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Abstract

Introduction:The clock drawing task (CDT) is frequently used to aid in detecting cogni-

tive impairment, but current scoring techniques are time-consuming andmiss relevant

features, justifying the creation of an automated quantitative scoring approach.

Methods: We used computer vision methods to analyze the stored scanned images

(N = 7,109), and an intelligent system was created to examine these files in a study

of aging World Trade Center responders. Outcomes were CDT, Montreal Cognitive

Assessment (MoCA) score, and incidence of mild cognitive impairment (MCI).

Results: The system accurately distinguished between previously scored CDTs in

three CDT scoring categories: contour (accuracy = 92.2%), digits (accuracy = 89.1%),

and clock hands (accuracy = 69.1%). The system reliably predicted MoCA score

with CDT scores removed. Predictive analyses of the incidence of MCI at follow-up

outperformed human-assigned CDT scores.

Discussion:We created an automated scoring method using scanned and stored CDTs

that provided additional information that might not be considered in human scoring.

KEYWORDS

clock drawing task, Montreal Cognitive Assessment, semi-automated neurocognitive testing,

World Trade Center responders

1 INTRODUCTION

Alzheimer’s disease and related dementias (ADRDs) are a major pub-

lic health concern responsible for ≈1.55million deaths and 150million

cases worldwide by 2050.1 ADRD is characterized by the presence

of cognitive impairment across multiple domains of cognition, includ-

ing short-term and working memory, orientation to time and place,
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and/or executive functioning.2 To facilitate diagnosis, brief cognitive

assessments like the Montreal Cognitive Assessment (MoCA) have

become standard clinical assessments when screening for mild cog-

nitive impairment (MCI) and ADRD. The MoCA incorporates assess-

ments of multiple cognitive domains and is validated for identifying

prodromalADRDs.3During administration of theMoCA, patients com-

plete an analog clock drawing task (CDT) that has beenused in research
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RESEARCH INCONTEXT

1. Systematic review: The authors reviewed the literature

using standard sources as well as meeting abstracts and

presentations. Although relatively few automated scor-

ing approaches have been proposed for the clock drawing

task (CDT), several recent publications present relevant

approaches. We have included these citations in our

submission.

2. Interpretation: Our study supports the use of this algo-

rithm in settings that collect paper-and-pen CDT as

part of the Montreal Cognitive Assessment (MoCA) for

extracting features that may not be captured by the cur-

rent MoCA-CDT scoring method. Moreover, our study

provides evidence for the utility of the automated scor-

ing algorithm described herein for understanding current

cognitive status and for predicting future conversion to

cognitive impairment in a large sample of World Trade

Center responders in midlife.

3. Future directions: The application of the auto-scoring

algorithm outlined here is expected to provide a deeper

understanding of relevant features present in CDTs that

predict current cognitive status and risk for future cogni-

tive decline. This approach is also consistent with recent

interest in characterizing neuropsychological task per-

formance according to the process by which scores are

obtained; the algorithm described here is expected to be

useful in this regard.

and clinical settings for decades because of its ease of administration

and sensitivity to ADRDs. Errors on the CDT can stem from a variety

of underlying cognitive and motor issues including deficits in recog-

nizing the attributes and features of a clock, visuospatial functioning,

executive functioning, planning, and perseveration on clock features.4

Many scoring methods for the CDT have been proposed (review

of proposed scoring methods in Ref 6). For MoCA-CDT scoring, a

score from 0 to 3 points is assigned; prior reports of the sensitivity

for detecting conversion to AD was very high (92.9%; 7).5 However,

although the CDT can be informative with trained administrators,6

differences in training can impact scoring accuracy,7 thereby reduc-

ing reliability8 and face validity.9 One study attempted to automate

CDT scoring by applying machine learning (N = 1315) to raw clock

images with a reported accuracy of 72.2%.10 The approach focused on

CDT screening and scoring using the six-point Shulman method, with

scores ranging from perfect to severely disorganized and unrecogniz-

able as a clock.11 However, the clinical applications of that systemwere

limited because the reasons behind convolutional neural network deci-

sions were hidden, and decisions were, therefore, difficult to explain

to clinical or research staff. Consequently, a digital version of the CDT

(dCDT)was developed to address some of the problems identifiedwith

traditional hand-scoring approaches.12,13 The dCDT is promising

because it can distinguish healthy older adults from patients with

dementia14 and help differentiate dementia subtypes,15 but the dCDT

assessments relied on proprietary software and required that a task be

completed with a digital pen that might capture drawings in real-time.

