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Abstract: Hypervalent iodine reagents are in high current demand due to their exceptional reactivity
in oxidative transformations, as well as in diverse umpolung functionalization reactions. Cyclic
hypervalent iodine compounds, known under the general name of benziodoxoles, possess improved
thermal stability and synthetic versatility in comparison with their acyclic analogs. Aryl-, alkenyl-,
and alkynylbenziodoxoles have recently received wide synthetic applications as efficient reagents for
direct arylation, alkenylation, and alkynylation under mild reaction conditions, including transition
metal-free conditions as well as photoredox and transition metal catalysis. Using these reagents, a
plethora of valuable, hard-to-reach, and structurally diverse complex products can be synthesized by
convenient procedures. The review covers the main aspects of the chemistry of benziodoxole-based
aryl-, alkynyl-, and alkenyl- transfer reagents, including preparation and synthetic applications.

Keywords: hypervalent iodine; functionalization; benziodoxoles; arylation; benzyne; alkynylation;
vinylation; EBX; VBX

1. Introduction

In the past decades, hypervalent iodine chemistry has attracted the active interest of
organic chemists all over the world due to the versatile and ecologically benign nature of
hypervalent iodine reagents [1-5]. Five-membered cyclic iodine compounds, known under
the general name of ‘benziodoxoles’, are particularly important as reagents because they
have considerably higher thermal stability compared to their acyclic analogs [6,7]. This
stabilization is usually explained by the lower reactivity of the hypervalent iodine center
toward reductive elimination because of the link between apical and equatorial positions
via the five-membered ring, as well by a better overlap of the lone pair electrons on the
iodine atom with the 7t orbitals of the benzene ring [6]. Despite the higher thermal stability,
some benziodoxoles, such as azidobenziodoxoles, are high-energy compounds that in
some cases are prone to explosive degradation and should be manipulated with adequate
precautions [7-9]. Benziodoxoles are widely utilized in organic synthesis as the umpolung
iodine(IlI) reagents for introducing various functional groups, such as alkynyl, alkenyl, CN,
SCN, N3, CF3, Hal, etc., and are generally named as ‘atom-transfer reagents’ [7-11].

The synthetically important C-functionalization (arylation, alkenylation, and alkyny-
lation) of organic molecules is usually achieved by coupling reactions requiring the use
of transition metals, pre-functionalized substrates, and other expensive or hard-to-get
reagents [12-16]. Benziodoxole reagents that contain carbon-based functional groups at
the iodine(III) center (aryl-, alkynyl-, and alkenylbenziodoxoles, Figure 1) allow carrying
out C-C and C-heteroatom bond-forming reactions under transition metal-free conditions,
or under mild and easy-to-handle catalytic conditions. In the current review, we discuss
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der Cu! catalysis in the absence of bases was reported (Scheme 10) [31]. High selectivity
and yields were achieved under mild reaction conditions with good functional group tol-

erance
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Scheme 12. Synthesis of alkynylbeziodoxoles 51 and 54 from hypervalent iodime(lll) reagemnts 5, 44,
49, and 52 and X-ray structure of 51a. See explanation of reactions (a—€) in the text.

An improved procedure for the preparation of various alkynylbenziodoxoles 51 and
54 in high yields involves the reaction of triflates 52 or 5 with alkynyltrimethylsilanes 53
(Seheme 12b) [63]).
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3.2. Synthetic Applications

Several reviews on the utilization of EBXs in direct alkynylation processes or complex
reactions with the formation of several bonds in a single transformation were previously
published [7,9,11,55-60,85]. In this section, we summarize general procedures of alkynyla-
tions with EBXs and overview the most significant recent works. The reactions of EBXs
as Michael acceptors with the formation of vinylbenziodoxoles (VBXs) are discussed in
Section 4.

3.2.1. Metal-Catalyzed Alkynylation Reactions
Gold Catalysis

The first gold-catalyzed direct alkynylation of indole and pyrrole heterocycles 64
using EBXs 51 was reported by Waser and co-workers in 2009 (Scheme 15a) [86]. Later,
the same group proposed direct alkynylation of thiophenes 66 using a modified method
(Scheme 15b) [65]. In their next work, the procedure was improved, and the scope of utilized
EBXs and substrates was extended to afford various alkynes 65 and 67 (Scheme 15a,b) [62].
Bulky silyl groups as alkyne substituents were found to be optimal and the transfer of
aromatic acetylenes to thiophene 66 was achieved for the first time. Control reactions
between substrates of different nucleophilicity and deuterium labeling experiments, as
well as the regioselectivity observed, were all in agreement with electrophilic aromatic
substitution. Investigations indicated that gold(IlI) could be eventually reduced to gold(I)
during the process, and based on the results of this mechanistic study, the authors assumed
a 7 activation or an oxidative mechanism was the most probable for the alkynylation
reaction [62]. However, Ariafard et al. reported computational results that both the
oxidative and the 7t activation mechanisms were too high in energy and suggested that
the iodine(Ill) center in EBXs acts as a Lewis acid for activating the alkyne even more
efficiently than the Au(I)-center [87]. In 2019, Hashmi’s group reported an investigation
of the oxidative process that involves a tri- or tetra-coordinate Au(I) intermediate with an
oxidizing agent, particularly EBX, and provided strong experimental and computational
evidence in favor of the oxidative addition of EBX to the tri-coordinate (phen)Au'L species
to generate 68 (Scheme 15, key intermediate) [88,89]. The review [55] was also dedicated to
the rationalization of gold-catalyzed alkynylation, proposing a probable ‘interplay mode’
wherein Au-catalysts activate the 7t system embedded in the partner nucleophile and
are also oxidized to Au(Ill) by EBXs with the formation of intermediate 68. Common to
all proposed mechanistic pathways is an electrophilic aromatic substitution step, which
explains the high regioselectivity observed.

