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Abstract

We analyze a sample of 45 Type II supernovae from the Zwicky Transient Facility public survey using a grid of
hydrodynamical models in order to assess whether theoretically driven forecasts can intelligently guide follow-up
observations supporting all-sky survey alert streams. We estimate several progenitor properties and explosmn
physics parameters, including zero-age main-sequence (ZAMS) mass, mass-loss rate, kinetic energy, *°Ni mass
synthesized, host extinction, and the time of the explosion. Using complete light curves we obtain confident
characterizations for 34 events in our sample, with the inferences of the remaining 11 events limited either by
poorly constraining data or the boundaries of our model grid. We also simulate real-time characterization of alert
stream data by comparing our model grid to various stages of incomplete light curves (Ar < 25 days, At < 50 days,
all data), and find that some parameters are more reliable indicators of true values at early epochs than others.
Specifically, ZAMS mass, time of the explosion, steepness parameter (3, and host extmctlon are reasonably
constrained with incomplete light-curve data, whereas mass-loss rate, kinetic energy, and *°Ni mass estimates
generally require complete light curves spanning >100 days. We conclude that real-time modeling of transients,
supported by multi-band synthetic light curves tailored to survey passbands, can be used as a powerful tool to
identify critical epochs of follow-up observations. Our findings are relevant to identifying, prioritizing, and
coordinating efficient follow-up of transients discovered by the Vera C. Rubin Observatory.

Unified Astronomy Thesaurus concepts: Supernovae (1668); Surveys (1671); Hydrodynamical simulations (767);

, Niharika Sravané, Ryan Chornock’ , and

Type II supernovae (1731)

1. Introduction

The upcoming Legacy Survey of Space and Time (LSST) to be
conducted by the Vera C. Rubin Observatory is highly anticipated
to revolutionize time-domain astronomy (LSST Science Collabora-
tion et al. 2009). Its sensitivity (~24 mag), six broadband filters (u-
g-r-i-z-y), regular southern-sky patrolling (cadences anticipated
between hourly and every few days; LSST Science Collaboration
et al. 2017), and prompt reporting of transient activity (latency of
~60 s from exposure readout to alert distribution) will provide
opportunities to discover and investigate millions of supernovae
(SNe) over its planned 10 yr lifetime (Ivezi€ et al. 2019).

However, managing the massive data sets associated with LSST
will be demanding. It will produce ~20TB of raw images every
single night, which will be processed rapidly via template
subtraction to send out real-time alerts of residual source variability
(approximately 10 million alerts nightly). Moreover, because LSST
photometry alone will generally be insufficient to adequately
investigate the transients it will discover (Alves et al. 2022), the
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survey’s success will be partially dependent on other telescopes for
supporting observations (see, e.g., Najita et al. 2016), with
electromagnetic and multi-messenger facilities (Huerta et al. 2019).

LSST Corporation (LSSTC) architects along with emerging
alert stream data brokers are developing the processes, cyberin-
frastructure, and software needed to confront this challenge and
help manage upcoming LSST discoveries (Borne 2008; Narayan
et al. 2018). Data brokers utilize transient classification methods
that often employ machine learning (Moller & de Boissiere 2020;
Forster et al. 2021; Sooknunan et al. 2021; Garcia-Jara et al.
2022). Current data brokers include ALeRCE’ (Sanchez-Sédez
et al. 2021), ANTARES'® (Matheson et al. 2021), Lasair''
(Smith 2019), MARS,'? and FINK'? (Moller et al. 2021),
Babamul, and PITT-Google. These data brokers are taking on
different responsibilities to promptly process, value-add, cross-
reference, and classify survey alert streams, which in turn
permits users to filter and prioritize targets.

°  Automatic Learning for the Rapid Classification of Events, http://alerce.

science/.
0 Arizona-NOIRLab Temporal Analysis and Response to Events System,
https:/ /antares.noirlab.edu//.
! https: / /lasair.roe.ac.uk /
12 Make Alerts Really Simple, https://Mars.lco.global /.
13 https: //fink-broker.org/



THE ASTROPHYSICAL JOURNAL, 945:46 (20pp), 2023 March 1

Working downstream of these data brokers are additional
services to coordinate follow-up observations, including Target
and Observation Managers (TOMs) that permit observers to
sort through broker alert streams to plan and trigger follow-up
(Street et al. 2018). TOMs have some level of automation, but
generally rely largely on humans to make decisions about target
prioritization and coordination. The Recommender Engine For
Intelligent Transient Tracking (REFITT; Sravan et al. 2020) is
an attempt to completely automate transient follow-up as an
Object Recommender for Augmentation and Coordinating
Liaison Engine (ORACLE). REFITT uses data from surveys to
predict the light-curve evolution of transients, prioritizes events
based on confidence in its prediction, and finally makes
recommendations to observers on targets that need follow-up,
specific to their observing facility and coordinated among all
observing agents.

To date, decisions about which transients to prioritize for
follow-up observations with supporting facilities are generally
data driven, i.e., based on comparisons to data sets of
previously observed events. In this paper, we explore the
feasibility of guiding the follow-up of core-collapse supernovae
(CCSNe) using parameters of theoretically driven forecasts.
Our expectation is that prioritizing the underlying physics of
transients will make it possible to (1) rapidly recognize
transients of desired physical parameter spaces, and (2) identify
information-rich epochs in transient evolution for efficient
follow-up with limited facilities.

To this end, in this paper we characterize a sample of 45 light
curves of Type II SNe using publicly available data from the
Zwicky Transient Facility (ZTF; Bellm et al. 2019) survey with
a grid of theoretical hydrodynamical models spanning various
progenitor properties (zero-age main-sequence (ZAMS) mass,
mass-loss history, etc.) and explosion physics (e.g., kinetic
energy, “°Ni synthesized). We compare results between model
fits with both complete and incomplete light curves in order to
assess whether theoretically driven forecasts can intelligently
guide follow-up observations supporting all-sky survey alert
streams. ZTF data is used because, among currently operating
all-sky surveys, which include ATLAS' (Tonry et al. 2018)
and ASAS-SN'® (Shappee et al. 2014), ZTF’s functioning alert
stream best mimics LSST data flow, but at a more manageable
scale (Masci et al. 2019). Although ZTF’s cadence, depth, and
filters differ from those of LSST, it still serves as an excellent
testing ground for developing the infrastructure and software
that LSST will require as it starts operating.

The paper is organized as follows: Section 2 describes the
treatment of ZTF data in multiple passbands with forced
photometry and extinction. In Section 3, we describe our
hydrodynamical models with circumstellar material (CSM)
structure constructed using the stellar evolutionary code
KEPLER and the radiative transfer code STELLA. Section 4
outlines the results from our fitting method and trends in the
parameters derived from the fits, and Section 5 describes our
real-time fitting analysis of ZTF events and an assessment of
how model parameters evolve as a function of time. The
implications and utility of this work in view of current and
upcoming all-sky surveys, including LSST are discussed in
Section 6.

