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Abstract—In the era of big data, there is massive demand
for new techniques to forecast and analyze multi-dimensional
data. One task that has seen great interest in the community
is anomaly detection of streaming data. Toward this end, the
current research develops a novel approach to anomaly detection
of streaming 2-dimensional observations via multilinear time-
series analysis and 3-dimensional tensor principal component
analysis (3DTPCA). We approach this problem utilizing di-
mensionality reduction and probabilistic inference in a low-
dimensional space. We first propose a natural extension to 2-
dimensional tensor principal component analysis (2DTPCA) to
perform data dimensionality reduction on 4-dimensional tensor
objects, aptly named 3DTPCA. We then represent the sub-
sequences of our time-series observations as a 4-dimensional
tensor utilizing a sliding window. Finally, we use 3DTPCA to
compute reconstruction errors for inferring anomalous instances
within the multilinear data stream. Experimental validation is
presented on a synthetic multilinear time-series data, video
streams via MovingMNIST data, and dynamic networks via the
NYC Taxi Record. Results illustrate that the proposed approach
has a significant speedup in training time compared with deep
learning, while performing competitively in terms of accuracy.

I. INTRODUCTION

Anomaly detection for streaming multi-dimensional obser-
vational data has been one of the most influential tasks for
machine learning. The application of anomaly detection for 2-
dimensional or 3-dimensional observations can be applied to
a diverse set of domains, a subset of which include, detecting
anomalies in video sequences, dynamic networks, and satellite
imagery [1]-[3]. Time-series anomaly detection differs from
traditional anomaly detection techniques due to its temporal
component. While there can be global outliers within the
time-series, there can also be local outliers to due abnormal
temporal behaviors.
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Historically, there are numerous anomaly detection methods
for univariate and multivariate time-series [4]. Several meth-
ods are available for this approach, such as autoregressive
integrated moving average (ARIMA) models and long-short
term memory (LSTM) neural networks [5]-[7]. In general,
these approaches utilizing time-series forecasting to evaluate
anomalies based on their forecast error. However, these meth-
ods assume that the historical data we can be well represent
via time-series modeling.

Another approach for detecting anomalies is utilizing di-
mensionality reduction and probabilistic inference in the re-
duced dimensional space [4], [8]. In general, this approach
involves reducing the dimension of the time-series to a lower
dimensional subspace, with the assumption that anomalies will
be significantly different to normal observations in this lower
space. Along these lines, there have been numerous techniques
that use autoencoders for dimensionality reduction via the
encoded latent space [1], [8]-[11]. These autoencoders come
in several variations such as LSTM autoencoders and convolu-
tional neural network (CNN) autoencoders [9]-[11]. Another
set of methods use singular value decomposition (SVD) in or-
der to represent temporal observations in a lower-dimensional
space via principal component analysis (PCA) [12], [13]. For
example, the authors in [12] utilized the SVD to perform latent
semantic analysis for local sub-sequences.

For multilinear time-series, extensions to such methods have
been pursued to where the historical observations are no
longer scalars or vectors but can be represented as a lateral
slice of a tensor (e.g. X; € R“1X™).1 A tensor in this
context is a multi-dimensional array, often referred to as a
n-mode or n-way array as defined in Section II. Recently,
new methods have been proposed to perform dimensionality
reduction on tensors by capitalizing on the spatial correlations
within each observation while simultaneously capitalizing on

INote: It’s customary in the literature to represent tensors with upper-case
calligraphic letters.



the temporal correlations across observations. In particular,
two-directional tensor principal component analysis, referred
to as 2DTPCA [14], investigates the fusion of two different
reduced dimensional subspaces, one to represent correlations
in the “row”-data and another to represent correlations in the
“column”-data. For image classification problems, 2DTPCA
has outperformed many state-of-the-art methods related to
deep learning, LSTMs, and alternate forms of tensor repre-
sentations.