The dCDT has spawned additional efforts including, for example, one

study that used a proprietary CNN to determine diagnostic accuracy

for MCI and ADRD (reported accuracy ranged from 83.44%–91.49%)

in a study of 163 older adults.16

The results of previously proposed automated scoring methods for

the CDT provide cause for optimism regarding the potential for auto-

mated scoring to detect subtle differences in cognitive status and to

augment hand-scoring for the CDT, although wide adoption of avail-

able automated scoring methods for the CDT have stumbled at several

barriers. The application of automated scoring methods to existing

paper-and-pencil versions of this task might increase the utility of

automated methods while reducing the costs associated with human

scoring. The goal of this study was to bridge this gap by providing a

method for feature extraction that offers reasonable predictive power

while remaining transparent in classification decisions. This scoring

methodmay bring practitioners’ attention to newCDT features indica-

tive of future cognitive deterioration in patients and may offer finer

granularity than the binary score assigned by human annotators under

theMoCA-CDT scoringmethod. Here, we provided a solution thatmay

help improve screening accessibility and throughput, as well as the

extraction of CDT features that might be important for understand-

ing patients’ current cognitive status and predicting future cognitive

change.

2 METHOD

2.1 Setting

In 2014, we began to assess cognition in World Trade Center (WTC)

responders by recruiting responders fromapopulation-basedmonitor-

ing program17 and conducting an extensive functional and behavioral

assessment program that included the MoCA.18 From our previous

studieswe know that the prevalence of dementia and incidence ofMCI

has been observed at higher-than-expected rates according to the age

of the cohort, with the highest rates concentrated among those who

spent the longest time on site and thosewhodeveloped post-traumatic

stressdisorder (PTSD),19 leadingmany tobelieve thatWTCresponders

might be at heightened risk of neurodegenerative disease.20

2.2 Participants and procedure

WTC responders completed the Montreal Cognitive Assessment

MoCAannually (N for the current analysis=7109observations among

4919WTC responders) and overall scores and domain-specific scores

were retained for domains of episodic memory, attention, abstrac-

tion, processing speed, numeracy, language, fluency, visuospatial
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functioning, and orientation. To facilitate long-term record storage

and for quality-assurance purposes, our research protocol includes a

requirement that the MoCA-CDT be scanned into a computer and

stored indefinitely. Scanned images were retrieved in their native

portable document format (PDF) and, for the purposes of this study,

were cropped to exclude extraneous details. Scan files were labeled

using a research identifier and visit date. The CDT was scored orig-

inally on a three-point scale according to the method prescribed by

the MoCA scoring protocol,3 with one point each assessed for draw-

ing a circular clock face (contour); accurate placement, and serial order

of clock numbers (digits); and hands indicating the correct time, with

one hand shorter than the other and originating at the center of the

clock (hands). Human-assigned scoring was done by trained staff fol-

lowing theMoCA’s standard operating procedure, and each of theCDT

scores was checked independently by a second trained research staff

member toensure consistencyof scoringprior tobeing reported. Train-

ing for CDT scoring occurs regularly, along with regular monitoring

to ensure that there is no slippage in either the delivery or scoring

of the assessment. During quality control processes, CDT scores are

scored independently by different trained research staff; scores that

are discordant go through a third reviewer to ensure that scoring is

appropriate. Records are kept ofwhich staffmembers caused the error

andwhenerrors are foundat ahigher rate thanexpectedatwhichpoint

that staff member is retrained in both assessment and scoring. Higher

scores indicate better performance for each element and for the clock

drawing overall. Appendix Figure 1 has a CDT example with features

highlighted and grouped according to the MoCA’s predefined areas of

interest (digits/contour/hands in green/red/yellow),whereasAppendix

Figure 2 has an example of digits extracted from those drawings.

