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AbstractÐIn the era of big data, there is massive demand
for new techniques to forecast and analyze multi-dimensional
data. One task that has seen great interest in the community
is anomaly detection of streaming data. Toward this end, the
current research develops a novel approach to anomaly detection
of streaming 2-dimensional observations via multilinear time-
series analysis and 3-dimensional tensor principal component
analysis (3DTPCA). We approach this problem utilizing di-
mensionality reduction and probabilistic inference in a low-
dimensional space. We first propose a natural extension to 2-
dimensional tensor principal component analysis (2DTPCA) to
perform data dimensionality reduction on 4-dimensional tensor
objects, aptly named 3DTPCA. We then represent the sub-
sequences of our time-series observations as a 4-dimensional
tensor utilizing a sliding window. Finally, we use 3DTPCA to
compute reconstruction errors for inferring anomalous instances
within the multilinear data stream. Experimental validation is
presented on a synthetic multilinear time-series data, video
streams via MovingMNIST data, and dynamic networks via the
NYC Taxi Record. Results illustrate that the proposed approach
has a significant speedup in training time compared with deep
learning, while performing competitively in terms of accuracy.

I. INTRODUCTION

Anomaly detection for streaming multi-dimensional obser-

vational data has been one of the most influential tasks for

machine learning. The application of anomaly detection for 2-

dimensional or 3-dimensional observations can be applied to

a diverse set of domains, a subset of which include, detecting

anomalies in video sequences, dynamic networks, and satellite

imagery [1]±[3]. Time-series anomaly detection differs from

traditional anomaly detection techniques due to its temporal

component. While there can be global outliers within the

time-series, there can also be local outliers to due abnormal

temporal behaviors.
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Historically, there are numerous anomaly detection methods

for univariate and multivariate time-series [4]. Several meth-

ods are available for this approach, such as autoregressive

integrated moving average (ARIMA) models and long-short

term memory (LSTM) neural networks [5]±[7]. In general,

these approaches utilizing time-series forecasting to evaluate

anomalies based on their forecast error. However, these meth-

ods assume that the historical data we can be well represent

via time-series modeling.

Another approach for detecting anomalies is utilizing di-

mensionality reduction and probabilistic inference in the re-

duced dimensional space [4], [8]. In general, this approach

involves reducing the dimension of the time-series to a lower

dimensional subspace, with the assumption that anomalies will

be significantly different to normal observations in this lower

space. Along these lines, there have been numerous techniques

that use autoencoders for dimensionality reduction via the

encoded latent space [1], [8]±[11]. These autoencoders come

in several variations such as LSTM autoencoders and convolu-

tional neural network (CNN) autoencoders [9]±[11]. Another

set of methods use singular value decomposition (SVD) in or-

der to represent temporal observations in a lower-dimensional

space via principal component analysis (PCA) [12], [13]. For

example, the authors in [12] utilized the SVD to perform latent

semantic analysis for local sub-sequences.

For multilinear time-series, extensions to such methods have

been pursued to where the historical observations are no

longer scalars or vectors but can be represented as a lateral

slice of a tensor (e.g. Xt ∈ R
ℓ×1×m).1 A tensor in this

context is a multi-dimensional array, often referred to as a

n-mode or n-way array as defined in Section II. Recently,

new methods have been proposed to perform dimensionality

reduction on tensors by capitalizing on the spatial correlations

within each observation while simultaneously capitalizing on

1Note: It’s customary in the literature to represent tensors with upper-case
calligraphic letters.



the temporal correlations across observations. In particular,

two-directional tensor principal component analysis, referred

to as 2DTPCA [14], investigates the fusion of two different

reduced dimensional subspaces, one to represent correlations

in the ªrowº-data and another to represent correlations in the

ªcolumnº-data. For image classification problems, 2DTPCA

has outperformed many state-of-the-art methods related to

deep learning, LSTMs, and alternate forms of tensor repre-

sentations.

The current paper builds on the work in [14] for dimen-

sionality reduction but extends the correlation models for

both 3-dimensional data as well as anomalous observations.