A gold-catalyzed direct alkynylation of cyclopropenes 69 with EBXs 54 is enabled by
two operating catalytic cycles, an oxidative catalytic cycle involving an alkynyl Au(III)
complex 68 formed by oxidative addition and the second one involving a silver-mediated
C-H activation (Scheme 15¢) [88]. As a result, a wide range of functionalized cyclopropenes
70 was obtained with moderate to excellent yields.

The first alkynylative Meyer—Schuster rearrangement, which was previously unsuc-
cessful under Pd catalysis [90], was developed by harnessing the potential of the ‘interplay
mode’ of gold catalysis, which integrates the 7 activation mode and an EBX-enabled
cross-coupling mode (Scheme 15d) [91]. The reaction offers straightforward access to
diverse (E)-enynones 72 from alkynols 71, barring the formation of any undesired enone
side products.

The first direct x-vinylidenation (Scheme 16a) with the formation of both formyl
allenes 74 and alkynylated aldehydes 75, and the o-vinylidenation/y-alkynylation cascade
of aldehydes 73 (Scheme 16b) using TIPS-EBX 51d with a synergistic gold /amine catalyst
system, was reported by Huang’s group [92]. Functionality rich, tri-, and tetra-substituted
allenes 76 bearing a versatile aldehyde and an acetylene functionality were prepared in a
straightforward protocol. Later, the same group developed a direct synthesis of diverse
ynones 77 from readily available aldehydes 73 and TIPS-EBX 51d under gold/pyrrolidine
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Multisubstituted alkenes 81 are also accessible by regio- and stereo-selective gold-
catalyzed acyloxyalkynylation of ynamides 80 with EBXs 51 (Scheme 17b) [95]. This effi-
cient transformation tolerates a diverse set of functionalities, thus providing a wide range
of amide enol 2-iodobenzoates 81.
Other research groups later demonstrated that EBX reagents can be used for C-H
alkynylation using a broad range of transition metal catalysts [7,9,55,58].
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Multisubstituted alkenes 81 are also accessible by regio- and stereo-selective gold-
catalyzed acyloxyalkynylation of ynamides 80 with EBXs 51 (Scheme 17b) [95]. This efficient
transformation tolerates a diverse set of functionalities, thus providing a wide range of
amide enol 2-iodobenzoates 81.

Other research groups later demonstrated that EBX reagents can be used for C—H
alkynylation using a broad range of transition metal catalysts [7,9,55,58].

Copper Catalysis

Atom economical oxyvinylation reactions of diazo compounds 82, 83, and 86 [96,97]
and C-S bonds in thiiranes 88 and thiethanes 89 [98] using EBXs 51 under copper catalysis
were reported by Waser’s group. The reaction of alkynylation of diazo compounds 82,
83, and 86 proceeds under mild conditions, giving highly functionalized alkynes 84, 85,
and 87 with excellent yields and selectivities while using the inexpensive copper catalyst
(Scheme 18a,b). A broad range of EBX reagents and diazo compounds were well-tolerated.
Based on these investigations, the same group proposed the multicomponent copper-
atalyzed reactions of diazo compounds for the synthesis of highly diverse propargylic
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trawhensdBo)itvthe tendmSelected examples of products obtained in the reactions (a—c) are shown at

the bottom of the scheme.
A ring opening of thiiranes 88 and thietanes 89 using alkynylbenziodoxoles 51 and a

xfﬁﬁn%)diiégc}éggﬁggg:glzﬁf%ﬁ%g]Eglgguéfﬁt&’ ‘%P{iéf‘t‘éﬁé&dge'%%iﬁg" Efﬁl?S/sn"}()ﬂg]enziocloxoles 51 and a
cheapcopper.catalyst Sixesaessss toppultifunciionalized hard-tezgeh thioethers 90-91 with
o edtera teyields(Seherteti& oy 9B EBXs for the synthesis of the gold-catalyzed
cascade cyclization substrate [101]. Inspired by the existing data, Tada and Itoh developed
N-alkynylation of sulfonamides 92, in which copper species allow to avoid the sterically
bulky p-substituent of EBXs 51 by reacting at the a-carbon, except homo-coupling byprod-
uct 1,3-butadiyne formation (Scheme 19a) [102]. Therefore, aryl and alkyl- sulfonamides
92, as well as amino acids, were converted to the corresponding ynamides 93 at room
temperature with broad substrate scope. The authors found that an electron-rich bidentate
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Fujii and Ohno reported an impressive copper-catalyzed ligand-free N-alkynylation of
several aryltosylamides with the use of EBXs for the synthesis of the gold-catalyzed cascade
cyclization substrate [101]. Inspired by the existing data, Tada and Itoh developed N-
alkynylation of sulfonamides 92, in which copper species allow to avoid the sterically bulky
[3-substituent of EBXs 51 by reacting at the x-carbon, except homo-coupling byproduct
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EtOH, rt
TIPS———1—~0 EWG
(o) N———=—TIPS
(b) EWG = Ts, Ns, Ms R'
95, 26-87%
94 22 examples
N
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L1 Ph)J\/U\Ph e N| >

Selected examples:

(a) -|- EtQ
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! 95a, R = H, 67%
Ts 95b, R = 3-Cl, 78%
93a, 89% 93b, 60% 95¢, R = 4-OMe, 77%
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%ﬁeﬁﬁ%&w ¢odpliepriatien iindalstetpiesdindein ihereTalamylasdeaqstoducts
B8t emgyl Eﬁ%oﬂnﬁeﬁ ﬁa%qﬂiﬂ%%ﬁ%sslwﬁé%ﬂ&%%ow&r}k@fé have OBserved

