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Abstract

We analyze a sample of 45 Type II supernovae from the Zwicky Transient Facility public survey using a grid of
hydrodynamical models in order to assess whether theoretically driven forecasts can intelligently guide follow-up
observations supporting all-sky survey alert streams. We estimate several progenitor properties and explosion
physics parameters, including zero-age main-sequence (ZAMS) mass, mass-loss rate, kinetic energy, 56Ni mass
synthesized, host extinction, and the time of the explosion. Using complete light curves we obtain confident
characterizations for 34 events in our sample, with the inferences of the remaining 11 events limited either by
poorly constraining data or the boundaries of our model grid. We also simulate real-time characterization of alert
stream data by comparing our model grid to various stages of incomplete light curves (Δt< 25 days,Δt< 50 days,
all data), and find that some parameters are more reliable indicators of true values at early epochs than others.
Specifically, ZAMS mass, time of the explosion, steepness parameter β, and host extinction are reasonably
constrained with incomplete light-curve data, whereas mass-loss rate, kinetic energy, and 56Ni mass estimates
generally require complete light curves spanning >100 days. We conclude that real-time modeling of transients,
supported by multi-band synthetic light curves tailored to survey passbands, can be used as a powerful tool to
identify critical epochs of follow-up observations. Our findings are relevant to identifying, prioritizing, and
coordinating efficient follow-up of transients discovered by the Vera C. Rubin Observatory.

Unified Astronomy Thesaurus concepts: Supernovae (1668); Surveys (1671); Hydrodynamical simulations (767);
Type II supernovae (1731)

1. Introduction

The upcoming Legacy Survey of Space and Time (LSST) to be

conducted by the Vera C. Rubin Observatory is highly anticipated

to revolutionize time-domain astronomy (LSST Science Collabora-

tion et al. 2009). Its sensitivity (∼24 mag), six broadband filters (u-

g-r-i-z-y), regular southern-sky patrolling (cadences anticipated

between hourly and every few days; LSST Science Collaboration

et al. 2017), and prompt reporting of transient activity (latency of

≈60 s from exposure readout to alert distribution) will provide

opportunities to discover and investigate millions of supernovae

(SNe) over its planned 10 yr lifetime (Ivezić et al. 2019).
However, managing the massive data sets associated with LSST

will be demanding. It will produce ∼20 TB of raw images every

single night, which will be processed rapidly via template

subtraction to send out real-time alerts of residual source variability

(approximately 10 million alerts nightly). Moreover, because LSST

photometry alone will generally be insufficient to adequately

investigate the transients it will discover (Alves et al. 2022), the

survey’s success will be partially dependent on other telescopes for
supporting observations (see, e.g., Najita et al. 2016), with
electromagnetic and multi-messenger facilities (Huerta et al. 2019).
LSST Corporation (LSSTC) architects along with emerging

alert stream data brokers are developing the processes, cyberin-
frastructure, and software needed to confront this challenge and
help manage upcoming LSST discoveries (Borne 2008; Narayan
et al. 2018). Data brokers utilize transient classification methods
that often employ machine learning (Möller & de Boissiere 2020;
Förster et al. 2021; Sooknunan et al. 2021; García-Jara et al.
2022). Current data brokers include ALeRCE9 (Sánchez-Sáez
et al. 2021), ANTARES10 (Matheson et al. 2021), Lasair11

(Smith 2019), MARS,12 and FINK13
(Möller et al. 2021),

Babamul, and PITT-Google. These data brokers are taking on
different responsibilities to promptly process, value-add, cross-
reference, and classify survey alert streams, which in turn
permits users to filter and prioritize targets.
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Working downstream of these data brokers are additional

services to coordinate follow-up observations, including Target

and Observation Managers (TOMs) that permit observers to

sort through broker alert streams to plan and trigger follow-up

(Street et al. 2018). TOMs have some level of automation, but

generally rely largely on humans to make decisions about target

prioritization and coordination. The Recommender Engine For

Intelligent Transient Tracking (REFITT; Sravan et al. 2020) is

an attempt to completely automate transient follow-up as an

Object Recommender for Augmentation and Coordinating

Liaison Engine (ORACLE). REFITT uses data from surveys to

predict the light-curve evolution of transients, prioritizes events

based on confidence in its prediction, and finally makes

recommendations to observers on targets that need follow-up,

specific to their observing facility and coordinated among all

observing agents.
To date, decisions about which transients to prioritize for

follow-up observations with supporting facilities are generally

data driven, i.e., based on comparisons to data sets of

previously observed events. In this paper, we explore the

feasibility of guiding the follow-up of core-collapse supernovae

(CCSNe) using parameters of theoretically driven forecasts.

Our expectation is that prioritizing the underlying physics of

transients will make it possible to (1) rapidly recognize

transients of desired physical parameter spaces, and (2) identify

information-rich epochs in transient evolution for efficient

follow-up with limited facilities.
To this end, in this paper we characterize a sample of 45 light

curves of Type II SNe using publicly available data from the

Zwicky Transient Facility (ZTF; Bellm et al. 2019) survey with

a grid of theoretical hydrodynamical models spanning various

progenitor properties (zero-age main-sequence (ZAMS) mass,

mass-loss history, etc.) and explosion physics (e.g., kinetic

energy, 56Ni synthesized). We compare results between model

fits with both complete and incomplete light curves in order to

assess whether theoretically driven forecasts can intelligently

guide follow-up observations supporting all-sky survey alert

streams. ZTF data is used because, among currently operating

all-sky surveys, which include ATLAS14 (Tonry et al. 2018)

and ASAS-SN15
(Shappee et al. 2014), ZTF’s functioning alert

stream best mimics LSST data flow, but at a more manageable
scale (Masci et al. 2019). Although ZTF’s cadence, depth, and
filters differ from those of LSST, it still serves as an excellent
testing ground for developing the infrastructure and software
that LSST will require as it starts operating.

The paper is organized as follows: Section 2 describes the

treatment of ZTF data in multiple passbands with forced

photometry and extinction. In Section 3, we describe our

hydrodynamical models with circumstellar material (CSM)

structure constructed using the stellar evolutionary code

KEPLER and the radiative transfer code STELLA. Section 4

outlines the results from our fitting method and trends in the

parameters derived from the fits, and Section 5 describes our

real-time fitting analysis of ZTF events and an assessment of

how model parameters evolve as a function of time. The

implications and utility of this work in view of current and

upcoming all-sky surveys, including LSST are discussed in

Section 6.