In particular, we represent a sub-sequence of size p from a

multilinear time-series model as a 4-mode tensor (e.g. St ∈
R

ℓ×1×m×p), where ℓ and m capture the spatial correlations in

each observation and p captures the temporal correlations from

a historical moving window. We propose a natural extension

to 2DTPCA to perform dimensionality reduction for our sub-

sequence tensor St, aptly called 3-directional tensor principal

component analysis or 3DTPCA for short. We illustrate that

3DTPCA decomposes row, column, and temporal dimensions

for anomaly detection. Utilizing reconstruction error from the

low-dimensional 3DTPCA space, we evaluate if new multilin-

ear observations are abnormal. Experimental results presented

on synthetic multilinear time-series data, video streams via

MovingMNIST, and dynamic networks via the NYC Taxi

Record to illustrate the effectiveness of the proposed approach

for detecting anomalous events in multilinear observations. We

also demonstrate the significant speedup that is achieved over

deep learning approaches.

The remainder of the paper is organized as follows: In

Section II we provide some mathematical background for

the tensor linear algebra used throughout the paper. In Sec-

tion III we present our proposed extensions from 2DTPCA to

3DTPCA for unsupervised learning, dimensionality reduction,

and observational reconstruction. We also illustrate how we

use 3DTPCA for multilinear time-series anomaly detection.

In Section IV we present some experimental results with our

proposed method and compare/constrast with the state-of-the-

art. We evaluate the methods in terms of their receiver operat-

ing characteristic (ROC) curves and their computational speed.

Section V contains our conclusions and future directions.

II. MATHEMATICAL PRELIMINARIES

In this section, we provide an overview of the notation

and operations used throughout the paper for order-n tensors.

A much more detailed treatment can be found in [15]±[20],

however, to keep the current paper self-contained an overview

is provided here.

A. Notation

First, we will review the basic definitions of a tensor

from [15], [16]. In the context of this paper, we refer a multi-

dimensional array as a tensor. The tensor’s order is the number

of dimensions or modes. For example, a tensor of order-n

Algorithm 1 tensor-tensor product induced by ∗L

Input: Input tensors A ∈ R
m1×ℓ×···×mn and B ∈

R
ℓ×m2×···×mn

Output: C ∈ R
m1×m2×···×mn

for i = 3 to n do

Ã ← L
(

A, [ ], i
)

B̃ ← L
(

B, [ ], i
)

end for

for i = 1 to m3 do

for j = 1 to m4 do
...

for k = 1 to mn do

C̃(:, :, i, . . . , k) = Ã(:, :, i, . . . , k) · B̃(:, :, i, . . . , k)
end for
...

end for

end for

for i = n to 3 do

C ← L−1
(

C̃, [ ], i
)

end for

is denoted by A ∈ R
m1×m2×···×mn . Therefore, vectors and

matrices are first- and second-order tensors, respectively.

It will be convenient to break a tensor A ∈ R
m1×m2×···×mn

up into various slices and tubal elements. A frontal slice of

tensor with order-n will be notated with subscript indexing

such as A(i1...in). For example, let A ∈ R
m1×m2×m3 be a

third-order tensor. The frontal slice corresponding to mode-3 is

notated as A(i3) with Python slicing A[:, :, i3]. We will notate

a
(k)
i1...in

as the mode-k fiber corresponding to the ith
1 · · · i

th
n

index. For example, a
(1)
i2i3

is the mode-1 fiber corresponding to

the ith
2 and ith

3 index, assuming Python indexing would yield

a
(1)
i2i3

= A[:, i2, i3].