14 Asteroid Terrestrial-impact Last Alert System.
15 All-Sky Automated Survey for Supernovae.
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2. Survey Data from ZTF

We used data from the public ZTF alert stream, available as
photometry in the ztf-g and ztf-r passbands. We selected 45
ZTF events from Garretson et al. (2021) that are spectro-
scopically classified as Type II or IIP (Table 1). For the events
that were classified as Type II, we confirmed that the light
curves clearly demonstrated some portion of the plateau phase
through visual inspection, differentiating them from Type IIL
SNe. The events span the first 4 yr of the ZTF survey starting
from 2018 to 2021. All events in this sample have a minimum
of five detections, as defined below, in each of the ztf-g and ztf-
r passbands. We treat this as a representative test sample as the
light curves represent a variety of phases in evolution,
reasonably span expected redshifts of the survey (0.010 <
7 < 0.055), and span peak apparent magnitudes approximately
between 18 and 20 mag.

We utilize point-spread-function fit photometry measure-
ments using difference imaging as provided by the ZTF forced-
photometry service (IRSA 2022). Complete light curves were
constructed from the differential flux measurements (forcedif-
JSimflux and forcediffimfluxunc) that the service returns in each
band along with upper limits. A signal-to-noise threshold = 3
and a signal-to-noise ratio =5 were used to declare the
measurements as a detection versus an upper limit (Masci et al.
2019). The photometric zero-points in each passband were used
to calculate the differential magnitudes.

We use the redshift reported by the Transient Name Server
(TNS) to calculate the distance modulus using astropy
(Astropy Collaboration et al. 2013, 2018) for every ZTF event
assuming standard flat Lambda cold dark matter (ACDM)
cosmology model with Hy=70kmMpc 's ' and ©,=0.3.
The measurements are corrected for Milky Way extinction
using dust maps as prescribed by Schlegel et al. (1998) for each
passband, assuming an Ry, = 3.1. In our analysis, for each ZTF
event, we only use measurements up to 150 days in the rest
frame from the first detection. We do not account for
cosmological K-corrections in this work since we use a sample
of low-redshift events. However, because LSST is expected to
discover events at higher redshifts, K-corrections for a similar
analysis of LSST events would be non-negligible.

3. Model Fitting
3.1. Model Grid Using STELLA

The hydrodynamic models used in this work are specific to
Type IIP, constructed using the multigroup radiation hydro-
dynamics code STELLA (Blinnikov et al. 1998, 2000, 2006;
Moriya et al. 2017, 2018; Ricks & Dwarkadas 2019). In this
work, our models have the following parameters: ZAMS mass,
the kinetic energy of the explosion (E;), mass-loss rate M),
steepness of velocity law () associated with the stellar wind,
and *°Ni mass synthesized. The model parameters along with
their corresponding values in the grid are described in Table 2.
Red supergiant (RSG) pre-supernova (SN) progenitors from
Sukhbold et al. (2016) were used, which were calculated using
the KEPLER code (Weaver et al. 1978), with physics
previously discussed (e.g., Woosley et al. 2002). A neutron
star remnant mass of 1.4 M, is assumed and the SN explosions
are triggered by putting thermal energy above the mass cut. *°Ni
is assumed to be uniformly mixed up to half of the hydrogen-
rich envelope in the mass coordinate.
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Table 1
ZTF Events in This Paper
ZTF ID TNS TNS R.A. Decl. Redshift No. of g-band No. of r -band
Classification Name J2000) J2000) @ Detections Detections

ZTF18abcpmwh® 1P SN 2018cur 12:59:09.12 +37:19:00.19 0.015 8(12) 8(40)
ZTF18acbvhit I SN 2018hle 3:39:28.11 —13:07:02.50 0.014 16 15
ZTF18acbwasc® p SN 2018hfc 11:01:58.61 +45:13:39.26 0.020 51 65
ZTF18acrtvmm® I SN 2018jfp 3:17:56.27 —0:10:10.82 0.023 17 20(2)
ZTF18acuqskr I SN 2018jrb 8:09:33.69 +15:31:10.55 0.045 7 10
ZTF19aakiyed I SN 2019awk 15:07:02.58 +61:13:42.37 0.044 17 23
ZTF19aaqdkrm I SN 2019dod 13:25:49.97 +34:29:43.58 0.034 27 30
ZTF19aauqwna 1P SN 2019fem 19:44:46.13 +44:42:49.13 0.041 20 47
ZTF19aavbkly 1P SN 2019fmv 12:29:33.80 +35:46:12.15 0.041 31 29
ZTF19aavhblr I SN 2019fuo 15:31:43.38 +16:42:49.30 0.050 19 27
ZTF19aavkptg 1P SN 2019gqs 11:36:15.78 +49:09:12.55 0.038 30 22
ZTF19abgugsi I SN 20191sh 22:52:58.52 +0:26:50.53 0.052 14 20
ZTF19abhduuo® I SN 20191re 1:58:50.79 —9:35:05.65 0.018 14 16
ZTF19abiahko 1P SN 20191sj 19:36:59.13 —11:57:13.63 0.023 8 11
ZTF19abqyouo” 1P SN 2019pbk 7:46:23.89 +64:13:23.79 0.045 11 13
ZTF19abvbrve 1P SN 2019puv 19:12:36.67 —19:25:01.67 0.020 14 42
ZTF19acbvisk® I SN 2019rms 9:00:45.39 +19:44:42.32 0.037 19 37(1)
ZTF19ackjvtl® 1P SN 2019uwd 13:16:20.75 +30:40:48.72 0.019 53 99
ZTF19acmwfli® I SN 2019tza 13:14:04.68 +59:15:04.91 0.028 39 59
ZTF19acszmgx 1T SN 2019vew 5:27:49.43 —5:21:39.88 0.042 22 22
ZTF20aahgbun I SN 2020alg 14:27:10.55 +35:55:20.22 0.028 26 41
ZTF20aamlmec I SN 2020chv 7:46:27.78 +1:57:34.73 0.034 8 9
ZTF20aamxuwl I SN 2020ckv 11:03:26.48 —1:32:27.04 0.037 13 12
ZTF20aatqgeo I SN 2020fcx 13:40:10.01 +23:20:29.56 0.032 25 16
ZTF20aatqidk I SN 20201bj 12:47:47.03 +22:17:10.44 0.034 26 29
ZTF20aaullwz I SN 2020fch 11:33:24.03 —9:20:55.94 0.027 12 10
ZTF20aausahr I SN 2020hgm 8:31:22.09 +49:13:35.43 0.043 9 10
ZTF20aazenrv I SN 2020 14:31:19.63 —25:39:31.04 0.023 12 13
ZTF20aazpphd I SN 2020jww 16:10:51.58 +27:09:42.02 0.046 36 43
ZTF20abekbzp I SN 2020meu 15:34:44.68 +6:38:53.35 0.041 9 11
ZTF20abuqali I SN 2020rht 2:30:17.30 +28:36:02.64 0.040 13 12
ZTF20abwdaeo” I SN 2020rvn 21:06:36.34 +17:59:34.86 0.021 28 29
ZTF20abyosmd® I SN 2020toc 8:28:30.14 +17:28:08.52 0.021 20 26
ZTF20acjqkst® 1P SN 2020tfb 6:08:52.14 —26:24:46.02 0.048 17 18
ZTF20acnvtxy® jiig SN 2020zkx 11:18:31.84 +6:44:28.84 0.030 10 13
ZTF20acptgfl 1P SN 2020zjk 5:22:00.02 —7:11:20.81 0.037 22 27
ZTF2laabygea® I SN 20210s 12:02:54.08 +5:36:53.15 0.019 31 49(2)
ZTF2laaevrjl I SN 2021arg 4:31:18.78 —10:23:46.95 0.031 14 15
ZTF21aafkktu I SN 202lavg 11:39:59.00 +14:31:40.65 0.031 31 32
ZTF21aafkwtk II SN 2021apg 13:41:19.24 +24:29:43.88 0.027 26 37
ZTF21aagtqpn®* I SN 2021bkq 18:20:34.83 +40:56:36.28 0.036 33(4) 44(6)
ZTF21aaigdly® I SN 2021cdw 14:05:31.80 —25:21:54.51 0.040 17 28
ZTF2laalugkp I SN 2021dhx 11:05:10.38 —15:21:10.13 0.025 34 25
ZTF21aamzuxi )i SN 2021dvl 7:49:56.10 +71:15:42.11 0.034 27 29
ZTF2lacchbmn I SN 2021zaa 23:46:41.12 +26:44:45.11 0.032 22 19
Notes.