The current paper builds on the work in [14] for dimen-
sionality reduction but extends the correlation models for
both 3-dimensional data as well as anomalous observations.
In particular, we represent a sub-sequence of size p from a
multilinear time-series model as a 4-mode tensor (e.g. S; €
REX1xmxpy wwhere ¢ and m capture the spatial correlations in
each observation and p captures the temporal correlations from
a historical moving window. We propose a natural extension
to 2DTPCA to perform dimensionality reduction for our sub-
sequence tensor Sy, aptly called 3-directional tensor principal
component analysis or 3DTPCA for short. We illustrate that
3DTPCA decomposes row, column, and temporal dimensions
for anomaly detection. Utilizing reconstruction error from the
low-dimensional 3DTPCA space, we evaluate if new multilin-
ear observations are abnormal. Experimental results presented
on synthetic multilinear time-series data, video streams via
MovingMNIST, and dynamic networks via the NYC Taxi
Record to illustrate the effectiveness of the proposed approach
for detecting anomalous events in multilinear observations. We
also demonstrate the significant speedup that is achieved over
deep learning approaches.

The remainder of the paper is organized as follows: In
Section II we provide some mathematical background for
the tensor linear algebra used throughout the paper. In Sec-
tion IIT we present our proposed extensions from 2DTPCA to
3DTPCA for unsupervised learning, dimensionality reduction,
and observational reconstruction. We also illustrate how we
use 3DTPCA for multilinear time-series anomaly detection.
In Section IV we present some experimental results with our
proposed method and compare/constrast with the state-of-the-
art. We evaluate the methods in terms of their receiver operat-
ing characteristic (ROC) curves and their computational speed.
Section V contains our conclusions and future directions.

II. MATHEMATICAL PRELIMINARIES

In this section, we provide an overview of the notation
and operations used throughout the paper for order-n tensors.
A much more detailed treatment can be found in [15]-[20],
however, to keep the current paper self-contained an overview
is provided here.

A. Notation

First, we will review the basic definitions of a tensor
from [15], [16]. In the context of this paper, we refer a multi-
dimensional array as a tensor. The tensor’s order is the number
of dimensions or modes. For example, a tensor of order-n

Algorithm 1 tensor-tensor product induced by *r,

Input: Input tensors A € R"™XXXmn and B ¢
RlmeX---an

Output: C € RmiXmaX:-Xmy
for i = 3 to n do

A« L(A,]],4)
B+ L(B,[].i)
end for

for i =1 to ms3 do
for j =1 to my do

for k=1 to m, do

Clyiyiyen oy k) = AC, i, k) - By iy k)
end for
end for
end for
for i =n to 3 do
¢ LY, [),)
end for

is denoted by A € R™1xm2xXMn Therefore, vectors and
matrices are first- and second-order tensors, respectively.

It will be convenient to break a tensor A € R X2 X"
up into various slices and tubal elements. A frontal slice of
tensor with order-n will be notated with subscript indexing
such as A, . ;). For example, let A € R™1X™M2X™M3 be a
third-order tensor. The frontal slice corresponding to mode-3 is
notated as A(;,y with Python slicing A[:,:, i3]. We will notate

a™ . as the mode-k fiber corresponding to the i ..

1,1.,.’L“,,,

index. For example, 352123 is the mode-1 fiber corresponding to

the i and 7' index, assuming Python indexing would yield
1 L

al(.zgs = A[:, 19, 13].

B. Order-n Tensor Operations

An operation that is fundamental to the results of current
work is the multiplication of two order-n tensors. A family
of tensor-tensor products for third-order tensors has been
formulated in the transform domain for any invertible linear
transformation [15]. This work has been extended for order-n
tensors in [17]. Utilizing the notation outlined in [15] and [17],
we define the following operators:

Definition 1. Let A € R™1 >/ xmn gpd B € REXm2xxma
be order-n tensors. The tensor-tensor product based on L
transform Axp B € R™1*m2XXmn jg computed by applying
matrix multiplication to the frontal slices of .4 and B in the
transform domain. This is shown in an algorithmic fashion in
Algorithm 1.2

2Note: For all algorithms shown, the vertical dots indicate nested for-loops.
The nested for-loops continue from mode-3 to mode-n



Algorithm 2 tensor transpose

Algorithm 3 t-SVDy,

Input: Input tensor A € Rt Xm2X:Xmn
Output: B € R™Mmzxmix:Xmn
for i =3 to n do
A+ L(A,[],4)
end for
for i =1 to m3 do
for j =1 to my do

for k=1tom, do_
B i, k) =A(, 51, ..
end for

k)T

end for
end for
for i =n to 3 do
B+« L7Y(B,[],9)
end for

Definition 2. The identity tensor Z € R"X7XmsX:Xmn jg
the tensor whose first frontal slice is the m x m identity matrix
in the transform domain.