MCI and dementia were diagnosed algorithmically according to

the diagnostic criteria recommended by the National Institute on

Aging–Alzheimer’s Association.2,21 However, information from the clock

drawing portion of the MoCA was excluded from diagnoses in this

study. Diagnosis of MCI in this cohort requires a level of cognitive

impairment in one or more domains that is greater than would be

expected according to patient age and education level resulting from

the evidence of cognitive decline at levels that do not impair activities

of daily living alongside an absence of evidence of cognitive impair-

ment sufficiently severe to significantly affect social or occupational

functioning.2 In thesedata, self and spousal reports ofmemorydeclines

are strongly associatedwith psychiatric comorbidities and are thus dis-

counted from diagnoses. Dementia requires evidence of impairment

to multiple domains of cognitive functioning including in the abil-

ity to complete simple calculations, to recognize common items, and

evidence of disorientation to time and place.

2.3 Consent statement

This study was reviewed by the institutional ethics review board

(#604113). Participants provided informed, written consent to partici-

pate in this study.

2.4 Clock measures

Human-basedMoCA scoring for theCDT includes gross scoring for the

contour of the clock, the placement and legibility of the digits used in

the clock, and the shape and direction of the hands used in the clock. As

such, we group features below to similarly reflect potential sources of

variability in the clock scoring and focused on including features, such

as circularity of the contour, or the ratio of the length of the clock’s

minute andhourhands,which are commonly used to score theCDT, but

also included several novel features that were considered of potential

benefit.

To facilitate computerized analyses, we relied on all usable data

collected over the period from January 2014 to June 2019. To be

included, scans needed to be clear and needed to have been stored

with appropriate meta-data so that an automated routine could reli-

ablydetermine theperson’s research identificationand thedateofdata

collection, and so that the computer could reliably determine the loca-

tion of the clock. Scans were often excluded because scans were of

lower overall quality and the clock could not be seenwell orwas blurry,

or because the scanner induced visual defects in the files. In addition,

filename conventions and/or PDF-labeling standards were not always

clear. In many cases, the date was not clear from either the meta-data

or could not be accurately read by the computer from the PDF in a

way that matched the scores. Thus, although we collected data on up

to 15,298 observations, these exclusion criteria left 7109 CDTs spread

at random throughout the observational period that were effectively

scanned andmatched to clinical data for use in the current analysis.

Automated CDT scoring focused on 19 dimensions of the Clock

(Supplemental Methodological Appendix for full details). Specifi-

cally, we computed five contour measures (radius size, radius min-

imum/maximum ratio, circularity, center deviation, and removed

points), eight measures of the digits (digit radius mean and SD, digit

angle mean and SD, digit area mean and SD, as well as missing or

extra digits), and finally six handmeasures (intersection distance, hand

angles, hands length ratio, density ratio, bound box ratio, and the num-

ber of components). These form the feature set used in the remainder

of themanuscript.

2.5 CDT auto-scoring code-sharing statement

The code that was developed for use in this project is freely accessi-

ble and can be found at https://github.com/dakota0064/WTC_Clock_

Analysis.

2.6 Validation of CDT auto-scoring

To determine the predictive power of the CDT features, as compared

with the MoCA human-assigned scores, we trained a separate classi-

fier for each of the three scoring factors. Each factor was trained by

using a random forest classifier,22 containing 100 decision trees and
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F IGURE 1 Validation data needed to examine clock scoring reliability including correlationmatrices, clock feature distributions, and example

clock drawings separated by human-assigned contour, digits, and hands scoring.Note: A–C show correlationmatrices comparing contour features

and human-assigned scoring for (A) contours, (B) digits, and (C) hand scores; darker red identifies stronger associations that aremore strongly

positive, while deeper blue shows inverse associations. D–F show the cumulative distribution function for predicted (D) contour, (E) digits, and (F)

hand scores; the two curves correspond to cohorts defined by the ground truth score assigned to the clock contour by human annotators