 The reported number of measurements in the ztf-g and ztf-r passbands obtained within 150 days of the first detection, after running forced photometry for each ZTF
event. Additional detections beyond 150 days not included in the analysis are quoted in parenthesis for each band.
® No upper-limit constraints before the first detection are available for informed priors on the date of the explosion.

Our hydrodynamical model grid also incorporates an
associated circumstellar material (CSM) density structure
attached to these RSG progenitors. The CSM density is given
by

M

- 5 9
47rVWir1d r2

ey

Pesm(r) =

where M is the mass-loss rate and vynq is the velocity structure
associated with the stellar wind. The radial dependency of vynq

is given by the velocity law

R() s
Vwind () = vo + (Voo — VO)(l - —) , ()

r

where vy is the initial wind velocity with a value <0.01 km s L

Voo 18 the terminal wind velocity = 10 km s, Ry is the wind
launching radius set to the photosphere of the star, and [ is the
steepness parameter that gives a measure of wind acceleration.
RSG progenitors typically have 3> 2, owing to the slower
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Table 2
Prior Distribution on Physical Parameters Used in Our Sampling Method along with Values of the Parameters in Our Hydrodynamical Model Grid

Parameter Hydrodynamical Model Values In Steps Prior Distribution Units
texp tr U(O’ tupper—limil) day
ZAMS 12-16 N(14, 3) € (12, 16) M
E, 0.5-5.0 0.5 N(1, 1) € (0.5, 5) 10°" erg
SONi 0.01-0.1 0.01 (0.001,0.2,0.3) N(0.05, 0.01) € (0.001, 0.3) M,
3 1-5 NG.2) € (1, 5)
—log,oM 1-5 0.5 U@4,2)e (5, 1) M, yr!
Ay N (In(0.05), 2) € (1074, 2) mag

Note. The “In Steps” values in parentheses for *°Ni are the additional values for the parameters present in the model grid.

acceleration of the stellar winds (Mauron & Josselin 2011). A
fixed CSM radius of 10" cm is assumed in our models.

The RSG progenitors with associated CSM density struc-
tures were then exploded as thermal bombs with energies
ranging from 0.5-5.0 x 10°' erg using STELLA. The code
calculates the resulting light curve of the explosion following
the evolution of spectral energy distributions (SEDs) with time
at every epoch. The light curves in various passbands are
obtained by convolving the ZTF filter transmission functions to
the numerical SEDs. Our final grid varying the progenitor,
explosion, and CSM properties is made up of 4206 unique
models. A similar model grid used in this work can be found in
Forster et al. (2018) for further reference. The full details of the
numerical model grid will be presented in a separate paper (T.
J. Moriya 2022, in preparation).

3.2. Fast Interpolation Method

Using Bayesian Inference methods requires the models to be
finely sampled within the parameter space. However, because
our model grid is neither complete nor uniform, a scale-
independent fast interpolation process that can use a nonuni-
form grid of models was incorporated into our Monte Carlo
sampling method following Forster et al. (2018) and Martinez
et al. (2020). This allowed us to quickly interpolate between the
models in the grid to sample any combination of values in the
parameter space. For a given parameter vector 6, the method
finds the closest models 6, and weighs them appropriately
using

m(t, 0) = > W(, 8)m(, 6, 3)

0,€ Bciose

where m(t, fexp, 0) is the magnitude for a given 6 at time ¢ and
the normalized weights are given by

(0 01' _ W(ea 01) , 4
w(o, 0, —z (0. 0) 4)
ajeec]ose
where
-1
w(0, 0,) = [1‘[ 167 — 6] + 6/') ) (5)
J

Equation (5) uses a very small vector § with the same units
as 6, which ensures that the weights do not diverge when a
given parameter combination exactly matches a model in the
grid. This fast interpolation method can be used to calculate
light curves for any combination of parameter vector ¢ bound
by the limits of our model grid.

3.3. Date of the Explosion and Host Extinction

Along with fitting for the parameters of our models, we also
fit for the date of the explosion and host extinction. The time of
the explosion is calculated as the number of days before the
first photometric measurement in each passband. We defined an
informed prior distribution for the time of explosion leveraging
the constraints given by the upper limits in each passband for
each event. The priors are more constraining if the upper limits
preceding the first detection are well defined. To calculate the
approximate bounds of time of explosion priors, the deepest
upper limit available before the first detection is identified. If no
upper limits are available for an event, we allow a wider
distribution for the prior.

Observed Type II SN light curves can be significantly
affected by host extinction (Kasen & Woosley 2009; Kochanek
et al. 2012; Mattila et al. 2012). We fit for total extinction in the
visual band assuming a prior distribution listed in Table 2. We
do this by simultaneously fitting the ztf-g and ztf-r passbands to
infer host extinction. The derived extinction is used to calculate
E(B — V) for the host of each event assuming Ry = 3.1.