¥ %’Ieﬁlgﬁr&@%}e %%Hé %f % TR eﬁctf%%r%}beféffﬁ{s Iﬂaeé’%afazaéa@ é&lwe direct
tlﬁ( a4l (;aon gfgﬁ -1n (i ?'%n %ﬁ& as een fte\ie O eg e samé £ group
ose %?1(:1%1? F ose Ze ox a ozre11 r(1) }éalfﬂ t atl n aél saﬂ<enes with
us a ter les %) 1se1§ stitu ur, lsél ca be pr Caz?red b
% prep e ?fa‘éc é]I d ot nSEHIOI'l 6) aIr es an Q1 ]rP {Fg y
d% 1ym [“R) i% H’condensationt of N- -aryl imines an kyny enziodoxoled [ 107 ,108].

e IPOQ esetghaedrchamical rapsomationsusing-edines i midants,are most
likely toRoesead via eGPl st gl colgbavRishptamRdEatiRahigchanis-
ticalushrafihddbreatalyaed sroxyilsnplasionebeleling Prosing 310 EEXS1d has
cated that this reaction proceeds via Pd(Il) vinylidene-like complex A, not a Pd(IV) com-
plex, to afford product 97 (Scheme 20) [109].
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Molecules 2023, 28, x FOR PEER REVIRG ndicated that this reaction proceeds via Pd(II) vinylidene-like complex A, no]’c fPoiL(IV)

Molecules 2023, 28, x FOR PEER REVItE@tnplex, to afford product 97 (Scheme 20) [109]. 17 of 44
_ 0 _ TIPS
_ TIPS ||
o TIPS-EBX 51d |
g, BRI gg B
0,
\/\96)J\0H 10 molﬁd’gmfar%ac)z @ Pg" /O I 0]
96 DCM, rt | 97
TIPS 97

hfacac = hexafluoroacetylacetonate - A -

hfacac = hexafluoroacetylacetonate
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Ge=Ret @1h3% 100j 190 Pﬁ‘/@ﬂ@n 06(101)

100§0& R BEnthbie70%, d.r.1:1 100j, R = Ph, 74% (9:1)
1009, R = (-)-menthol, 70%, d.r.1:1
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9. Several other transition metals were investigated as catalysts in alkynylation reactions
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electron-rich benziodoxole derivatives demonstrate synthetic advantages in some cases




Molecules 2023, 28, x FOR PEER REVIEW

18 of 44

Molecules 2023, 28, 2136

17 of 44

Aol les202329—xFORPEE
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49 (0.5 eq
2 mol% Ragf9(2rR)eq.)
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—49t65eq) = RI)—=—=—R
DBMFDAI P #)-blue LED, gf _R2

BF3K R
R? 1 DCM:H,0 (1:1), blue LED, rt R2 102, 59-85%

R! R2 &3_3”6" 102, 59%%(;7xamples
_RLRLR=zalkyl | Selected examples: 25 examples " ‘
- -HO—~}——0 - ‘3 : — N
! Ho= P — >R g
! ol / PhVISS 1
; ol \ 7 : !
i P 102a, 73%  102b)R = 4-Me, 82% 102e, R = 4 COMe 75% 102h, 61% |
| a1 eseq2itaotoztons fida esaidge foar RAMECHD, B0B. 61% ‘
. -- @ eg 4% }82?05& f2R2h4 84767 402f, Ro2 A GROBER, 76% ‘ 1
———————————————— kg | 4.aq Na,C )" 401 78% - 1029, R=2-CN, 6%\ ...

Bipy = 22 Kipvidine
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Eﬁb{at{)]@&]nd EBXs [125].

Waser ([Ir'"'], blue LED)

Chen ([Ru"], blue LED)  Lu and Xiao ([Ir'"], blue LED)

[72] )}122 " [123]( "

Chen ([Ru'], blue LED)  Lu and Xiao ([Ir""], blue LED) Waser ([Ir""], blue LED)
9172 M22] ~nTC 123
R‘{N . R—=—Pn T PO

R 7
% 106R562-98%ppy ¢ R
R! —%RZ R = Ph, alkyl 109, e(i*ﬁw N

18 =1,2;PG = Cbz, B
R? = anyh B 7uipy, TIPS %)ba"m%s 98% R= %Ps TBDPS, PhZMesC &,
R6 2XamP'afy |

Ph ples CiqHao, 2- Brchgg)%@-ﬁngm 5
2. NGFIG z, Boc
R =anyl, @u, nHex, TIPS R = TIRSamREPS, Ph, Mes, tBu,

RQ’\? a@les Ciahgg, 2-BrCqHy, 4-BrCeHa, 4
RO OR? @ &% gz CFsCeHa
. R104,141-85% R =e > |£3P nt Rt 13 examples
L Rt o7 70.080 Y
R? = Ph,Bol, 3- Med%,z oHa, R =1m7i zgfanéem { REPS
4-CIAQH4, BIRS5HElex Ré{e%qp]?s 110, 47‘%130%
= ety R R = nBu, 4-f5UCsH e,

R? = PHOSEIM8I8%eOCeH,,

4-CICgHg, TIPS, nHex
Rﬁwj\ityl
1% exa’ eRS2

105,83, 75%
R J|EL, iPr
RT PR
2 examples ™ R?2
105, 63, 75%
R" = Et, iPr
R2 = pToI

Flgure 3 Products 103-111 and mterm@dlate of Ru(IY) or fr(f’ﬁ'ie"

5 examples TIPS

110, 47% to quant.
RRI=5BBh4-tBuCgH, etc.