Definition 3. If A € R™XM2XXMn_ then the tensor
transpose ttransy(A) € R™M2XmixXmn jg computed by
transposing the frontal slices of A in the transform domain.
This is shown in an algorithmic fashion in Algorithm 2.

Definition 4. A tensor A € R™1*™m2>"X"n ig called orthog-
onal if Axp ttransp(A) =ttransp(A)* A=1.

A tensor rotation operator for order-3 tensors is defined
in [14], we extend this to order-n tensors here.

Definition 5. The tensor rotation operator rol(A,i,j) is
the tensor obtained by swaping the axis in the i and j mode.
For example, let tensor A € R™1X7M2xmaX=XMn - thep
the tensor rotation along mode-1 and mode-2 results in
IOl(A, 17 2) E ng)ﬂnl ><ma><~~><mn.

C. Order-n Tensor Singular Value Decomposition

The final tool required for the current research is a tensor
singular value decomposition defined for order-n tensors (re-
ferred to as the -SVDy,). We note that the -SVDy, can be de-
fined using any inevitable linear transformation. L denotes the
linear transformation used for computing the decomposition.
For A € Rm1xm2>Xmn " then there exists tensors U, S,V
such that

A=Uxr S *xp, ttral’lSL(V),

where Y € RMixmixmsx-=xmMmn g an orthogonal tensor
of left-singular matrices (analogous to left-singular vectors
in order-2 tensors), ttransy(V) € R™M2Xm2Xmax:xmn
is an orthogonal tensor of right-singular matricies (analo-
gous to right-singular vectors in order-2 tensors), and S €

Input: Input tensors A € R X M2 Xmn
Outputs:

U c R XM XMg X+ XMy,
S c lemeXm,ngan
V c Rm2><m2><m3><---><mn
for i =3 ton do

A+ L(A,[],4)
end for
for i =1 to ms3 do

for j =1 to my do

for k. =1to m, do

Set U(:,:,4,..., k), S(:,1,i ...,k),f/(:,:,i k)
to the result of the matrix SVD of A(:,:,4,...,k)
end for
end for
end for

for i = n to 3 do
u%Lil(Z;{,[],i)
S« L7Y(S,[],9)
Ve L7V, [],4)
end for

R xmeXxms X Xmn g an f-diagonal tensor (analogous to sin-
gular values in order-2 tensors). The -SVDp,(A) is computed
by applying the matrix singular value decomposition to the
frontal slices of A in the transform domain. This is shown in
an algorithmic fashion in Algorithm 3

III. PROPOSED APPROACH TO MULTILINEAR TIME-SERIES
ANOMALY DETECTION

In this section we present our extension of 2DTPCA to
3DTPCA to perform dimensionality reduction for fourth order
tensors. We then proceed to use 3DTPCA for multilinear time-
series anomaly detection.

A. Proposed 3DTPCA Method

1) Unsupervised Training: 2DTPCA outlined in [14] per-
forms dimensionality reduction on third order tensors. The
authors accomplish this by utilizing the -SVD[, along mode-
1 and mode-3 to capture the correlations across the row and
column dimensions, respectively. They are able to fuse the
row and column subspaces by applying the tensor rotation
operator rol before data projection. We propose an extension
to 2DTPCA to perform dimensionality reduction on a fourth-
order tensor A € R*™XmXP_ aptly called 3DTPCA. We
extend 2DTPCA by following a similar process for mode-
1 and mode-3, but now compute the #-SVD; for mode-4.
Therefore, we propose a process to capitalize on the cor-
relations along mode-1 (column-space), mode-3 (row-space),
and mode-4 (temporal-space). The ultimate goal is to reduce
the dimensionality of a subset of the multilinear data along



these modes in an effort to perform inference in a reduced
dimensional space.