2. Survey Data from ZTF

We used data from the public ZTF alert stream, available as
photometry in the ztf-g and ztf-r passbands. We selected 45
ZTF events from Garretson et al. (2021) that are spectro-
scopically classified as Type II or IIP (Table 1). For the events
that were classified as Type II, we confirmed that the light
curves clearly demonstrated some portion of the plateau phase
through visual inspection, differentiating them from Type IIL
SNe. The events span the first 4 yr of the ZTF survey starting
from 2018 to 2021. All events in this sample have a minimum
of five detections, as defined below, in each of the ztf-g and ztf-
r passbands. We treat this as a representative test sample as the
light curves represent a variety of phases in evolution,
reasonably span expected redshifts of the survey (0.010<
z< 0.055), and span peak apparent magnitudes approximately
between 18 and 20 mag.
We utilize point-spread-function fit photometry measure-

ments using difference imaging as provided by the ZTF forced-
photometry service (IRSA 2022). Complete light curves were
constructed from the differential flux measurements ( forcedif-
fimflux and forcediffimfluxunc) that the service returns in each
band along with upper limits. A signal-to-noise threshold = 3
and a signal-to-noise ratio = 5 were used to declare the
measurements as a detection versus an upper limit (Masci et al.
2019). The photometric zero-points in each passband were used
to calculate the differential magnitudes.
We use the redshift reported by the Transient Name Server

(TNS)to calculate the distance modulus using astropy

(Astropy Collaboration et al. 2013, 2018) for every ZTF event
assuming standard flat Lambda cold dark matter (∧CDM)

cosmology model with H0= 70 kmMpc−1 s−1 and Ω0= 0.3.
The measurements are corrected for Milky Way extinction
using dust maps as prescribed by Schlegel et al. (1998) for each
passband, assuming an RV= 3.1. In our analysis, for each ZTF
event, we only use measurements up to 150 days in the rest
frame from the first detection. We do not account for
cosmological K-corrections in this work since we use a sample
of low-redshift events. However, because LSST is expected to
discover events at higher redshifts, K-corrections for a similar
analysis of LSST events would be non-negligible.

3. Model Fitting

3.1. Model Grid Using STELLA

The hydrodynamic models used in this work are specific to
Type IIP, constructed using the multigroup radiation hydro-
dynamics code STELLA (Blinnikov et al. 1998, 2000, 2006;
Moriya et al. 2017, 2018; Ricks & Dwarkadas 2019). In this
work, our models have the following parameters: ZAMS mass,
the kinetic energy of the explosion (Ek), mass-loss rate ( M),
steepness of velocity law (β) associated with the stellar wind,
and 56Ni mass synthesized. The model parameters along with
their corresponding values in the grid are described in Table 2.
Red supergiant (RSG) pre-supernova (SN) progenitors from
Sukhbold et al. (2016) were used, which were calculated using
the KEPLER code (Weaver et al. 1978), with physics
previously discussed (e.g., Woosley et al. 2002). A neutron
star remnant mass of 1.4 Me is assumed and the SN explosions
are triggered by putting thermal energy above the mass cut. 56Ni
is assumed to be uniformly mixed up to half of the hydrogen-
rich envelope in the mass coordinate.

14
Asteroid Terrestrial-impact Last Alert System.

15
All-Sky Automated Survey for Supernovae.
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Our hydrodynamical model grid also incorporates an

associated circumstellar material (CSM) density structure

attached to these RSG progenitors. The CSM density is given

by

( ) ( )r
p

=


r
M

v r4
, 1CSM

wind
2

where M is the mass-loss rate and vwind is the velocity structure

associated with the stellar wind. The radial dependency of vwind

is given by the velocity law

⎛
⎝

⎞
⎠

( ) ( ) ( )= + - -
b

¥v r v v v
R

r
1 , 2wind 0 0

0

where v0 is the initial wind velocity with a value <0.01 km s−1,

v∞ is the terminal wind velocity = 10 km s−1, R0 is the wind

launching radius set to the photosphere of the star, and β is the

steepness parameter that gives a measure of wind acceleration.

RSG progenitors typically have β> 2, owing to the slower

Table 1

ZTF Events in This Paper

ZTF ID TNS TNS R.A. Decl. Redshift No. of g-band No. of r -band

Classification Name (J2000) (J2000) (z) Detections Detections

ZTF18abcpmwha IIP SN 2018cur 12:59:09.12 +37:19:00.19 0.015 8(12) 8(40)

ZTF18acbvhit II SN 2018hle 3:39:28.11 −13:07:02.50 0.014 16 15

ZTF18acbwascb IIP SN 2018hfc 11:01:58.61 +45:13:39.26 0.020 51 65

ZTF18acrtvmma II SN 2018jfp 3:17:56.27 −0:10:10.82 0.023 17 20(2)

ZTF18acuqskr II SN 2018jrb 8:09:33.69 +15:31:10.55 0.045 7 10

ZTF19aakiyed II SN 2019awk 15:07:02.58 +61:13:42.37 0.044 17 23

ZTF19aaqdkrm II SN 2019dod 13:25:49.97 +34:29:43.58 0.034 27 30

ZTF19aauqwna IIP SN 2019fem 19:44:46.13 +44:42:49.13 0.041 20 47

ZTF19aavbkly IIP SN 2019fmv 12:29:33.80 +35:46:12.15 0.041 31 29

ZTF19aavhblr II SN 2019fuo 15:31:43.38 +16:42:49.30 0.050 19 27

ZTF19aavkptg IIP SN 2019gqs 11:36:15.78 +49:09:12.55 0.038 30 22

ZTF19abguqsi II SN 2019lsh 22:52:58.52 +0:26:50.53 0.052 14 20

ZTF19abhduuob II SN 2019lre 1:58:50.79 −9:35:05.65 0.018 14 16

ZTF19abiahko IIP SN 2019lsj 19:36:59.13 −11:57:13.63 0.023 8 11

ZTF19abqyouob IIP SN 2019pbk 7:46:23.89 +64:13:23.79 0.045 11 13

ZTF19abvbrve IIP SN 2019puv 19:12:36.67 −19:25:01.67 0.020 14 42

ZTF19acbviska II SN 2019rms 9:00:45.39 +19:44:42.32 0.037 19 37(1)

ZTF19ackjvtlb IIP SN 2019uwd 13:16:20.75 +30:40:48.72 0.019 53 99

ZTF19acmwflib II SN 2019tza 13:14:04.68 +59:15:04.91 0.028 39 59

ZTF19acszmgx II SN 2019vew 5:27:49.43 −5:21:39.88 0.042 22 22

ZTF20aahqbun II SN 2020alg 14:27:10.55 +35:55:20.22 0.028 26 41

ZTF20aamlmec II SN 2020chv 7:46:27.78 +1:57:34.73 0.034 8 9

ZTF20aamxuwl II SN 2020ckv 11:03:26.48 −1:32:27.04 0.037 13 12

ZTF20aatqgeo II SN 2020fcx 13:40:10.01 +23:20:29.56 0.032 25 16

ZTF20aatqidk II SN 2020fbj 12:47:47.03 +22:17:10.44 0.034 26 29

ZTF20aaullwz II SN 2020fch 11:33:24.03 −9:20:55.94 0.027 12 10

ZTF20aausahr II SN 2020hgm 8:31:22.09 +49:13:35.43 0.043 9 10

ZTF20aazcnrv II SN 2020jjj 14:31:19.63 −25:39:31.04 0.023 12 13

ZTF20aazpphd II SN 2020jww 16:10:51.58 +27:09:42.02 0.046 36 43

ZTF20abekbzp II SN 2020meu 15:34:44.68 +6:38:53.35 0.041 9 11

ZTF20abuqali II SN 2020rht 2:30:17.30 +28:36:02.64 0.040 13 12

ZTF20abwdaeob II SN 2020rvn 21:06:36.34 +17:59:34.86 0.021 28 29

ZTF20abyosmdb II SN 2020toc 8:28:30.14 +17:28:08.52 0.021 20 26

ZTF20acjqksfb IIP SN 2020tfb 6:08:52.14 −26:24:46.02 0.048 17 18

ZTF20acnvtxyb IIP SN 2020zkx 11:18:31.84 +6:44:28.84 0.030 10 13

ZTF20acptgfl IIP SN 2020zjk 5:22:00.02 −7:11:20.81 0.037 22 27

ZTF21aabygeaa II SN 2021os 12:02:54.08 +5:36:53.15 0.019 31 49(2)