(unsatisfactory= 0, and satisfactory= 1) and the area between curves shows reasonable separation between classes. G–I show annotated clock

drawings representing predicted score percentiles in the lowest quartile, median, and top quartile for each (G) contour, (H) digits, and (I) hand

human-assigned scores; green labels the digits identified by the computer, purple identifies the hands, and yellow shows the circle that best fits the

centroid.

no pre-set stopping depth. The models were trained on 5400 images

andevaluatedonaholdout set of 1422 images. Eachmodel provided an

overall forest score matched by feature type with the human-assigned

MoCA-CDT scoring. For this purpose, we reported overall accuracy as

well as the cumulative distribution function (CDF) showing the score

distributionmatching the forest scores to theMoCA-CDT scores.

We validated results through analyses showing the matches

between our feature description metrics and overall human-assigned

MoCA-CDT scores (range: 0–3). To elucidate the sources of the

combined contributing features of each subdomain to the clock con-

tours, we used logistic regression to examine multivariable predictive

associations between the computer-assigned MoCA-CDT scores with

human-assigned CDT scores. To understand how the extracted fea-

tures related to performance in a variety of cognitive domains andwith

cognitive impairment, we used age-adjusted Spearman’s rank correla-

tion coefficients to examine associations between extracted features

and neurocognitive test scores. In addition, we report demographics,

including age in years and gender. Finally, for sensitivity analyses we

retrieved both the clinical diagnosis and current symptomatology for

PTSD andmajor depression.

We finished by examining the CDT’s ability to predict incident MCI

on follow-up testing occasions, occurring approximately annually (e.g.,

at least 366 days after baseline assessment). We assessed the inci-

dence of MCI at follow-up among individuals who were cognitively
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F IGURE 2 Validation data needed to examine overall clock

drawing task.Note: A shows the cumulative distribution function plot

for overall clock drawing task scores. Ground truth scores defined by

the total score received on the clock drawing task as determined by

human annotators: total score of 0 (n= 20), total score of 1 (n= 141),

total score of 2 (n= 532), and total score of 3 (n= 729). The curves

demonstrate the expected separation, although all lower scores show

a significant skew upward, probably because of the general data

imbalance. B shows the box andwhisker plot of the summed predicted

clock scores comparedwith the adjusted total Montreal Cognitive

Assessment (MoCA) score. Adjusted total MoCA score is provided by

subtracting the human-assigned clock score from the original total

score. Regression lines of themean predicted score (red) and themean

ground truth scores (blue) for eachMoCA score group are shown

superimposed over the plot.

unimpaired at baseline by using Cox proportional hazard modeling to

estimate the years since follow-up until the incidence of MCI. The

Efron method was used to handle ties; participants were censored

at the time of the final follow-up examination or the date when data

were retrieved.Models includedboth thehuman-assignedand feature-

derived autoscoring for each component (hands, contour, and digits),

and were adjusted for demographics at baseline.

TABLE 1 Characteristics describing theWorld Trade Center

responder sample.

Baseline characteristics (N= 4919) Mean SD

Age, years 54.02 8.35

Global cognition 25.78 2.58

Cognitive performance

Episodic memory 8.56 1.42

Processing speed 0.12 0.05

Numeracy 4.28 1.10

Language 1.60 0.61

Fluency 2.91 0.30

Orientation 5.96 0.20

Visuospatial ability 1.27 0.64

Attention 2.84 0.40

%

Female, % 10.23

Educational attainment

High school or less 26.12

Some college 44.88

College degree 29.00

Race/Ethnicity

White 82.80

Black 5.78

Other 4.11

Hispanic 7.31

Status at assessment

Mild cognitive impairment 16.19

Dementia 1.72

Incidence rate at follow-up (N= 2190) IR 95%CI

Mild cognitive impairment 11.94 11.38–12.53

Dementia 1.64 1.46–1.85

Abbreviations: IR, incidence rate; 95%CI, 95% confidence interval.