3.4. Nested Sampling Methods for Parameter Inference

We derive posterior distributions of the parameters involved
using the python-based MIT-licensed Dynamic Nested Sam-
pling package dynesty (Skilling 2004) that estimates the
Bayesian target distributions. We assigned a combination of
uniform and Gaussian distributions as our priors for different
parameters. The prior distributions considered in this work are
listed in Table 2. The likelihood function incorporates fast
interpolation and evaluates how close the observations are with
a sample model drawn. Using the above framework, multi-band
ZTF observations in the ztf-g and ztf-r passbands in their
absolute magnitudes are fit to the hydrodynamical models.

Nested sampling methods require all the samples to be
identically and independently distributed random variables
drawn from the prior distribution. We use a uniform sampling
method widely used for dimensions <10 in the dynesty
package (Skilling 2006). In the Bayesian framework, all of the
inferences are contained in the final multidimensional posterior,
which can be marginalized over each parameter to obtain
constraints. The Bayesian evidence is represented by the
overall normalization of this posterior. The nested sampling
algorithm converges until the evidence has been estimated to
the desired accuracy after accepting or rejecting the samples
that are drawn from the prior distribution.



THE ASTROPHYSICAL JOURNAL, 945:46 (20pp), 2023 March 1

Subrayan et al.

ZTF18abe pum SN 2018¢ 111) ZTF18acbvhit Q 2018hle) ZTF18achwasc (SN 2018hfc) g
_[ T | TT 1T I T I‘] T I I TTrTT rl L BRI Iﬁ C rl TrTT I T lj T ri | T ri T | f I L rl_ _r! |j L I”I T I—l TTTT I T ] TTTT |‘] T I T Iﬁ
_18L JLC i + &
r 1 1t o
~16F =t - % 1F e 22 A =
r A SN b * .
—1- ¥ - - &
gl L I Lii I Lii I LI I Lir I L1l I Lt I Ll |7 7| L I L I Lt I 1La111 I | [ LiLea I i I Ll IL 7| L I LiLil lll L I Li1l I Liera i L1 I Ll I L Iﬁ
ZTF18acrtvmm (SN 2018jfp) ZTF 18acugskr (SN 2()18]1])) ZTF19aakiyed (SX 2019awk)
T | TTTT I L | TVTIT | TTTT I TTTT l | T I 5 | | TTT I_ _I T | TTTT I TTrTT | TTTTr | T | TTr|rrrT l’ TTTTTrTT I_ _'I T | L l TTrTT I'I T I T I'I' T I'l TTTT I'I'I !'I_
11 I Ll I Ll I L1l I Ll I 1111 I Ll I Ll —I L I Ll I Ll I L1111 I L1l L L1l l L1 | £ I L1l I_ _I 1 I L1 l Ll I L1l I Ll ! 1111 I Ll I 111 ;“
ZTFIQAAQ( krm (SN 2019d ()(l) ZTF19aauqwna QSN 2019fem ZTF19aavbkly (SN 2019fmv)
S tl T | T I L I TTrTT I L I TTTT [ T I T |_ _l T I TTrTT I TTITT l T 'I TTrTT T [ T T |_ _'l T I TTT |'l Ty l TTTT I'l TTT I TTTT I TTTT I TTT |_
g T e, :
ED r 4 ;,"‘" . _‘. = 4 k- 4
= —16 4 E / LN e -
e M T i SN[ W ]
5 ek e ;
21‘ “I L I Lit I Lt I 1La11 I I | [ L1t ! L I L “I L I Ll l L I Lii I Lt I L I [ S I Lt I-
ZTF19aavhblr (S ( []19fu()) ZTF1%avkptg (SN 2019gqs) ZTF19abgugsi (SN 20191511)
T l TTTT l TTTT | TTT T TTT I TTTT l TTTT l T i _I T l TTTT l TTrTT | TTTT ] L ’[ TTTT ! TTTT l TTT l_ _l T | TTTT [’ TTTT | TTTT I TTrTT ] TTTT l TTTT I TTT I-
18 i 1L b
448, 1t W‘”" ]k -
E ¥ - S ‘\s\ - -
b N SR ‘ape, it k
o I R LAY 10 ]
11 I Ll I 111 | Liil I Ll I - I Ll I Ll I— C 1 I Ll I 111 I L1111 I L1l E L1111 l L1l ! 111 I— -I 1 I L1l l L1l I il I | I L1l I i .I.‘l‘_l-;-T:
ZTF19abhduuo (SN 2{]1911%§ ZTF19abiahko (SN 901915 ZTF19abgyouo (SN ?019])lﬁ) ?
:leijrrrrrﬁTrrlT rr]—r—l_rTTT _ :|7T|_|_|V l—l—l_l_rT1 TTrTT —ITTI‘l—!j T _ Wlmle rl 3 2z 3 rr1 T]‘rl‘l‘l“qﬁ T Tl_T_l:
o JE Ly« e N
r 1t = 1t ~ ;
-10F WEIAEE e\ N1 i N\ EE
—143 — N } =
5 I i I L I L1 I Lt I I L i Lt I | I' C I L I Li I L1 I I L | E L i L I L1 -I‘I: C I LLi I L ] Lii I e ! Lt I L I L1 I-‘
=25 0 25 50 75 100 125 150 —9‘) 0 25 75 100 125 150 =25 O 25 50 75 100 125 150

Days since Explosion

Figure 1. The observed ZTF light curves and our model fits plotted with respect to the derived time of the explosion. The family of light curves in each panel
represents 150 models randomly sampled from the derived posterior probability distribution in individual bands. respectively. The dashed curve represents the best-fit
model for each ZTF event. The upper limits before the first detection that are used to constrain the date of the explosion are plotted. The median values and their 1o
uncertainty for the parameters are listed in Table 3. ZTF events with no upper limits and poorly constraining rise data are flagged with §. ZTF events whose fits
approached the model boundaries are flagged with #. Additional plots for the remaining ZTF events listed in Table 1 are provided in the Appendix.

4. Parameter Inference and Trends of Complete Light
Curves

Using our Bayesian inference procedure to fit all ZTF events
with our model grid, we derived the posterior probability
distribution for all parameters of each Type II SNe. Our models
were fit confidently to 34 events. The fits for the remaining 11
events were limited by poor upper limits prior to first detection
(flagged with §) and the hydrodynamical model grid bound-
aries (flagged with ). Figure 1 shows the samples of the
posterior probability distributions for the first 15 ZTF events.
The light-curve fits for the remaining events are plotted in an
extended version of Figure 1 in the Appendix. The observed

data points are shifted with respect to the inferred date of the
explosion and corrected for host extinction derived from the
fits. The uncertainty in the host extinction and the date of the
explosion are not represented in Figure 1. The dashed line in
each passband represents the best-fit model. Table 3 lists the
inferred median values for the seven parameters with their 16th
and 84th percentile confidence regions. We note that these 1o
uncertainties of the parameters only reflect how well the model
fits the observed data and do not take into account any
uncertainties related to the assumptions used to create the
model grid itself. Representative corner plots of posterior
probability distributions are shown in the Appendix.
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Table 3
Median Values from the Posterior Distribution with 1o Uncertainty When Fitted with All Data from the Events
ZTF ID ZAMS Ey “logioM Myiss fexp 8 Ay
M) (10°" erg) M yr ") M) (days) (mag)