ZTF21aaevrjl II SN 2021arg 4:31:18.78 −10:23:46.95 0.031 14 15

ZTF21aafkktu II SN 2021avg 11:39:59.00 +14:31:40.65 0.031 31 32

ZTF21aafkwtk II SN 2021apg 13:41:19.24 +24:29:43.88 0.027 26 37

ZTF21aagtqpnb,a II SN 2021bkq 18:20:34.83 +40:56:36.28 0.036 33(4) 44(6)

ZTF21aaigdlyb II SN 2021cdw 14:05:31.80 −25:21:54.51 0.040 17 28

ZTF21aaluqkp II SN 2021dhx 11:05:10.38 −15:21:10.13 0.025 34 25

ZTF21aamzuxi II SN 2021dvl 7:49:56.10 +71:15:42.11 0.034 27 29

ZTF21acchbmn II SN 2021zaa 23:46:41.12 +26:44:45.11 0.032 22 19

Notes.
a
The reported number of measurements in the ztf-g and ztf-r passbands obtained within 150 days of the first detection, after running forced photometry for each ZTF

event. Additional detections beyond 150 days not included in the analysis are quoted in parenthesis for each band.
b
No upper-limit constraints before the first detection are available for informed priors on the date of the explosion.
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acceleration of the stellar winds (Mauron & Josselin 2011). A

fixed CSM radius of 1015 cm is assumed in our models.
The RSG progenitors with associated CSM density struc-

tures were then exploded as thermal bombs with energies
ranging from 0.5–5.0× 1051 erg using STELLA. The code
calculates the resulting light curve of the explosion following
the evolution of spectral energy distributions (SEDs) with time
at every epoch. The light curves in various passbands are
obtained by convolving the ZTF filter transmission functions to
the numerical SEDs. Our final grid varying the progenitor,
explosion, and CSM properties is made up of 4206 unique
models. A similar model grid used in this work can be found in
Förster et al. (2018) for further reference. The full details of the
numerical model grid will be presented in a separate paper (T.
J. Moriya 2022, in preparation).

3.2. Fast Interpolation Method

Using Bayesian Inference methods requires the models to be
finely sampled within the parameter space. However, because
our model grid is neither complete nor uniform, a scale-
independent fast interpolation process that can use a nonuni-
form grid of models was incorporated into our Monte Carlo
sampling method following Förster et al. (2018) and Martinez
et al. (2020). This allowed us to quickly interpolate between the
models in the grid to sample any combination of values in the
parameter space. For a given parameter vector θ, the method
finds the closest models θclose and weighs them appropriately
using

( ) ˆ ( ) ( ) ( )åq q q q=
q qÎ

m t w m t, , , , 3i i

i close

where ( )qm t t, ,exp is the magnitude for a given θ at time t and

the normalized weights are given by

ˆ ( )
( )

( )
( )

å
q q q q

q q
=

q qÎ

w
w

w
,

,

,
, 4i

i

j

j close

where

⎛

⎝
⎜

⎞

⎠
⎟( ) ∣ ∣ ( )q q q q d= - +
-

w , . 5i

j

j
i
j j

1

Equation (5) uses a very small vector δ with the same units
as θ, which ensures that the weights do not diverge when a
given parameter combination exactly matches a model in the
grid. This fast interpolation method can be used to calculate
light curves for any combination of parameter vector θ bound
by the limits of our model grid.

3.3. Date of the Explosion and Host Extinction

Along with fitting for the parameters of our models, we also

fit for the date of the explosion and host extinction. The time of

the explosion is calculated as the number of days before the

first photometric measurement in each passband. We defined an

informed prior distribution for the time of explosion leveraging

the constraints given by the upper limits in each passband for

each event. The priors are more constraining if the upper limits

preceding the first detection are well defined. To calculate the

approximate bounds of time of explosion priors, the deepest

upper limit available before the first detection is identified. If no

upper limits are available for an event, we allow a wider

distribution for the prior.
Observed Type II SN light curves can be significantly

affected by host extinction (Kasen & Woosley 2009; Kochanek

et al. 2012; Mattila et al. 2012). We fit for total extinction in the

visual band assuming a prior distribution listed in Table 2. We

do this by simultaneously fitting the ztf-g and ztf-r passbands to

infer host extinction. The derived extinction is used to calculate

E(B− V ) for the host of each event assuming RV= 3.1.

3.4. Nested Sampling Methods for Parameter Inference

We derive posterior distributions of the parameters involved

using the python-based MIT-licensed Dynamic Nested Sam-

pling package dynesty (Skilling 2004) that estimates the

Bayesian target distributions. We assigned a combination of

uniform and Gaussian distributions as our priors for different

parameters. The prior distributions considered in this work are

listed in Table 2. The likelihood function incorporates fast

interpolation and evaluates how close the observations are with

a sample model drawn. Using the above framework, multi-band

ZTF observations in the ztf-g and ztf-r passbands in their

absolute magnitudes are fit to the hydrodynamical models.
Nested sampling methods require all the samples to be

identically and independently distributed random variables

drawn from the prior distribution. We use a uniform sampling

method widely used for dimensions <10 in the dynesty

package (Skilling 2006). In the Bayesian framework, all of the

inferences are contained in the final multidimensional posterior,

which can be marginalized over each parameter to obtain

constraints. The Bayesian evidence is represented by the

overall normalization of this posterior. The nested sampling

algorithm converges until the evidence has been estimated to

the desired accuracy after accepting or rejecting the samples

that are drawn from the prior distribution.

Table 2

Prior Distribution on Physical Parameters Used in Our Sampling Method along with Values of the Parameters in Our Hydrodynamical Model Grid

Parameter Hydrodynamical Model Values In Steps Prior Distribution Units

texp L L U(0, tupper−limit) day

ZAMS 12–16 2 N(14, 3) ä (12, 16) Me

Ek 0.5–5.0 0.5 N(1, 1) ä (0.5, 5) 1051 erg
56Ni 0.01–0.1 0.01 (0.001,0.2,0.3) N(0.05, 0.01) ä (0.001, 0.3) Me

β 1–5 1 N(3, 2) ä (1, 5) L

- Mlog10 1–5 0.5 U(4, 2) ä (5, 1) Me yr−1

AV L L ( ( ) ) ( )Î -N ln 0.05 , 2 10 , 24 mag

Note. The “In Steps” values in parentheses for 56Ni are the additional values for the parameters present in the model grid.
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4. Parameter Inference and Trends of Complete Light
Curves

Using our Bayesian inference procedure to fit all ZTF events
with our model grid, we derived the posterior probability
distribution for all parameters of each Type II SNe. Our models
were fit confidently to 34 events. The fits for the remaining 11
events were limited by poor upper limits prior to first detection
(flagged with §) and the hydrodynamical model grid bound-
aries (flagged with ‡). Figure 1 shows the samples of the
posterior probability distributions for the first 15 ZTF events.
The light-curve fits for the remaining events are plotted in an
extended version of Figure 1 in the Appendix. The observed

data points are shifted with respect to the inferred date of the

explosion and corrected for host extinction derived from the

fits. The uncertainty in the host extinction and the date of the

explosion are not represented in Figure 1. The dashed line in

each passband represents the best-fit model. Table 3 lists the

inferred median values for the seven parameters with their 16th

and 84th percentile confidence regions. We note that these 1σ

uncertainties of the parameters only reflect how well the model

fits the observed data and do not take into account any

uncertainties related to the assumptions used to create the

model grid itself. Representative corner plots of posterior

probability distributions are shown in the Appendix.

