Received: 26 January 2022

Revised: 21 April 2023

Accepted: 26 April 2023

DOI: 10.1002/dad2.12441

RESEARCH ARTICLE

Diagnosis, Assessment
Disease Monitoring

Explainable automated evaluation of the clock drawing task for
memory impairment screening

Dakota Handzlik® |
Sean A. P. Clouston*> |

1Department of Computer Science, Stony
Brook University, Stony Brook, New York, USA

2Department of Psychology, Stony Brook
University, Stony Brook, New York, USA

3Program in Public Health, Renaissance School
of Medicine, Stony Brook University, Stony
Brook, New York, USA

4Department of Family, Population, and
Preventive Medicine, Renaissance School of
Medicine, Stony Brook University, Stony
Brook, New York, USA

5World Trade Center Health and Wellness
Program, Renaissance School of Medicine,
Stony Brook University, Stony Brook, New
York, USA

éDepartment of Medicine, Renaissance School
of Medicine, Stony Brook University, Stony
Brook, New York, USA

Correspondence

Sean Clouston, PhD, Program in Public Health,
#3-071, Health Sciences Center, Stony Brook
University, Stony Brook, NY, 11794-8338,
USA.

Email:
sean.clouston@stonybrookmedicine.edu

Funding information

National Institutes of Health/National
Institute on Aging, Grant/Award Number: RO1
AG049953

1 | INTRODUCTION

Lauren L. Richmond? I

Steven Skiena! | MelissaA.Carr® |

Benjamin J. Luft®¢

Abstract

Introduction: The clock drawing task (CDT) is frequently used to aid in detecting cogni-
tive impairment, but current scoring techniques are time-consuming and miss relevant
features, justifying the creation of an automated quantitative scoring approach.
Methods: We used computer vision methods to analyze the stored scanned images
(N = 7,109), and an intelligent system was created to examine these files in a study
of aging World Trade Center responders. Outcomes were CDT, Montreal Cognitive
Assessment (MoCA) score, and incidence of mild cognitive impairment (MCI).

Results: The system accurately distinguished between previously scored CDTs in
three CDT scoring categories: contour (accuracy = 92.2%), digits (accuracy = 89.1%),
and clock hands (accuracy = 69.1%). The system reliably predicted MoCA score
with CDT scores removed. Predictive analyses of the incidence of MCI at follow-up
outperformed human-assigned CDT scores.

Discussion: We created an automated scoring method using scanned and stored CDTs

that provided additional information that might not be considered in human scoring.

KEYWORDS
clock drawing task, Montreal Cognitive Assessment, semi-automated neurocognitive testing,
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and/or executive functioning.? To facilitate diagnosis, brief cognitive

assessments like the Montreal Cognitive Assessment (MoCA) have

Alzheimer’s disease and related dementias (ADRDs) are a major pub-
lic health concern responsible for ~1.55 million deaths and 150 million
cases worldwide by 2050.1 ADRD is characterized by the presence
of cognitive impairment across multiple domains of cognition, includ-

ing short-term and working memory, orientation to time and place,

become standard clinical assessments when screening for mild cog-
nitive impairment (MCI) and ADRD. The MoCA incorporates assess-
ments of multiple cognitive domains and is validated for identifying
prodromal ADRDs.? During administration of the MoCA, patients com-

plete an analog clock drawing task (CDT) that has been used in research
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RESEARCH IN CONTEXT

1. Systematic review: The authors reviewed the literature
using standard sources as well as meeting abstracts and
presentations. Although relatively few automated scor-
ing approaches have been proposed for the clock drawing
task (CDT), several recent publications present relevant
approaches. We have included these citations in our
submission.

2. Interpretation: Our study supports the use of this algo-
rithm in settings that collect paper-and-pen CDT as
part of the Montreal Cognitive Assessment (MoCA) for
extracting features that may not be captured by the cur-
rent MoCA-CDT scoring method. Moreover, our study
provides evidence for the utility of the automated scor-
ing algorithm described herein for understanding current
cognitive status and for predicting future conversion to
cognitive impairment in a large sample of World Trade
Center responders in midlife.