Because we are going to be computing the #-SVD, multiple
times, we denote ‘U . as the first k£ lateral slices of the left
singular tensor ¢/ computed for mode-i. We also denote *S and
iV as the right singular tensor and f-diagonal tensor for mode-
1, respectively. To outline the process of 3DTPCA, we compute
+-SVD(A) = WU sp 1S+, ttransL(IV). 124 now contains
the left singular tensors associated with the correlations in
mode-1. We then perform dimensionality reduction in mode-1
by projecting the tensor A onto the first & left singular tensors
as

Y = ttransy(*Uy) x1 A € RFXmXmxp,

To capture the correlations on mode-3, we first compute
the tensor rotation operator JJ = rol(Y,1,3) € Rmxnxkxp,
We then compute -SVD (V) = *U *1, 3S #1, ttransy (*V).
U now contains the left singular tensors associated with the
correlations in mode-3. We then proceed with dimensionality
reduction for mode-3 by projecting the tensor Y onto the first
q left singular tensors via

W = ttransy(*U,) x;, Y € RIX"<kxp,

Finally, to capture the correlations in mode-4, we compute
the tensor rotation operator WW = rol(W, 1,4) € RPxnxkxq
and then compute -SVD (W) = *U x1,*S*p ttransy (*V).
From there, training is complete and we are able to perform
dimensionality reduction utilizing our collection of left singu-
lar tensors © = {'Uy,,*U,,“U}. To define this process, we
create the following definition:

Definition 6. If A € R‘"XmXP_then training 3DTPCA is
defined as 3DTPCA(A) = © = {'U}, U, U} where O is
the collection of our left singular tensors.

2) Dimensionality Reduction: For the current research, we
also need to be able to take a new data tensor B € R¢Xwxmxp
and reduce the dimensionality of B utilizing ©. Note that
mode-2 of B can have a different size w, but the size of
mode-1, mode-2, and mode-4 must be the same as A. This
is done in a similar fashion to the training process, however
we do not recompute the -SVDy. Instead, we utilize the set
of left singular tensors © for projection. We first project along
mode-1 via

Y= ttransL(luk) x; B € RFXwxmxp,

We proceed to consider correlations in mode-3 by applying
the tensor rotation operator ) = rol(Y,1,3) € Rm>xwxkxp
and project along mode-3 via

W = ttransL(guq) x; Y € RIXWXkXPp,

Finally, we proceed to consider correlations in mode-4 by
applying the tensor rotation operator W = rol(W,1,4) €
RPXwXkXq and project along mode-4 via

Z = ttransg(*U,) x, W € RTxwxkxq,

We define this process of performing data dimensionality with
the set of left singular tensors © with the following definition:

Definition 7. If B € R**%wX™mXP_then performing dimension-
ality reduction with 3DTPCA utilizing the set of left singular
tensors O is defined as Reduce(A4,0) = Z € R™xwxkxq
where r, k, g are the reduced dimensions.

3) Reconstruction: We also desire to reconstruct our re-
duced tensor Z back to its original form B. We can perform
this by reversing the order of the previous process. We first
reconstruct along mode-4 on W as

W — 41/[7“ *I Zc Rpxkaxq.

We then proceed inverse the tensor rotation operator by W =
rol(W,1,4) € RI*wxkXP_ This process now allows us to
reconstruct along mode-3 as

)7 — 3uq xJ, W e Rmxkaxq’

and perform the inverse of the tensor rotation opertator by
Y =rol()1,3) € REXnxmXPp 1o complete the reconstruc-
tion along mode-3. Finally, we finish reconstruction for mode-
1 as

B _ luk = Rmxkaxq’

where B signifies the reconstruction of 5. To define this
process, we create the following definition:

Definition 8. If Z € R"*"*kX4_ then reconstructing Z
utilizing the set of left singular tensors © is defined as
Reconstruct(Z,0) = B € RX"Xmxp where B is ap-
proximate to the original tensor B.

4) Fast t-SVD: Recently, the authors in [21] showed that
for datasets with highly correlated observations, there is a
method to increase computational speed of the #-SVD. They
showed that for A € RE*™*™ we can reduce the dimension
of mode-2 by applying the fast Fourier transform (FFT). Note
that m is the number of observations, which is generally
large. After computing the FFT for mode-2, observations
that are highly correlated will have higher magnitude in low
frequencies. Therefore, most of the information in mode-2 can
be saved by selecting the first r lateral slices, where in general
r << n. Then applying the inverse FFT in mode-2 results in
A c RK XTXm

If we apply this same result to 3DTPCA, we can get a
competitive advantage in computational speed. We refer this as
fast 3DTPCA. Our process is that for tensor A4 € RExnxmxp,
we will compute fast 3DTPCA by first reducing the tensor
in mode-2 using the process outlined earlier. Using the new
tensor A € RI*7"*™XP_we can proceed to compute 3DTPCA
as 3DTPCA(A) to receive our set of left singular tensors ©.
We can then use O for future dimensionality reduction and
reconstruction.