Figure 1. The observed ZTF light curves and our model fits plotted with respect to the derived time of the explosion. The family of light curves in each panel
represents 150 models randomly sampled from the derived posterior probability distribution in individual bands. respectively. The dashed curve represents the best-fit
model for each ZTF event. The upper limits before the first detection that are used to constrain the date of the explosion are plotted. The median values and their 1σ
uncertainty for the parameters are listed in Table 3. ZTF events with no upper limits and poorly constraining rise data are flagged with §. ZTF events whose fits
approached the model boundaries are flagged with ‡. Additional plots for the remaining ZTF events listed in Table 1 are provided in the Appendix.

5
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ZTF21aabygea (SN 2021os) and ZTF18abcpmwh (SN

2018cur) yielded the highest ZAMS masses ( -
+15.96 0.19
0.03 and

-
+15.77 1.39
0.20 Me, respectively), while ZTF21aagtqpn (SN

2021bkq) has the lowest ( -
+12.11 0.08
0.17 Me). The highest

explosion energies are seen for ZTF18acuqskr (SN 2018jrb)

and ZTF20aausahr (SN 2020hgm) ( ´-
+2.90 100.39
0.30 51 and

´-
+2.38 100.38
0.46 51 erg, respectively). As shown in Figure 1,

these two events correspond to steeper and early declines in the

light curves as compared to low energetic events (∼0.5× 1051

erg), including ZTF19ackjvtl (SN 2019uwd) and ZTF19acb-

visk (SN 2019rms). These observed short-lived plateaus and

fast declines are in agreement with previous results for other

high-energy CCSNe (Valenti et al. 2016; Rubin & Gal-

Yam 2017; de Jaeger et al. 2019; Barker et al. 2021). The more

Table 3

Median Values from the Posterior Distribution with 1σ Uncertainty When Fitted with All Data from the Events

ZTF ID ZAMS Ek −log M10
MNi56 texp β AV

(Me) (1051 erg) (Me yr−1
) (Me) (days) (mag)