3. Future directions: The application of the auto-scoring
algorithm outlined here is expected to provide a deeper
understanding of relevant features present in CDTs that
predict current cognitive status and risk for future cogni-
tive decline. This approach is also consistent with recent
interest in characterizing neuropsychological task per-
formance according to the process by which scores are
obtained; the algorithm described here is expected to be

useful in this regard.

and clinical settings for decades because of its ease of administration
and sensitivity to ADRDs. Errors on the CDT can stem from a variety
of underlying cognitive and motor issues including deficits in recog-
nizing the attributes and features of a clock, visuospatial functioning,
executive functioning, planning, and perseveration on clock features.*
Many scoring methods for the CDT have been proposed (review
of proposed scoring methods in Ref 6). For MoCA-CDT scoring, a
score from O to 3 points is assigned; prior reports of the sensitivity
for detecting conversion to AD was very high (92.9%; 7).° However,
although the CDT can be informative with trained administrators,®
differences in training can impact scoring accuracy,’ thereby reduc-
ing reliability® and face validity.” One study attempted to automate
CDT scoring by applying machine learning (N = 1315) to raw clock
images with a reported accuracy of 72.2%.1° The approach focused on
CDT screening and scoring using the six-point Shulman method, with
scores ranging from perfect to severely disorganized and unrecogniz-
able as a clock.’® However, the clinical applications of that system were
limited because the reasons behind convolutional neural network deci-
sions were hidden, and decisions were, therefore, difficult to explain
to clinical or research staff. Consequently, a digital version of the CDT

(dCDT) was developed to address some of the problems identified with

traditional hand-scoring approaches.'>13 The dCDT is promising
because it can distinguish healthy older adults from patients with
dementia’* and help differentiate dementia subtypes,’® but the dCDT
assessments relied on proprietary software and required that a task be
completed with a digital pen that might capture drawings in real-time.
The dCDT has spawned additional efforts including, for example, one
study that used a proprietary CNN to determine diagnostic accuracy
for MCl and ADRD (reported accuracy ranged from 83.44%-91.49%)
in a study of 163 older adults.*¢

The results of previously proposed automated scoring methods for
the CDT provide cause for optimism regarding the potential for auto-
mated scoring to detect subtle differences in cognitive status and to
augment hand-scoring for the CDT, although wide adoption of avail-
able automated scoring methods for the CDT have stumbled at several
barriers. The application of automated scoring methods to existing
paper-and-pencil versions of this task might increase the utility of
automated methods while reducing the costs associated with human
scoring. The goal of this study was to bridge this gap by providing a
method for feature extraction that offers reasonable predictive power
while remaining transparent in classification decisions. This scoring
method may bring practitioners’ attention to new CDT features indica-
tive of future cognitive deterioration in patients and may offer finer
granularity than the binary score assigned by human annotators under
the MoCA-CDT scoring method. Here, we provided a solution that may
help improve screening accessibility and throughput, as well as the
extraction of CDT features that might be important for understand-

ing patients’ current cognitive status and predicting future cognitive

change.
2 | METHOD
2.1 | Setting

In 2014, we began to assess cognition in World Trade Center (WTC)
responders by recruiting responders from a population-based monitor-
ing program'” and conducting an extensive functional and behavioral
assessment program that included the MoCA.1® From our previous
studies we know that the prevalence of dementia and incidence of MCI
has been observed at higher-than-expected rates according to the age
of the cohort, with the highest rates concentrated among those who
spent the longest time on site and those who developed post-traumatic
stress disorder (PTSD),1? leading many to believe that WTC responders

might be at heightened risk of neurodegenerative disease.2°

2.2 | Participants and procedure

WTC responders completed the Montreal Cognitive Assessment
MoCA annually (N for the current analysis = 7109 observations among
4919 WTC responders) and overall scores and domain-specific scores
were retained for domains of episodic memory, attention, abstrac-

tion, processing speed, numeracy, language, fluency, visuospatial



HANDZLIK T AL.

