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Assuming the Riemann Hypothesis, it is known that there are infinitely many 
consecutive pairs of zeros of the Riemann zeta-function within 0.515396 times the 
average spacing. This is obtained using the method of Montgomery and Odlyzko. 
We prove that this method can never find infinitely many pairs of consecutive zeros 
within 0.5042 times the average spacing.

© 2023 Elsevier Inc. All rights reserved.

1. Introduction

The existence of Landau–Siegel zeros (or the Alternative Hypothesis) implies that there are long ranges 
where all the zeros of the Riemann zeta-function are always spaced no closer than one half of the average 
spacing. Numerical evidence, however, strongly agrees with the GUE model that suggests there is a pos-
itive proportion of consecutive zeros within any small multiple of the average spacing, a conclusion that 
is also a consequence of Montgomery’s pair correlation conjecture. There are three methods in the liter-
ature used to study small spacings between zeros of the zeta-function (see [7] and [2], [6], and [9].) The 
Montgomery–Odlyzko method [7] produces superior results, albeit for infinitely many consecutive zeros and 
under assumption of the Riemann Hypothesis (RH). Nevertheless, we are interested in how far one can push 
this method.

Let us state the problem more precisely. Write the nontrivial zeros of the Riemann zeta-function ζ(s) as 
ρ = β + iγ, where β ∈ (0, 1) and γ ∈ R. Let 0 < γ1 ≤ γ2 ≤ · · · ≤ γn ≤ · · · denote the ordinates of the 
nontrivial zeros of ζ(s) in the upper half-plane. Since
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N(T ) =
∑

0<γ≤T

1 ∼ T

2π
log T,

it follows that the gap between consecutive zeros γn+1 − γn is 2π/ log γn on average. To examine how far 
gaps deviate from the average, define

μ = lim inf
n→∞

γn+1 − γn

2π/ log γn
and λ = lim sup

n→∞

γn+1 − γn

2π/ log γn
.

Trivially, we have that μ ≤ 1 ≤ λ, and it is expected that μ = 0 and λ = ∞. After much work, the best 
current result for small gaps under RH is μ ≤ 0.515396 by Preobrazhenskĭi [8] and for large gaps under 
RH is λ ≥ 3.18 by Bui and Milinovich [1]. We refer the reader to [4] for the history of and progress on this 
problem.

The result of [8] is obtained by an argument based on a method introduced by Montgomery and Odlyzko 
[7] and simplified by Conrey, Ghosh, and Gonek [2]. Assuming RH, let nh(t) be the number of zeros 1/2 + iγ

of the Riemann zeta-function with γ in the interval [t − h
2 , t + h

2 ] of length h. We assume t � T , where T is 
large, and take h = 2πc/ log T so that the interval has length c times the average spacing between zeros in 
this range. Define, for T ≥ 2, c > 0, y = T 1−δ for some δ > 0, and ak a sequence of complex numbers,

H(c) :=

2T∫
T

nh(t)

∣∣∣∣∣∣
∑
k≤y

ak

kit

∣∣∣∣∣∣
2

dt

2T∫
T

∣∣∣∣∣∣
∑
k≤y

ak

kit

∣∣∣∣∣∣
2

dt

.

Clearly if H(c) > 1 for all sufficiently large T with some choice of the ak’s, c, and a small positive δ, then 
there must exist a value of t ∈ [T, 2T ] with nh(t) > 1, which implies nh(t) ≥ 2 for this value of t. Hence 
μ ≤ c. Similarly, for large gaps, if we have H(c) < 1 then we obtain λ ≥ c. By [7] or [2] one obtains 
H(c) ∼ h(c) as T → ∞, with y = T 1−δ for some small δ > 0, and

h(c) := c −

	
∑

kn≤y

akakng(n)Λ(n)
n1/2

∑
k≤y

|ak|2
, where g(n) =

2 sin
(

πc log n
log T

)
π log n

. (1)

Notice that g(n) is continuous and differentiable in c for all c > 0, and therefore so is h(c).
Conrey, Ghosh, and Gonek [2] showed that, for any choice of ak

h(c) < 1 if c < 1/2, (2)

which shows that the Montgomery–Odlyzko method is unable to obtain μ < 1/2. Due to the connection to 
Landau–Siegel zeros, which is described explicitly in [3], it is a tantalizing hope that we might nevertheless 
reach this barrier. We prove, however, that the Montgomery–Odlyzko method falls well short of being able 
to prove μ ≤ 1/2. Thus a new idea is needed to make further progress on this problem.