108, 27390%
R1 —
R%= PthBu Tl
, Bu, Rr2

1 |
%aé“%?sgov 5 examples
|¥, 111, 44-64%
z_a/‘a R = Cyp, Cy, Ad
R?=Ph, Bl TP 3 examgles— _py,
examples

Chz = carbpppnayoay

X0
A %’“ﬂ S R = Cyp, Cy, Ad
X = substratd after 3 examples

decgrboyylatidn

otoredox catalyzed alkynylation

with the use of EBXs [72,1R2, ml‘ubstrate after

decarboxylation

Figure 2. Phodiuctis OB srdliirtéamest iette AAod R I ood d@I ppbédoeddeocatd by edch Htgymid tibon
with the use of EBXs [72,122,123].
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At the same time, Wang and co-workers have developed similar radical alkynylation
of aEXhENS SRIG e VWats angienay etkers havs desaloper sipirraadical aliyvatin of
arcieanidgith-hapmeacsirasrrtabes A notB Aot hid el dihe tacting arpesedsrynder
paedight iradintionivitbeeshedse o iRhRIQ R aiRl-satphy At i foterthies s REPRed in
sitpsiormmaigroRl S BX dumisig thaisastinn g Shisalieylationdelerniaan serps efisustifuted
PR adafindsyrerreinsagdarieldsidrpuabisloPran e akiadilized the FBsds 18208
ayetenudanderarb axpdaliveniky prlatienatierkstipsid s R RXABNG 1909 1A AdURQUs Redia
ttrfforcb BilTHar SRRESIVGHY Aele i hta highy el dmbBedn pratierdaansit oRennetabtiree
spxhesiseatyaensn Beasaldehydas s bess perfoumad pdidptieuse pitHBX aeagentsrand
pregkcess of radical initiators (tert-butylhydroperoxide) at 100 °C in DCE [128].

Miyalke et reppertediliphtidvisiemintersiedatad eh shas gatistasferdindderd daaetyvity
of EBXs 51 and phenols 112 to afford a diverse array of (Z)-2-iodovinyl phenyl ether deriva-
tivesi1d$, M3fweNcellenl eagiegindasiérserseleeticityityndadrradaatistiow iwhthisislblight
(FsthietBehztag P3| 1D9¢. dlhih ardlasssinsedrageha tolintuiaelli edectlevt toanstersstes ey dhving
aoliritegmadiater miedithgnriagtbalvinetglodtonediph didA dorBPlax ddittpibsubsdatenthsteads
tuemtpydeadsntedrphersdenltbdpiatgdvilgend cleavage.

(a) R@OH R1Q QR1
R—=—1—0 112 (15 eq.) R I

o Cs,CO; (1.5 €q.) Rl \ =
/ O H /S H
MeCN, blue LED, rt = 9‘

51 113, 40-96%
R = aryl, tBu 53 examples
R'=EWG, EDG L -
A
b R3 ’

O—I|—R
Y O 112 (2.0 eq.) , R
? Z Cs,CO3 (2.0 eq.) R —
e QOH

OR' X DCE, 50°C —
59 113, 70-97% 114, 61-95%

R =aryl, tBu 46 examples 46 examples

R' = Bn, allyl, Me, Et

R2=H, 5-NO,, 4-Cl

3=
R*=EWG, EDG EDG = electron donating group
Proposed speculative mechanism:
ArO ArO
o Ve
o—I / o r / ArOH
052003 SN2
59 + 112 j DRz ——= Y 2ge 13 + 114
1 N2 R
o w0
B 0 c
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na ?\? ﬁiay A&V % N SAGhum salts
m 51tu fr s 1r czs— - eno \ﬁas en ra twee 311 ctro-
as orm%%)lglg m Q Cls-ﬁ— dl— Which was generated between
Iglllr? S
ilic spiro- nuc €o 1c arylols 112.

A combination of non—metalhc photocatalysts/EBXs has been employed effectively
in the alkynylation reaction. An efficient method for the direct C-H alkynylation of ethers
115 and the deconstructive alkynylation of thioethers 116 using alkynylbenziodoxoles 51
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Scheme 26. Selective C(sp)-C(sp®) cleavage/sklkyyidsionodfayettedKyyhanidiess 12 usiing; BBXs 51
and 128 as eg-catalysts:

The radieal reaction of SFsCl with ethynylbenziodoxeles under blue LED irradiation
gave theedgeisnd SISFsuRtiittacballgiRgnis modatertabigh figkdslibidd Tisapemtadlysie-
eatliasadsderivtivierRave PORRER) SrRPticA Hpptita toe Tinkh aedi slcug desien, dndgerasd
gervelnablesatetiyhuildiagblesks BRrs Pl35-139].
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L%%l]em regioselectivity and stereoselectivity has been presented through unprecedented

reactivity between the EBXs 51 and the thiols 129 (Scheme 27b) [144]. This operationally

simple procedure utilizes mild conditions, resulting in a broad substrate scope and high
functional group tolerance. The cis regioselectivity observed in the final products is cre-
ated through a combination of two steps: cis-selective nucleophilic R'SH addition (TS-I)
followed by a cis-specific radical R'SH addition (TS-IT) (Scheme 27b*). Interestingly, dif-
ferent inorganic salts accelerate the reaction by acting as basic additives in the first RSH
addition. Under the standard reaction conditions using Cs,CQO3, the results suggest that
the rate-limiting step is the formation of R'Se radicals from R'SH that takes place before
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Selected examples:

(a)
X

R

128a, R = Me, 93%

128b, R = nHex, 98%

128(2, R = nC14H29, 98%

128d, R = {Bu, quant.