Diagnosis, Assessment 30f 10

functioning, and orientation. To facilitate long-term record storage
and for quality-assurance purposes, our research protocol includes a
requirement that the MoCA-CDT be scanned into a computer and
stored indefinitely. Scanned images were retrieved in their native
portable document format (PDF) and, for the purposes of this study,
were cropped to exclude extraneous details. Scan files were labeled
using a research identifier and visit date. The CDT was scored orig-
inally on a three-point scale according to the method prescribed by
the MoCA scoring protocol,® with one point each assessed for draw-
ing a circular clock face (contour); accurate placement, and serial order
of clock numbers (digits); and hands indicating the correct time, with
one hand shorter than the other and originating at the center of the
clock (hands). Human-assigned scoring was done by trained staff fol-
lowing the MoCA’s standard operating procedure, and each of the CDT
scores was checked independently by a second trained research staff
member to ensure consistency of scoring prior to being reported. Train-
ing for CDT scoring occurs regularly, along with regular monitoring
to ensure that there is no slippage in either the delivery or scoring
of the assessment. During quality control processes, CDT scores are
scored independently by different trained research staff; scores that
are discordant go through a third reviewer to ensure that scoring is
appropriate. Records are kept of which staff members caused the error
and when errors are found at a higher rate than expected at which point
that staff member is retrained in both assessment and scoring. Higher
scores indicate better performance for each element and for the clock
drawing overall. Appendix Figure 1 has a CDT example with features
highlighted and grouped according to the MoCA'’s predefined areas of
interest (digits/contour/hands in green/red/yellow), whereas Appendix
Figure 2 has an example of digits extracted from those drawings.

MCI and dementia were diagnosed algorithmically according to
the diagnostic criteria recommended by the National Institute on
Aging-Alzheimer’s Association.>?* However, information from the clock
drawing portion of the MoCA was excluded from diagnoses in this
study. Diagnosis of MCI in this cohort requires a level of cognitive
impairment in one or more domains that is greater than would be
expected according to patient age and education level resulting from
the evidence of cognitive decline at levels that do not impair activities
of daily living alongside an absence of evidence of cognitive impair-
ment sufficiently severe to significantly affect social or occupational
functioning.? In these data, self and spousal reports of memory declines
are strongly associated with psychiatric comorbidities and are thus dis-
counted from diagnoses. Dementia requires evidence of impairment
to multiple domains of cognitive functioning including in the abil-
ity to complete simple calculations, to recognize common items, and

evidence of disorientation to time and place.

2.3 | Consent statement
This study was reviewed by the institutional ethics review board
(#604113). Participants provided informed, written consent to partici-

pate in this study.

Disease Monitoring

24 | Clock measures

Human-based MoCA scoring for the CDT includes gross scoring for the
contour of the clock, the placement and legibility of the digits used in
the clock, and the shape and direction of the hands used in the clock. As
such, we group features below to similarly reflect potential sources of
variability in the clock scoring and focused on including features, such
as circularity of the contour, or the ratio of the length of the clock’s
minute and hour hands, which are commonly used to score the CDT, but
also included several novel features that were considered of potential
benefit.

To facilitate computerized analyses, we relied on all usable data
collected over the period from January 2014 to June 2019. To be
included, scans needed to be clear and needed to have been stored
with appropriate meta-data so that an automated routine could reli-
ably determine the person’s research identification and the date of data
collection, and so that the computer could reliably determine the loca-
tion of the clock. Scans were often excluded because scans were of
lower overall quality and the clock could not be seen well or was blurry,
or because the scanner induced visual defects in the files. In addition,
filename conventions and/or PDF-labeling standards were not always
clear. In many cases, the date was not clear from either the meta-data
or could not be accurately read by the computer from the PDF in a
way that matched the scores. Thus, although we collected data on up
to 15,298 observations, these exclusion criteria left 7109 CDTs spread
at random throughout the observational period that were effectively
scanned and matched to clinical data for use in the current analysis.

Automated CDT scoring focused on 19 dimensions of the Clock
(Supplemental Methodological Appendix for full details). Specifi-
cally, we computed five contour measures (radius size, radius min-
imum/maximum ratio, circularity, center deviation, and removed
points), eight measures of the digits (digit radius mean and SD, digit
angle mean and SD, digit area mean and SD, as well as missing or
extra digits), and finally six hand measures (intersection distance, hand
angles, hands length ratio, density ratio, bound box ratio, and the num-
ber of components). These form the feature set used in the remainder

of the manuscript.

