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Abstract: This paper presents hyperparameter tuning techniques for a deep learning predictive model with
applications in additive manufacturing processes. Bioprinting is an additive manufacturing process which utilizes
biomaterials, cells, and growth factors to build functional tissue constructs for biomedical applications. In this
research, we evaluate the hyperparameter space using grid search technique to tune the perceptron deep learning
hyperparameters for optimal prediction of additive manufacturing outcomes. Hyperparameter entities include
number of neurons, learning rate, and number of epochs to run machine learning models. Five input parameters
and three output variables were evaluated for a typical additive manufacturing process. A comparative analysis is
conducted to demonstrate improved runtime and lower root mean squared error for additive manufacturing
predictive models. The results from this research are extensible to several additive manufacturing processes
including 3D bioprinting.

Index terms: Additive Manufacturing, Bioprinting, Deep Learning, Grid Search, Hyperparameter tuning

I. INTRODUCTION

Additive manufacturing (AM) commonly
referred as 3D printing is a layer-by-layer fabrication
process [1], [2]. Additive manufacturing has entailed
enormous freedom to build parts with complex
geometries and freeform structures [4]. In recent
years, 3D printing has been conducted in a variety of
materials including polymers [5], ceramics, metals,
composites, and biomaterials [5] to name a few.
Additive manufacturing has evolved from
prototyping jobs to functional parts with applications
ranging from electronics [6], [7], biomedical devices
[8], [9], energy appliances [10], [11], automotive
components [12], [13] to tissue engineering constructs
[14], [15].

With the proliferation of additive
manufacturing across different industry sectors,
several 3D service bureaus have been created [16].
Herein, the objective is to identify optimal 3D process
for each part design based on its geometrical
characteristics and user inputs. This includes the
selection of appropriate materials, tolerances and 3D
printing process that can fulfill user requirements. In
3D printing service bureaus involve multiple AM
equipment that are connected using high speed
networks which     can share vital     processing
information in real-time. These cyber-physical
systems utilize smart algorithms to allocate input parts
to specific equipment [17], [18].

Bioprinting is an emerging field of 3D
printing wherein cellular materials, growth factors,
extracellular matrices are orchestrated to build
functional biological constructs. However, unlike
traditional 3D printing methods, bioprinting methods
are highly sensitive to several factors [19]–[21].
These include biomaterial rheology, bioprinting

process parameters and microenvironmental variables
such as ambient temperature and humidity. In
addition, variations in growth factor conditions and
nanoscale topological stimuli can largely affect tissue
growth. Researchers have used computational
molecular models to aid the design and manufacturing
of biological constructs [22], [23]. Further, machine
learning models are being applied in 3D printing to
improve printing outcomes [24]. It is imperative that
these models be optimized for their prediction and
classification accuracies to be viable for practical
purposes [25]. Moreover, it is critical to balance
model accuracy versus algorithm run times when
implementing these models for real-time feedback
and control.

Deep learning has been used in different
works for prediction and classification problems in
additive manufacturing processes. Despite the vast
applications, little or no efforts have been focused on
hyperparameter tuning that aim to improve the loss
alongside reduction in chosen model runtime. This
research focuses on optimizing both the loss and
runtime by considering a simple perceptron model.
Our approach enables the selection of alternate model
architecture by varying the selected hyperparameters.

For hyperparameter tuning (sometimes
referred to as hyperparameter optimization), Bayesian
optimization and its variants have been used in the
literature [26]–[29]. Other models include manual
search [30], grid search [31]–[33], random search
[33], [34], particle swarm optimization [35], [36],
genetic algorithm [37]–[39], and other optimization
methods.

The remainder of the paper are organized as
follows: Section II gives a detailed methodology of
our chosen hyperparameter tuning technique, Section
III has the results and discussion, Section IV
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concludes and gives an extension of our work in the
field of additive manufacturing.

II. METHODOLODY

Grid search was used in this research
because it is widely used and every hyperparameter
combination of the search is considered
hyperparameter compared to other methods. With
grid search, it is easier to see how other different deep
learning model configurations are generated from
which optimal model configuration can be chosen
based on some selection criteria. In our case, both
model prediction loss and model runtime were
chosen.

In this research, five input parameters were
chosen for additive manufacturing processes based on
prominent parameters found in the literature. These
include layer thickness, build orientation, extrusion
temperature, build temperature, and print speed.
Three output parameters (e.g., dimensional accuracy,
porosity, and tensile strength) were predicted using a
simple perceptron deep learning model as shown in
Figure 1. A simple perceptron with a single hidden
layer was used an illustrative case to demonstrate our
work. A multi-layer perceptron (MLP) and variation
of neurons across each hidden layer is shown in [40].

In this research, hyperparameter
optimization was performed using the grid search
method. The model was coded using custom Python
script. The first step included creating a search space
for the selected hyperparameters. The chosen
hyperparameters include the number of neurons [3, 5,
8], learning rate [0.001, 0.0001, 0.00001], and number
of epochs [5000, 15000, 25000]. Thus, creating a total
of 33 = 27 hyperparameter combination for the simple
perceptron deep learning model. The output metrics
include model prediction losses and runtimes. A
model with the least prediction loss and runtime was
chosen. In      most cases,      choosing optimal
hyperparameter combination might not be as straight
forward due to multi-objective optimization. The
desired model configuration lies around a balance
between lower model loss and lower runtime. This is
essential especially for domains where prediction or
classification cannot be compromised. In some cases,
either model prediction loss, runtime, or other
objective functions may be considered.

