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a b s t r a c t

We discuss the problem of suppression of singularity via flow advection in
chemotaxis modeled by the Patlak–Keller–Segel (PKS) equations. It is well-known
that for the system without advection, singularity of the solution may develop at
finite time. Specifically, if the initial condition is above certain critical threshold,
the solution may blow up in finite time by concentrating positive mass at a
single point. In this work, we mainly focus on the global regularity and stability
analysis of the PKS system in the presence of flow advection in a bounded domain
Ω ⊂ Rd, d = 2, 3, by using a semigroup approach. We will show that the global well-
posedness can be obtained as long as the semigroup generated by the associated
advection–diffusion operator has a rapid decay property. We will also show that for
cellular flows in rectangle-like domains, such property can be achieved by rescaling
both the cell size and the flow amplitude. This is analogous to the result established
by Iyer, Xu and Zlatoš (2021) on the torus Td, d = 2, 3.

© 2023 Elsevier Ltd. All rights reserved.

1. Introduction

This work is concerned with the global regularity of the parabolic–elliptic Patlak–Keller–Segel system
proposed in [1] and its asymptotic behavior in the presence of flow advection in a bounded domain. The
Patlak–Keller–Segel system is one of the classical models that describe the chemotaxis on the movement of
cells in response to a chemical stimulus. Specially, the movement has a preference directed by the gradient
of the chemo-attractant, which is emitted by the cells. The detailed study of this model and reviews can be
found in (e.g. [1–11]).

Let Ω ⊂ Rd, d = 2, 3, be an open bounded and connected domain with a smooth boundary Γ (corners
ay be allowed (see Section 3)). Consider that the motion of the cells is advected by the ambient fluid flow.
he flow velocity v is assumed to be divergence-free and time-independent. Let θ be the density of the cells
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nd c be the concentration of a chemoattractant produced by the cells, then the motion of the cells can be
escribed by

∂θ

∂t
= ∆θ −Av · ∇θ − ∇ · (θχ∇c) in Ω , (1.1)

− ∆c+ c = θ in Ω , (1.2)
∇ · v = 0 in Ω , (1.3)

ith Neumann boundary conditions for both θ and c, no-penetration condition for v
∂θ

∂n
= ∂c

∂n
= 0 and v · n = 0 on Γ , (1.4)

nd the initial condition
θ(x, 0) = θ0(x) in Ω , (1.5)

here χ > 0 is a sensitivity parameter of the cells to the chemo-attractant c, A ∈ R is a parameter regulating
the strength of the flow, and n is the outward unit normal vector to the domain boundary Γ . Here we set
A > 0. The case with A < 0 can be treated similarly by letting v be −v. Without the advection term
or the drift, the solution of the PKS equations can exhibit dramatic collapsing behavior. It is shown in
(e.g. [4,12–15]) that if the initial density is above certain critical threshold, the solution may blow up in
finite time by concentrating positive mass at a single point. However, in the presence of flow advection, it is
proven in [16] that for any initial condition there exists an incompressible fluid flow such that the solution
to (1.1)–(1.5) remains globally regular. In particular, two classes of flows are shown to be able to prevent
the singularity formation in the solutions. One is the relaxation-enhancing flow based on [17] which is time-
independent, and the other one is the time-dependent exponentially mixing flow based on the construction
in [18]. However, these flows are rather complicated to generate. A recent work by Iyer, Xu and Zlatoš
in [19] proved that as long as the flows have small dissipation times, the global well-posedness result can be
obtained. They further showed that the flows with arbitrarily small dissipation times can be constructed by
rescaling a general class of smooth (time-independent) cellular flows. Other related work, for example, on
shear flows can be also found in (e.g. [20]).

The aforementioned work on suppression of singularity via flow advection mainly considered the problem
in Rd or Td, d = 2, 3. The objective of this work is to establish the global regularity and stability results in
general bounded domains by employing the tools of analytic semigroup theory, which will pave a way for
addressing more practical questions such as how to optimally control the flow advection for preventing finite
time blow-up or for steering the chemotaxis towards the desired trajectory. In this work, we first focus on
the properties of the semigroup generated by the advection–diffusion operator ∆ − vA · ∇, where the flow
velocity vA continues to be divergence-free and time-independent and depends on the parameter A, but does
not necessarily take the form of vA = Av as in (1.1). For example, in the case of cellular flows, we can set
vA = Av(Ax) and adjust A to rescale both the cell size and the flow amplitude (see Section 3). We will
show that the global well-posedness of the PKS system can be established in an appropriate Hilbert space
H if the analytic semigroup generated by ∆ − vA · ∇, denoted by SA(t), t ≥ 0, has a rapid decay property
on H. That is, there exist M0 > 0 and ωA > 0 such that

∥SA(t)∥L (H) ≤ M0e
−ωAt, t ≥ 0, (1.6)

where ωA can be made arbitrarily large by choosing a suitable parameter A and M0 is independent of ωA.
Here L 2(H) stands for the set of bounded linear operators on H and ∥ · ∥L 2(H) stands for the operator
norm. In fact, the rapid decay property can be achieved for vA = Av by increasing A with the help of
the Gearhart-Prüss type theorem established in [21], if the flow v is relaxation-enhancing [17, Def. 1.1]. It is
clear that one can enhance the dissipation of the solution in time if the semigroup has such a property. In
the last section of this work, we will show that for cellular flows in rectangle-like domains, one can obtain
the rapid decay property by rescaling the flows.
2
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.1. Enhancement of diffusion via flow advection

We first recall some well-established results on enhancement of diffusion via flow advection for the
dvection–diffusion equation with Neumann boundary condition (e.g. [17,21])