2.5 | CDT auto-scoring code-sharing statement

The code that was developed for use in this project is freely accessi-
ble and can be found at https://github.com/dakota0064/WTC_Clock_
Analysis.

2.6 | Validation of CDT auto-scoring

To determine the predictive power of the CDT features, as compared
with the MoCA human-assigned scores, we trained a separate classi-
fier for each of the three scoring factors. Each factor was trained by

using a random forest classifier,?2 containing 100 decision trees and
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FIGURE 1 Validation data needed to examine clock scoring reliability including correlation matrices, clock feature distributions, and example
clock drawings separated by human-assigned contour, digits, and hands scoring. Note: A-C show correlation matrices comparing contour features
and human-assigned scoring for (A) contours, (B) digits, and (C) hand scores; darker red identifies stronger associations that are more strongly
positive, while deeper blue shows inverse associations. D-F show the cumulative distribution function for predicted (D) contour, (E) digits, and (F)
hand scores; the two curves correspond to cohorts defined by the ground truth score assigned to the clock contour by human annotators
(unsatisfactory = 0, and satisfactory = 1) and the area between curves shows reasonable separation between classes. G- show annotated clock
drawings representing predicted score percentiles in the lowest quartile, median, and top quartile for each (G) contour, (H) digits, and (I) hand
human-assigned scores; green labels the digits identified by the computer, purple identifies the hands, and yellow shows the circle that best fits the

centroid.

no pre-set stopping depth. The models were trained on 5400 images
and evaluated on a holdout set of 1422 images. Each model provided an
overall forest score matched by feature type with the human-assigned
MoCA-CDT scoring. For this purpose, we reported overall accuracy as
well as the cumulative distribution function (CDF) showing the score
distribution matching the forest scores to the MoCA-CDT scores.

We validated results through analyses showing the matches
between our feature description metrics and overall human-assigned
MoCA-CDT scores (range: 0-3). To elucidate the sources of the
combined contributing features of each subdomain to the clock con-
tours, we used logistic regression to examine multivariable predictive

associations between the computer-assigned MoCA-CDT scores with

human-assigned CDT scores. To understand how the extracted fea-
turesrelated to performance in a variety of cognitive domains and with
cognitive impairment, we used age-adjusted Spearman’s rank correla-
tion coefficients to examine associations between extracted features
and neurocognitive test scores. In addition, we report demographics,
including age in years and gender. Finally, for sensitivity analyses we
retrieved both the clinical diagnosis and current symptomatology for
PTSD and major depression.

We finished by examining the CDT’s ability to predict incident MCI
on follow-up testing occasions, occurring approximately annually (e.g.,
at least 366 days after baseline assessment). We assessed the inci-

dence of MCI at follow-up among individuals who were cognitively
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FIGURE 2 Validation data needed to examine overall clock
drawing task. Note: A shows the cumulative distribution function plot
for overall clock drawing task scores. Ground truth scores defined by
the total score received on the clock drawing task as determined by
human annotators: total score of O (n = 20), total score of 1 (n = 141),
total score of 2 (n = 532), and total score of 3 (n = 729). The curves
demonstrate the expected separation, although all lower scores show
a significant skew upward, probably because of the general data
imbalance. B shows the box and whisker plot of the summed predicted
clock scores compared with the adjusted total Montreal Cognitive
Assessment (MoCA) score. Adjusted total MoCA score is provided by
subtracting the human-assigned clock score from the original total
score. Regression lines of the mean predicted score (red) and the mean
ground truth scores (blue) for each MoCA score group are shown
superimposed over the plot.

unimpaired at baseline by using Cox proportional hazard modeling to
estimate the years since follow-up until the incidence of MCI. The
Efron method was used to handle ties; participants were censored
at the time of the final follow-up examination or the date when data
were retrieved. Models included both the human-assigned and feature-
derived autoscoring for each component (hands, contour, and digits),

and were adjusted for demographics at baseline.

Disease Monitoring

TABLE 1 Characteristics describing the World Trade Center
responder sample.