B. Proposed Anomaly Detection Model

Our aim is to detect anomalies for a time-series with
multilinear observations X; € Rf*1*™ for t = 1,2,--- ,n.



Fig. 1: Graphical illustration of the sliding window. The red
box illustrates the sub-sequence S; of multilinear time-series
X; with a sliding window size of p = 4. Multilinear observa-
tions originate from the MovingMNIST dataset presented in
Section IV.

We assume that the multilinear observations X; contains
no anomalies during unsupervised training. We accomplish
anomaly detection by representing our multilinear time-series
as a tensor where mode-1 is rows, mode-3 is columns, and
mode-4 is temporal. We then perform 3DTPCA with dimen-
sionality reduction and reconstruction along our time-series.
Then we proceed to detect anomalies based on their recon-
struction error. Anomalies should be represented poorly in
PCA space and therefore should have a higher reconstruction
error.

1) Unsupervised Training: To captured temporal patterns,
we construct our time-series into the tensor A € R¢Xn—pxmxp
utilizing a sliding window of size p, a technique shown in [22].
This technique creates a sub-sequence of size p for each
multilinear observations X;. An illustrative example of the
sliding window is shown in Fig. 1. We create a sub-sequence
of our time-series by stacking our multilinear observations X
along mode-4 as

Si= (% X Xy_p) € REXDXmx® (1)

where S, is the sub-sequence at time ¢, and we have a window
of size p. We then proceed to stack our sub-sequences S; along
mode-2 as

A=(S, Sp1 S,) € RExnmpxmxp ()

The resulting tensor A € R*™=PXmXP contains our rows
in mode-1, our columns in mode-3, and our temporal sub-
sequences in mode-4. To define this process of using equa-
tions 1 and 2 we create the following definition:

Definition 9. Utilizing a sliding window for multilinear ob-
servations X, € ROIX™ for t = 1,2, ... n is defined as
Window(X;) = A € RIXn=PXmXP where p is the size of the
window.

Algorithm 4 Window

Input: Multilinear observations X; € R*1X™ for ¢ =
1,2,--- ,n and window size p.
Output: A € RI*n—pxmxp
for i = p to n do

for j =1to p do

A(,d,55) = X

end for

end for

To represent the tensor A in PCA space, we now compute
3DTPCA(A) = © = {'Uy,, U, U, },

resulting in a set of left singular tensors ©. We proceed to
perform dimensionality reduction and reconstruction utilizing
3DTPCA via

A = Reconstruct(Reduce(A4, 0),0),

where A is the reconstructed tensor from A. Note that
we contain approximates for the sub-sequences A =
Sy Spi1 S,) € ROXn=pxmxp_ We proceed com-
pute the reconstruction error €¢; € R as

€& = ||St_‘§t||Fa 3)

where F' notates the Forbenius norm. To perform anomaly
detection, we create a threshold from our reconstruction errors
€; based on a chosen percentile. As shown in the next section,
we will use this threshold for anomaly detection.

2) Anomaly Detection: Once we receive w new multilinear
observations X, € R>™™ for v = n + 1,n + 2,--- ,w,
we perform anomaly detection by first utilizing the sliding
window for the new observations via

Window(X,) = B € REXw—pxmxp

where 3 is our new data tensor. We then perform dimension-
ality reduction and reconstruction utilizing 3DTPCA via

B= Reconstruct(Reduce(B,0),0),
and compute the reconstruction error via
€0 =[Sy *SUHF'

Utilizing the threshold we previously received during training,
we label anomalies if they are above the threshold from
training as

€, > threshold

€, < threshold

Anomaly

Anomaly(X,) = {Normal

IV. EXPERIMENTAL RESULTS

In this section, we will compare our proposed 3DTPCA
method with other methods in the literature. We will evaluate
the methods quantitatively based on their receiver operating
characteristic (ROC) curve and computational speed. Deep
learning has several techniques to perform multilinear time-
series anomaly detection [1], [8]. Specifically, we utilize an
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Fig. 2: Illustration of the MovingMNIST dataset. The left
frame contains a normal observation before our anomaly. At
time-step 4500 an anomalous digit enters the frame as shown
in the middle frame. The anomalous digit leaves the frame
after time-step 4800 as shown in the right frame.