128e, R = (CH,),CH=CH,, 93%
128f, R = (CH,);Cl, 87%

1289, R = (CH2)2N3, 90%
128h, R = (CH,)sOH, 98%

of a few examples of benzo-1,4-dithiines.
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ddition the method w

127
base (1.0 or 1.2 eq.)
@
THF or MeOH, rt, 5 min \\R
128, 45% to quant.
32 examples

R'SH = 2-BrCgH,4SH, benzylic thiols, thioglycosides,
amino acid derivatives, thiocarboxylic acids
base = 5,7-triazabicyclo[4.4.0]dec-5-ene), 1,1,3,3-
tetramethylguanidine

129 (4.0 eq.)
Cs,CO3 (4.0 eq.)
(b) R\
N,N-dimethylacetamide, rt
130, 35-97%
1+ 50 examples
)
é
R! 7" C0,Bu
131 (.S?
tBuOK (1.05 eq.) 1
(© RN
toluene, -40°C R
132, 37-90%
17 examples
9
(c) :

Ph—\

130a, R = tBu, 90% 132a, R = Me, 87%

132b, R=H, 84%

130b, R = Cy, 92%

130c, R = nOct, 70% (1.1 g)
130d, R = Ad, 93%

130e, R = (CH,),0H, 85%
130f, R = Ph, 85%

130g, R = pTol, 93% (1.1 g)
130h, R = 2-Naphthyl, 74%

132¢, R = OMe, 90%
132d, R = Br, 55%
132e,R=F, 75%
132f, R = CF3, 62%
132g, R = NO,, 62%

128i, R = Mes, quant.

Scheme 27. Alkynylation reactions of thiols 127, 129 and sulfenates 131 using EBXs 51. See explana-
tion of reactions (a—c) in the text. Selected examples of products obtained in the reactions (a—c) are
sheown at the bottom of the seheme: Struetures of the transition states in the mechanism of reaction
(B) are shown ynder &:

Alggnegtahdfukifbcii3n charategyffioichidgnthheis afdl @ndithteahsithemeadi30-frathcex-
déetlent feghoseleaipiyiding stdfenaedectdinidBBeeplpttasantbd-¢hroMfbhaviakioedented
ietesteihbbetwdenttheddXd Sk serd pheathiel add% (beeeuen? 1) siidbi¢. stitferopterationad i
dintiguie( Poloendh G8ch fildde T heildaqupid giohtheesultitigg s fereead sniostsatd theGBX aedgeizh
affiordedalkybdapdelerhaley e uifarjglesdld2tin iyebbypiatdsd And it divedlyp toduatylivinet
sidtb xindesiglere adnobinud siten eftevoustieyes VdkXsedegimtsnucleophilic R'SH addition (TS-I)
folloedtiy range pédifieradychéRiStibediitidresESIDsiBghER¥s2Tbtel itensstiog iy edaf-
freenonditigamsil/ SaltHadéelbi@tsslierebctapotip thingyadtiesiscof detitibyslioplicefitse REHM4
fridditibaniidetcl3thusing dM3-FdXt5dn dothtipoesensinef AsiCdg Hesedbnduglngaentottig
ehielizadivmafithe srepmidednitermeiiate AR (Seherdecata HaR RiSHi lhangh ktwjghttobefoid
shiateetia@ o8Il dditibe consdietisn) #fentevasalwaglepfoenobeapisliaiesd Bocpramiateid
of a few examples of benzo-1,4-dithiines.

Alkynyl sulfoxides 132 can be efficiently synthesized under transition metal-free con-
ditions from corresponding sulfenates 131 and EBXs 51 through retro Michael elimination
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afforded alkyl and aryl alkynyl sulfoxides 132 in high yields. Additionally, two aryl vinyl
sulfoxides were also isolated when using VBX reagents.

A wide range of heterocycles can be synthesized using EBXs under transition metal-
free conditions [70,145-147]. Cossy et al. reported the synthesis of tetrahydropyrazines
134 from dramrdes 133 usmg TMS EBX 51c in the presence of a strong base throaghf64

forward synthetlc protocol for the construction of 2-(oxazol- 5—yl)phenol derrvatlves 136

Byorietest by BnliasryNanbesassamidsnd iz mud Abasdkensad exslaserth gt aar
ferAtude Vas bean RGP sdhertsh seapratiah ik dlsary angsmritall -
bene/wnertienAdushas! pdcbtisavierrlication Sehepre@Bo). b10). hatezathe saB\GRpropadd
paseddsnsition metahBasibitiventbuentsphadsirvhesis )iHue Sindaat Hanbondhiaed
axaciardrs dariza tivesTBBrif EexsEIRI andrmnisiesimesddd anvles prschase dendis
{Bunetiehesey PEO)[[1460id bisaaie gy verphdirignginshesass EBRY sl form an O-
vinylbenziodexele itntermetiate witiclagrindeeles §w d Wifeidfarent nhiratigrap Rstagses
tesdan deasl ingotaiffepedif (exat iaindideineadrriyativesttnethici s ifeaig fe tiecofedieitsh
action isthelsabiieRebletselegtvfifyBX L RXsytathathesiza dxadite iderdeatiadiviey idpditiplg
g stihseiuRAtIR thé the dlvidexingy 137.