B. Order-n Tensor Operations

An operation that is fundamental to the results of current

work is the multiplication of two order-n tensors. A family

of tensor-tensor products for third-order tensors has been

formulated in the transform domain for any invertible linear

transformation [15]. This work has been extended for order-n

tensors in [17]. Utilizing the notation outlined in [15] and [17],

we define the following operators:

Definition 1. Let A ∈ R
m1×ℓ×···×mn and B ∈ R

ℓ×m2×···×mn

be order-n tensors. The tensor-tensor product based on L

transform A∗LB ∈ R
m1×m2×···×mn is computed by applying

matrix multiplication to the frontal slices of A and B in the

transform domain. This is shown in an algorithmic fashion in

Algorithm 1.2

2Note: For all algorithms shown, the vertical dots indicate nested for-loops.
The nested for-loops continue from mode-3 to mode-n



Algorithm 2 tensor transpose

Input: Input tensor A ∈ R
m1×m2×···×mn

Output: B ∈ R
m2×m1×···×mn

for i = 3 to n do

Ã ← L
(

A, [ ], i
)

end for

for i = 1 to m3 do

for j = 1 to m4 do
...

for k = 1 to mn do

B̃(:, :, i, . . . , k) = Ã(:, :, i, . . . , k)T

end for
...

end for

end for

for i = n to 3 do

B ← L−1
(

B̃, [ ], i
)

end for

Definition 2. The identity tensor I ∈ R
m×m×m3×···×mn is

the tensor whose first frontal slice is the m×m identity matrix

in the transform domain.

Definition 3. If A ∈ R
m1×m2×···×mn , then the tensor

transpose ttransL(A) ∈ R
m2×m1×···×mn is computed by

transposing the frontal slices of A in the transform domain.

This is shown in an algorithmic fashion in Algorithm 2.

Definition 4. A tensor A ∈ R
m1×m2×···×mn is called orthog-

onal if A ∗L ttransL(A) = ttransL(A) ∗ A = I.

A tensor rotation operator for order-3 tensors is defined

in [14], we extend this to order-n tensors here.

Definition 5. The tensor rotation operator rol(A, i, j) is

the tensor obtained by swaping the axis in the ith and jth mode.

For example, let tensor A ∈ R
m1×m2×m3×···×mn , then

the tensor rotation along mode-1 and mode-2 results in

rol(A, 1, 2) ∈ R
m2×m1×m3×···×mn .

C. Order-n Tensor Singular Value Decomposition

The final tool required for the current research is a tensor

singular value decomposition defined for order-n tensors (re-

ferred to as the t-SVDL). We note that the t-SVDL can be de-

fined using any inevitable linear transformation. L denotes the

linear transformation used for computing the decomposition.

For A ∈ R
m1×m2×···×mn , then there exists tensors U, S, V

such that

A = U ∗L S ∗L ttransL(V),

where U ∈ R
m1×m1×m3×···×mn is an orthogonal tensor

of left-singular matrices (analogous to left-singular vectors

in order-2 tensors), ttransL(V) ∈ R
m2×m2×m3×···×mn

is an orthogonal tensor of right-singular matricies (analo-

gous to right-singular vectors in order-2 tensors), and S ∈

Algorithm 3 t-SVDL

Input: Input tensors A ∈ R
m1×m2×···×mn

Outputs:

U ∈ R
m1×m1×m3×···×mn

S ∈ R
m1×m2×m3×···×mn

V ∈ R
m2×m2×m3×···×mn

for i = 3 to n do

Ã ← L
(

A, [ ], i
)

end for

for i = 1 to m3 do

for j = 1 to m4 do
...

for k = 1 to mn do

Set Ũ(:, :, i, . . . , k), S̃(:, :, i, . . . , k), Ṽ(:, :, i, . . . , k)
to the result of the matrix SVD of Ã(:, :, i, . . . , k)

end for
...

end for

end for

for i = n to 3 do

U ← L−1
(

Ũ , [ ], i
)

S ← L−1
(

S̃, [ ], i
)

V ← L−1
(

Ṽ, [ ], i
)

end for

R
m1×m2×m3×···×mn is an f-diagonal tensor (analogous to sin-

gular values in order-2 tensors). The t-SVDL(A) is computed

by applying the matrix singular value decomposition to the

frontal slices of A in the transform domain. This is shown in

an algorithmic fashion in Algorithm 3

III. PROPOSED APPROACH TO MULTILINEAR TIME-SERIES

ANOMALY DETECTION

In this section we present our extension of 2DTPCA to

3DTPCA to perform dimensionality reduction for fourth order

tensors. We then proceed to use 3DTPCA for multilinear time-

series anomaly detection.