ZTF18abcpmwh 15.77%939 1.67793 4097938 0.073% 14.817188 2567329 0.23+318
ZTF18acbvhit” 1335488 0.51t8.8% 4.0040:5 o.o4t8,8§ 2554430 3.98+% ?g 0.3150:5%
ZTF18acbwasc® 12.47+349 0.52%99! 422793 0.10799% 48487198 3.06940 0.0279%2
ZTF18acrtvymm 12.86*Y: §8 0.99%9%4 2434013 0.1073% 8.81°07% 3.6419 53 0.03+393
ZTF18acugskr 13.89%4:92 2907939 3917941 0.04002 16.727249 3.01794¢ 0.0693;
ZTF19aakiyed 14.85+1:94 1.02492} 3.757932 0.06°0% 17.294333 2.93+082 0.1013:59
ZTF19aaqdkrm 13.141222 1084923 1.679% 0.05+3:%2 16.6871%3 3.069% 0.125054
ZTF19aauqwna 1371447 119939 1.32+9% 0.08"02 16.297$28 3.03493 0.05%5%;
ZTF19aavbkly 13.07+292 1.067933 2.43+018 0.02799! 727403 3.005310 0.1819%
ZTF19aavhblr 13467039 0.8610% 1.091041 007133 24,1342, 2.9894 0.0559%3
ZTF19aavkptg 13.141497 1.06°04 2.22939 0.03t8_8§ 821109 295407} 0.38723
ZTF19abgugsi 12575092 1245073 1515988 0.01599! 13711048 3.00504 0.1753:143
ZTF19abhduuo® 12.9540%5 0521093 4.0075%8 0.03+301 51 02*3 gg 3.97947 0.79917
ZTF19abiahko 13.1119%2 0757932 3.99+048 0.02539! 25.15%17% 3.99+049 0.5470%
ZTF19abgyouo® 12.987438 139791 3.95+038 0.06003 31.374348 3.0019%; 0.0979%
ZTF19abvbrve 12,8571 0.5139% 3561037 0.06:9% 82747, 2.82t8§2 0.1399
ZTF19acbvisk 13.82+9:77 0.5479%% 163104 0.1073% 20.027931 3.117948 0.0279%3
ZTF19ackjvtl® 14.43719 0517392 3.88+0% 0.060:58 57.607%33 247453 0.4073%7
ZTF19acmwili 13.347282 101008 3.824074 0.04239! 2475712 2691497 0217582
ZTF19acszmgx 13.217)39 139798 1034397 0.08+3:92 19.3794 2981039 0.43+0%
ZTF20aahgbun 15394931 0.589%; 3.01+54) 0.06+39! 27.737331 2.5571% 0.17+397
ZTF20aamlmec 13.531)48 1.001938 2371072 0.0350:03 22357376 2.99+9% 0.25+929
ZTF20aamxuwl 13.4811% 1031931 1787948 0.061592 14.417421 3.05193] 0.08 544
ZTF20aatqgeo 12.607] 0927913 2.0243:49 0.06°3%3 18.601%2] 2.7679% 0.2979%
ZTF20aatqidk 138142 0.61993 2.67937 0.10+99% 16.881347 3.52+03¢ 0A03t8_8§
ZTF20aaullwz 14.0125%3 1037938 2737933 0.0810:03 10.6541:38 3.025531 0.04+3.49
ZTF20aausahr 13747148 2.38404¢ 3.6910%% 0.03+0:92 2738732 3.005048 0.127342
ZTF20aazenrv 14.8071%2 1264938 3.78%93) 0.02+39! 19.6973% 3.94+937 0.35793)
ZTF20aazpphd 13735083 100700 1864032 0.10+3% 13.94+1:67 3.0894 0.02+9%3
ZTF20abekbzp 13.6271 32 1.54107 319798 0.021092 15.27+3%4 2.99+03 0.28751
ZTF20abuqali 13.8111462 1017318 241103 0.08+3:92 17.3853% 3.0050% 0.07+598
ZTF20abwdaco 15224911 0.57+9%3 2.5593¢ 0.09759} 20.091373 3.50+0%8 o.o3t8_8§
ZTF20abyosmd® 12.72+481 0.97+998 4.00:944 0.06991 47.15748) 2977955 1.0374%
ZTF20acjqksf® 12.837)% 1.5979%2 4051038 0.03+0:92 28347148 298708 0.407933
ZTF20acnvtxy® 13.327):8 1.38793% 3.89+093 0.03+3:92 54431338 3.00°04 0.98+028
ZTF20acptgfl* 12.941042 0.521002 3.975043 0.05+00! 19.417226 3.001919 0.081947
ZTF2laabygea 15.963‘{?; 0.57+5% 376518 0.0575% 9.84f8§§ 3755902 0.02+0%
ZTF21aaevrjl 13721142 1.42797¢ 4007319 0.0279%° 14.82313 3.005389 0.817539
ZTF2laafkktu 1435413 0.56f8_8§ 211504 0.09t8_8{ 8.56733% 2.66149 0.04+093
ZTF21aafkwtk* 14.367 )4 0.5175% 2.75%933 0.047991 13.521 8¢ 2.78%078 0.05+0%
ZTF21aagtqpn 12113308 1447919 404798 0.10733%3 19.7013) 25003 0.0479%
ZTF2laaigdly 14.64713% 0.67+543 2791943 0.097997 10.60733% 3714098 0.059%%
ZTF2laalugkp 15.147977 054004 370404 0.091001 16,1374 2601418 0.07+53%
ZTF21aamzuxi 14.48+123 1.4970:08 372558 0.0975:93 7.85 14 2.56°329 0.05+9:93
ZTF21lacchbmn 14144142 1514538 217593 0.0990 8.9610:85 3.324048 0.05903
Notes.

¥ Fits to explosion energies are very close to the model grid parameter boundaries.

® Events with relatively less confident inferences due to poor data quality (including missing phases of the light curve along with no constraints on upper limits).

ZTF2laabygea (SN 2021os) and ZTF18abcpmwh (SN
2018cur) yielded the highest ZAMS masses (15.9670% and
15777930 M., respectively), while ZTF2laagtqpn (SN
2021bkq) has the lowest (12.11700f M.). The highest
explosion energies are seen for ZTF18acuqskr (SN 2018jrb)
and ZTF20aausahr (SN 2020hgm) (2.907039 x 10°' and
2.387048 x 105" erg, respectively). As shown in Figure I,

these two events correspond to steeper and early declines in the
light curves as compared to low energetic events (~0.5 x 10°'
erg), including ZTF19ackjvtl (SN 2019uwd) and ZTF19acb-
visk (SN 2019rms). These observed short-lived plateaus and
fast declines are in agreement with previous results for other
high-energy CCSNe (Valenti et al. 2016; Rubin & Gal-
Yam 2017; de Jaeger et al. 2019; Barker et al. 2021). The more
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energetic events in our sample also show increased peak
luminosity in both the ztf-g and ztf-r bands (Sanders et al.
2015; Galbany et al. 2016; Valenti et al. 2016).