3 RESULTS

The average participant in this study was in their mid to late fifties

(Table 1) and the majority were men. Incidence of MCI and demen-

tia was relatively high in this population at follow-up. Nearly all (99%)

wereemployed full timeas respondersduring theevents at theWTCon

9/11/2001, so this variable has not been reported. The average period

between observations was 1.51 (SD= 1.36) years.

3.1 Development and initial validation

of auto-scoring methodology

The contour scores determined by human annotators showed a signif-

icant skew. Within our test set, 8.9%, 11.4%, and 36.4% of the scores
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TABLE 2 Breakdown of the test set into various cohorts determined by human-assigned scoring on each of the categories.

Cohort Size

Mean

Montreal Cognitive

Assessment score

Mean predicted

category score Pearson p

Contour Score= 0 148 24.135 0.734 0.022 0.787

Contour Score= 1 1274 25.779 0.940 0.051 0.069

Digits Score= 0 154 23.208 0.755 0.043 0.596

Digit Score= 1 1268 25.900 0.930 0.130 <0.001

Hands Score= 0 572 24.318 0.583 0.088 0.035

Hands Score= 1 850 26.477 0.679 0.037 0.277

Total Clock Score= 0 20 21.050 2.010 −0.131 0.582

Total Clock Score= 1 141 23.241 2.242 0.048 0.571

Total Clock Score= 2 532 24.885 2.412 0.111 0.010

Total Clock Score= 3 729 26.719 2.569 0.055 0.141

were 0 in the contour, digit, and hand scores, respectively. Figure 1A–C

shows intercorrelations between various auto-scoring features and

human-assigned scoring. These revealed, for example, that circularity

and the radius-ratio weremoderately associated with human-assigned

contour scores. A classifier using the features Circularity and Radius-

Ratio achieved 92.2% accuracy on the test contour set. Figure 1D–F

shows CDF curves for both human-assigned scoring groups by score

type and revealed that most clocks with predicted scores ≤0.9 had

unsatisfactory contour ratings. Figure1G–I shows representative clock

examples for each human-assigned label. In general, CDTs rated as

satisfactory by human hands had evidence of human error, whereas

variation in the 75th percentile group revealed that humans missed

variability captured by automated scores.

Scoring suggested that the distributions of aggregate predicted

scores for each of the four possible total scores on the MoCA-CDT

were similar (Figure 2A). The box-and-whisker plot (of predicted scores

vs the total MoCA scores (Figure 2B) suggested that CDT scores could

not completely replicate overallMoCA scorewithout information from

other cognitive domains.

Table 2 shows a breakdownof themeanMoCA scores and predicted

overall CDT scores by feature score. Significant associations were

observed between predicted overall CDT and mean MoCA scores for

drawings receiving scores indicating digits = 1, hand = 0, or clock = 2.

These values indicate that our system achieved finer-grained predic-

tive resolution when CDT performance was used as a proxy for overall

MoCA performance.

To determine which features were driving annotator scores, logistic

regression was used to predict human-assigned binary scoring in each

category (Table 3). Both the circularity and radius ratio significantly

predicted the clock contour scores, whereas the radius and center

deviation did not. For clock digits, features associated with the digit

radius and digit angle, as well as missing digits, significantly predicted

the overall clock digit scores. All other clock digit features were non-

significantly predictive of overall clock digit scores. Finally, clock hand

scores were associated with all relevant features except for number of

components.

Next, we examined how extracted features related to performance

across cognitive domains (Table 4) and found that across all categories

poorer clock scores were associated with older age, slower process-

ing speed, and higher intra-individual variability. Poorer contour scores

were associated with poorer attention scores, whereas poorer digit

and hand scores were associated with poorer visual memory. Poorer

hand and digit scores were associated with higher atrophy risk.