A. Proposed 3DTPCA Method

1) Unsupervised Training: 2DTPCA outlined in [14] per-

forms dimensionality reduction on third order tensors. The

authors accomplish this by utilizing the t-SVDL along mode-

1 and mode-3 to capture the correlations across the row and

column dimensions, respectively. They are able to fuse the

row and column subspaces by applying the tensor rotation

operator rol before data projection. We propose an extension

to 2DTPCA to perform dimensionality reduction on a fourth-

order tensor A ∈ R
ℓ×n×m×p, aptly called 3DTPCA. We

extend 2DTPCA by following a similar process for mode-

1 and mode-3, but now compute the t-SVDL for mode-4.

Therefore, we propose a process to capitalize on the cor-

relations along mode-1 (column-space), mode-3 (row-space),

and mode-4 (temporal-space). The ultimate goal is to reduce

the dimensionality of a subset of the multilinear data along



these modes in an effort to perform inference in a reduced

dimensional space.

Because we are going to be computing the t-SVDL multiple

times, we denote iUk as the first k lateral slices of the left

singular tensor U computed for mode-i. We also denote iS and
iV as the right singular tensor and f-diagonal tensor for mode-

i, respectively. To outline the process of 3DTPCA, we compute

t-SVDL(A) =
1U ∗L

1S ∗L ttransL(
1V). 1U now contains

the left singular tensors associated with the correlations in

mode-1. We then perform dimensionality reduction in mode-1

by projecting the tensor A onto the first k left singular tensors

as

Y = ttransL(
1Uk) ∗L A ∈ R

k×n×m×p.

To capture the correlations on mode-3, we first compute

the tensor rotation operator Ȳ = rol(Y, 1, 3) ∈ R
m×n×k×p.

We then compute t-SVDL(Ȳ) =
3U ∗L

3S ∗L ttransL(
3V).

3U now contains the left singular tensors associated with the

correlations in mode-3. We then proceed with dimensionality

reduction for mode-3 by projecting the tensor Ỹ onto the first

q left singular tensors via

W = ttransL(
3Uq) ∗L Ȳ ∈ R

q×n×k×p.

Finally, to capture the correlations in mode-4, we compute

the tensor rotation operator W̄ = rol(W, 1, 4) ∈ R
p×n×k×q

and then compute t-SVDL(W̄) = 4U ∗L
4S ∗L ttransL(

4V).
From there, training is complete and we are able to perform

dimensionality reduction utilizing our collection of left singu-

lar tensors Θ = {1Uk,
3Uq,

4U}. To define this process, we

create the following definition:

Definition 6. If A ∈ R
ℓ×n×m×p, then training 3DTPCA is

defined as 3DTPCA(A) = Θ = {1Uk,
3Uq,

4U} where Θ is

the collection of our left singular tensors.

2) Dimensionality Reduction: For the current research, we

also need to be able to take a new data tensor B ∈ R
ℓ×w×m×p

and reduce the dimensionality of B utilizing Θ. Note that

mode-2 of B can have a different size w, but the size of

mode-1, mode-2, and mode-4 must be the same as A. This

is done in a similar fashion to the training process, however

we do not recompute the t-SVDL. Instead, we utilize the set

of left singular tensors Θ for projection. We first project along

mode-1 via

Y = ttransL(
1Uk) ∗L B ∈ R

k×w×m×p.

We proceed to consider correlations in mode-3 by applying

the tensor rotation operator Ȳ = rol(Y, 1, 3) ∈ R
m×w×k×p

and project along mode-3 via

W = ttransL(
3Uq) ∗L Ȳ ∈ R

q×w×k×p.