Baseline characteristics (N = 4919) Mean SD
Age, years 54.02 8.35
Global cognition 25.78 2.58
Cognitive performance
Episodic memory 8.56 1.42
Processing speed 0.12 0.05
Numeracy 4.28 1.10
Language 1.60 0.61
Fluency 2.91 0.30
Orientation 5.96 0.20
Visuospatial ability 1.27 0.64
Attention 2.84 0.40
%
Female, % 10.23
Educational attainment
High school or less 26.12
Some college 44.88
College degree 29.00
Race/Ethnicity
White 82.80
Black 578
Other 4.11
Hispanic 7.31
Status at assessment
Mild cognitive impairment 16.19
Dementia 1.72
Incidence rate at follow-up (N = 2190) IR 95% Cl
Mild cognitive impairment 11.94 11.38-12.53
Dementia 1.64 1.46-1.85

Abbreviations: IR, incidence rate; 95% Cl, 95% confidence interval.

3 | RESULTS

The average participant in this study was in their mid to late fifties
(Table 1) and the majority were men. Incidence of MCI and demen-
tia was relatively high in this population at follow-up. Nearly all (99%)
were employed full time as responders during the events at the WTC on
9/11/2001, so this variable has not been reported. The average period
between observations was 1.51 (SD = 1.36) years.

3.1 | Development and initial validation
of auto-scoring methodology

The contour scores determined by human annotators showed a signif-
icant skew. Within our test set, 8.9%, 11.4%, and 36.4% of the scores
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TABLE 2 Breakdown of the test set into various cohorts determined by human-assigned scoring on each of the categories.

Mean
Montreal Cognitive
Cohort Size Assessment score
Contour Score =0 148 24.135
Contour Score = 1 1274 25.779
Digits Score =0 154 23.208
Digit Score =1 1268 25.900
Hands Score =0 572 24.318
Hands Score = 1 850 26477
Total Clock Score =0 20 21.050
Total Clock Score = 1 141 23.241
Total Clock Score =2 532 24.885
Total Clock Score = 3 729 26.719

were 0 in the contour, digit, and hand scores, respectively. Figure 1A-C
shows intercorrelations between various auto-scoring features and
human-assigned scoring. These revealed, for example, that circularity
and the radius-ratio were moderately associated with human-assigned
contour scores. A classifier using the features Circularity and Radius-
Ratio achieved 92.2% accuracy on the test contour set. Figure 1D-F
shows CDF curves for both human-assigned scoring groups by score
type and revealed that most clocks with predicted scores <0.9 had
unsatisfactory contour ratings. Figure 1G-I shows representative clock
examples for each human-assigned label. In general, CDTs rated as
satisfactory by human hands had evidence of human error, whereas
variation in the 75th percentile group revealed that humans missed
variability captured by automated scores.

Scoring suggested that the distributions of aggregate predicted
scores for each of the four possible total scores on the MoCA-CDT
were similar (Figure 2A). The box-and-whisker plot (of predicted scores
vs the total MoCA scores (Figure 2B) suggested that CDT scores could
not completely replicate overall MoCA score without information from
other cognitive domains.

Table 2 shows a breakdown of the mean MoCA scores and predicted
overall CDT scores by feature score. Significant associations were
observed between predicted overall CDT and mean MoCA scores for
drawings receiving scores indicating digits = 1, hand = 0, or clock = 2.
These values indicate that our system achieved finer-grained predic-
tive resolution when CDT performance was used as a proxy for overall
MoCA performance.

To determine which features were driving annotator scores, logistic
regression was used to predict human-assigned binary scoring in each
category (Table 3). Both the circularity and radius ratio significantly
predicted the clock contour scores, whereas the radius and center
deviation did not. For clock digits, features associated with the digit
radius and digit angle, as well as missing digits, significantly predicted
the overall clock digit scores. All other clock digit features were non-

significantly predictive of overall clock digit scores. Finally, clock hand

Mean predicted

category score Pearson p

0.734 0.022 0.787
0.940 0.051 0.069
0.755 0.043 0.596
0.930 0.130 <0.001
0.583 0.088 0.035
0.679 0.037 0.277
2.010 —-0.131 0.582
2.242 0.048 0.571
2412 0.111 0.010
2.569 0.055 0.141

scores were associated with all relevant features except for number of
components.