TMS
TMS-EBX 51c (1.0eq.) _,
R™-NH NaH (2.0 eq.) R~N/\ C//j
@) 2 N. RN N-R?
HN-R DMF, rt R2 N
133 134, 26-83% A
R!=Ts, MesO,S, Ms, Ns 11 examples
R2 = Boc, Bz, 4-NO,Bz, 3,4-Cl,Bz, COHept, COCyp, COiPr
Bz = benzoyl
(0} R——I1—20 1 = | OH
r1E
b O\NJKRZ . 0 KxCO;3(2.0eq) N o,
R | H - | />"R
X DCE, rt N
R
135 51 136, 50-96%
R = aryl, alkyl 31 examples

R' = H, Hal, CF3, CO,Et, MeO, Me
R2 = Me, nBu, aryl, 2-thienyl

R
Y
(C) R1 H R1 \N

R— |—0 138, 23-92%

= 1o
N'OH KOH (1.5 eq.) 27 examples, R = aryl

‘ . o - .
1 THF, reflux fe)
HN™ "R le l
137 51 1J\N/ R
R = aryl R

139, 31-67%
8 examples, R' = 3-, 4-pyridyl

O

EWG
(d) o TMS-EBX 51c (1.3eq) RL._N o |
H . . .
2 K,COs3 (0.1 eq. g
EWG’N\;)J\N'R 2CO3 (0.1 eq.) O/I/:N>
2 H o

IPA:MeCN (1:1), rt, Ar

140 141, 52-86%
EWG =Ts, Ns 17 examples
R' = H, Bn, 3-indolyl, iBu, CH,CONH,, (CH,);CONH,, CH,CONHCH,CO,Me
R2 = aryl, CHy-Ar/Het, CH,CO,Me

Scheme 28. Transition metal-free EBXs §1-mediated synthesis of heteroeyeles. See explanation of
reactions (a=d) in the text:

Very recently an atom economical synthesis of 4-imidazolidinones 141 from diamides
140 and TMS-EBX 51c¢ via unprecedented double Michael-type addition under basic condi-
tions has been proposed (Scheme 28d) [147].

Numerous works were dedicated to the alkynylation of activated carbonyl compounds
with the use of EBXs [67,68,148-150]. In the pioneering work [67], Waser et al. proposed
the ethynylation of keto, cyano, and nitroesters 142 with H-EBX 146, which is generated in
situ from alkynylbenziodoxole 51c by TBAF treatment at low temperature (Scheme 29a). In
their next work [68], an alkynylation method of cyclic keto esters was improved, as well
as the scope of starting EBX reagents. Further reports concern the variations of reaction
conditions (changing the base, additives, and temperature) and either carbonyl compounds
or EBXs and, consequently, the scope of obtained products [148-150].
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generated in situ from alkynylbenziodoxole 51c by TBAF treatment at low temperature
(Scheme 29a). In their next work [68], an alkynylation method of cyclic keto esters was
improved, as well as the scope of starting EBX reagents. Further reports concern the vari-
ations of reaction conditions (changing the base, additives, and temperature) and either
carbonyl compounds or EBXs and, consequently, the scope of obtained products?{Pi§4

1507,

0
(@ Ewc
X
R
TMS——1—0 142 H 0 H———1—0
TBAF A
o} X 0
THF, -78°C to rt EWG R
51c 143-145, 50-98% 146
Bu 16 examples in situ
(b) S-N  R?
N , 147
R’ H R 8 . Al
{BUOK Pl R ; .
TBAF or TBAT 2\ |.R® ' ' \Ph
(0] \ ' TBAT = Ph—SI»l,Ph nBuyN
THF, -78°C R™ N\ ‘ F
148,47-96% \, O TTTTTTTTTTTYC
27 examples

Selected examples:

o) o] 0
a
(@ [ [_n [_ g N_lR
Ph OEt OEt PH
Et0,C R NC R O,N R N\

1433‘ R = Me, 83% 144a, R = 4-BrBn, 75% 145aY R = Me, 75% 148a, R = aIIyI, 80%, dr 98.5:1.5

143b, R=Bn,93% 144b,R=Bn,90%  145b, R =Bn, 93% 148b, R = nPr, 96%, dr 99:1
143c, R = allyl, 88% 148c, R = 4-MeC6H4, 91%, dr 1:2.7
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4. Vinylbenziodoxoles (VBXs)
4.1. Synthesis and Struchire

The interest iiﬁlﬁm&?%%%@égW%&Egﬁ&ﬁﬂ%ﬁ@é@%hﬂ%em%m
s vigismbcAntieresesed ERaRier Rkt dhe dommation of VBXs as products

in various addition reactions of alkynylbenziodoxoles [140,152,153]; however, the reactivity
of VBXs was systematically investigated only in the last five to six years. In a recent
review [10], various approaches to the synthesis of VBX reagents and their reactivity
were described in detail; therefore, below we will consider only the main aspects and
recent findings.

4.1.1. C-VBXs

In general, the vinylbenziodoxoles can be further classified as X-VBX and C-VBX,
containing either heteroatom X or carbon substituent at the 3-carbon of the vinyl moiety,
respectively. Several examples of the preparation of C-VBX by a coupling reaction of various
vinylboronic acids and hypervalent iodine compounds have been reported [154-157]. In
2016, Olofsson and co-workers proposed a one-pot synthesis of C-VBX 150 starting from
2-iodobenzoic acid 1a (Scheme 30) [154].
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4.1.2. X-VBXs

In contrast to C-VBX, numerous papers reporting the addition reaction of S-, N-, O-
and X- nucleophiles to ethynylbenziodoxoles (EBXs) leading to the formation of variou
X-VBXs were published in the last 5 years [162,167-175]. In their pioneering publication

Kitamiira and co-workere rerorted that the additrional reaction of a7ide anion fo allevnvl(in
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Scheme 32. First reported synthesis of vinylbenziodoxoles 154.
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Waser’s group investigated reactions of S-nucleophiles 155 and revealed some mecha-

nistic insights into the formation of X-VBX 162 (Table 1, entry 1) [140]. Furthermore, they
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were achieved using extremely simple reagents under mild, open-air conditions with
high stereoselectivity.