Finally, we proceed to consider correlations in mode-4 by

applying the tensor rotation operator W̄ = rol(W, 1, 4) ∈
R

p×w×k×q and project along mode-4 via

Z = ttransL(
4Ur) ∗L W̄ ∈ R

r×w×k×q.

We define this process of performing data dimensionality with

the set of left singular tensors Θ with the following definition:

Definition 7. If B ∈ R
ℓ×w×m×p, then performing dimension-

ality reduction with 3DTPCA utilizing the set of left singular

tensors Θ is defined as Reduce(A,Θ) = Z ∈ R
r×w×k×q

where r, k, q are the reduced dimensions.

3) Reconstruction: We also desire to reconstruct our re-

duced tensor Z back to its original form B. We can perform

this by reversing the order of the previous process. We first

reconstruct along mode-4 on W̄ as

W̄ = 4Ur ∗L Z ∈ R
p×w×k×q.

We then proceed inverse the tensor rotation operator by W =
rol(W̄, 1, 4) ∈ R

q×w×k×p. This process now allows us to

reconstruct along mode-3 as

Ȳ = 3Uq ∗LW ∈ R
m×w×k×q,

and perform the inverse of the tensor rotation opertator by

Y = rol(Ȳ, 1, 3) ∈ R
k×n×m×p to complete the reconstruc-

tion along mode-3. Finally, we finish reconstruction for mode-

1 as

B̂ = 1Uk ∗L Y ∈ R
m×w×k×q,

where B̂ signifies the reconstruction of B. To define this

process, we create the following definition:

Definition 8. If Z ∈ R
r×n×k×q , then reconstructing Z

utilizing the set of left singular tensors Θ is defined as

Reconstruct(Z,Θ) = B̂ ∈ R
ℓ×n×m×p where B̂ is ap-

proximate to the original tensor B.

4) Fast t-SVD: Recently, the authors in [21] showed that

for datasets with highly correlated observations, there is a

method to increase computational speed of the t-SVD. They

showed that for A ∈ R
ℓ×n×m, we can reduce the dimension

of mode-2 by applying the fast Fourier transform (FFT). Note

that n is the number of observations, which is generally

large. After computing the FFT for mode-2, observations

that are highly correlated will have higher magnitude in low

frequencies. Therefore, most of the information in mode-2 can

be saved by selecting the first r lateral slices, where in general

r << n. Then applying the inverse FFT in mode-2 results in

Ā ∈ R
ℓ×r×m.

If we apply this same result to 3DTPCA, we can get a

competitive advantage in computational speed. We refer this as

fast 3DTPCA. Our process is that for tensor A ∈ R
ℓ×n×m×p,

we will compute fast 3DTPCA by first reducing the tensor

in mode-2 using the process outlined earlier. Using the new

tensor Ā ∈ R
ℓ×r×m×p, we can proceed to compute 3DTPCA

as 3DTPCA(Ā) to receive our set of left singular tensors Θ.

We can then use Θ for future dimensionality reduction and

reconstruction.

B. Proposed Anomaly Detection Model

Our aim is to detect anomalies for a time-series with

multilinear observations Xt ∈ R
ℓ×1×m for t = 1, 2, · · · , n.



Fig. 1: Graphical illustration of the sliding window. The red

box illustrates the sub-sequence St of multilinear time-series

Xt with a sliding window size of p = 4. Multilinear observa-

tions originate from the MovingMNIST dataset presented in

Section IV.

We assume that the multilinear observations Xt contains

no anomalies during unsupervised training. We accomplish

anomaly detection by representing our multilinear time-series

as a tensor where mode-1 is rows, mode-3 is columns, and

mode-4 is temporal. We then perform 3DTPCA with dimen-

sionality reduction and reconstruction along our time-series.

Then we proceed to detect anomalies based on their recon-

struction error. Anomalies should be represented poorly in

PCA space and therefore should have a higher reconstruction

error.

1) Unsupervised Training: To captured temporal patterns,

we construct our time-series into the tensor A ∈ R
ℓ×n−p×m×p

utilizing a sliding window of size p, a technique shown in [22].