Next, we examined how extracted features related to performance
across cognitive domains (Table 4) and found that across all categories
poorer clock scores were associated with older age, slower process-
ing speed, and higher intra-individual variability. Poorer contour scores
were associated with poorer attention scores, whereas poorer digit
and hand scores were associated with poorer visual memory. Poorer
hand and digit scores were associated with higher atrophy risk.

To assess the clinical utility of extracted scores we examined the
power to predict MCI at follow-up (Table 5). In these results, we
observed that computer-defined features predicted the incidence of
MCl in ajointly estimated model and after adjusting for demographics.
The human-assigned clock hands score was also statistically significant
in both models (Table 4). Together, these results indicated the clinical
relevance of the feature extraction and auto-scoring method applied
herein, as it relates to both current cognitive status and prediction of
future conversion to MCl at follow-up.

3.2 | Sensitivity analyses

Chronic psychiatric disorders are common in traumatized groups, so
we examined the sensitivity of associations between the human- and
computer-rated clock scores in responders with chronic PTSD or those
with chronic depression, as compared to those without any signs of
either, to examine the sensitivity of scoring to psychiatric disorders.
Overall, results suggested that the correlations were similar across
populations with and without psychiatric disorders. For example, rho
in patients with diagnoses of chronic PTSD (PTSD checklist score < 30,
n = 162; digits = 0.81; hands = 0.92; and contour = 0.83) was slightly
lower but not substantively different from rho in patients who never
had a diagnosis and did not report symptoms of PTSD (PTSD checklist
score < 30, n = 4,179; digits = 0.91; hands = 0.92; and contour = 0.89).
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TABLE 3 Multivariable associations derived from logistic regression examining the associations between qualitative scores assigned by
research staff as compared to both measured clock features and overall scores derived using random forest modeling.

Feature
Circularity
Radius ratio
Radius

Center deviation
Digit radius, mean
Digit radius, SD
Digit angle, mean
Digit angle, SD
Digit area, mean
Digit area, SD
Extra digits
Missing digits
Angle of hands
Density ratio

BB ratio

Length ratio
Distance from intersection
Number of components
Feature score
Forest contour
Forest digits

Forest hands

Clock contour Clock digits Clock hands
B SE p B SE p B SE p
17.671 5.141 0.001
17.217 1.396 <0.001
0.000 0.002 0.868
0.638 12.264 0.958
2.700 1.240 0.029
-13.346 2.865 <0.001
-2.408 0.975 0.014
-20.533 1.997 <0.001
-1.720 1.104 0.119
-0.935 0.592 0.114
0.968 0.685 0.158
-3.921 0.470 <0.001
-0.767 0.142 <0.001
-0.428 0.198 0.030
-3.345 0.220 <0.001
-1.856 0.203 <0.001
-2.413 0.294 <0.001
-0.427 0.347 0.219
11.156 0.360 <0.001 -0.809 0.514 0.116 -0.227 0.303 0.454
0.132 0.308 0.667 0.699 0.320 0.029 11.477 0.266 <0.001
0.540 0.424 0.203 13.22 0.517 <0.001 1.7496 0.283 <0.001

Note: Coefficients (B) and standard error (SE) estimated using logistic regression. Results reported in bold typeface when they were statistically significant
after adjusting for the false discovery rate.

TABLE 4 Age-adjusted Spearman’s correlation coefficients (rho) showing level of association between clock features measured using the
human-assigned scores and random-forest-derived automated feature scores and age as well as cognitive functioning overall and separated into

nine functional subdomains.