ZTF18abcpmwh -
+15.77 1.39
0.20

-
+1.67 0.29
0.35

-
+4.09 0.40
0.38

-
+0.07 0.02
0.02

-
+14.81 1.58
1.88

-
+2.56 0.27
1.20

-
+0.23 0.10
0.11

ZTF18acbvhitb -
+13.35 0.91
1.68

-
+0.51 0.01
0.02

-
+4.00 0.09
0.09

-
+0.04 0.01
0.01

-
+25.54 4.04
3.93

-
+3.98 0.10
0.09

-
+0.31 0.09
0.09

ZTF18acbwascb -
+12.47 0.31
0.40

-
+0.52 0.01
0.01

-
+4.22 0.36
0.35

-
+0.10 0.02
0.005

-
+48.48 1.79
1.06

-
+3.06 0.20
0.17

-
+0.02 0.01
0.02

ZTF18acrtvmm -
+12.86 0.50
0.80

-
+0.99 0.05
0.04

-
+2.43 0.25
0.15

-
+0.10 0.03
0.04

-
+8.81 1.00
0.75

-
+3.64 1.22
0.14

-
+0.03 0.02
0.03

ZTF18acuqskr -
+13.89 0.98
1.02

-
+2.90 0.39
0.30

-
+3.91 0.45
0.47

-
+0.04 0.02
0.02

-
+16.72 2.38
2.40

-
+3.01 0.45
0.46

-
+0.06 0.04
0.07

ZTF19aakiyed -
+14.85 1.74
1.04

-
+1.02 0.20
0.21

-
+3.75 0.54
0.52

-
+0.06 0.02
0.02

-
+17.29 3.09
3.22

-
+2.93 0.53
0.82

-
+0.10 0.07
0.10

ZTF19aaqdkrm -
+13.14 0.81
2.52

-
+1.08 0.28
0.25

-
+1.67 0.21
0.25

-
+0.05 0.01
0.02

-
+16.68 2.88
1.95

-
+3.06 1.20
0.89

-
+0.12 0.08
0.11

ZTF19aauqwna -
+13.71 1.01
1.17

-
+1.19 0.31
0.30

-
+1.32 0.20
0.26

-
+0.08 0.02
0.02

-
+16.29 3.80
6.28

-
+3.03 0.50
0.55

-
+0.05 0.03
0.07

ZTF19aavbkly -
+13.07 0.75
2.09

-
+1.06 0.21
0.43

-
+2.43 0.25
0.18

-
+0.02 0.01
0.01

-
+7.27 0.82
0.51

-
+3.00 0.10
0.10

-
+0.18 0.10
0.25

ZTF19aavhblr -
+13.46 0.97
1.36

-
+0.86 0.19
0.28

-
+1.09 0.04
0.41

-
+0.07 0.01
0.02

-
+24.13 10.53
4.25

-
+2.98 0.47
0.49

-
+0.05 0.04
0.09

ZTF19aavkptg -
+13.14 0.80
1.97

-
+1.06 0.26
0.45

-
+2.22 0.20
0.30

-
+0.03 0.02
0.02

-
+8.21 1.40
1.09

-
+2.95 0.50
0.71

-
+0.38 0.17
0.25

ZTF19abguqsi -
+12.57 0.40
1.02

-
+1.24 0.45
0.73

-
+1.51 0.04
0.06

-
+0.01 0.01
0.01

-
+13.71 1.34
0.88

-
+3.00 0.44
0.45

-
+0.17 0.10
0.19

ZTF19abhduuob -
+12.95 0.59
0.85

-
+0.52 0.02
0.05

-
+4.00 0.08
0.08

-
+0.03 0.01
0.01

-
+51.02 6.87
5.20

-
+3.97 0.36
0.47

-
+0.79 0.11
0.17

ZTF19abiahko -
+13.11 0.71
0.92

-
+0.75 0.21
0.32

-
+3.99 0.10
0.11

-
+0.02 0.01
0.01

-
+25.15 5.27
7.76

-
+3.99 0.10
0.10

-
+0.54 0.36
0.23

ZTF19abqyouob -
+12.98 0.70
1.36

-
+1.39 0.23
0.15

-
+3.95 0.70
0.58

-
+0.06 0.02
0.02

-
+31.37 3.42
3.16

-
+3.00 0.84
0.85

-
+0.09 0.06
0.09

ZTF19abvbrvea -
+12.85 0.59
1.59

-
+0.51 0.01
0.02

-
+3.56 0.25
0.57

-
+0.06 0.02
0.02

-8.27 1.16
1.47

-
+2.82 0.43
0.89

-
+0.13 0.07
0.09

ZTF19acbvisk -
+13.82 0.86
0.77

-
+0.54 0.03
0.07

-
+1.63 0.41
0.41

-
+0.10 0.02
0.02

-
+20.02 6.41
9.31

-
+3.11 0.49
0.48

-
+0.02 0.02
0.03

ZTF19ackjvtlb -
+14.43 1.26
1.05

-
+0.51 0.01
0.02

-
+3.88 0.80
0.71

-
+0.06 0.00
0.01

-
+57.60 1.99
2.22

-
+2.47 0.83
1.37

-
+0.40 0.07
0.07

ZTF19acmwfli -
+13.34 0.97
2.19

-
+1.01 0.04
0.06

-
+3.82 0.79
0.71

-
+0.04 0.01
0.01

-
+24.75 4.51
2.12

-
+2.69 0.21
1.07

-
+0.21 0.08
0.10

ZTF19acszmgx -
+13.21 0.86
1.40

-
+1.39 0.40
0.42

-
+1.03 0.03
0.07

-
+0.08 0.02
0.02

-
+19.37 0.88
0.45

-
+2.98 0.47
0.50

-
+0.43 0.36
0.25

ZTF20aahqbun -
+15.39 2.27
0.51

-
+0.58 0.04
0.05

-
+3.01 0.48
1.11

-
+0.06 0.01
0.01

-
+27.73 2.11
1.51

-
+2.55 0.18
1.20

-
+0.17 0.07
0.07

ZTF20aamlmec -
+13.53 1.01
1.48

-
+1.00 0.26
0.38

-
+2.37 0.40
0.72

-
+0.03 0.02
0.02

-
+22.35 3.56
3.76

-
+2.99 0.49
0.53

-
+0.25 0.16
0.20

ZTF20aamxuwl -
+13.48 1.00
1.49

-
+1.03 0.28
0.37

-
+1.78 0.39
0.46

-
+0.06 0.01
0.02

-
+14.41 3.18
4.21

-
+3.05 0.54
0.57

-
+0.08 0.06
0.11

ZTF20aatqgeo -
+12.60 0.43
1.67

-
+0.92 0.25
0.15

-
+2.02 0.06
0.10

-
+0.06 0.02
0.02

-
+18.60 1.54
0.97

-
+2.76 0.40
0.94

-
+0.29 0.13
0.09

ZTF20aatqidk -
+13.81 1.04
1.21

-
+0.61 0.04
0.05

-
+2.67 0.26
0.37

-
+0.10 0.04
0.04

-
+16.88 2.26
2.47

-
+3.52 1.11
0.26

-
+0.03 0.02
0.04

ZTF20aaullwz -
+14.01 0.69
0.73

-
+1.03 0.08
0.38

-
+2.73 0.28
0.33

-
+0.08 0.02
0.01

-
+10.65 1.94
1.76

-
+3.02 0.35
0.37

-
+0.04 0.03
0.10

ZTF20aausahr -
+13.74 1.02
1.18

-
+2.38 0.34
0.46

-
+3.69 1.01
0.74

-
+0.03 0.02
0.02

-
+27.38 3.29
3.29

-
+3.00 0.47
0.48

-
+0.12 0.08
0.12

ZTF20aazcnrv -
+14.80 1.61
1.02

-
+1.26 0.39
0.51

-
+3.78 0.52
0.51

-
+0.02 0.01
0.01

-
+19.69 2.43
2.65

-
+3.94 0.27
0.57

-
+0.35 0.20
0.21

ZTF20aazpphd -
+13.73 0.90
0.82

-
+1.00 0.02
0.03

-
+1.86 0.15
0.33

-
+0.10 0.02
0.03

-
+13.94 1.60
1.67

-
+3.08 0.55
0.45

-
+0.02 0.01
0.03

ZTF20abekbzp -
+13.62 1.05
1.38

-
+1.54 0.46
0.75

-
+3.19 0.78
1.08

-
+0.02 0.02
0.02

-
+15.27 3.34
2.84

-
+2.99 0.49
0.51

-
+0.28 0.18
0.27

ZTF20abuqali -
+13.81 1.22
1.62

-
+1.01 0.15
0.18

-
+2.41 0.33
0.31

-
+0.08 0.02
0.02

-
+17.38 2.96
3.00

-
+3.00 0.56
0.75

-
+0.07 0.05
0.08

ZTF20abwdaeo -
+15.22 1.95
0.71

-
+0.57 0.03
0.03

-
+2.55 0.27
0.26

-
+0.09 0.02
0.01

-
+20.09 2.49
2.75

-
+3.50 1.08
0.28

-
+0.03 0.02
0.03

ZTF20abyosmdb -
+12.72 0.51
1.61

-
+0.97 0.25
0.08

-
+4.00 0.44
0.44

-
+0.06 0.01
0.01

-
+47.15 3.01
1.89

-
+2.97 0.49
0.55

-
+1.03 0.11
0.09

ZTF20acjqksfb -
+12.83 0.59
1.62

-
+1.59 0.45
0.63

-
+4.05 0.63
0.58

-
+0.03 0.02
0.02

-
+28.34 1.99
1.16

-
+2.98 0.47
0.49

-
+0.40 0.22
0.24

ZTF20acnvtxyb -
+13.32 0.89
1.49

-
+1.38 0.49
0.59

-
+3.89 0.76
0.65

-
+0.03 0.02
0.02

-
+54.43 5.08
3.58

-
+3.00 0.48
0.44

-
+0.98 0.26
0.28

ZTF20acptgfla -
+12.94 0.41
0.42

-
+0.52 0.01
0.02

-
+3.97 0.11
0.15

-
+0.05 0.01
0.01

-
+19.41 2.55
2.76

-
+3.00 0.10
0.10

-
+0.08 0.05
0.07

ZTF21aabygea -
+15.96 0.19
0.03

-
+0.57 0.02
0.02

-
+3.76 0.14
0.18

-
+0.05 0.02
0.02

-
+9.84 0.98
0.87

-
+3.75 0.05
0.05

-
+0.02 0.01
0.02

ZTF21aaevrjl -
+13.72 1.05
1.19

-
+1.42 0.60
0.76

-
+4.00 0.10
0.10

-
+0.02 0.01
0.02

-
+14.82 2.54
3.13

-
+3.00 0.09
0.10

-
+0.81 0.32
0.30

ZTF21aafkktu -
+14.35 1.29
1.21

-
+0.56 0.05
0.09

-
+2.11 0.40
0.47

-
+0.09 0.01
0.01

-
+8.56 2.31
3.54

-
+2.66 0.33
1.09

-
+0.04 0.03
0.05

ZTF21aafkwtka -
+14.36 0.85
1.12

-
+0.51 0.00
0.01

-
+2.75 0.20
0.35

-
+0.04 0.01
0.01

-
+13.52 2.11
1.84

-
+2.78 0.40
0.74

-
+0.05 0.03
0.04

ZTF21aagtqpn -
+12.11 0.08
0.17

-
+1.44 0.10
0.10

-
+4.04 0.45
0.45

-
+0.10 0.002
0.002

-
+19.70 1.40
1.21

-
+2.50 0.30
1.23

-
+0.04 0.03
0.04

ZTF21aaigdly -
+14.64 1.76
1.24

-
+0.67 0.07
0.13

-
+2.79 0.26
0.43

-
+0.09 0.06
0.07

-
+10.60 2.14
2.38

-
+3.71 1.24
0.08

-
+0.05 0.04
0.06

ZTF21aaluqkp -
+15.14 2.06
0.77

-
+0.54 0.02
0.04

-
+3.70 0.42
0.49

-
+0.09 0.03
0.01

-
+16.11 2.75
2.74

-
+2.60 0.19
1.16

-
+0.07 0.04
0.06

ZTF21aamzuxi -
+14.48 1.36
1.25

-
+1.49 0.09
0.08

-
+3.72 0.51
0.49

-
+0.09 0.06
0.05

-
+7.85 1.31
1.41

-
+2.56 0.23
1.20

-
+0.05 0.04
0.05

ZTF21acchbmn -
+14.14 1.35
1.62

-
+1.51 0.08
0.13

-
+2.17 0.24
0.32

-
+0.09 0.02
0.01

-
+8.96 0.89
0.66

-
+3.32 0.92
0.46

-
+0.05 0.03
0.05

Notes.
a
Fits to explosion energies are very close to the model grid parameter boundaries.