∂ψA
∂t

+ vA · ∇ψA = ∆ψA in Ω , (1.7)

∇ · vA = 0 in Ω , (1.8)
∂ψA
∂n

= 0, vA · n = 0 on Γ , (1.9)

ψA(x, 0) = ψ0 in Ω . (1.10)

et A = ∆ with domain D(A ) = {ψ ∈ H2(Ω) : ∂ψ∂n |Γ = 0}. Define the advection–diffusion operator LA by

LA = A − vA · ∇

with domain D(LA) = D(A ). For ψ0 ∈ L2(Ω), using the variation of parameters formula we can express
the solution to (1.7)–(1.10) as

ψA(x, t) = SA(t)ψ0(x), (1.11)

where SA(t) = eLAt, t ≥ 0, is the analytic semigroup generated by operator LA on L2(Ω). It is well-known
that the solution ψ(x, t) will converge to its average

ψ̄ = 1
|Ω |

∫
Ω

ψA dx = 1
|Ω |

∫
Ω

ψ0 dx,

s t goes to infinity, which is the constant eigenfunction corresponding to the zero eigenvalue of LA. In fact,
y Stokes formula it is easy to see that

∂
∫
Ω
ψA dx

∂t
= −

∫
Ω

vA · ∇ψA dx+
∫
Ω

∆ψA dx

= −(
∫
Γ

vA · nψA dx−
∫
Ω

∇ · vAψA dx) +
∫
Γ

∂ψA
∂n

dx = 0,

o
∫
Ω
ψA dx =

∫
Ω
ψ0 dx for any t > 0.

For vA = Av, one of the major questions in the existing literature is to understand how the convergence
ate of the solution to its average depends on the properties of the flow, especially how this relates to the
arameter A (e.g. [17,22,23]). It is shown in [17] that the solution ψA can be arbitrarily close to its average
t any given finite time by increasing A if and only if the operator v·∇ has no eigenfunctions in H1(Ω) other
han the constant function. In this case, the incompressible flow v is relaxation enhancing. The proof of this
esult utilizes dynamical estimates based on the RAGE theorem (e.g. [24]). A recent work in [21] provided
n alternative proof by using a Gearhart-Prüss type theorem and showed how the parameter A is related to
he decay property of eLAt, t ≥ 0. To be more precise, first note that the advection–diffusion operator LA
n L2(Ω) is m-accretive as the left open half-plane is contained in its resolvent set ϱ(LA) and

(LA + λ)−1 ∈ L 2(L2(Ω)), ∥(LA + λ)−1∥ ≤ ℜλ−1 for ℜλ > 0.

s in [21], we let
Ψ(LA) = inf{∥(LA − iλ)ϕ∥L2 :ϕ ∈ D(LA), λ ∈ R, ∥ϕ∥L2 = 1}. (1.12)

hen it is proven in [21, Theorems 1.3] that for the m-accretive operator LA in L2(Ω),

∥eLAt∥ ≤ M e−Ψ(LA)t, t ≥ 0, (1.13)
L 2(L2(Ω)) 0

3
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here M0 = eπ/2. Moreover, let

H = L2
0(Ω) = {ψ ∈ L2(Ω) :

∫
Ω

ψ dx = 0} (1.14)

e the subspace of mean zero functions and set LA = LA with D(LA) = D(LA) ∩H. Then zero is no longer
he eigenvalue of LA and the proof of [21, Theorem 1.3] yields that for vA = Av,

Ψ(LA) → +∞, as A → +∞, (1.15)

f and only if
v · ∇ has no eigenfunctions in H1(Ω) ∩H. (1.16)

On the other hand, applying a direct L2-estimate to (1.7)–(1.10) follows

∥ψA∥L2 = ∥eLAtψ0∥L2 ≤ eλ1t∥ψ0∥L2 , t ≥ 0,

or any ψ0 ∈ H, where λ1 < 0 is the first Neumann eigenvalue of the Laplacian operator A on X. Therefore,

∥eLAt∥L (H) ≤ eλ1t, t ≥ 0. (1.17)

emark 1.1. The relations (1.13) and (1.15)–(1.16) indicate that if the velocity v satisfies (1.16),
.e., relaxation enhancing, in defining the advection–diffusion operator LA = A −Av ·∇, then the semigroup
LA , t ≥ 0, generated by such operator possesses the rapid decay property (1.6) on H.

In the current work, we will mainly employ the rapid decay property together with the analytic
emigroup theory to establish the global regularity and stability property of the PKS system governed by
1.1)–(1.5). The results are presented in Section 2. However, constructing relaxation enhancing flows is not
traightforward and the flow geometries are rather complex (e.g. [17,18,25]). Iyer, Xu and Zlatoš in [19]
onstructed cellular flows with arbitrarily small dissipation times by rescaling the cell size and the flow
mplitude. This operation essentially transfers the energy of the solution from the lower to the higher
requencies, and thus enhances dissipation. The proof was based on the probabilistic method. Alternatively,
sing a direct estimate in Section 3 we show that in rectangle-like domains, one can make Ψ(LA) arbitrarily
arge by rescaling the cellular flows so that the rapid decay property holds.

. Well-posedness of the PKS system

To start with, we let ϑ = θ − θ̄, then ϑ̄ = 0. In the rest of our discussion, we set χ = 1. According to
1.1)–(1.5), ϑ satisfies

∂ϑ

∂t
= ∆ϑ− vA · ∇ϑ− ∇ · ((ϑ+ θ̄)∇c) in Ω , (2.1)

− ∆c+ c = ϑ+ θ̄ in Ω , (2.2)
∇ · vA = 0 in Ω , (2.3)
∂ϑ

∂n
= ∂c

∂n
= 0 and vA · n = 0 on Γ , (2.4)

ϑ(x, 0) = θ0(x) − θ̄ in Ω . (2.5)

e further introduce the operator A = −∆ + I with domain D(A) = {ϕ ∈ H2(Ω) : ∂ϕ∂n |∂Ω = 0}. Then A is
strictly positive and A−1θ̄ = θ̄. Thus

c = A−1(ϑ+ θ̄) = A−1ϑ+ θ̄. (2.6)

In the sequel, we always consider the state space H = L2
0(Ω) defined by (1.14). The symbol C denotes a

eneric positive constant, which is allowed to depend on the domain as well as on indicated parameters.