This technique creates a sub-sequence of size p for each

multilinear observations Xt. An illustrative example of the

sliding window is shown in Fig. 1. We create a sub-sequence

of our time-series by stacking our multilinear observations Xt

along mode-4 as

St =
(

Xt Xt−1 · · · Xt−p

)

∈ R
ℓ×1×m×p (1)

where St is the sub-sequence at time t, and we have a window

of size p. We then proceed to stack our sub-sequences St along

mode-2 as

A =
(

Sp Sp+1 · · · Sn
)

∈ R
ℓ×n−p×m×p. (2)

The resulting tensor A ∈ R
ℓ×n−p×m×p contains our rows

in mode-1, our columns in mode-3, and our temporal sub-

sequences in mode-4. To define this process of using equa-

tions 1 and 2 we create the following definition:

Definition 9. Utilizing a sliding window for multilinear ob-

servations Xt ∈ R
ℓ×1×m for t = 1, 2, · · · , n is defined as

Window(Xt) = A ∈ R
ℓ×n−p×m×p where p is the size of the

window.

Algorithm 4 Window

Input: Multilinear observations Xt ∈ R
ℓ×1×m for t =

1, 2, · · · , n and window size p.

Output: A ∈ R
ℓ×n−p×m×p

for i = p to n do

for j = 1 to p do

A(:, i, :, j) = Xi−j

end for

end for

To represent the tensor A in PCA space, we now compute

3DTPCA(A) = Θ = {1Uk,
3Uq,

4Ur},

resulting in a set of left singular tensors Θ. We proceed to

perform dimensionality reduction and reconstruction utilizing

3DTPCA via

Â = Reconstruct(Reduce(A,Θ),Θ),

where Â is the reconstructed tensor from A. Note that

we contain approximates for the sub-sequences Â =
(

Ŝp Ŝp+1 · · · Ŝn
)

∈ R
ℓ×n−p×m×p. We proceed com-

pute the reconstruction error ϵt ∈ R as

ϵt = ||St − Ŝt||F , (3)

where F notates the Forbenius norm. To perform anomaly

detection, we create a threshold from our reconstruction errors

ϵt based on a chosen percentile. As shown in the next section,

we will use this threshold for anomaly detection.

2) Anomaly Detection: Once we receive w new multilinear

observations Xv ∈ R
ℓ×1×m for v = n + 1, n + 2, · · · , w,

we perform anomaly detection by first utilizing the sliding

window for the new observations via

Window(Xv) = B ∈ R
ℓ×w−p×m×p

where B is our new data tensor. We then perform dimension-

ality reduction and reconstruction utilizing 3DTPCA via

B̂ = Reconstruct(Reduce(B,Θ),Θ),

and compute the reconstruction error via

ϵv = ||Sv − Ŝv||F .

Utilizing the threshold we previously received during training,

we label anomalies if they are above the threshold from

training as

Anomaly(Xv) =

{

Anomaly ϵv ≥ threshold

Normal ϵv < threshold

IV. EXPERIMENTAL RESULTS

In this section, we will compare our proposed 3DTPCA

method with other methods in the literature. We will evaluate

the methods quantitatively based on their receiver operating

characteristic (ROC) curve and computational speed. Deep

learning has several techniques to perform multilinear time-

series anomaly detection [1], [8]. Specifically, we utilize an



Fig. 2: Illustration of the MovingMNIST dataset. The left

frame contains a normal observation before our anomaly. At

time-step 4500 an anomalous digit enters the frame as shown

in the middle frame. The anomalous digit leaves the frame

after time-step 4800 as shown in the right frame.

long-short term memory neural network (LSTM) autoencoder

to compare our technique with another reconstruction based

method. We also compare our results to principle component

analysis (PCA) to examine the advantage we receive when we

represent the multilinear time-series spatially.

A. Datasets

We utilize datasets that are designed for unsupervised train-

ing. Specifically, the training set will contain no anomalies

while the testing set will contain both normal and abnormal

observations. Namely: (a) a synthetic transform-based tensor

autoregression (L-TAR) process [23]; (b) an adapted version

of the MovingMNIST dataset that contains a grid of bouncing

MNIST digits [24]; (c) the NYC Trip Record dataset of taxicab

trips [25].

