mzy) sin(2ray) = 27 cos(2mz1) sin(2ma) (3.1)
For d = 3, we consider the flow with cubic cells given by (e.g. [19,32,33])
V(z1, 29, 73) = (P (21, 22) W (23), Puy (21, 22) W' (3), 872 B (1, 20) W (23)), (3.2)
where @(z1,22) = cos(2mxy)cos(2mae) and W(xz) = sin(27wz3). Since the cellular flows and the basis

functions are periodic, they can be naturally extended to N2 = (0, N)¢ for N € N*.

11
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Let £1 = A —v(x) -V, where ¢ = (x1,...,24) and v = (v1,...,v4), d = 2,3, with D(£y) = {¢ €
HY ()N H: g—i’\p = 0}. Let v; () = v;(Nz) for z € 2 and vy = (v1,,...,vay ). According to (3.1)-(3.2)
the rescaled cellular flow velocity vy is still sufficiently smooth and periodic, yet with higher frequency

compared to v. Now define
Ly =A—Nvy(z)-V, NeNT,

with D(Lx) = D(Ly1). One can establish the following property.

Proposition 3.1. Let ¥(Ly) be defined as in (1.12) for N € N*. We have

U(Ly) = N2U(Ly). (3.3)

Remark 3.2. As a result of (1.13) and (3.3), we obtain that

58 | o (x) < Moe™ PENE = MyeN*¥EDE 4 >,

t can be made arbitrarily fast if N is sufficiently large. In

Therefore, the decay rate of the semigroup e“N
other words, the semigroup generated by Ly associated with the cellular flows possesses the rapid decay

property (1.6).

Proof of Proposition 3.1. The proof of the relation (3.3) for cellular flows in rectangle-like domains
directly utilizes the definition of W(Ly) and the properties of the eigenvalues and the corresponding
eigenfunctions of the Laplacian operator defined in such domains. To be more precise, recall that the
eigenvalues and the corresponding eigenfunctions of the Laplacian operator & = A with D(&) = {¢ €
HY(2)NH:%%|r =0} are given by

Aigeng = A0 4+ XD and - ;g (@1, ma) = 00 (@1) (D (@),

where
AD = —n272 O (z) = cos(nma;), i=1,...d,
forn=1,2,... (e.g. [34]), and {¥n,,...ng}n;,. . .n =1 forms a complete orthogonal basis of H. Since
1 .
0 f
/ cos(nma;) cos(mma;) dr; = < 1 m#mn, (3.4)
0 5 if m =n,
we have [[{n, . nyll32 = 2%1 for any n; € Nt i =1,...,d. For any ¢ € D(L;), it can be expressed as
¢(£E) = ¢n1’~~~,nd¢n1,~wnd($)7 (3-5)
NY,.eny ng=1
where ¢n, .y =2 [ (@) Un, ... n, (@) dx. Let
¢N(x) = (bnl,nwnd"/)m,mmd(N$>7 (3-6)
NYyeeny ng=1
where ¥, .. n,(Nz) = cos(Nnimwzy)...cos(Nngmxq) = Ynn,,.. Nny(x) are also the eigenfunctions of .o7.

Then ¢ € D(Ly) and ||én |2 = ||¢]| 2. Rescaling the cell size and the flow amplitude essentially transits
the energy of ¢ from the lower to the higher eigenmodes.
Next we show that for each basis function ¥y, . n,,

H(A:v - NVN(x) Vg — Z-]\72)‘)¢NTL17.--,NndHL2 = N2||<Aw - v(x) Vg — i)‘)wm,m,ndHL?, (3-7)
12
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for A € R. Let x; = N, i =1,...,d, and x = (x1,...,%q). We have
||(Ax - NVN(x) : vz - iNQ)\)wan,u.,NndH%Q
[ (A= NV () T = N g 0 d
(0,1)

1
- N @ N)d((NQAnl""’nd —iNZX - NQV(X) : VX)qan...,nd(X))Q dx
= N3()\n1,m,nd - i)\)Q /(0 Ny 1/172”,“.@(1 (X) dx + N3 /(0 N)d(v(x) . szbnb.“,nd (X))2 dx, (3.8)
where
/(0 i Ur o, (X)dx =N o YNny,. Ny () dz = N o P2, (@)ds (3.9)
and
1
/ (V(X) ' vanl """ nd (X))2 dx =N (VN(x) ! szru ..... Nng (x)ﬁ)z dxr
(O N) (O,l)d
(d) 2
o ZN Oy (U1, (1) ), (20)))” da
1 d ,
=~ o) (Z Vin () (=Nn;m) sin(Nnmmi)Hf:L#i cos(Nnjmz;))” dw (3.10)
D=1
1 d )
- oy N2 (Z v () (—nm) sin(ngma;) L 4, cos(njmx;))” da (3.11)
, i=1
=N © 1)d(V(l') : vwwnl,...,nd (33))2 dx. (312)

From (3.10) to (3.11), we used the following elementary properties of the products of trigonometric functions
involving sin and cos in the cellular flow velocity defined by (3.1)—(3.2):

1
/ (sin(2n Nx;) sin(n;n Nx;))? da; =
0

B = e

)

1
/ (cos(2nNz;) cos(nymNx;))? da; =
0
1
and / sin(2rNx;) sin(n;wNz;) cos(2rNx;) cos(n;wNz;)dx; =0, i=1,...,d.
0

Note that these identities are independent of N. Combining (3.8) with (3.9) and (3.12) follows

”(Ar _NVN(x) vx _iN2A)wNn1 ..... Nnd”iQ

= Ny — i) /( @ N[ 60 Vot 0

which establishes (3.7). Similarly, one can show that (3.7) also holds if replacing ¥y, ... n, and ¥nn, ... Nn,
by ¢ and ¢ defined by (3.5) and (3.6), respectively. That is,

I(Ln = iN?Non Lz = N2[|(L1 = iN)¢ll 2, A ER, (3.14)

for any ¢ € D(£1). This implies
U(Ly) < N?¥(Ly).

13
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If there exist some ¢ and A € R such that ||(£y — iA)@|| 2 < N2¥(L;). Then

~

A 1 oo
(€1 = 55030 ez = (L = 0)lz < (L),

which leads to a contradiction. Therefore, ¥(Ly) = N2 ¥(L;). This completes the proof. [

The cellular flows and rectangle-like domains considered in this section are very special (which have certain
symmetric structures and the cellular flows are also periodic). A natural question that arises here is what
are the characterizations of the flows so that a simple rescaling is able to enhance dissipation. This question
is nontrivial and certainly merits our further investigation in our future work.
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