4
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.1. Local in time regularity

In this section, we first show the local in time regularity of the PKS system (2.1)–(2.5) using a direct
2-estimate.

roposition 2.1. Let ϑ0 ∈ H and vA ∈ L∞(Ω) be a divergence-free vector field satisfying vA · n|Γ = 0. If
is the solution to (2.1)–(2.5), then there exists a t∗ = t∗(ϑ0, θ̄, d) > 0 such that

∥ϑ(t∗)∥2
L2 ≤ 2∥ϑ0∥2

L2 + 1 and
∫ t∗

0
∥∇ϑ∥2

L2 dt ≤ 2∥ϑ0∥2
L2 + 1. (2.7)

roof. Taking the inner product of (2.1) with ϑ yields

1
2
d∥ϑ∥2

L2

dt
+ ∥∇ϑ∥2

L2 = −
∫
Ω

∇ · ((ϑ+ θ̄)∇c)ϑ dx

=
∫
Γ

(ϑ+ θ̄)∇c · nϑdx−
∫
Ω

(ϑ+ θ̄)∇c · ∇ϑ dx

= −
∫
Ω

(ϑ+ θ̄)∇c · ∇ϑ dx

= −
∫
Ω

ϑ∇c · ∇ϑ dx− θ̄

∫
Ω

∇c · ∇ϑ dx

= I1 + I2, (2.8)

here

I1 = 1
2

∫
Ω

∇c · ∇ϑ2 dx = 1
2(
∫
Γ

(∇c · n)ϑ2 dx−
∫
Ω

ϑ2∆c dx)

= −1
2

∫
Ω

ϑ2∆c dx = 1
2

∫
Ω

ϑ2(ϑ+ θ̄ − c) dx

= 1
2

∫
Ω

ϑ3 dx+ 1
2 θ̄
∫
Ω

ϑ2 dx− 1
2

∫
Ω

ϑ2c dx.

sing the Gagliardo–Nirenberg and Young’s inequalities follows∫
Ω

ϑ3 dx ≤ ∥ϑ∥3
L3 ≤ C∥ϑ∥3− d

2
L2 ∥∇ϑ∥

d
2
L2

≤ 1
2∥∇ϑ∥2

L2 + C∥ϑ∥
12−2d

4−d

L2 , d = 2, 3.

oreover, by Agmon’s inequalities we have∫
Ω

ϑ2c dx ≤ ∥ϑ∥2
L2∥c∥L∞ ≤ C∥ϑ∥2

L2∥c∥Hd/2+ϵ

≤ C∥ϑ∥2
L2∥ϑ+ θ̄∥Hd/2−2+ϵ ≤ C(∥ϑ∥3

L2 + |θ̄|∥ϑ∥2
L2)

for any ϵ > 0. Therefore,

I1 ≤ 1
4∥∇ϑ∥2

L2 + C∥ϑ∥
12−2d

4−d

L2 + C(∥ϑ∥3
L2 + |θ̄|∥ϑ∥2

L2). (2.9)

For I2, with the help of (2.6) we get

−1 ¯
∥∇c∥L2 = ∥∇(A ϑ+ θ)∥L2 ≤ C∥ϑ∥L2 ,

5
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I2 ≤ |θ̄|∥∇c∥L2∥∇ϑ∥L2 ≤ Cθ̄2∥ϑ∥2

L2 + 1
4∥∇ϑ∥2

L2 . (2.10)

ombining (2.8) with (2.9)–(2.10) follows

1
2
d∥ϑ∥2

L2

dt
+ ∥∇ϑ∥2

L2 ≤1
4∥∇ϑ∥2

L2 + C∥ϑ∥
12−2d

4−d

L2 + C(∥ϑ∥3
L2 + |θ̄|∥ϑ∥2

L2)

+ Cθ̄2∥ϑ∥2
L2 + 1

4∥∇ϑ∥2
L2 ,

hich implies
d∥ϑ∥2

L2

dt
+ ∥∇ϑ∥2

L2 ≤ C∥ϑ∥
12−2d

4−d

L2 + C(θ̄)∥ϑ∥2
L2 + C∥ϑ∥3

L2 , (2.11)

and hence
d∥ϑ∥2

L2

dt
≤ C∥ϑ∥

12−2d
4−d

L2 + C(θ̄)∥ϑ∥2
L2 + C∥ϑ∥3

L2 .