1) Synthetic L−TAR: We generate a 20 × 20 synthetic

time-series utilizing a L-TAR process described in [23]. We

generate 3000 normal observations as

Xt = A ∗L Xt−1 + Et,1,

where A1 ∈ R
20×20×20 is a coefficient tensor that was

arbitrarily selected as

A(1) =











0.5 0 · · · 0
0 0.5 · · · 0
...

...
. . .

...

0 0 · · · 0.5











,

A(2) = A(3) = 0,

and Et,1 is white noise generated under a uniform distribution

Et,1 ∼ U(−0.1, 0.1). We proceed to generate 1000 abnormal

observations by increasing the noise. We do this by increasing

uniform distribution’s range by 0.0001 for each proceeding

time step. This results in similar L-TAR process as

Xt = A1 ∗ Xt−1 + Et,2,

where Et,2 ∼ U(−0.1 − 0.0001t, 0.1 + 0.0001t) is our new

white noise that is dependent on time. We proceed to use

the first 2500 observations for training and the last 1500

observations for testing.

Fig. 3: Graph representation of the NYC Trip Record dataset.

The nodes are zones in the Manhattan area. The edge’s weight

are the daily number of taxicab trips from the pickup zone

to the dropoff zone. Edge weights are shown as the edge’s

opacity. Left: Before COVID-19 on January 1st, 2020. Right:

COVID-19 on March 14th, 2020.

2) MovingMNIST: The MovingMNIST dataset presented

in [24] is a dataset of bouncing MNIST digits. In the literature,

this dataset has been used for forecasting a multilinear time-

series [24], [26], [27]. We adapt this dataset for anomaly

detection by first generating 5000 normal frames of size

50×50 with just two bouncing digits. We create an anomaly by

inserting a third digit at time-step 4500. The anomalous digit

leaves the frame at time-step 4800. The frames of normal and

abnormal observations are shown in Fig. 2. We proceed to

use the first 4000 observations for training and the last 1000
observations for testing.

3) NYC Trip Record: The NYC Trip Record dataset con-

tains taxicab pickup and dropoff locations for the New York

Manhattan area [25]. We use this dataset for anomaly detection

because COVID-19 caused a dramatic decrease in the amount

of trips. The impact of COVID-19 can be seen in Fig. 3. The

original dataset splits the area into 263 pickup and dropoff

zones. These zones can be represented as nodes in a dynamic

graph. We picked 22 of the most frequently visited zones and

represent the dynamic graph with a 22×22 adjacency matrix.

We represent the edges of the dynamic graph as daily number

of trips for the corresponding pickup and dropoff zones. We

noticed that the decrease in the amount of trips happened

around March 14th, 2020. Therefore, we consider any date

after March 14th, 2020 as abnormal and the rest as normal. We

use Janurary 1st, 2015 to December 31st, 2019 as our training

set (1826 observations) and the entire year of 2020 as our

testing set (365 observations).

B. Performance in Anomaly Detection

We evaluate the method’s effectiveness of anomaly detection

utilizing ROC curves. ROC curves are produced by changing

the threshold of the reconstruction errors and calculating the

true positive rate (TPR) vs the false positive rate (FPR). We

calculate the area under the ROC curve (AUC) for comparison.

The ROC curves are shown in Fig. 4, and the AUC is shown

in Table II. We also show how we configured the methods in

Table I.