For seven events, our estimates of kinetic energy favor the
minimum parameter value of our grid (0.5 x 10°" erg). We flag
these events as ones for which our model fits are less confident,
since the actual kinetic energy may be significantly lower.

Most events (37 out of 45) in our sample tend to favor mass-
loss rates between 10~*° and 10~*°M_, yr'. However, a non-
negligible number of events (eight out of 45) yield higher
mass-loss rate estimates <10 “°M.yr '. This finding is
consistent with the findings of Forster et al. (2018), who
reported higher mass-loss rates to be correlated with early and
steep rises in the light curves of many Type II SNe from the
High cadence Transient Survey (HiTS; Forster et al. 2016),
possibly due to shock breakout in dense CSM (Moriya et al.
2011, 2017, 2018; Morozova et al. 2015, 2018; Bruch et al.
2021; Haynie & Piro 2021). We find that the fits for the
steepness parameter J are most likely prior dominated and
favor values closer to § ~ 3, consistent with slowly accelerat-
ing winds found in RSGs (Baade et al. 1996).

ZTF19abgugsi (SN 20191sh) produced the least *°Ni mass of
0.01 £0.01 M%. Other ZTF events in the sample have
estimates of °Ni mass ranging from 0.02-0.1 M,
ZTF19aabvkly (SN 2019fmv), ZTF19abiahko (SN 2019lsj),
and ZTF20aazcnrv (SN 2020jjj) have relatively short-lived
plateau regions in their light curves and are associated with
lower estimates of synthesized 36Ni mass (see Figure 1). Events
with higher estimates of **Ni mass have long-lived plateaus as
compared to the events with lower *°Ni mass estimates and
faster declines in their light curves. These results are in
agreement with previous analyses of SNe Type II that consider
how *°Ni mass affects light-curve evolution (Eastman et al.
1994; Bersten 2013; Faran et al. 2014; Kozyreva et al. 2019).

ZTF20abyosmd (SN 2020toc) has the highest host extinction
(Ay = 1.03°01] mag), followed by ZTF2laaevrjl (SN
2021arg) (Ay = 0.817039  mag). ZTFl8acbwasc (SN
2018hfc) and ZTF2laabygea (SN 2021os) have negligible
host extinction values (both Ay = 0.02%337 mag). All ZTF
events in our sample show host extinction values ranging from
Ay=0.01-1.1 mag, typical for CCSNe hosts (Pastorello et al.
2006; Maguire et al. 2010; Faran et al. 2014).

4.1. Correlations between Physical Parameters

We plot our inferred values with a comparison to other
similar works in the literature (Forster et al. 2018; Martinez
et al. 2020) in Figure 2. Forster et al. (2018) use hydro-
dynamical models on HiTS Type II SNe that include estimates
of the circumstellar environment, while Martinez et al. (2020)
do not include CSM structure in their models. Figure 2 shows
the bounds of our model grid with gray-dotted lines for each
parameter in the plot. The ZTF events whose energy value fits
approached the bounds of the model grid are marked in
Table 3. We represent events that had relatively narrower prior
distribution for the date of the explosion inside the purple circle
in Figure 2. These events had either constraining upper limits
before the first detection or enough rise-time data to make an
educated guess on the upper bound of the prior distribution for
the date of the explosion.

Generally, our parameter estimates are less confident for
ZTF events with poor data quality, such as those missing
phases of light curves combined with unavailable upper-limit
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constraints and whose parameter values approached the
parameter boundaries of the model grid (see Table 3). These
events are represented by green circles in Figure 2 as flagged
events. Among seven out of 11, ZTF18acbwasc (SN 2018hfc),
ZTF19abhduuo (SN 2019Ire), ZTF19abqgyouo (SN 2019pbk),
ZTF19ackjvtl (SN 2019uwd), ZTF20abyosmd (SN 2020toc),
ZTF20acjqgksf (SN 2020tfb), and ZTF20acnvtxy (SN 2020zkx)
can be grouped together as events that have higher values for
the time of the explosion (> 25 days). This could be attributed
to the fact that the prior distribution was too broad as there were
no upper limits for these events as provided by the ZTF survey.
The remaining four ZTF events whose fits approached the
model boundaries are ZTF18acbvhit (SN 2018hle),
ZTF19abvbrve (SN 2019puv), ZTF20acptgfl (SN 2020zjk),
and ZTF21laafkwtk (SN 2021apg).

Moreover, we performed a Pearson correlation analysis to
check if we can find any correlations between the physical
parameters. However, we were unable to find any significant
correlations (r > 40.5 or r < —0.5) within the sample studied.
The correlation matrix is shown in Figure 3. The modest mass
range in our model grid (12-16 M) limits our ability to make
strong claims on any potential ZAMS dependencies. For
example, in Figure 2, the correlations in Martinez et al. (2020)
only become clear when the ZAMS range is extended to 10
M,,. Our hydrodynamical grid explores new parameter spaces
that include mass-loss properties and this can possibly
introduce additional degeneracies.

5. Real-time Parameter Evolution

We analyzed how each of the parameter fits evolved as a
function of time, termed real-time characterization. We were
motivated to characterize how well or poorly the model
parameter fits and their uncertainties at fractional light-curve
stages anticipated the values found from complete light curves.
We compared our model grid to three regimes of incomplete
light curves with respect to the first detection: (1) Ar < 25 days,
(2) At <50 days, and (3) all available data.

Figure 4 shows a detailed evolving characterization for the
event ZTF19aaqdkrm (SN 2019dod). As expected, the fits and
estimates of the parameters change with time as the SN evolves
and additional measurements are incorporated into the fitting
process. Within Ar < 25 days and Ar < 50 days, the fits favor
lower “°Ni masses and higher energies. As data in both bands
accumulate, the fits favor higher S°Ni masses and lower
energies. At Ar>50 days, the portion of the light curve
powered by hydrogen recombination of the event starts to fall
off, giving better estimates on ZAMS and “°Ni masses.

We performed this same analysis on all 45 ZTF events,
where similar trends are seen. Figure 5 shows the difference in
parameter values of our fits with respect to the final epoch with
all the data as the event unfolds. Our analysis shows that the
explosion energies and mass-loss rates for the events are
initially overestimated and tend to favor lower final values
when all data is included in the fit. This is opposite to what we
see in the case of *°Ni mass, as it is underestimated with only a
few measurements and consistently favors higher values for
many events during later stages of light-curve evolution as the
recombination drop-off starts to unfold.