Let X = ∥ϑ∥2
L2 + 1. Then

dX

dt
≤ Cm(θ̄)X

6−d
4−d (2.12)

or some Cm(θ̄) > 0. Integrating this inequality with respect to t yields

−4 − d

2 (X(t)− 2
4−d −X(0)− 2

4−d ) ≤ Cm(θ̄)t,

nd thus

X(t) ≤

⎛⎝ X(0)
2

4−d

1 − 2
4−dX(0)

2
4−dCm(θ̄)t

⎞⎠
4−d

2

.

hoose t0 > 0 such that

t0 ≤

(
1 −

(
1
2

) 2
4−d

)
4 − d

2Cm(θ̄)
X(0)− 2

4−d ,

hen for any t ∈ [0, t0],
X(t) ≤ 2X(0) or ∥ϑ(t)∥2

L2 ≤ 2∥ϑ0∥2
L2 + 1. (2.13)

y (2.11)–(2.13) we have ∫ t

0
∥∇ϑ∥2

L2 dt ≤ Cm(θ̄)(2∥ϑ0∥2
L2 + 2)

6−d
4−d t+ ∥ϑ0∥2

L2 + 1,

or any t ∈ [0, t0]. Choose t∗ > 0 such that

t∗ ≤ min

⎧⎨⎩t0, ∥ϑ0∥2
L2

Cm(θ̄)(2∥ϑ0∥2
L2 + 2)

6−d
4−d

⎫⎬⎭ , (2.14)

then ∫ t∗

0
∥∇ϑ∥2

L2 dt ≤ 2∥ϑ0∥2
L2 + 1, (2.15)

hich completes the proof. □
6
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.2. Global regularity

We now show the global regularity of the PKS system using a semigroup approach. First define the
onlinear operator N :H1(Ω) → H by

Nϑ = −∇ · ((ϑ+ θ̄)∇c). (2.16)

hen system can be rewritten as an abstract Cauchy problem in the state space H

ϑ̇ = LAϑ+ Nϑ, (2.17)
ϑ(0) = ϑ0. (2.18)

e will investigate the well-posedness and stability of the nonlinear system (2.17)–(2.18) by applying the
lassic tools of analytic semigroup theory for semilinear equations. To this end, we first define the map

(T ϑ)(t) = eLAtϑ0 +
∫ t

0
eLA(t−τ)(Nϑ)(τ) dτ (2.19)

for any ϑ0 ∈ H and ϑ ∈ C([0,∞);H). Recall that if ϑ is a mild solution to (2.17)–(2.18), then by the
variation of parameters formula (e.g. [26, Def. 2.3, p. 106])

ϑ(t) = (T ϑ)(t). (2.20)

Note that the mild solution is a weak solution. The following theorem states the main result of this section.
For simplicity, we denote Ψ(LA) by ΨA.

Theorem 2.2. Let ϑ0 ∈ H and vA ∈ L∞(Ω) be a divergence-free vector field satisfying vA · n|Γ = 0. If
ΨA = ΨA(ϑ0, θ̄) > 0 is sufficiently large, then there exists a unique mild solution ϑ to (2.17)–(2.18) satisfying

ϑ ∈ C([0,∞);H) ∩ L2
loc(0,∞;H1(Ω))

and
sup
t≥0

∥θ∥L2 ≤ 2∥ϑ0∥L2 + 1. (2.21)

Moreover, there exist constants M∗ ≥ 1 and ω0 > 0 such that

∥ϑ∥L2 ≤ M∗e
−ω0t∥ϑ0∥L2 . (2.22)

We will mainly employ the Banach fixed-point theorem to establish the proof. To proceed, we first recall
some basic properties of LA. Since −LA is a strictly positive elliptic operator, the fractal powers (−LA)σ for
σ > 0 are well-defined with domain D((−LA)σ) dense in H (e.g. [26, p. 69]). Moreover, D((−LA)σ) equipped

ith the norm ∥ϕ∥D((−LA)σ) = ∥(−LA)σϕ∥L2 for ϕ ∈ D((−LA)σ) is the completion of the Hilbert space H
nder this norm (e.g. [26, p. 195]). By interpolation (e.g. [27–29] and the references cited therein) we know
hat

D((−LA)−σ) = (D((−LA)σ))′, σ ≥ 0, (2.23)

here (D((−LA)σ))′ is the dual space of D((−LA)σ). Furthermore, according to (e.g. [28,30]), the Neumann
oundary condition allows us to identify the domains of (−LA)σ for 0 ≤ σ ≤ 1 as

D((−LA)σ) = H2σ(Ω) ∩H, 0 ≤ σ <
3
4 , (2.24)

D((−LA)3/4) ⊂ H3/2(Ω) ∩H, (2.25)

D((−LA)σ) =
{
ϕ ∈ H2σ(Ω) ∩H : ∂ϕ

∂n
|Γ = 0

}
,

3
4 < σ ≤ 1. (2.26)

he concrete characterization of D((−L )3/4) can be found in [30, Theorem 2, p. 83].
A

7
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The following results are concerned with the properties of the analytic semigroup generated by LA and
the nonlinear operator N defined by (2.16).

Lemma 2.3. For α ≥ 0, there exists a constant Mα > 0 only dependent on M0 = eπ/2 and α such that

∥(−LA)αeLAt∥L (H) ≤ Mαt
−αe−ΨAt, t ≥ 0. (2.27)

The proof can be easily shown by using (1.13) and [26, Theorem 6.13, p. 74].

Lemma 2.4. For ϑ ∈ H1(Ω), then there is a constant C1 > 0 such that

∥Nϑ∥L2 ≤ C1(∥ϑ∥2
H1 + |θ̄|∥ϑ∥L2). (2.28)

Moreover, for ϑ ∈ L2(Ω), there is a constant C2 > 0 such that

∥(−LA)− 3
4 (Nϑ)∥L2 ≤ C2(∥ϑ∥2

L2 + |θ̄|∥ϑ∥L2). (2.29)

roof. The estimate (2.28) has been established in the proof of [19, Lemma 3.1] on Td, d = 2, 3. We provide
complete proof for the convenience of the reader. First we have