To assess the clinical utility of extracted scores we examined the

power to predict MCI at follow-up (Table 5). In these results, we

observed that computer-defined features predicted the incidence of

MCI in a jointly estimatedmodel and after adjusting for demographics.

The human-assigned clock hands scorewas also statistically significant

in both models (Table 4). Together, these results indicated the clinical

relevance of the feature extraction and auto-scoring method applied

herein, as it relates to both current cognitive status and prediction of

future conversion toMCI at follow-up.

3.2 Sensitivity analyses

Chronic psychiatric disorders are common in traumatized groups, so

we examined the sensitivity of associations between the human- and

computer-rated clock scores in responderswith chronic PTSDor those

with chronic depression, as compared to those without any signs of

either, to examine the sensitivity of scoring to psychiatric disorders.

Overall, results suggested that the correlations were similar across

populations with and without psychiatric disorders. For example, rho

in patients with diagnoses of chronic PTSD (PTSD checklist score< 30,

n = 162; digits = 0.81; hands = 0.92; and contour = 0.83) was slightly

lower but not substantively different from rho in patients who never

had a diagnosis and did not report symptoms of PTSD (PTSD checklist

score< 30, n= 4,179; digits= 0.91; hands= 0.92; and contour= 0.89).
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TABLE 3 Multivariable associations derived from logistic regression examining the associations between qualitative scores assigned by

research staff as compared to bothmeasured clock features and overall scores derived using random forest modeling.

Clock contour Clock digits Clock hands

Feature B SE p B SE p B SE p

Circularity 17.671 5.141 0.001

Radius ratio 17.217 1.396 <0.001

Radius 0.000 0.002 0.868

Center deviation 0.638 12.264 0.958

Digit radius, mean 2.700 1.240 0.029

Digit radius, SD -13.346 2.865 <0.001

Digit angle, mean -2.408 0.975 0.014

Digit angle, SD -20.533 1.997 <0.001

Digit area, mean -1.720 1.104 0.119

Digit area, SD -0.935 0.592 0.114

Extra digits 0.968 0.685 0.158

Missing digits -3.921 0.470 <0.001

Angle of hands -0.767 0.142 <0.001

Density ratio -0.428 0.198 0.030

BB ratio -3.345 0.220 <0.001

Length ratio -1.856 0.203 <0.001

Distance from intersection -2.413 0.294 <0.001

Number of components -0.427 0.347 0.219

Feature score

Forest contour 11.156 0.360 <0.001 -0.809 0.514 0.116 -0.227 0.303 0.454

Forest digits 0.132 0.308 0.667 0.699 0.320 0.029 11.477 0.266 <0.001

Forest hands 0.540 0.424 0.203 13.22 0.517 <0.001 1.7496 0.283 <0.001

Note: Coefficients (B) and standard error (SE) estimated using logistic regression. Results reported in bold typeface when they were statistically significant

after adjusting for the false discovery rate.

TABLE 4 Age-adjusted Spearman’s correlation coefficients (rho) showing level of association between clock features measured using the

human-assigned scores and random-forest–derived automated feature scores and age as well as cognitive functioning overall and separated into

nine functional subdomains.

Clock contour Clock digits Clock hands Forest contour Forest digits Forest hands

Rho Rho Rho Rho Rho Rho

Age, years 0.039 0.026 0.030 0.037 0.021 0.027

Montreal Cognitive Assessment

without clock scoring

0.062 0.149 0.182 0.078 0.154 0.168

Abstraction -0.010 0.031 0.045 -0.012 0.036 0.039

Processing speed 0.046 0.074 0.076 0.041 0.072 0.076

Numeracy 0.031 0.082 0.108 0.035 0.089 0.094

Language 0.014 0.030 0.021 0.024 0.029 0.018

Fluency 0.018 0.024 0.055 0.018 0.023 0.054

Orientation 0.029 0.071 0.032 0.032 0.055 0.031

Visuospatial function 0.081 0.115 0.170 0.084 0.125 0.159

Attention 0.024 0.067 0.064 0.029 0.060 0.055

Episodic memory 0.044 0.079 0.113 0.053 0.092 0.105

Note: All scores have been adjusted so that higher scores indicate poorer performance across all measures. Intensity of the red shading indicates the signif-

icance level of each association, with cells reporting no significant associations in white, significant but overall weaker associations in pink and lighter red

colors, and stronger and statistically significant associations in dark red colors.
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TABLE 5 Comparison of association between computer-assigned feature composite scores and human-assigned scoringmethods with

contemporary presence and later incidence of mild cognitive impairment.