b
Events with relatively less confident inferences due to poor data quality (including missing phases of the light curve along with no constraints on upper limits).
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energetic events in our sample also show increased peak
luminosity in both the ztf-g and ztf-r bands (Sanders et al.
2015; Galbany et al. 2016; Valenti et al. 2016).

For seven events, our estimates of kinetic energy favor the
minimum parameter value of our grid (0.5× 1051 erg). We flag
these events as ones for which our model fits are less confident,
since the actual kinetic energy may be significantly lower.

Most events (37 out of 45) in our sample tend to favor mass-
loss rates between 10−4.0 and 10−2.0Me yr−1. However, a non-
negligible number of events (eight out of 45) yield higher
mass-loss rate estimates �10−2.0Me yr−1. This finding is
consistent with the findings of Förster et al. (2018), who
reported higher mass-loss rates to be correlated with early and
steep rises in the light curves of many Type II SNe from the
High cadence Transient Survey (HiTS; Förster et al. 2016),
possibly due to shock breakout in dense CSM (Moriya et al.
2011, 2017, 2018; Morozova et al. 2015, 2018; Bruch et al.
2021; Haynie & Piro 2021). We find that the fits for the
steepness parameter β are most likely prior dominated and
favor values closer to β∼ 3, consistent with slowly accelerat-
ing winds found in RSGs (Baade et al. 1996).

ZTF19abguqsi (SN 2019lsh) produced the least 56Ni mass of
0.01± 0.01 Me. Other ZTF events in the sample have
estimates of 56Ni mass ranging from 0.02–0.1 Me.
ZTF19aabvkly (SN 2019fmv), ZTF19abiahko (SN 2019lsj),
and ZTF20aazcnrv (SN 2020jjj) have relatively short-lived
plateau regions in their light curves and are associated with
lower estimates of synthesized 56Ni mass (see Figure 1). Events
with higher estimates of 56Ni mass have long-lived plateaus as
compared to the events with lower 56Ni mass estimates and
faster declines in their light curves. These results are in
agreement with previous analyses of SNe Type II that consider
how 56Ni mass affects light-curve evolution (Eastman et al.
1994; Bersten 2013; Faran et al. 2014; Kozyreva et al. 2019).

ZTF20abyosmd (SN 2020toc) has the highest host extinction
( = -

+A 1.03V 0.11
0.19 mag), followed by ZTF21aaevrjl (SN

2021arg) ( = -
+A 0.81V 0.32
0.30 mag). ZTF18acbwasc (SN

2018hfc) and ZTF21aabygea (SN 2021os) have negligible

host extinction values (both = -
+A 0.02V 0.01
0.02 mag). All ZTF

events in our sample show host extinction values ranging from
AV= 0.01–1.1 mag, typical for CCSNe hosts (Pastorello et al.
2006; Maguire et al. 2010; Faran et al. 2014).

4.1. Correlations between Physical Parameters

We plot our inferred values with a comparison to other
similar works in the literature (Förster et al. 2018; Martinez
et al. 2020) in Figure 2. Förster et al. (2018) use hydro-
dynamical models on HiTS Type II SNe that include estimates
of the circumstellar environment, while Martinez et al. (2020)
do not include CSM structure in their models. Figure 2 shows
the bounds of our model grid with gray-dotted lines for each
parameter in the plot. The ZTF events whose energy value fits
approached the bounds of the model grid are marked in
Table 3. We represent events that had relatively narrower prior
distribution for the date of the explosion inside the purple circle
in Figure 2. These events had either constraining upper limits
before the first detection or enough rise-time data to make an
educated guess on the upper bound of the prior distribution for
the date of the explosion.

Generally, our parameter estimates are less confident for
ZTF events with poor data quality, such as those missing
phases of light curves combined with unavailable upper-limit

constraints and whose parameter values approached the
parameter boundaries of the model grid (see Table 3). These
events are represented by green circles in Figure 2 as flagged
events. Among seven out of 11, ZTF18acbwasc (SN 2018hfc),
ZTF19abhduuo (SN 2019lre), ZTF19abqyouo (SN 2019pbk),
ZTF19ackjvtl (SN 2019uwd), ZTF20abyosmd (SN 2020toc),
ZTF20acjqksf (SN 2020tfb), and ZTF20acnvtxy (SN 2020zkx)
can be grouped together as events that have higher values for
the time of the explosion (> 25 days). This could be attributed
to the fact that the prior distribution was too broad as there were
no upper limits for these events as provided by the ZTF survey.
The remaining four ZTF events whose fits approached the
model boundaries are ZTF18acbvhit (SN 2018hle),
ZTF19abvbrve (SN 2019puv), ZTF20acptgfl (SN 2020zjk),
and ZTF21aafkwtk (SN 2021apg).
Moreover, we performed a Pearson correlation analysis to

check if we can find any correlations between the physical
parameters. However, we were unable to find any significant
correlations (r >+0.5 or r <−0.5) within the sample studied.
The correlation matrix is shown in Figure 3. The modest mass
range in our model grid (12–16 Me) limits our ability to make
strong claims on any potential ZAMS dependencies. For
example, in Figure 2, the correlations in Martinez et al. (2020)
only become clear when the ZAMS range is extended to 10
Me. Our hydrodynamical grid explores new parameter spaces
that include mass-loss properties and this can possibly
introduce additional degeneracies.