3
&

long-short term memory neural network (LSTM) autoencoder
to compare our technique with another reconstruction based
method. We also compare our results to principle component
analysis (PCA) to examine the advantage we receive when we
represent the multilinear time-series spatially.

A. Datasets

We utilize datasets that are designed for unsupervised train-
ing. Specifically, the training set will contain no anomalies
while the testing set will contain both normal and abnormal
observations. Namely: (a) a synthetic transform-based tensor
autoregression (L-TAR) process [23]; (b) an adapted version
of the MovingMNIST dataset that contains a grid of bouncing
MNIST digits [24]; (c) the NYC Trip Record dataset of taxicab
trips [25].

1) Synthetic L—TAR: We generate a 20 x 20 synthetic
time-series utilizing a £-TAR process described in [23]. We
generate 3000 normal observations as

Xe=Axp X1+ &,

where A; € R20x20x20 jg 4 coefficient tensor that was
arbitrarily selected as

05 0 0
0 05 -~ 0
Avn=1. . . .|
0 0 0.5
Ap) =A@z =0,

and &; 1 is white noise generated under a uniform distribution
&1 ~ U(—0.1,0.1). We proceed to generate 1000 abnormal
observations by increasing the noise. We do this by increasing
uniform distribution’s range by 0.0001 for each proceeding
time step. This results in similar £-TAR process as

Xe=Ai* Xy + & 2,

where &2 ~ U(—0.1 — 0.0001¢,0.1 + 0.0001¢) is our new
white noise that is dependent on time. We proceed to use
the first 2500 observations for training and the last 1500
observations for testing.

Fig. 3: Graph representation of the NYC Trip Record dataset.
The nodes are zones in the Manhattan area. The edge’s weight
are the daily number of taxicab trips from the pickup zone
to the dropoff zone. Edge weights are shown as the edge’s
opacity. Left: Before COVID-19 on January 1st, 2020. Right:
COVID-19 on March 14th, 2020.

2) MovingMNIST: The MovingMNIST dataset presented
in [24] is a dataset of bouncing MNIST digits. In the literature,
this dataset has been used for forecasting a multilinear time-
series [24], [26], [27]. We adapt this dataset for anomaly
detection by first generating 5000 normal frames of size
50x 50 with just two bouncing digits. We create an anomaly by
inserting a third digit at time-step 4500. The anomalous digit
leaves the frame at time-step 4800. The frames of normal and
abnormal observations are shown in Fig. 2. We proceed to
use the first 4000 observations for training and the last 1000
observations for testing.

3) NYC Trip Record: The NYC Trip Record dataset con-
tains taxicab pickup and dropoff locations for the New York
Manhattan area [25]. We use this dataset for anomaly detection
because COVID-19 caused a dramatic decrease in the amount
of trips. The impact of COVID-19 can be seen in Fig. 3. The
original dataset splits the area into 263 pickup and dropoff
zones. These zones can be represented as nodes in a dynamic
graph. We picked 22 of the most frequently visited zones and
represent the dynamic graph with a 22 x 22 adjacency matrix.
We represent the edges of the dynamic graph as daily number
of trips for the corresponding pickup and dropoff zones. We
noticed that the decrease in the amount of trips happened
around March 14" 2020. Therefore, we consider any date
after March 14", 2020 as abnormal and the rest as normal. We
use Janurary 1%, 2015 to December 31%, 2019 as our training
set (1826 observations) and the entire year of 2020 as our
testing set (365 observations).

B. Performance in Anomaly Detection

We evaluate the method’s effectiveness of anomaly detection
utilizing ROC curves. ROC curves are produced by changing
the threshold of the reconstruction errors and calculating the
true positive rate (TPR) vs the false positive rate (FPR). We
calculate the area under the ROC curve (AUC) for comparison.
The ROC curves are shown in Fig. 4, and the AUC is shown
in Table II. We also show how we configured the methods in
Table L.