Molecules 2023, 28, x FOR PEER REVEEW  One-pot approach starting from other iodine (III) reagents 30 of 44

Several recent works by Yoshikai’s group were dedicated to the synthesis of highly
substituted X-VBXs [162,171-175]. Among them is a stereoselective synthesis of vinyl
athes 1B vidadmastidifiaitwalatinasioof eérieripdhah disténtatnik phey 199 Bi7abiohbionols

37 Oyetogyaholpghthythylestydro@PMEPNE h k80 adihéodine¢HEr ries Samtd TS AA8nSCheate

Rbpbetivsgletively) 1171,172].
R30H 179 (solvent), rt, 24 h
or
R30OH 179 (5.0 eq.)
MeCN, rt, 24 h 181, 32-98%
(a) R3 = Alk, 2-pyridyl, Ac,
5, X=0Tf 1,2-pyrazole, etc.
X—1—0 )
R
RI-———R2? + i — BX _~
CF3 OR3
R1
77 50r178 BF3+OEt, (1.5 eq.)
22 ::I,kAK(I,- (b) CC5HgoMe 180, rt, 12h 181, 48-99%
= Alk, 3
178,X = F R®=Me

Selected examples (a):

Ph ‘e Mel Ph i H ;
BX . BX O Bx i BX |
Ao Yk %w B Ao

Et Et = ! T™S
181a, 91% 181b, 57% 181c, 80% ' 181d 81% (@) !
from (-)-menthol from androsterone i 69% (b) i

Sathame B4 Symithesits off Hikghiky sudbstitootead X-WEBKes 18 fivomiisdl ived(11)) reeqgerisssh( 69 )t 1VBS(H).-

I ceitiast o gerwall gittones, netdhylsilylacetylene underwent the iodeo(Ill)-
ethesifiication willh opposite Tegioselectivity to afford the B-silyl vinyl ether 181d im 31%
Wi, piesumably due to the ability sHithessily bgsopndeeohibize pasivy erchargstah s
el eI ARy (165 Bl s
R Friea cosnsa f syt [ KR
highhtelgsrnsed awintd @ ¥apigtesf éfrfeﬁfa&@fzaﬁiﬂzw%@ﬂ&ﬁéﬁm%ﬁ{gyaﬁé s a%7y/hk
welrEe s Asab AR AR SThos Rtk Bipsling A dingodanybui E%l&‘?@‘irylgfé@%l
withdyighaegigrand ietrisglectivilitscdheiRenpirdnxolfornsighe Z@e {ReperdHsts oa-
be-tsedrpe sl RrsrsRrpferthe symthesie of smciuratlyAiverssRfearoshenatealy.
wrsdietnedvamdathers Hap readifiodt ieaesese i fihetsastiedther methods.

I, QPR of thise WY A IRIESIXNS A HiRcionalization gk aiomes 177
mediptecibg s dvolanhioding sleriteriilag Brihesterramsleciive sw bR ol bR bisHh:
Stﬁ%‘stﬁﬂﬁgﬁ%%%ﬁe% 1841383 hernpdexs %BS%&%%‘%‘&ES’@J é%%h%f ﬁ%&fﬂg&g%%dagﬁa%

8 sy g “%%tees%‘%‘% ARG St alsl sonsnisndit ﬁﬁa&le"%‘ea%%o%‘%eanum

V%fr%&te%}am%erxaﬁ ﬁ< e w%ﬂsssv%gfflaess% rﬂeseigégev%%iet Cable&f
C‘ﬁ%’“ P}%’a% ﬁ%r foongs ns?r}% an ena 1844 i%‘ﬁféi RS X%e % Orﬁ‘aas
rans ormatio 2)}) %%ﬁlélﬁ%on anass}{l seec,ihcea %ltllog:lg %%ﬁc%?{gr?g were aemon—

strated.



TfO—1——O NapLUj3 (2.0 0ros.veq.)

2
oF R3CN 182 BX R
RI-———R2 + o 3 = o)
3 w/ or wio HFIP R HN_/<R3
t, 4 h, Ar
Mblisilse 2008 38 % BOR PEER REVIEW, 177 5 183, 33-88% ¥ody 36-91%
R‘ =atkyf R=R2=Pr

=alkyl, aryl  R®=alkyl, aryl,

R3 =Me  adamantyl, cycloalk
-propﬁﬁﬁze)%%?é {I’é e%| BX |§2 vinyl

;83—184 from iodine(III

1= 2
Sc%leme 35. Stereos

R3-aryl aIkyI 1- adamantyl alkenyl, alkynyl

189 55 88%

2 $ tthu CHZOMe CHzan (CH2)4CN
] nyl, 1- Naph CH,OBn, 3-
R3Q al(a{ﬁ1 a%a#mn yf atke I’ | y?%,/ll

sz 5% 55-65% 191

25 I@%Sét/ 0B @%y
%1 ogEt %‘é@ HNW R f=CH,

OEt MecfH“ 2 F

-, 2 (szlonaﬁz%:%%%&% 177.

1885 R1 OTs

Schemkle. W Sl mncdbenisaein blaiaks 72| was modified and applied

preparation of [3-alkoxy-B-amido vin 1benz10doxoles 194 via tmns iodo(Ill)ether:

o0
\
‘o)

wn

reac '
- -pramiag v Eﬁ,@ll@
i SUS 1
S X
i | c ‘11’5 - %
OiOme mmi‘ & ws eeseo -
all oxyIB-amido 3 1n 3tereodelective tcrans QA 11(c))ns
o) 1. 2eq.) zf ’_&
3 3q5.0 eq.) N
_ o) %S%é&‘ é %>§<
R==N\ (ﬂ
H'H%rnﬂwm 1h %R1 OR?