The most confident estimate of “°Ni mass is inferred when
the hydrogen recombination phase ends and the radioactive
decay phase starts. This results in epochs with all the data
yielding higher estimates of *°Ni mass. With kinetic energy, the
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Figure 3. Pearson correlation matrix showing correlation coefficients that are
color coded for different physical parameters in the analysis. No significant
correlations between physical parameters were found within the sample of the
Type II SNe used in this study.

peak luminosity and decline rate of the light curve play a
significant role in estimating the energetics of the event. As a
result, as more data become available at later epochs, more
reliable estimates of kinetic energy will be seen. The inferred
values of ZAMS, host extinction, date of the explosion, and the
[ remain nearly constant as the light curve evolves.

6. Discussion
6.1. Parameter Space Degeneracy

A major challenge encountered when modeling only two
passbands provided by public ZTF light curves was model
degeneracy. Specifically, the probability that different combi-
nations of explosion and progenitor parameters can potentially
lead to the same light curve posed difficulties in converging to
a unique solution in our fitting method. As noted in previous
works, the hydrodynamical modeling approach has led to larger
estimates of progenitor properties, especially ZAMS estimates,
when compared to other approaches like pre-SN explosion
imaging (Utrobin & Chugai 2008, 2009; Maguire et al. 2010;
Sanders et al. 2015). In the Appendix, the posterior distribution
of three ZTF events at various epochs is examined using kernel
density estimation (KDE) analysis, along with a calculation of
the number of modes. In a similar analysis for all 45 events, we
find that all the ZTF events have multimodal posteriors and the
temporal evolution of modes cannot be generalized.

Goldberg et al. (2019) recognize the challenges involved in
breaking the degeneracies between ejecta mass, explosion energy,
and progenitor radius, and argue that in order to do so requires an
independent measurement of one of the parameters. The scaling
relationships used in their work yield families of explosions with
varied parameters that can reproduce similar light curves. Hillier
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Figure 4. Multi-epoch real-time characterization for ZTF19aagdkrm (SN 2019dod). The left panel shows the model fits to only data within the first 25 days of detection in
each individual band. The middle panel shows model fits using data within the first 50 days of detection. The right panel uses all data. The light curves are plotted with respect
to the derived time of the explosion and host extinction from model fits at each epoch. The table below shows parameter estimates derived from fits at each epoch.

& Dessart (2019) also highlight calculations of similar photo-
spheric phases for well-sampled Type II SNe in their multi-band
and spectroscopic modeling.

Martinez et al. (2020) attempt to partially lift this degeneracy
issue by fitting photospheric velocity information from their
models to velocity measurements obtained of SNe during the
plateau phase. However, Goldberg et al. (2019) argue that only
the ejecta velocities measured during the initial shock cooling
phase can be useful to break these degeneracies seen in the
parameters. Our analysis focused on photometry only, and future
work can investigate whether the use of kinematic information
from spectroscopy can better constrain parameter selection.

6.2. Bolometric versus Precomputed Multi-band Inference

Our analysis adopts the approach of fitting observations to
synthetic multi-band photometry derived from theoretical

hydrodynamical models. Similar works like Nicholl et al.
(2017) and Guillochon et al. (2018) use semi-analytical,
blackbody SED models to fit multi-band photometry for
transients. These procedures contrast with typical methods that
first construct bolometric light curves from multi-filter and/or
multiwavelength observations, which are in turn compared to
model bolometric light curves. Each method has associated
uncertainties. In the case of synthetic model photometry,
uncertainties arise from assumptions in opacity treatment at
different frequencies in STELLA. In the case of creating
bolometric light curves from interpolated observed data sets,
the uncertainties stem from potential gaps in photometry
cadence, limited passbands, and potentially few data points
overall to fit against.

For real-time characterization of events, we found that a
proper Bayesian inference of explosion parameters for large
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Figure 5. Real-time parameter evolution for all the listed ZTF events. The average change in parameter values (averaged over all 45 ZTF events) at each epoch with
respect to the final epoch with all data are represented by the blue squares from top left to bottom right. The order of the parameters are as follows: ZAMS mass, the
kinetic energy of the explosion (E), mass-loss rate (M), steepness of velocity law (/) associated with the stellar wind and **Ni mass synthesized, the date of the

explosion with respect to the first detection, and host extinction (Ay).

numbers of SNe is most efficiently conducted with precom-
puted grids of models. Computing models in real time per event
will lead to duplicative efforts and incur computational time
costs. With our method, the fitting is more rapid, more flexible,
and the associated uncertainties are less significant.

6.3. Intelligent Augmentation

Our analysis only uses ZTF public data in the ztf-g and ztf-r
passbands to make inferences about Type II explosion
parameters. Our parameter fits could be further constrained
with observations at other passbands, and it is worthwhile to
consider which passbands at which epochs are most constrain-
ing. To this end, inferring transients in real time in order to
make on-the-fly decisions about optimal follow-up in com-
plementary passbands is needed (Carbone & Corsi 2020;
Sravan et al. 2021). Generally, most constraining for inferring
Type II properties are observations at early and late phases
of light-curve evolution. At early phases, UV observations best
sample  shock-breakout and circumstellar interaction
(Gezari et al. 2015; Ganot et al. 2016; Soumagnac et al. 2020;

10

Haynie & Piro 2021; Jacobson-Galdn et al. 2022). At late
phases, near- and mid-infrared passbands provide diagnostics
that best follow ejecta cooling and dust formation (Szalai &
Vinké 2013; Bianco et al. 2014; Tinyanont et al. 2016).
Optimally augmenting all-sky survey photometry in real time in
this way can enhance opportunities to generate large samples of
CCSNe sufficiently observed to perform population and host-
environment studies (D’Andrea et al. 2010; Anderson et al.
2014; Sanders et al. 2015; Schulze et al. 2021).

6.4. Anomaly Detection

Our work uncovered two examples of anomalous Type II
SNe, which are not included in our sample of 45 events. We
present the unusual light curves of ZTF18acgvgiq (SN
2018fru) and ZTF20acwxrgp (SN 2020acjg) in Figure 6. The
fits for the entire light curves converged to a model solution
with very poor likelihood scores resulting in inaccurate
inferences. Consequently, we were unable to characterize these
events with our current model grid. The anomalous nature of
these events could be identified via poor model fits as early as
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Figure 6. Spectroscopically classified Type II SNe with anomalous light curves identified in this work. Only the upper limits prior to the first detection used for

deriving the fits are plotted.

At < 25 days. The cumulative log-evidence (log Z) inferred for
these two events was above —200, indicating very poor
likelihood estimates when comparing the models with the data.
For the events with good fits, the log Z estimates were under
—20. These high log Z values indicate that the models were
unable to converge to a target distribution of the parameters for
the two anomalous events.