Figure 2 shows a 3D printer which is based
on Fused Deposition Modeling (FDM) technology.
This 3D printer has a heating bed and sensors attached
to capture real-time data during the printing operation.
Furthermore, it has additional functionalities such as
CNC milling and laser engraving capabilities.

Figure 2: Snap Maker 3D Printer with CNC milling and laser
engraving capabilities.

Data was collected from the additive
manufacturing process for the chosen input
parameters. For the chosen process, a factorial design
was performed at three different levels (low, medium,
and high) with three replicates (n=3) for a total of 243
data points. The data imported into the chosen Python
Environment were split into the training and test
dataset in the ratio of 80 to 20, respectively. The split
training and dataset were further split into input and
output columns. At this stage, the hyperparameter list
was created. Then, the perceptron deep learning
model was trained using forward and backward
propagation until the chosen stopping criteria was
reached (in our case, it was the number of epochs).
The trained model was evaluated with the test data
and the root-mean-square error, RMSE, was
computed as the model prediction loss. Also, the
model runtime was recorded. Both the RMSE and the
runtime were plotted to show where optimal or better
model configurations lie.

The algorithm was run on a Lenovo Yoga
910-13IKB machine with the specifications: Intel®
Core™ i7-7500U CPU @ 2.70GHz 2.90 GHz,
installed RAM of 8.00 GB, and 64-bit operating
system.

III. RESULTS

For each model configuration, the model was
trained as stated in Section II. The learning status was
tested by the prediction on the test data. If the
prediction was all zeros or all having the same values
for the test data, it clearly indicates that the model

Figure 1: Perceptron deep learning architecture could not be trained at the given hyperparameter
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combination, and it was disregarded. The remaining
model configurations are potential candidates for the
optimal selection based on their RMSE and runtime.
Out of the 27 different model configurations for each
output parameter prediction, only 18 were able to
learn from the data at those hyperparameter
combinations. Table 1 shows the prediction RMSE
and runtime values at those model configuration
where the perceptron deep learning model were able
to learn from the training data for three output
parameters. As can be seen lower learning rates
(0.00001) and higher number of epochs (25000) for
different neurons (3, 5 and 8) resulted in higher
runtimes across all the three output variables. Thus,
an optimal balance is to be attained between lower
RMSE and runtime for different model
configurations.

For the training dataset, all three output
parameters learnt at the same hyperparameter
combinations compared to when there are more
hidden layers in the work of [40].

Table 1: RMSE and runtime values for the eighteen (18)
perceptron deep learning model configurations for each of the
three output parameters (dimensional accuracy, porosity, and
tensile strength)

epochs increased. Best RMSE and runtime
combinations were obtained at 5000 epochs. The
number of neurons in the hidden layer had no
significant impact on the RMSE and runtime.

Figure 3: Plot of RMSE and Runtime against the 18
hyperparameter combination for dimensional accuracy

Figure 4 shows the RMSE and runtime
parameters for the porosity output variable. Porosity
had greater RMSE values compared to the RMSE
values obtained from dimensional accuracy with most
around 3.19. Learning rate plays an important role in

Dim_Acc Porosity Strength

No of
Neurons

3
3
3
3
3
3
5
5
5
5
5
5
8
8
8
8
8

8

Learning
Rate

0.0001
1.00E-05
0.0001
1.00E-05
0.0001
1.00E-05
0.0001
1.00E-05
0.0001
1.00E-05
0.0001
1.00E-05
0.0001
1.00E-05
0.0001
1.00E-05
0.0001

1.00E-05

HPO
Epoch Combination

5000 3-0.0001-5000
5000 3-0.00001-5000
15000 3-0.0001-15000
15000 3-0.00001-15000
25000 3-0.0001-25000
25000 3-0.00001-25000
5000 5-0.0001-5000
5000 5-0.00001-5000
15000 5-0.0001-15000
15000 5-0.00001-15000
25000 5-0.0001-25000
25000 5-0.00001-25000
5000 8-0.0001-5000
5000 8-0.00001-5000
15000 8-0.0001-15000
15000 8-0.00001-15000
25000 8-0.0001-25000

25000 8-0.00001-25000

Runtime
RMSE (s) RMSE

1.96 1.327319 3.19
1.9 2.070057 3.24
1.97 5.660765 3.19
1.92 7.462006 3.21
1.97 13.2233 3.19
1.92 16.17036 3.19
1.96 1.409673 3.19
1.9 2.239215 3.24
1.97 5.985354 3.19
1.92 7.893492 3.21
1.97 13.99194 2.15
1.92 17.02709 3.19
1.97 1.477919 3.19
1.9 2.386956 3.25
1.97 6.39182 3.19
1.92 8.435162 3.21
1.97 14.68035 3.19