∥Nϑ∥L2 = ∥∇ · ((ϑ+ θ̄)∇c)∥L2

≤ ∥∇ϑ · ∇c∥L2 + ∥(ϑ+ θ̄)∆c∥L2

≤ ∥∇ϑ∥L2∥∇A−1ϑ∥L∞ + ∥ϑ∆A−1ϑ∥L2 + |θ̄|∥∆A−1ϑ∥L2

≤ c1(∥∇ϑ∥L2∥ϑ∥Hd/2−1+ϵ + ∥ϑ∥2
H1 + |θ̄|∥ϑ∥L2)

≤ C1(∥ϑ∥2
H1 + |θ̄|∥ϑ∥L2)

or some constants c1, C1 > 0 only dependent on Ω , d and ϵ. Moreover, by (2.23) we know that

∥(−LA)− 3
4 (Nϑ)∥L2 = ∥∇ · ((ϑ+ θ̄)∇c)∥(D((−LA)3/4))′

= sup
0̸=ϕ∈D((−LA)3/4)

∫
Ω

∇ · ((ϑ+ θ̄)∇c)ϕdx
∥(−LA)3/4ϕ∥L2

≤ sup
0̸=ϕ∈D((−LA)3/4)

∥ϑ+ θ̄∥L2∥∇c∥L2d∥∇ϕ∥
L

2d
d−1

∥(−LA)3/4ϕ∥L2

≤ c2 sup
0̸=ϕ∈D((−LA)3/4)

∥ϑ+ θ̄∥L2 ∥L2 ∥∇c∥
H

d−1
2

∥∇ϕ∥H1/2

∥(−LA)3/4ϕ∥L2
(2.30)

≤ c3∥ϑ+ θ̄∥L2∥∇c∥H1 (2.31)
≤ C2(∥ϑ∥2

L2 + |θ̄|∥ϑ∥L2), (2.32)

for some constants c2, c3, C2 > 0 only dependent on Ω and d, where from (2.30) to (2.31) we used
∥∇ϕ∥H1/2 ≤ C∥ϕ∥H3/2 ≤ C∥(−LA)3/4ϕ∥L2 based on Poincaré inequality and (2.25). This completes the
proof. □

With Lemmas 2.3–2.4 at our disposal, we are in a position to show that the map T defined by (2.20) has
a fixed point in C([0,∞);H).

Proposition 2.5. For ϑ0 ∈ H, let O(0, r) ⊂ C([0,∞);H) be the ball centered at the origin with any radius
r ≥ 2∥ϑ0∥L2 , that is,

O(0, r) = {ϕ ∈ C([0,∞);H) : sup ∥ϕ∥L2 ≤ r}.

t≥0

8
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T

I

a

B

hen there exists ΨA = ΨA(ϑ0, θ̄) > 0 large enough such that

(1) O(0, r) is invariant under T ;
(2) T defined in (2.19) is a contraction mapping on O(0, r).

Proof (1). We first show that O(0, r) is invariant under T . Using the variation of parameters formula (2.19)
together with (1.17) follows

sup
t≥0

∥(T ϑ)(t)∥L2 ≤ sup
t≥0

∥eLAtϑ0∥L2 + sup
t≥0

∥
∫ t

0
eLA(t−τ)(Nϑ)(τ) dτ∥L2

≤ ∥ϑ0∥L2 + sup
t≥0

∫ t

0
∥(−LA)3/4eLA(t−τ)(−LA)−3/4(Nϑ)(τ)∥L2 dτ

≤ ∥ϑ0∥L2 +M sup
t≥0

∫ t

0

e−ΨA(t−τ)

(t− τ)3/4 ∥(−LA)−3/4(Nϑ)(τ)∥L2 dτ (2.33)

≤ ∥ϑ0∥L2 +M

∫ ∞

0

e−ΨAt

t3/4 dt · sup
t≥0

∥(−LA)−3/4(Nϑ)(t)∥L2 (2.34)

≤ ∥ϑ0∥L2 +MC2(
∫ t̃

0

e−ΨAt

t3/4 dt+
∫ ∞

t̃

e−ΨAt

t3/4 dt) · sup
t≥0

(∥ϑ∥2
L2 + |θ̄|∥ϑ∥L2)

≤ ∥ϑ0∥L2 +MC2(4t̃1/4 + 1
t̃3/4ΨA

)((sup
t≥0

∥ϑ∥L2)2 + |θ̄| sup
t≥0

∥ϑ∥L2), (2.35)

for some t̃ > 0, where M = M3/4 > 0 given by (2.27). From (2.33) to (2.34) we used Young’s inequality.
Letting ΨA ≥ t̃−1, we have 1

t̃3/4ΨA
≤ t̃1/4, and therefore

4t̃1/4 + 1
t̃3/4ΨA

≤ 5t̃1/4. (2.36)

f t̃ is chosen such that

5MC2t̃
1/4(r2 + |θ̄|r) ≤ r

2 , i.e., t̃ ≤ 1[
10MC2(2∥ϑ0∥L2 + |θ̄|)

]4 , (2.37)

then from (2.35) it follows that
sup
t≥0

∥(T ϑ)(t)∥L2 ≤ r

2 + r

2 = r,

nd hence T ϑ ∈ O(0, r). In this case, we need

ΨA ≥
[
10MC2(2∥ϑ0∥L2 + |θ̄|)

]4
. (2.38)

Next we show that
T ϑ ∈ C([0,∞);H). (2.39)

Since eLAt, t ≥ 0, is an analytic C0-semigroup on H,

eLAt :X → C([0,∞);H)

is continuous. Moreover, recall that∫ t

0
eLA(t−τ)(Nϑ)(τ) dτ =

∫ t

0
(−LA) 3

4 eLA(t−τ)(−LA)− 3
4 (Nϑ)(τ) dτ.