Prevalentmild cognitive impairment

contemporaneouswith scoring Incidentmild cognitive impairment after scoring

Feature aOR 95%CI p aHR 95%CI p

Human-scored clock hands 0.62 0.48–0.80 <0.001 0.38 0.28–0.51 <0.001

Forest clock hands 0.70 0.47–1.04 0.075 0.54 0.33–0.88 0.013

Human-scored contour 1.07 0.70-1.64 0.754 1.09 0.73–1.64 0.673

Forest contour 0.45 0.25–0.82 0.009 0.48 0.26–0.88 0.017

Human-scored digits 0.74 0.48–1.13 0.164 0.84 0.56–1.25 0.395

Forest digits 0.33 0.17–0.61 <0.001 0.26 0.14–0.47 <0.001

Note: aOR, multivariable-adjusted odds ratio; aHR, multivariable-adjusted hazards ratio; 95% CI, 95% confidence interval; P, nominal p-value derived from

a Cox proportional hazards regression model. All models shown additionally adjust for age in years, sex/gender, and race/ethnicity. Results reported in bold

typeface when theywere statistically significant after adjusting for the false discovery rate.

4 DISCUSSION

The CDT is a clinical tool that by itself can be used to deter-

mine the presence and severity of cognitive impairment but is also

included as a sub-task of the MoCA. The goal of the present work

was to determine whether an automated feature extractor could

reliably replicate or improve upon the human-assigned MoCA-CDT

scoring. Results suggested that the computer-derived feature scores

supported human-assigned scores and MoCA-CDT scores, but CDT

scores derived from the machine-learning algorithm were not able

to reliably replicate the full MoCA score. Results suggest that the

auto-scoring systemachieved finer-grainedpredictive resolutionwhen

CDT performance was used as a proxy for overall MoCA perfor-

mance. The study also suggested that several features identified by

themachine-learning algorithmprovided information thatwas ignored

by human raters. These improvements appeared to emerge from

the confluence of smaller differences, which although evident to the

computer were overlooked by raters. Results support the use of com-

puter vision and machine-learning methods to replace human CDT

scoring.

Turning to validation of our machine-learning algorithm results

overall speak to the clinical relevance of this scoringmethod as related

to both current cognitive status and the prediction of future con-

version to MCI at follow-up. Since 2014, the MoCA-CDT has been

collected as part of a study of responders who worked at the WTC

sites after the tragic events on 9/11/2001, and we have included the

scoring provided by human raters in epidemiological analyses focused

on understanding brain health.23 Results suggest that the auto-scoring

method could be useful for distinguishing patients who are experienc-

ing clinically relevant cognitive changes indicative of higher risk for

MCI compared to those who might remain cognitively normal. Specifi-

cally, auto-scoring predicted future conversion toMCI for participants

whowere deemed to be cognitively normal on initial CDT assessments,

whereas human scoring predicted only the incidence of MCI when

examining clock hands. Together, findings support the use of the auto-

scoring method for detecting subtle distinctions between participants

who are cognitively normal at baseline and develop MCI versus those

who remain cognitively normal. The ability to distinguish two different

subgroups is important, since hand-scoring methods for the CDT have

low sensitivity for distinguishingMCI andmild AD.24

One advantage of the current approach over past auto-scoring

approaches is that the features extracted by the current machine-

learning algorithm can be described in terms that are easily under-

standable to human scorers (e.g., “missing digits” and “extra digits”

under the digit feature). This aspect might enable a more complete

description of how participants received a specific score; for example,

one participant might receive a poor digit score because of missing

digits, whereas another participant might receive the same score by

adding extra digits. There has been renewed interest in characterizing

neuropsychological test performanceusingprocess-basedapproaches,

particularly asmediated through the technology.25 In contrast to previ-

ously proposed “black box” approaches to auto-scoring for the CDT,10

CDT features extracted through the current approachmay improve the

ability to explain results.