RR2
% o 8
= Rk B %%Mb%l\}l% Pf'”10 minR3=Me, ?3?4 5\%{7/
%N %I w %Hz)f%r% rvrélllPr Bn, Cy,

igzmg@%““ , (CH5),Cl, vinyl
6Flgq
BiMeOCgH,4
%%em'é' AR T oda itetheriication rachion ofyhamides 193 with bervisderele wifbie 3an
8¢ A KeposlegHsthaydasnmieaainn Alananydss IRaifueerrasiorns BidhissaBlole trifl

eeliebidos.
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The group of Olofsson emplo ed C-VBXs 203 to vinylate a range of aliphatic and
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Scheme 40. C-VBX 203 mediated vinylation reactions of thiols 204, phosphime oxides 206, or H-
phesphinates 207

Later Olofsson et al. conducted a detailed mechanistic study of C-VBX vinylations,
including NMR studies, deuterium labeling, and computations, to figure out the observed
regio- and stereo-chemical outcome (Scheme 41) [183]. According to this study, C-VBXs
react by two differentppativigyddedidipgiehtherotththe tarieah@ 06 0 Heche @) 1)the the
e a2 808man d BP9 Sebeiveld))adleere. Mantetiumilihdling studies and computations
support that the S~vimylation siftthin dMapreceed s oo shidppoainratatdleved Py
ndigrndocpiipking fsrauiidderdntesmaeiaskeadandrthine thelfinadinternkdralkenss 20%A
veietrmednfrsandigiationr Mhalatiow ot ivn gl sivsprhespline ovsiemnifoad peiend
begins- Ol brddreansdippion Qfriae sererRy Rhipspbineysadd vBK159%, 1P tisn
simnkians AspsrRieientionen dMicha Er}aéyp&&i ditipndaading kamrnisiniseardias;
Brdrdndhendrapstarmsteibedarminphatkrperpgdar & base-assisted protonation
(intermediate €) and E2 elimination. In this werk; the general regieselectivity trend for
VBX Wnyeiissssundaemaielisreopditions nasmedicasehersunbiden; adslenrbilss
piclelivar derrinakalkanasanbsreasynenedeniato qesiang nuclsop hileissphreevida
IYisTRaL FHERSSE alkenes.

In 2017, Leonori’s group reported the first use of C-VBX 150 as coupling partners in a
free-radical photoredox process in the presence of acridinium dye 211 (Scheme 42) [184]. A
nitrogen-centered radical B was generated through a photoredox-initiated decarboxylation
of oxime 210 via carboxy radical A, followed by cyclization to give alkyl radical C, which
was trapped to afford nitrogen heterocycles 212. In the next step, C-VBX 150 was effectively
employed as a radical trap with the complete retention of the alkene (E/Z) ratio to give
products 212. Cy-VBX was also used in a single example to give the final product 212
(R! = Ph, R? = R® = Me) in a 35% yield.
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Xn umpplung strategy of enol ethers to gqu)}"@tﬁgoxy /?agg/ -cation equivalents from
O-YBXs 213 under mild basic cofiditions vas reperted [1 A plethora of vinylated
Mrﬁrﬁ}&l}éilﬁ Wt Yekitedrste ctirely using R+ and C- nucleophiles, in-
Cludin& natural products and O- VB)@; 213 (Scheme 43). The geaction was most efficient

for phenols as nucleo ghﬂes but the conditions were apphed to the reaction with C- and

N—nd%l'egphql'eg ey Pﬁlrtljiief\fjﬁ()'?e itk Mo b SEMof external nucleophiles, in situ-

senartgd Zriedabenroatisieasies kiastesh a3 busieopiulasimesuliing isp the-dermatignaf
allyliccertess. Lrepasatiowsnf various allylic ethers was also succeed using EBXs as starting

materials via O-VBX formation. The obtained enol ethers 214 could be transformed into
a-difunctionalized ketones under oxidative conditions, demonstrating the synthetic utility
of the transformation.
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The reported, in Section 4.1.2, N- VBX5 166 have been utilized in the cross- coupling

Sehione (4147 Dirbeptalynedtfotlanetss cutnlipgee! Grid, alivbraytheibssil stapnyingdgentines 215
BREN/BRY P5BXs 166-167 to give products 217-218 can be conducted at ambient tem-
perature (Scheme 45a), whereas a similar reaction with simple iodides required heating
at 80-120 °C [129,186-188]. A direct comparison of the reactivity of monovalent versus
hypervalent iodine toward cross-coupling was performed on the example of Stille coupling
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reactlons [167] Pd Catalyzed Stllle Cross- Couphng of mel aryl and alkyl stannyl ]
and N- and O-VBXs 166-167 to give products 217-218 can be conducted at ambi
perature (Scheme 45a), whereas a similar reaction with simple iodides required he
80-120 °C [129,186-188]. A direct comparison of the reactivity of moneualent ve

pervalent jodine toward cross-coupling was performed on the example ot Stille ¢
with iodide, but no conversion was observed at room temperature and 50 °C. L
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the use of non-nucleophilic benziodoxole-based VBX 223 allowed the synthesis of struc-
turally diverse allylic ethers 226. All obtained products can be further modified & g

important building blocks.
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of diverse nucleophiles, as well as for heterocycle constructions by cascade reactions.
These reagents can be applied under various reaction conditions, such as transition metal
catalysis, photoredox catalysis, organocatalysis, and transition metal-free reactions to
afford a plethora of alkynylated products. The main limitation of these reagents concerns
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their synthesis, requiring alkynylboronates as starting compounds and purification of the
final EBXSs.

Vinylbenziodoxoles (VBXs) have attracted recent attention and in many cases were
investigated as the products of addition reactions of alkynylbenziodoxoles. VBXs can be
used as E,Z-selective vinylating reagents for the preparation of various substituted olefins.
We believe that in the future, VBXs will find broad application in organic synthesis as
convenient and versatile group transfer reagents.
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