Age, years

Montreal Cognitive Assessment

without clock scoring
Abstraction
Processing speed
Numeracy

Language

Fluency

Orientation
Visuospatial function
Attention

Episodic memory

Clock contour Clock digits Clock hands
Rho Rho Rho

0.039 0.026 0.030
-0.010 0.031 0.045

0.046 0.074 0.076

0.031 0.082 0.108

0.014 0.030 0.021

0.018 0.024 0.055

0.029 0.071 0.032

0.081 0.115 Cowo
0.024 0.067 0.064

0.044 0.079 0.113

Forest contour Forest digits Forest hands
Rho Rho Rho
0.037 0.021 0.027
-0.012 0.036 0.039
0.041 0.072 0.076
0.035 0.089 0.094
0.024 0.029 0.018
0.018 0.023 0.054
0.032 0.055 0.031
0.029 0.060 0.055
0.053 0.092 0.105

Note: All scores have been adjusted so that higher scores indicate poorer performance across all measures. Intensity of the red shading indicates the signif-
icance level of each association, with cells reporting no significant associations in white, significant but overall weaker associations in pink and lighter red
colors, and stronger and statistically significant associations in dark red colors.
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TABLE 5 Comparison of association between computer-assigned feature composite scores and human-assigned scoring methods with
contemporary presence and later incidence of mild cognitive impairment.

Prevalent mild cognitive impairment

contemporaneous with scoring Incident mild cognitive impairment after scoring

Feature aOR 95% Cl p aHR 95% CI p

Human-scored clock hands 0.62 0.48-0.80 <0.001 0.38 0.28-0.51 <0.001
Forest clock hands 0.70 0.47-1.04 0.075 0.54 0.33-0.88 0.013
Human-scored contour 1.07 0.70-1.64 0.754 1.09 0.73-1.64 0.673
Forest contour 0.45 0.25-0.82 0.009 0.48 0.26-0.88 0.017
Human-scored digits 0.74 0.48-1.13 0.164 0.84 0.56-1.25 0.395
Forest digits 0.33 0.17-0.61 <0.001 0.26 0.14-0.47 <0.001

Note: aOR, multivariable-adjusted odds ratio; aHR, multivariable-adjusted hazards ratio; 95% Cl, 95% confidence interval; P, nominal p-value derived from
a Cox proportional hazards regression model. All models shown additionally adjust for age in years, sex/gender, and race/ethnicity. Results reported in bold
typeface when they were statistically significant after adjusting for the false discovery rate.

4 | DISCUSSION

The CDT is a clinical tool that by itself can be used to deter-
mine the presence and severity of cognitive impairment but is also
included as a sub-task of the MoCA. The goal of the present work
was to determine whether an automated feature extractor could
reliably replicate or improve upon the human-assigned MoCA-CDT
scoring. Results suggested that the computer-derived feature scores
supported human-assigned scores and MoCA-CDT scores, but CDT
scores derived from the machine-learning algorithm were not able
to reliably replicate the full MoCA score. Results suggest that the
auto-scoring system achieved finer-grained predictive resolution when
CDT performance was used as a proxy for overall MoCA perfor-
mance. The study also suggested that several features identified by
the machine-learning algorithm provided information that was ignored
by human raters. These improvements appeared to emerge from
the confluence of smaller differences, which although evident to the
computer were overlooked by raters. Results support the use of com-
puter vision and machine-learning methods to replace human CDT
scoring.

Turning to validation of our machine-learning algorithm results
overall speak to the clinical relevance of this scoring method as related
to both current cognitive status and the prediction of future con-
version to MCI at follow-up. Since 2014, the MoCA-CDT has been
collected as part of a study of responders who worked at the WTC
sites after the tragic events on 9/11/2001, and we have included the
scoring provided by human raters in epidemiological analyses focused
on understanding brain health.2® Results suggest that the auto-scoring
method could be useful for distinguishing patients who are experienc-
ing clinically relevant cognitive changes indicative of higher risk for
MCI compared to those who might remain cognitively normal. Specifi-
cally, auto-scoring predicted future conversion to MCl for participants
who were deemed to be cognitively normal on initial CDT assessments,
whereas human scoring predicted only the incidence of MCI when
examining clock hands. Together, findings support the use of the auto-
scoring method for detecting subtle distinctions between participants

who are cognitively normal at baseline and develop MCI versus those
who remain cognitively normal. The ability to distinguish two different
subgroups is important, since hand-scoring methods for the CDT have
low sensitivity for distinguishing MCI and mild AD.2*

One advantage of the current approach over past auto-scoring
approaches is that the features extracted by the current machine-
learning algorithm can be described in terms that are easily under-
standable to human scorers (e.g., “missing digits” and “extra digits”
under the digit feature). This aspect might enable a more complete
description of how participants received a specific score; for example,
one participant might receive a poor digit score because of missing
digits, whereas another participant might receive the same score by
adding extra digits. There has been renewed interest in characterizing
neuropsychological test performance using process-based approaches,
particularly as mediated through the technology.2° In contrast to previ-
ously proposed “black box” approaches to auto-scoring for the CDT, 0
CDT features extracted through the current approach may improve the
ability to explain results.