This experience shows that real-time inference can be used
as a way to identify targets that deviate from normal theoretical
predictions. Such real-time analyses for detecting anomalies
(Pruzhinskaya et al. 2019; Soraisam et al. 2020; Villar et al.
2020, 2021; Ishida et al. 2021; Martinez-Galarza et al. 2021)
can be automated into an ORACLE such as REFITT to
motivate rapid spectroscopic follow-up of nontraditional
CCSNe.

7. Conclusions

In this paper, we have characterized 45 Type II SNe using
only products from the public ZTF survey (i.e., in the ztf-g and
ztf-r passbands) using a grid of theoretical hydrodynamical
models. Our grid parameters span multiple SN progenitor and
explosion properties, as well as the time of explosion with
respect to the first detection and host extinction. We compare
results between complete and fractional light curves to
determine which parameters are most robust to incomplete
photometric data sets. This effort is to assess whether
opportunities exist for theoretically driven forecasts to inform
when follow-up observations are needed to support all-sky
survey alert streams. The following conclusions are made:

1. We obtain confident characterizations for 34 SNe II in
our sample. Inferences of the remaining 11 events are
limited either by poorly constraining data or the
boundaries of our model grid. The properties of these
well-fitted events broadly follow those reported in
previous analyses of SNe II.

2. In cases where fitted parameters derived from complete
versus incomplete data sets are compared, some para-
meters are more reliably determined at early epochs than
others. The explosion energy, host extinction, and mass-
loss rate parameters are overestimated during the initial
phases of evolution, while the S°Ni  mass is
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underestimated. The ZAMS mass and (3 estimates do
not change significantly at different phases.

3. The date of the explosion is a very sensitive parameter
that requires well-constrained pre-explosion upper limits
from the survey for confident inferences. Generally, we
found parameter estimates to be less reliable for ZTF
events with poor data quality, such as missing phases of
the light curve along with poor upper-limit constraints.

. Real-time Bayesian inference of progenitor and explosion
parameters for large numbers of CCSNe from all-sky
surveys demand a precomputed grid of models. Creating
synthetic model light curves in respective all-sky survey
passbands catalyzes real-time characterization of evol-
ving transients by avoiding the challenges associated with
constructing bolometric light curves with sparse and
incomplete photometry.

Our work has demonstrated that hydrodynamical model
grids for CCSNe along with statistical analyses can provide
opportunities to enhance the scientific return from all-sky
surveys that provide live alert streams. Theoretically driven
predictions can be leveraged to efficiently coordinate world-
wide observing facilities to conduct follow-up observations that
augment survey light curves to optimally achieve scientific
objectives (Bianco et al. 2014; Modjaz et al. 2019; Kennamer
et al. 2020; Sravan et al. 2020; Anand et al. 2021).

For example, real-time characterization can identify and
prioritize transients that fall within certain parameter spaces of
interest, including the extreme high and low ends of kinetic
energy or “°Ni mass. Likewise, theoretical forecasts can
identify and prioritize follow-up photometry at critical phases
of transient evolution, including monitoring the plateau drop-
off of SNe II light curves that provides information needed to
improve estimates of kinetic energy and ZAMS and *°Ni
masses. Ideally, predicting transient evolution using the
underlying physics of transients can be incorporated into a
TOM or ORACLE that can efficiently recommend targets for
follow-up at information-rich epochs (Djorgovski et al. 2016;
Street et al. 2018; Kasliwal et al. 2019; Sravan et al. 2020;
Agayeva et al. 2021).

Our future work relies on an expanded grid of hydro-
dynamical models exgloring larger parameter ranges, including
varying degrees of >°Ni mixing within the inner layers of the
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progenitors, and information on photospheric velocity that can
be used to potentially break degeneracies between parameters.
It will also expand synthetic photometry to all six passbands of
LSST. Although our work focuses on Type II CCSNe, our
methods can be easily applied to identify, prioritize, and
coordinate follow-up of other transients discovered by the Vera
C. Rubin Observatory.

The authors would like to thank the anonymous referee for
helpful comments that have significantly improved this paper.
We also acknowledge helpful discussions with Thomas
Matheson, Mariana Orellana, and Melina Bersten. The ZTF
forced-photometry service was funded under the Heising-
Simons Foundation grant #12540303 (PI: Graham). Numerical
computations were in part carried out on a PC cluster at the
Center for Computational Astrophysics (CfCA), National
Astronomical Observatory of Japan. D.M. acknowledges NSF

ZTFchlh\lnvoI(S\ 9[)10;)uJT e

[Irll‘lllerI‘]lTllI lljlllrllll

L
13%

LI B

I
==

ZTF19acbvisk (SN 2019rms)

IIIIIJIIIJIII{IIIIIIIIIIIIJI

Subrayan et al.

support from grants PHY-1914448, PHY-2209451, AST-
2037297, and AST-2206532.
Software:  KEPLER (Weaver et al. 1978), STELLA

(Blinnikov et al. 1998, 2000, 2006; Moriya et al. 2017, 2018;
Ricks & Dwarkadas 2019), astropy (Astropy Collaboration
et al. 2013, 2018), dynesty (Skilling 2004).

Appendix
Multi-epoch Evolution of Posterior Distribution of
Parameters

We show the light curve model fits for the remaining events
in our samples in Figures 7 and 8, which are extented versions
of Figure 1. Figures 9 and 10 shows the multi-epoch real-time
characterization for the events ZTF20abwdaeo (SN 2020rvn)
and ZTF2laabygea (SN 2021los). Figures 11-13 shows the
corner plots with posterior probability distribution for various
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Figure 7. Continued from Figure 1.
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Figure 8. Continued from Figure 1.
physical parameters for ZTF20acptgfli (SN 2020zjk), conclude that the change in the posteriors for physical

ZTF20aausahr (SN 2020hgm) and t ZTF19abqyouo (SN
2019pbk), respectively.

We performed a KDE analysis in order to find the modality
of the posterior distributions at various epochs. The samples in
the posterior distribution were collected and smoothed using
Silverman’s bandwidth with a Gaussian kernel. The KDE
approximated distribution was then used to calculate the
number of modes at every epoch. The modes were found by
identifying inflection points in the distribution, i.e., positions
where the first derivative changes sign.

We found that all the objects have multimodal posteriors for
at least one parameter in our analysis. From this analysis, we
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parameters over different epochs cannot be generalized for all
the events. Figure 14 shows examples of multimodal posteriors
for ZAMS, kinetic energy, and *°Ni for three ZTF events The
red circles represent the different modes found in the
distribution using inflection point analysis. We note that the
modes of the distribution for kinetic energy shift from higher to
lower values as time proceeds as shown in Figure 14 for each
event as discussed in this paper. The trend in “°Ni with time is
reflected in the modes with earlier epochs favoring lower
values as compared with final epochs. The degeneracies in
parameter space as discussed in Section 6.1 are clearly reflected
in these distributions through multi-modality.
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Figure 9. Continued from Figure 4 for the event ZTF20abwdaeo (SN 2020rvn).
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