y (2.29) in Lemma 2.4 we have (−LA)− 3
4 Nϑ ∈ C([0,∞);H) for ϑ ∈ C([0,∞);H). Furthermore, by the

property of convolution we know that∫ t

0
(−LA) 3

4 eLA(t−τ) · dτ :C([0,∞);H) → C([0,∞);H)

is continuous (e.g. [29, Prop. 01, p. 4]). Thus
∫ t
eLA(t−τ)(Nϑ)(τ) dτ ∈ C([0,∞);H) and hence (2.39) holds.
0

9



W. Hu Nonlinear Analysis 234 (2023) 113319

w
f

w

W

C

0

(2) Now we show that T is a contraction mapping on O(0, r). For any ϑ1, ϑ2 ∈ C([0,∞);H),

sup
t≥0

∥T ϑ1 − T ϑ2∥L2 = sup
t≥0

∥
∫ t

0
eLA(t−τ) [(Nϑ1)(τ) − (Nϑ2)(τ)] dτ∥L2

≤ sup
t≥0

∫ t

0
∥(−LA) 3

4 eLA(t−τ)∥L (X)∥((−LA)− 3
4 Nϑ1)(τ) − ((−LA)− 3

4 Nϑ2)(τ)∥L2 dτ

≤ M

∫ ∞

0

e−ΨAt

t3/4 dt · sup
t≥0

∥((−LA)− 3
4 Nϑ1)(τ) − ((−LA)− 3

4 Nϑ2)(τ)∥L2 , (2.40)

here by (2.33)–(2.36) we have
∫∞

0
e−ΨAt

t3/4 dt ≤ 5t̃1/4 for ΨA ≥ t̃−1. Using the similar estimates as in (2.32)
ollows

∥(−LA)− 3
4 Nϑ1 − (−LA)− 3

4 Nϑ2∥L2

= sup
0̸=ϕ∈D((−LA)3/4)

∫
Ω

∇ · ((ϑ1 + θ̄)∇c1 − (ϑ2 + θ̄)∇c2)ϕdx
∥(−LA)3/4ϕ∥L2

≤ sup
0̸=ϕ∈D((−LA)3/4)

∫
Ω

⏐⏐[(ϑ1 + θ̄)∇c1 − (ϑ2 + θ̄)∇c2
]

· ∇ϕ
⏐⏐ dx

∥(−LA)3/4ϕ∥L2

= sup
0̸=ϕ∈D((−LA)3/4)

∫
Ω

⏐⏐[(ϑ1 + θ̄ − (ϑ2 + θ̄))∇c1 + (ϑ2 + θ̄)(∇c1 − ∇c2)
]

· ∇ϕ
⏐⏐ dx

∥(−LA)3/4ϕ∥L2

≤ c3
(
∥ϑ1 − ϑ2∥L2∥∇c1∥H1 + ∥ϑ2 + θ̄∥L2∥∇(c1 − c2)∥H1

)
≤ C2

(
∥ϑ1 − ϑ2∥L2∥ϑ1∥L2 + ∥ϑ2 + θ̄∥L2∥ϑ1 − ϑ2∥L2

)
≤ C2

(
∥ϑ1∥L2 + ∥ϑ2∥L2 + |θ̄|

)
∥ϑ1 − ϑ2∥L2 ,

here c3 and C2 are the same constants as in (2.31)–(2.32). Therefore, (2.40) becomes

sup
t≥0

∥T ϑ1 − T ϑ2∥L2 ≤ 5Mt̃1/4C2(2r + |θ̄|) · sup
t≥0

∥ϑ1 − ϑ2∥L2 . (2.41)

ith the help of (2.37) we get 5Mt̃1/4C2(2r + |θ̄|) < 2 · 5Mt̃1/4C2(r + |θ̄|) ≤ 1, thus T is a contraction
mapping on O(0, r). This completes the proof. □

Proof of Theorem 2.2. Based on Proposition 2.1 and Banach fixed-point theorem, there exists a unique
solution to system (2.17)–(2.18) satisfying ϑ ∈ C([0,∞);H) and (2.21).

To show that θ ∈ L2
loc(0,∞;H1(Ω)), we make use of (2.11)–(2.13) and obtain that for any tf > t∗, where

t∗ is given by (2.14),∫ tf

t∗
∥∇ϑ∥2

L2 dt ≤Cm(θ̄)(( sup
t∈[t∗,tf ]

∥ϑ(t)∥)2
L2 + 1)

6−d
4−d (tf − t∗) + ∥ϑ(t∗)∥2

L2 (2.42)

≤Cm(θ̄)(4∥ϑ0∥2
L2 + 1)

6−d
4−d (tf − t∗) + 4∥ϑ0∥2

L2 . (2.43)

ombining (2.43) with (2.15) yields the desired result.
To establish the exponential decay of the solution in (2.22), using (2.28) in Lemma 2.4 we have for

≤ t ≤ τ∗,

∥ϑ(τ∗)∥L2 ≤ ∥eLAτ
∗
ϑ0∥L2 + ∥

∫ τ∗

0
eLA(τ∗−s)(Nϑ)(s) ds∥L2

≤ M0e
−ΨAτ

∗
∥ϑ0∥L2 +

∫ τ∗

∥(−LA)3/4eLA(τ∗−s)(−LA)−3/4(Nϑ)(s)∥L2 ds

0

10
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≤ M0e
−ΨAτ

∗
∥ϑ0∥L2 +M

∫ τ∗

0

e−ΨAt

t3/4 dt · sup
0≤t≤τ∗

∥L−3/4
A (Nϑ)(t)∥L2

≤ M0e
−ΨAτ

∗
∥ϑ0∥L2 + 4MC2τ

∗1/4(( sup
0≤t≤τ∗

∥ϑ∥L2)2 + |θ̄| sup
0≤t≤τ∗

∥ϑ∥L2)