Future studies may adopt the auto-scoring method described herein
to validate this approach in a greater variety of psychiatric and neu-
rological populations, and to conduct finer-grained analyses of the
extracted features’ relationship with cognitive status. For example,
in studies of action execution, action omission has been associated
with amnestic MCI, whereas commission errors (including repeated
actions) have been associated with dysexecutive MCI.2¢ Similar pat-
terns emerge for missing digits (omissions) and extra digits (com-
missions) in patients with varying degrees and types of cognitive

impairment than were tested in the current study.

5 | LIMITATIONS

Despite being the largest study to date to examine digitized images
of hand-drawn versions of the CDT completed during in-person
administration of the MoCA, this study had several limitations. First,

individuals were assessed at midlife when neurodegenerative diseases
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are relatively uncommon. This might have improved the training of
the method to recognize variation seen in normal functioning and
improved sensitivity for detecting early forms of cognitive decline but
may have also limited our ability to determine features that might
be specific to more severe disease or to different disease subtypes.
Moreover, this study focused on a cohort of WTC responders mostly
comprising men who are thought to be at heightened risk of brain
aging due to their exposures on site during the response efforts. Con-
sequently, this work may benefit from replication efforts in other
populations.

The current approach tested model performance of a computer-
generated CDT scoring metric against human CDT scoring provided
by trained raters as the “ground truth.” Given the issues with human-
assigned scoring, human scoring measures do not appear to be optimal
for evaluating model performance. Future efforts may consider raters’
number of years of experience in scoring the MoCA-CDT and/or
average scores awarded by specific raters to account for inter-rater dif-
ferences to attempt to control for idiosyncrasies that might arise from
measures relying on hand-scoring by different raters.

Although prior studies of CDT have been conducted in samples with
mixed MCl/dementia, the WTC sample is a population cohort and is
composed primarily of individuals with normal cognitive functioning.
Therefore, when compared to clinical cohorts, the WTC responder
sample reported herein might be expected to exhibit better perfor-
mance on the MoCA and particularly on the CDT, given the relative
preservation of cognitive function in this sample. The potential for
the WTC cohort to score better on the CDT than clinical studies have
two practical consequences for the current investigation. First, scores
clustered at the higher end of the range, rather than more evenly dis-
tributed across the range, may limit the extent to which the current
automated scoring methodology could be applied to clock drawings
produced by more impaired populations. Concurrently, development
of the automated scoring method in a relatively less-impaired sample
compared to those used in prior studies may be useful for identify-
ing CDT features that can reliably differentiate clinically relevant MCI
from normal cognitive aging. Distinguishing normal cognitive aging
from MClI can be difficult to do in clinical settings but is quite important
from the standpoint of the potential for early intervention and behav-
ioral management of symptomology that could be especially helpful for
individuals with MCI.27

5.1 | Clinical implications

This large-scale study demonstrated that an automated scoring for
the CDT could be used with standard administration techniques in a
way that improved test sensitivity. CDT auto-scoring methods provide
an objective score for the CDT, while reducing the burden of human
scoring the CDT. The algorithm allows for a characterization of CDT
performance, which may be able to differentiate normal cognitive func-
tioning more sensitively from MCI in mid to late life. In addition, it
generates features such as clock size and pen pressure that may be

sensitive to mobility or behavioral differences. Finally, our auto-scoring

Disease Monitoring

method opens the door to the use of open-source electronic tools for
collecting CDTs in clinical settings and could allow for the use of phone
apps or other electronic means of producing CDTs to facilitate patient
monitoring. Together, these results support the clinical utility of CDT
automated scoring methods when characterizing MCl and prodromal
ADRD.
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