5. Real-time Parameter Evolution

We analyzed how each of the parameter fits evolved as a
function of time, termed real-time characterization. We were
motivated to characterize how well or poorly the model
parameter fits and their uncertainties at fractional light-curve
stages anticipated the values found from complete light curves.
We compared our model grid to three regimes of incomplete
light curves with respect to the first detection: (1) Δt� 25 days,
(2) Δt� 50 days, and (3) all available data.
Figure 4 shows a detailed evolving characterization for the

event ZTF19aaqdkrm (SN 2019dod). As expected, the fits and
estimates of the parameters change with time as the SN evolves
and additional measurements are incorporated into the fitting
process. Within Δt� 25 days and Δt� 50 days, the fits favor
lower 56Ni masses and higher energies. As data in both bands
accumulate, the fits favor higher 56Ni masses and lower
energies. At Δt� 50 days, the portion of the light curve
powered by hydrogen recombination of the event starts to fall
off, giving better estimates on ZAMS and 56Ni masses.
We performed this same analysis on all 45 ZTF events,

where similar trends are seen. Figure 5 shows the difference in
parameter values of our fits with respect to the final epoch with
all the data as the event unfolds. Our analysis shows that the
explosion energies and mass-loss rates for the events are
initially overestimated and tend to favor lower final values
when all data is included in the fit. This is opposite to what we
see in the case of 56Ni mass, as it is underestimated with only a
few measurements and consistently favors higher values for
many events during later stages of light-curve evolution as the
recombination drop-off starts to unfold.
The most confident estimate of 56Ni mass is inferred when

the hydrogen recombination phase ends and the radioactive
decay phase starts. This results in epochs with all the data
yielding higher estimates of 56Ni mass. With kinetic energy, the
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peak luminosity and decline rate of the light curve play a
significant role in estimating the energetics of the event. As a
result, as more data become available at later epochs, more
reliable estimates of kinetic energy will be seen. The inferred
values of ZAMS, host extinction, date of the explosion, and the
β remain nearly constant as the light curve evolves.

6. Discussion

6.1. Parameter Space Degeneracy

A major challenge encountered when modeling only two
passbands provided by public ZTF light curves was model
degeneracy. Specifically, the probability that different combi-
nations of explosion and progenitor parameters can potentially
lead to the same light curve posed difficulties in converging to
a unique solution in our fitting method. As noted in previous
works, the hydrodynamical modeling approach has led to larger
estimates of progenitor properties, especially ZAMS estimates,
when compared to other approaches like pre-SN explosion
imaging (Utrobin & Chugai 2008, 2009; Maguire et al. 2010;
Sanders et al. 2015). In the Appendix, the posterior distribution
of three ZTF events at various epochs is examined using kernel
density estimation (KDE) analysis, along with a calculation of
the number of modes. In a similar analysis for all 45 events, we
find that all the ZTF events have multimodal posteriors and the
temporal evolution of modes cannot be generalized.
Goldberg et al. (2019) recognize the challenges involved in

breaking the degeneracies between ejecta mass, explosion energy,
and progenitor radius, and argue that in order to do so requires an
independent measurement of one of the parameters. The scaling
relationships used in their work yield families of explosions with
varied parameters that can reproduce similar light curves. Hillier

Figure 2. Top panel: ZAMS mass plotted against 56Ni mass, mass-loss rate, and kinetic energy. The blue and gray circles denote the values that were found for SNe II
in Förster et al. (2018) and Martinez et al. (2020). Bottom panel: kinetic energy plotted against the time of the explosion with respect to the first detection, 56Ni mass,
and host extinction (AV). The gray-dotted lines represent the parameter bounds of our model grid. The purple circle in the bottom left panel demarcates events that
required a narrower prior distribution for the date of the explosion constrained either from upper limits or rise-time data. The green circles represent flagged ZTF
events with low-confidence model fits.

Figure 3. Pearson correlation matrix showing correlation coefficients that are
color coded for different physical parameters in the analysis. No significant
correlations between physical parameters were found within the sample of the
Type II SNe used in this study.
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& Dessart (2019) also highlight calculations of similar photo-
spheric phases for well-sampled Type II SNe in their multi-band
and spectroscopic modeling.

Martinez et al. (2020) attempt to partially lift this degeneracy
issue by fitting photospheric velocity information from their
models to velocity measurements obtained of SNe during the
plateau phase. However, Goldberg et al. (2019) argue that only
the ejecta velocities measured during the initial shock cooling
phase can be useful to break these degeneracies seen in the
parameters. Our analysis focused on photometry only, and future
work can investigate whether the use of kinematic information
from spectroscopy can better constrain parameter selection.

6.2. Bolometric versus Precomputed Multi-band Inference

Our analysis adopts the approach of fitting observations to
synthetic multi-band photometry derived from theoretical

hydrodynamical models. Similar works like Nicholl et al.

(2017) and Guillochon et al. (2018) use semi-analytical,

blackbody SED models to fit multi-band photometry for

transients. These procedures contrast with typical methods that

first construct bolometric light curves from multi-filter and/or
multiwavelength observations, which are in turn compared to

model bolometric light curves. Each method has associated

uncertainties. In the case of synthetic model photometry,

uncertainties arise from assumptions in opacity treatment at

different frequencies in STELLA. In the case of creating

bolometric light curves from interpolated observed data sets,

the uncertainties stem from potential gaps in photometry

cadence, limited passbands, and potentially few data points

overall to fit against.
For real-time characterization of events, we found that a

proper Bayesian inference of explosion parameters for large

Figure 4. Multi-epoch real-time characterization for ZTF19aaqdkrm (SN 2019dod). The left panel shows the model fits to only data within the first 25 days of detection in
each individual band. The middle panel shows model fits using data within the first 50 days of detection. The right panel uses all data. The light curves are plotted with respect
to the derived time of the explosion and host extinction from model fits at each epoch. The table below shows parameter estimates derived from fits at each epoch.
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numbers of SNe is most efficiently conducted with precom-
puted grids of models. Computing models in real time per event
will lead to duplicative efforts and incur computational time
costs. With our method, the fitting is more rapid, more flexible,
and the associated uncertainties are less significant.

6.3. Intelligent Augmentation

Our analysis only uses ZTF public data in the ztf-g and ztf-r
passbands to make inferences about Type II explosion
parameters. Our parameter fits could be further constrained
with observations at other passbands, and it is worthwhile to
consider which passbands at which epochs are most constrain-
ing. To this end, inferring transients in real time in order to
make on-the-fly decisions about optimal follow-up in com-
plementary passbands is needed (Carbone & Corsi 2020;
Sravan et al. 2021). Generally, most constraining for inferring
Type II properties are observations at early and late phases
of light-curve evolution. At early phases, UV observations best
sample shock-breakout and circumstellar interaction
(Gezari et al. 2015; Ganot et al. 2016; Soumagnac et al. 2020;

Haynie & Piro 2021; Jacobson-Galán et al. 2022). At late
phases, near- and mid-infrared passbands provide diagnostics
that best follow ejecta cooling and dust formation (Szalai &
Vinkó 2013; Bianco et al. 2014; Tinyanont et al. 2016).
Optimally augmenting all-sky survey photometry in real time in
this way can enhance opportunities to generate large samples of
CCSNe sufficiently observed to perform population and host-
environment studies (D’Andrea et al. 2010; Anderson et al.
2014; Sanders et al. 2015; Schulze et al. 2021).

6.4. Anomaly Detection

Our work uncovered two examples of anomalous Type II
SNe, which are not included in our sample of 45 events. We
present the unusual light curves of ZTF18acgvgiq (SN
2018fru) and ZTF20acwxrgp (SN 2020acjg) in Figure 6. The
fits for the entire light curves converged to a model solution
with very poor likelihood scores resulting in inaccurate
inferences. Consequently, we were unable to characterize these
events with our current model grid. The anomalous nature of
these events could be identified via poor model fits as early as

Figure 5. Real-time parameter evolution for all the listed ZTF events. The average change in parameter values (averaged over all 45 ZTF events) at each epoch with
respect to the final epoch with all data are represented by the blue squares from top left to bottom right. The order of the parameters are as follows: ZAMS mass, the

kinetic energy of the explosion (Ek), mass-loss rate ( M ), steepness of velocity law (β) associated with the stellar wind and 56Ni mass synthesized, the date of the
explosion with respect to the first detection, and host extinction (AV).
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Δt< 25 days. The cumulative log-evidence (log Z) inferred for
these two events was above −200, indicating very poor
likelihood estimates when comparing the models with the data.
For the events with good fits, the log Z estimates were under
−20. These high log Z values indicate that the models were
unable to converge to a target distribution of the parameters for
the two anomalous events.