≤ M0e
−ΨAτ

∗
∥ϑ0∥L2 + 4MC2τ

∗1/4(4∥ϑ0∥2
L2 + 2|θ̄|∥ϑ0∥L2). (2.44)

et τ∗ > 0 satisfy

4MC2τ
∗1/4(4∥ϑ0∥2

L2 + 2|θ̄|∥ϑ0∥L2) ≤ 1
2∥ϑ0∥L2 ,

i.e., τ∗ ≤ 1[
16MC2(2∥ϑ0∥L2 + |θ̄|)

]4 , (2.45)

and set ΨA large enough such that
1
2 +M0e

−ΨAτ
∗

≤ η < 1,

or some η satisfying 1
2 < η < 1, that is,

ΨA ≥
lnM0 − ln(η − 1

2 )
τ∗ ≥

(
π

2 − ln
(
η − 1

2
)) [

16MC2(2∥ϑ0∥L2 + |θ̄|)
]4
, (2.46)

here ln(η − 1
2 ) < 0. Then from (2.44) we have ∥ϑ(τ∗)∥L2 ≤ η∥ϑ0∥L2 . Note that if ΨA satisfies (2.46), then

t also satisfies (2.38).
Finally, through an iterative process we obtain

∥ϑ(mτ∗)∥L2 ≤ η∥ϑ((m− 1)τ∗)∥L2 ≤ ηm∥ϑ0∥L2 , m = 1, 2, . . . (2.47)

or a fixed τ∗ satisfying (2.45). Once (2.47) is established, the exponential decay of (2.22) holds immediately
ollowing the same procedure as in [31, Remark, p. 178]. □

. Rapid decay via rescaling the cellular flows

Many flows are not necessarily relaxation-enhancing, yet the associated semigroups can still have the
apid decay property via rescaling the flows. To demonstrate the idea, we employ the cellular flows as
hown in [19] for generating the velocity fields in rectangle-like domains. In two dimensions, the cellular
ows have closed obits and particles away from the boundary are nearly trapped in them, and therefore are
ot mixing. In this section, we present that in rectangles (d = 2) and parallelepipeds (d = 3), rescaling the
ows can make Ψ(LA) arbitrarily large and hence the rapid decay property of the semigroup eLAt can be
chieved. Note that for such domains the interpolations results (2.24)–(2.26) also hold (e.g. [28, section 6.3]),
o do the Gagliardo–Nirenberg, Agmon’s and Sobolev inequalities used in our proofs of Proposition 2.1 and
emma 2.4. Therefore, Proposition 2.5 and Theorem 2.2 still hold.

Without loss of generality, we let Ω = (0, 1)d, d = 2, 3. Here we consider a typical 2D cellular flow given
y

v(x1, x2) = ∇⊥ sin(2πx1) sin(2πx2) = 2π
[
− sin(2πx1) cos(2πx2)
cos(2πx1) sin(2πx2)

]
. (3.1)

or d = 3, we consider the flow with cubic cells given by (e.g. [19,32,33])

v(x1, x2, x3) = (Φx1(x1, x2)W ′(x3),Φx2(x1, x2)W ′(x3), 8π2Φ(x1, x2)W (x3)), (3.2)

here Φ(x1, x2) = cos(2πx1) cos(2πx2) and W (x3) = sin(2πx3). Since the cellular flows and the basis
d +
unctions are periodic, they can be naturally extended to NΩ = (0, N) for N ∈ N .

11
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Let L1 = ∆ − v(x) · ∇, where x = (x1, . . . , xd) and v = (v1, . . . , vd), d = 2, 3, with D(L1) = {ψ ∈
1(Ω) ∩H : ∂ψ∂n |Γ = 0}. Let viN (x) = vi(Nx) for x ∈ Ω and vN = (v1N

, . . . , vdN
). According to (3.1)–(3.2)

he rescaled cellular flow velocity vN is still sufficiently smooth and periodic, yet with higher frequency
ompared to v. Now define

LN = ∆ −NvN (x) · ∇, N ∈ N+,

ith D(LN ) = D(L1). One can establish the following property.

roposition 3.1. Let Ψ(LN ) be defined as in (1.12) for N ∈ N+. We have

Ψ(LN ) = N2Ψ(L1). (3.3)

emark 3.2. As a result of (1.13) and (3.3), we obtain that

∥eLN t∥L (X) ≤ M0e
−Ψ(LN )t = M0e

−N2Ψ(L1)t, t ≥ 0.

Therefore, the decay rate of the semigroup eLN t can be made arbitrarily fast if N is sufficiently large. In
ther words, the semigroup generated by LN associated with the cellular flows possesses the rapid decay
roperty (1.6).

roof of Proposition 3.1. The proof of the relation (3.3) for cellular flows in rectangle-like domains
directly utilizes the definition of Ψ(LN ) and the properties of the eigenvalues and the corresponding
eigenfunctions of the Laplacian operator defined in such domains. To be more precise, recall that the
eigenvalues and the corresponding eigenfunctions of the Laplacian operator A = ∆ with D(A ) = {ψ ∈
H1(Ω) ∩H : ∂ψ∂n |Γ = 0} are given by

λn1,...,nd
= λ(1)

n1 + · · · + λ(d)
nd

and ψn1,...,nd
(x1, . . . , xd) = ψ(1)

n1 (x1) . . . ψ(d)
nd

(xd),

here
λ(i)
n = −n2π2, ψ(i)

n (xi) = cos(nπxi), i = 1, . . . d,

or n = 1, 2, . . . (e.g. [34]), and {ψn1,...,nd
}∞
n1,...,nd=1 forms a complete orthogonal basis of H. Since∫ 1