1.92 17.84134 3.2

Runtime
(s) RMSE

1.301461 5.37
2.076302 5.39
5.848238 5.37
7.741441 5.38
13.82609 5.37
16.7026 5.37
1.425759 5.37
2.219268 5.39
6.08929 5.37
8.014984 5.37
14.16252 5.37
17.1575 5.37
1.500125 5.37
2.332991 5.39
6.329442 5.37
8.312044 5.38
14.71367 5.37

17.90441 5.37

Runtime
(s)

1.47904
2.257595
5.897032
7.71358
13.48801
16.28902
1.367751
2.145727
5.985843
7.895362
13.93173
16.99023
1.43581
2.257712
6.247316
8.264749
14.54946

17.67085

Figure 3 shows the RMSE and runtime
parameters for dimensional accuracy output variable.
Dimensional accuracy had the least prediction loss at
1.9 which was obtained at three different model
configurations at 2s runtime. The best runtime
occurred at 1.33s with higher RMSE of 1.96. At a
learning rate of 0.001, all models were unable to learn
from the training dataset. At a learning rate of 0.0001,
learning was recorded and RMSE are either 1.96 or
1.97 and the runtime increased with as the number of

predicting the porosity for different model
configurations. A learning of 0.0001 gave an RMSE
value of 3.19 at all instances with an increased
runtime as the number of epochs increase. Although,
the best model configuration with the least RMSE
value is 2.15 but the runtime increased to about eight
times compared to RMSE value of 3.19. Like
dimensional accuracy, the number of neurons play no
importance for different model configurations.
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Herein, a hyperparameter optimization would involve
a function of multiple input-output variable
combinations. The output variables can vary from
bioprinting variables such as print accuracy to
biological outcomes such as histology and cellular
viability.

Figure 4: Plot of RMSE and Runtime against the 18
hyperparameter combination for porosity

Figure 5 shows the RMSE and runtime
parameters for the tensile strength output variable.
Strength prediction had the highest loss compared to
the RMSE values from both dimensional accuracy
and porosity. The RMSE hovered in the range 5.37 to
5.39. The lowest RMSE of 5.37 was obtained at
smallest runtime of 1.37 seconds for the 5-0.0001-
5000 model configuration. Also, the runtime
increases with an increase with both learning rate and
number of epochs. For the strength, number of
neurons play a significant role although the RMSE
value stays at 5.37 but optimal runtime was obtained
with 5 neurons and at 1.37 s compared to 1.48 s with
3 neurons and 1.44 s with 8 neurons.

Figure 5: Plot of RMSE and Runtime against the 18
hyperparameter combination for tensile strength

Figure 6 shows the RMSE and runtime
parameters for all the three output variables. The HPO
combination of 5-0.0001-25000 gave the lowest
RMSE for all three output variables. These include
dimensional accuracy – 1.97, porosity – 2.45 and
strength – 5.37. These combinatorial plots can aid in
selecting optimal settings that can satisfy multiple
output variables. However, these settings need to be
validated with moderate runtimes for 3D printing
process which may require real-time feedback.
Furthermore, this model is applicable to 3D
bioprinting which is highly sensitive to material,
process and microenvironmental variables as
compared to traditional 3D printing processes.

Figure 6: Plot of the 18 nodel configurations with their RMSE
values for dimension accuracy, porosity, and tensile strength

CONCLUSION

This research explores a perceptron deep
learning configuration by optimizing key
hyperparameters. Five input parameters (layer
thickness, build orientation, extrusion temperature,
build temperature, and print speed) were considered
to predict three outputs (dimension accuracy,
porosity, and tensile strength). Data were generated in
which 80% of the data were used to train the
perceptron and tested on the remaining 20%. The grid
search method was used on the hyperparameter search
space to determine the optimal hyperparameter
combination at both best model prediction loss of
root-mean-square error and the lowest model runtime.
Overall, the dimension accuracy perceptron was able
to make prediction with the least RMSE value of 1.9
at a runtime of about 1.41 seconds given the
hyperparameter combinations as 5 neurons in the
hidden layer, learning rate as 0.0001, and a number of
epochs to be 5000. For porosity, the RMSE value was
3.19 and a runtime of 1.30 s with a hyperparameter
combination of 3 neurons, 0.0001 learning rate, and
5000 epochs. For dimension accuracy and porosity,
number of neurons in the hidden has no significant
effect on the RMSE value and runtime as it is for the
strength prediction. Strength prediction has the
greatest RMSE value of 5.37 at a runtime of 1.37 s.
All the strength prediction RMSE values are either
5.37, 5.38, or 5.39 but at different runtimes which is
directly proportional to the number of epochs.

Multi parameter HPO was performed
yielding ranges of RMSE for dimensional accuracy,
porosity, and tensile strength. Our work clearly
indicates that it is insufficient to rely on the default or
randomly choosing hyperparameter combination for a
deep learning model. It also provides a
hyperparameter design space for choosing different
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model variants that yields better prediction loss and
even at reduced runtime. This work will serve as
foundation for additive manufacturing processes
where quality cannot be compromised or processes
that needs to strike a balance between prediction loss
and runtime.
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