Future studiesmay adopt the auto-scoringmethoddescribedherein

to validate this approach in a greater variety of psychiatric and neu-

rological populations, and to conduct finer-grained analyses of the

extracted features’ relationship with cognitive status. For example,

in studies of action execution, action omission has been associated

with amnestic MCI, whereas commission errors (including repeated

actions) have been associated with dysexecutive MCI.26 Similar pat-

terns emerge for missing digits (omissions) and extra digits (com-

missions) in patients with varying degrees and types of cognitive

impairment thanwere tested in the current study.

5 LIMITATIONS

Despite being the largest study to date to examine digitized images

of hand-drawn versions of the CDT completed during in-person

administration of the MoCA, this study had several limitations. First,

individuals were assessed at midlife when neurodegenerative diseases
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are relatively uncommon. This might have improved the training of

the method to recognize variation seen in normal functioning and

improved sensitivity for detecting early forms of cognitive decline but

may have also limited our ability to determine features that might

be specific to more severe disease or to different disease subtypes.

Moreover, this study focused on a cohort of WTC responders mostly

comprising men who are thought to be at heightened risk of brain

aging due to their exposures on site during the response efforts. Con-

sequently, this work may benefit from replication efforts in other

populations.

The current approach tested model performance of a computer-

generated CDT scoring metric against human CDT scoring provided

by trained raters as the “ground truth.” Given the issues with human-

assigned scoring, human scoringmeasures do not appear to be optimal

for evaluating model performance. Future efforts may consider raters’

number of years of experience in scoring the MoCA-CDT and/or

average scores awardedby specific raters to account for inter-rater dif-

ferences to attempt to control for idiosyncrasies that might arise from

measures relying on hand-scoring by different raters.

Although prior studies of CDT have been conducted in samples with

mixed MCI/dementia, the WTC sample is a population cohort and is

composed primarily of individuals with normal cognitive functioning.

Therefore, when compared to clinical cohorts, the WTC responder

sample reported herein might be expected to exhibit better perfor-

mance on the MoCA and particularly on the CDT, given the relative

preservation of cognitive function in this sample. The potential for

the WTC cohort to score better on the CDT than clinical studies have

two practical consequences for the current investigation. First, scores

clustered at the higher end of the range, rather than more evenly dis-

tributed across the range, may limit the extent to which the current

automated scoring methodology could be applied to clock drawings

produced by more impaired populations. Concurrently, development

of the automated scoring method in a relatively less-impaired sample

compared to those used in prior studies may be useful for identify-

ing CDT features that can reliably differentiate clinically relevant MCI

from normal cognitive aging. Distinguishing normal cognitive aging

fromMCI can be difficult to do in clinical settings but is quite important

from the standpoint of the potential for early intervention and behav-

ioralmanagement of symptomology that could be especially helpful for

individuals withMCI.27

5.1 Clinical implications

This large-scale study demonstrated that an automated scoring for

the CDT could be used with standard administration techniques in a

way that improved test sensitivity. CDT auto-scoring methods provide

an objective score for the CDT, while reducing the burden of human

scoring the CDT. The algorithm allows for a characterization of CDT

performance,whichmaybe able to differentiate normal cognitive func-

tioning more sensitively from MCI in mid to late life. In addition, it

generates features such as clock size and pen pressure that may be

sensitive tomobility or behavioral differences. Finally, our auto-scoring

method opens the door to the use of open-source electronic tools for

collecting CDTs in clinical settings and could allow for the use of phone

apps or other electronic means of producing CDTs to facilitate patient

monitoring. Together, these results support the clinical utility of CDT

automated scoring methods when characterizing MCI and prodromal

ADRD.
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