0
cos(nπxi) cos(mπxi) dxi =

{
0 if m ̸= n,
1
2 if m = n,

(3.4)

we have ∥ψn1,...,nd
∥2
L2 = 1

2d for any ni ∈ N+, i = 1, . . . , d. For any ϕ ∈ D(L1), it can be expressed as

ϕ(x) =
∞∑

n1,...,nd=1
ϕn1,...,nd

ψn1,...,nd
(x), (3.5)

here ϕn1,...,nd
= 2d

∫
Ω
ϕ(x)ψn1,...,nd

(x) dx. Let

ϕN (x) =
∞∑

n1,...,nd=1
ϕn1,...,nd

ψn1,...,nd
(Nx), (3.6)

where ψn1,...,nd
(Nx) = cos(Nn1πx1) . . . cos(Nndπxd) = ψNn1,...,Nnd

(x) are also the eigenfunctions of A .
Then ϕN ∈ D(LN ) and ∥ϕN∥L2 = ∥ϕ∥L2 . Rescaling the cell size and the flow amplitude essentially transits
the energy of ϕ from the lower to the higher eigenmodes.

Next we show that for each basis function ψn1,...,nd
,

2 2
∥(∆x −NvN (x) · ∇x − iN λ)ψNn1,...,Nnd
∥L2 = N ∥(∆x − v(x) · ∇x − iλ)ψn1,...,nd

∥L2 , (3.7)
12
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f
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f

or λ ∈ R. Let xi = Nxi, i = 1, . . . , d, and x = (x1, . . . ,xd). We have

∥(∆x −NvN (x) · ∇x − iN2λ)ψNn1,...,Nnd
∥2
L2

=
∫

(0,1)d
((∆x −NvN (x) · ∇x − iN2λ)ψNn1,...,Nnd

(x))2 dx

= 1
N

∫
(0,N)d

((N2λn1,...,nd
− iN2λ−N2v(x) · ∇x)ψn1,...,nd

(x))2 dx

= N3(λn1,...,nd
− iλ)2

∫
(0,N)d

ψ2
n1,...,nd

(x) dx +N3
∫

(0,N)d
(v(x) · ∇xψn1,...,nd

(x))2 dx, (3.8)

where ∫
(0,N)d

ψ2
n1,...,nd

(x) dx = N

∫
(0,1)d

ψ2
Nn1,...,Nnd

(x) dx = N

∫
(0,1)d

ψ2
n1,...,nd

(x) dx (3.9)

and ∫
(0,N)d

(v(x) · ∇xψn1,...,nd
(x))2 dx = N

∫
(0,1)d

(vN (x) · ∇xψNn1,...,Nnd
(x) 1

N
)2 dx

= 1
N

∫
(0,1)d

( d∑
i=1

viN (x)∂xi
(ψ(1)
Nn1

(x1) . . . ψ(d)
Nnd

(xd))
)2
dx

= 1
N

∫
(0,1)d

( d∑
i=1

viN (x)(−Nniπ) sin(Nniπxi)Π d
j=1,j ̸=i cos(Nnjπxj)

)2
dx (3.10)

= 1
N

∫
(0,1)d

N2( d∑
i=1

vi(x)(−niπ) sin(niπxi)Π d
j=1,j ̸=i cos(njπxj)

)2
dx (3.11)

= N

∫
(0,1)d

(v(x) · ∇xψn1,...,nd
(x))2 dx. (3.12)

From (3.10) to (3.11), we used the following elementary properties of the products of trigonometric functions
involving sin and cos in the cellular flow velocity defined by (3.1)–(3.2):∫ 1

0
(sin(2πNxi) sin(niπNxi))2 dxi = 1

4∫ 1

0
(cos(2πNxi) cos(niπNxi))2 dxi = 1

4 ,

and
∫ 1

0
sin(2πNxi) sin(niπNxi) cos(2πNxi) cos(niπNxi) dxi = 0, i = 1, . . . , d.

ote that these identities are independent of N . Combining (3.8) with (3.9) and (3.12) follows

∥(∆x −NvN (x) · ∇x − iN2λ)ψNn1,...,Nnd
∥2
L2

= N4(λn1,...,nd
− iλ)2

∫
(0,1)d

ψ2
n1,...,nd

(x) dx+N4
∫

(0,1)d
(v(x) · ∇xψn1,...,nd

(x))2 dx

= N4
∫

(0,1)d
(∆x − iλ+ v(x) · ∇xψn1,...,nd

(x))2 dx, (3.13)

hich establishes (3.7). Similarly, one can show that (3.7) also holds if replacing ψn1,...,nd
and ψNn1,...,Nnd

y ϕ and ϕN defined by (3.5) and (3.6), respectively. That is,

∥(LN − iN2λ)ϕN∥L2 = N2∥(L1 − iλ)ϕ∥L2 , λ ∈ R, (3.14)

or any ϕ ∈ D(L1). This implies
2
Ψ(LN ) ≤ N Ψ(L1).

13
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I

w
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A

R

f there exist some ϕ̂ and λ̂ ∈ R such that ∥(LN − iλ̂)ϕ̂∥L2 < N2Ψ(L1). Then

∥(L1 − i
λ̂

N2 )ϕ̂( x
N

)∥L2 = 1
N2 ∥(LN − iλ̂)ϕ̂∥L2 < Ψ(L1),

hich leads to a contradiction. Therefore, Ψ(LN ) = N2Ψ(L1). This completes the proof. □

The cellular flows and rectangle-like domains considered in this section are very special (which have certain
ymmetric structures and the cellular flows are also periodic). A natural question that arises here is what
re the characterizations of the flows so that a simple rescaling is able to enhance dissipation. This question
s nontrivial and certainly merits our further investigation in our future work.
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