As can be seen from Table II, the proposed method is a

top performer for these datasets. 3DTPCA is very competitive



TABLE I: Model Configurations

Methods L−TAR MovingMNIST NYC Trip Record

fast 3DTPCA p = 5, reduced tensor size = 3× 7× 1 p = 10, reduced tensor size = 1× 1× 1, p = 7, reduced tensor size = 1× 2× 2,
utilizes fast t-SVD with r = 100 utilizes the fast t-SVD with r = 50

LSTM LSTM layers of size (128, 32, 32, 128) LSTM layers of size LSTM layers of size
with relu activation (1024, 256, 64, 64, 256, 1024) (1024, 256, 64, 64, 256, 1024)

with relu activation with relu activation

PCA 6 principal components 25 principal components 20 principal components

(a) L−TAR (b) MovingMNIST (c) NYC Trip Record

Fig. 4: Receiver operating characteristic (ROC) curves for quantitative evaluation.

with the deep learning approach. We also see that we receive a

large advantage over PCA when we represent our observations

spatially.

We also show the reconstruction errors produced with each

method in Fig. 5. The red highlight shows where anomalous

observations are present and the orange dashed line shows the

90% threshold based on the training reconstruction errors. As

we can see, 3DTPCA and the LSTM perform very similar

in terms of detecting anomalous observations, however, as

illustrated below, 3DTPCA is significantly better in terms of

computational speedup.

TABLE II: AUC for Experiments

Methods L−TAR MovingMNIST NYC Trip Record

fast-3DTPCA 0.947 0.966 0.9994

LSTM 0.967 0.961 0.9992
PCA 0.856 0.810 0.365

TABLE III: Computational Speed (in seconds)

Methods L−TAR MovingMNIST NYC Trip Record

3DTPCA 3.71 ± 0.23 13.68 ± 0.59 2.22 ± 0.13
LSTM 6.01 ± 0.14 61.15 ± 0.70 73.16 ± 0.53
PCA 0.16 ± 0.03 1.11 ± 0.12 0.37 ± 0.09

3DTPCA Speedup 1.62 4.47 32.95
vs. LSTM

TABLE IV: AUC for Fast Experiments

Methods MovingMNIST NYC Trip Record

fast-3DTPCA 0.966 0.999

fast-LSTM 0.818 0.368
fast-PCA 0.231 0.692

C. Performance in Computational Speed

To evaluate the computational speed, we measured the

running time of training 20 times and calculated the average

running time ± the standard deviation. The results shown in

seconds can be seen in Table III. We can see that 3DTPCA has

a significant speedup compared to the LSTM while performing

nearly the same in anomaly detection.

Note that in Table I we utilize the fast t-SVD for 3DTPCA.

This is the reason why we get massive speedups for the

MovingMNIST and NYC Trip Record datasets. However, we

could utilize the results from the fast t-SVD for the other

methods, aptly called the fast-LSTM and fast-PCA. We found

that for the other methods, utilizing the FFT to reduce the

amount of observations does lead to worse results in anomaly

detection. For comparison, we re-perform the experiments in

Section IV-B, but we utilize the FFT to reduce the amount

of observations in a similar fashion to 3DTPCA. The results

of this are outlined in Table IV. Note that the synthetic

L−TAR process is not included because the observations are

not highly correlated, so applying fast t-SVD for 3DTPCA



(a) L−TAR (b) MovingMNIST (c) NYC Trip Record

Fig. 5: Anomaly Scores for quantitative evaluation. Top row: 3DTPCA. Middle row: LSTM. Bottom row: PCA. The red

highlight areas indicates where anomalies are present. The orange dashed line is the 90% threshold based on the training

reconstruction errors.

results in a similar set of observations rendering the fast-

approach somewhat useless. As illustrated in Table IV, it’s

clear that the proposed approach performs significantly better

than both the fast-LSTM and fast-PCA.slice

V. CONCLUSIONS AND FUTURE DIRECTIONS

Overall, the proposed method is worthy for multilinear time-

series anomaly detection. Representing our multilinear obser-

vations spatially, we also perform competitively with deep

learning in terms of accuracy and computational speed. Future

work includes extending 3DTPCA to nDTPCA so we can

perform anomaly detection with n−order observations. Future

work also includes injecting seasonal observations into the

sliding window to observe seasonal anomalies, and extending

other methods of dimensionality reduction from univariate

and multivariate time-series, such as forecast-able component

analysis and piece-wise vector quantized approximation.
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