This experience shows that real-time inference can be used
as a way to identify targets that deviate from normal theoretical
predictions. Such real-time analyses for detecting anomalies
(Pruzhinskaya et al. 2019; Soraisam et al. 2020; Villar et al.
2020, 2021; Ishida et al. 2021; Martínez-Galarza et al. 2021)
can be automated into an ORACLE such as REFITT to
motivate rapid spectroscopic follow-up of nontraditional
CCSNe.

7. Conclusions

In this paper, we have characterized 45 Type II SNe using
only products from the public ZTF survey (i.e., in the ztf-g and
ztf-r passbands) using a grid of theoretical hydrodynamical
models. Our grid parameters span multiple SN progenitor and
explosion properties, as well as the time of explosion with
respect to the first detection and host extinction. We compare
results between complete and fractional light curves to
determine which parameters are most robust to incomplete
photometric data sets. This effort is to assess whether
opportunities exist for theoretically driven forecasts to inform
when follow-up observations are needed to support all-sky
survey alert streams. The following conclusions are made:

1. We obtain confident characterizations for 34 SNe II in
our sample. Inferences of the remaining 11 events are
limited either by poorly constraining data or the
boundaries of our model grid. The properties of these
well-fitted events broadly follow those reported in
previous analyses of SNe II.

2. In cases where fitted parameters derived from complete
versus incomplete data sets are compared, some para-
meters are more reliably determined at early epochs than
others. The explosion energy, host extinction, and mass-
loss rate parameters are overestimated during the initial
phases of evolution, while the 56Ni mass is

underestimated. The ZAMS mass and β estimates do
not change significantly at different phases.

3. The date of the explosion is a very sensitive parameter
that requires well-constrained pre-explosion upper limits
from the survey for confident inferences. Generally, we
found parameter estimates to be less reliable for ZTF
events with poor data quality, such as missing phases of
the light curve along with poor upper-limit constraints.

4. Real-time Bayesian inference of progenitor and explosion
parameters for large numbers of CCSNe from all-sky
surveys demand a precomputed grid of models. Creating
synthetic model light curves in respective all-sky survey
passbands catalyzes real-time characterization of evol-
ving transients by avoiding the challenges associated with
constructing bolometric light curves with sparse and
incomplete photometry.

Our work has demonstrated that hydrodynamical model
grids for CCSNe along with statistical analyses can provide
opportunities to enhance the scientific return from all-sky
surveys that provide live alert streams. Theoretically driven
predictions can be leveraged to efficiently coordinate world-
wide observing facilities to conduct follow-up observations that
augment survey light curves to optimally achieve scientific
objectives (Bianco et al. 2014; Modjaz et al. 2019; Kennamer
et al. 2020; Sravan et al. 2020; Anand et al. 2021).
For example, real-time characterization can identify and

prioritize transients that fall within certain parameter spaces of
interest, including the extreme high and low ends of kinetic
energy or 56Ni mass. Likewise, theoretical forecasts can
identify and prioritize follow-up photometry at critical phases
of transient evolution, including monitoring the plateau drop-
off of SNe II light curves that provides information needed to
improve estimates of kinetic energy and ZAMS and 56Ni
masses. Ideally, predicting transient evolution using the
underlying physics of transients can be incorporated into a
TOM or ORACLE that can efficiently recommend targets for
follow-up at information-rich epochs (Djorgovski et al. 2016;
Street et al. 2018; Kasliwal et al. 2019; Sravan et al. 2020;
Agayeva et al. 2021).
Our future work relies on an expanded grid of hydro-

dynamical models exploring larger parameter ranges, including
varying degrees of 56Ni mixing within the inner layers of the

Figure 6. Spectroscopically classified Type II SNe with anomalous light curves identified in this work. Only the upper limits prior to the first detection used for
deriving the fits are plotted.
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progenitors, and information on photospheric velocity that can
be used to potentially break degeneracies between parameters.

It will also expand synthetic photometry to all six passbands of
LSST. Although our work focuses on Type II CCSNe, our

methods can be easily applied to identify, prioritize, and

coordinate follow-up of other transients discovered by the Vera
C. Rubin Observatory.
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Appendix
Multi-epoch Evolution of Posterior Distribution of

Parameters

We show the light curve model fits for the remaining events
in our samples in Figures 7 and 8, which are extented versions
of Figure 1. Figures 9 and 10 shows the multi-epoch real-time
characterization for the events ZTF20abwdaeo (SN 2020rvn)
and ZTF21aabygea (SN 2021os). Figures 11–13 shows the
corner plots with posterior probability distribution for various

Figure 7. Continued from Figure 1.
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physical parameters for ZTF20acptgfl (SN 2020zjk),

ZTF20aausahr (SN 2020hgm) and t ZTF19abqyouo (SN

2019pbk), respectively.
We performed a KDE analysis in order to find the modality

of the posterior distributions at various epochs. The samples in

the posterior distribution were collected and smoothed using

Silverman’s bandwidth with a Gaussian kernel. The KDE

approximated distribution was then used to calculate the

number of modes at every epoch. The modes were found by

identifying inflection points in the distribution, i.e., positions

where the first derivative changes sign.
We found that all the objects have multimodal posteriors for

at least one parameter in our analysis. From this analysis, we

conclude that the change in the posteriors for physical

parameters over different epochs cannot be generalized for all

the events. Figure 14 shows examples of multimodal posteriors

for ZAMS, kinetic energy, and 56Ni for three ZTF events The

red circles represent the different modes found in the

distribution using inflection point analysis. We note that the

modes of the distribution for kinetic energy shift from higher to

lower values as time proceeds as shown in Figure 14 for each

event as discussed in this paper. The trend in 56Ni with time is

reflected in the modes with earlier epochs favoring lower

values as compared with final epochs. The degeneracies in

parameter space as discussed in Section 6.1 are clearly reflected

in these distributions through multi-modality.

Figure 8. Continued from Figure 1.
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Figure 9. Continued from Figure 4 for the event ZTF20abwdaeo (SN 2020rvn).
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Figure 10. Continued from Figure 4 for the event ZTF21aabygea (SN 2021os).
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Figure 11. Corner plot showing the posterior probability distribution of various parameters for the event ZTF20acptgfl (SN 2020zjk).
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Figure 12. Corner plot showing the posterior probability distribution of various parameters for the event ZTF20aausahr (SN 2020hgm).
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Figure 13. Corner plot showing the posterior probability distribution of various parameters for the event ZTF19abqyouo (SN 2019pbk).
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Figure 14. KDE of physical parameters along with modes represented by red circles obtained at three epochs for three ZTF events. The order of physical parameters
from top to bottom row are as follows: (a) ZAMS mass, (b) kinetic energy, and (c) 56Ni mass.
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