As can be seen from Table II, the proposed method is a
top performer for these datasets. 3DTPCA is very competitive



TABLE I: Model Configurations

Methods |

L—-TAR

[

MovingMNIST

[

NYC Trip Record

fast 3DTPCA

p = 5, reduced tensor size =3 X 7 X 1

utilizes fast t-SVD with r = 100

p = 10, reduced tensor size =1 X 1 x 1,

p = 7, reduced tensor size =1 X 2 X 2,

utilizes the fast +-SVD with r = 50

LSTM LSTM layers of size (128, 32, 32, 128) LSTM layers of size LSTM layers of size
with relu activation (1024, 256, 64, 64, 256, 1024) (1024, 256, 64, 64, 256, 1024)
with relu activation with relu activation
PCA 6 principal components 25 principal components 20 principal components

10{ ——
0.8 |
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(a) L—TAR

False Positive Rate

(b) MovingMNIST

False Positive Rate

(c) NYC Trip Record

Fig. 4: Receiver operating characteristic (ROC) curves for quantitative evaluation.

with the deep learning approach. We also see that we receive a
large advantage over PCA when we represent our observations
spatially.

We also show the reconstruction errors produced with each
method in Fig. 5. The red highlight shows where anomalous
observations are present and the orange dashed line shows the
90% threshold based on the training reconstruction errors. As
we can see, 3DTPCA and the LSTM perform very similar
in terms of detecting anomalous observations, however, as
illustrated below, 3DTPCA is significantly better in terms of
computational speedup.

TABLE II: AUC for Experiments

Methods | £—TAR | MovingMNIST | NYC Trip Record
fast-3DTPCA 0.947 0.966 0.9994
LSTM 0.967 0.961 0.9992
PCA 0.856 0.810 0.365

TABLE III: Computational Speed (in seconds)

Methods [ L£—TAR | MovingMNIST | NYC Trip Record
3DTPCA 3.71 + 0.23 13.68 £+ 0.59 222 +£0.13
LSTM 6.01 £ 0.14 61.15 £ 0.70 73.16 £+ 0.53
PCA 0.16 £ 0.03 1.11 £ 0.12 0.37 £ 0.09
3DTPCA Speedup 1.62 4.47 32.95
vs. LSTM

TABLE IV: AUC for Fast Experiments

Methods | MovingMNIST | NYC Trip Record
Jasi 3DTPCA 0.966 0.099
fast-LSTM 0.818 0.368
fast-PCA 0.231 0.692

C. Performance in Computational Speed

To evaluate the computational speed, we measured the
running time of training 20 times and calculated the average
running time =+ the standard deviation. The results shown in
seconds can be seen in Table III. We can see that 3DTPCA has
a significant speedup compared to the LSTM while performing
nearly the same in anomaly detection.

Note that in Table I we utilize the fast r-SVD for 3DTPCA.
This is the reason why we get massive speedups for the
MovingMNIST and NYC Trip Record datasets. However, we
could utilize the results from the fast -SVD for the other
methods, aptly called the fast-LSTM and fast-PCA. We found
that for the other methods, utilizing the FFT to reduce the
amount of observations does lead to worse results in anomaly
detection. For comparison, we re-perform the experiments in
Section IV-B, but we utilize the FFT to reduce the amount
of observations in a similar fashion to 3DTPCA. The results
of this are outlined in Table IV. Note that the synthetic
L—TAR process is not included because the observations are
not highly correlated, so applying fast #-SVD for 3DTPCA
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Fig. 5: Anomaly Scores for quantitative evaluation. Top row: 3DTPCA. Middle row: LSTM. Bottom row: PCA. The red
highlight areas indicates where anomalies are present. The orange dashed line is the 90% threshold based on the training

reconstruction errors.

results in a similar set of observations rendering the fast-
approach somewhat useless. As illustrated in Table IV, it’s
clear that the proposed approach performs significantly better
than both the fast-LSTM and fast-PCA.slice

V. CONCLUSIONS AND FUTURE DIRECTIONS

Overall, the proposed method is worthy for multilinear time-
series anomaly detection. Representing our multilinear obser-
vations spatially, we also perform competitively with deep
learning in terms of accuracy and computational speed. Future
work includes extending 3DTPCA to nDTPCA so we can
perform anomaly detection with n—order observations. Future
work also includes injecting seasonal observations into the
sliding window to observe seasonal anomalies, and extending
other methods of dimensionality reduction from univariate
and multivariate time-series, such as forecast-able component
analysis and piece-wise vector quantized approximation.
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