Theorem 1. If c < 0.5042, then h(c) < 1.

We note that a much weaker version of this result has been known to the experts for some time via un-
published work of the first-named author. We also mention the following information concerning limitations 
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of the Montgomery–Odlyzko method for large gaps between zeros. Conrey, Ghosh, and Gonek [2, p. 423]
showed that h(c) > 1 if c ≥ 6.2, whence, the Montgomery–Odlyzko method cannot prove the existence 
of gaps at least 6.2 times the average spacing. In a note added in the proof stage of their paper, Conrey, 
Ghosh, and Gonek remark that 6.2 may be replaced by 3.74. Correcting for a misprint in their paper, their 
first result is based on the inequality

h(c) ≥ c − 2

⎛
⎝ c

π

1∫
0

| sin πcv|
v

dv

⎞
⎠

1/2

. (3)

Using Mathematica one finds that h(c) > 1 for c ≥ 5.5602 . . .. Their second improvement result can be 
obtained from the inequality

h(c) ≥ c − 2

⎛
⎝ c

π

πc∫
0

(
sin v

v

)2

dv

⎞
⎠

1/2

(4)

proved by a small change in the proof of the previous bound. One now finds with Mathematica that h(c) > 1
if c ≥ 3.6747 . . ..

We note that the work by Bui and Milinovich [1] uses a different method based on the work of Hall [5]
and hence is not limited in this way.

2. Proof of Theorem 1

We take 0 < c < 1. Letting ak = bkk−1/2, we obtain from (1) that

h(c) ≤ c + S∑
k≤y

|bk|2

k

, where S =
∑

kn≤y

|bk||bkn||g(n)|Λ(n)
kn

. (5)

For any α, β > 0 with 4αβ ≥ 1, we have |ab| ≤ α|a|2 + β|b|2, and therefore

S ≤ α
∑

kn≤y

|bk|2
k

|g(n)|Λ(n)
n

+ β
∑

kn≤y

|bkn|2
kn

|g(n)|Λ(n) =: αS1 + βS2. (6)

Using | sin x| ≤ |x|, we have for 1 ≤ u ≤ y and 0 < c < 1

0 < g(u) =
2 sin

(
πc log u

log T

)
π log u

≤ 2c

log T
. (7)

To evaluate S1, we have

S1 =
∑
k≤y

|bk|2
k

H(y/k), where H(x) :=
∑
n≤x

g(n)Λ(n)
n

. (8)

Using partial summation with the elementary asymptotic formula

L(x) :=
∑
n≤x

Λ(n)
n

= log x + O(1), (9)

we have
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H(x) =
x∫

1

g(u)dL(u) = L(u)g(u)
∣∣∣∣
x

1
−

x∫
1

L(u)g′(u) du

= L(x)g(x) −
x∫

1

(log u + O(1)) g′(u) du

=
(

g(x) log x + O(g(x)
)

−

⎛
⎝g(x) log x −

x∫
1

g(u)
u

du + O

⎛
⎝

x∫
1

|g′(u)| du

⎞
⎠

⎞
⎠

=
x∫

1

g(u)
u

du + O(g(x)) + O

⎛
⎝

x∫
1

|g′(u)| du

⎞
⎠ .

By (7) g(u) 
 1/ log T , and since x cos x − sin x 
 x3 for 0 ≤ x 
 1,

g′(u) = 2
π

⎛
⎝cos

(
πc log u

log T

)
πc log u

log T − sin
(

πc log u
log T

)
u log2 u

⎞
⎠ 
 log u

u log3 T
,

we have 
∫ x

1 |g′(u)| du 
 log2 x/ log3 T , and hence

H(x) =
x∫

1

g(u)
u

du + O

(
log2 x

log3 T

)
.

Since y ≤ T , we thus conclude

S1 =
∑
k≤y

|bk|2
k

⎛
⎜⎝

y/k∫
1

g(u)
u

du + O

(
1

log T

)⎞
⎟⎠

=
∑
k≤y

|bk|2
k

⎛
⎜⎜⎝ 2

π

πc log(y/k)
log T∫
0

sin v

v
dv + O

(
1

log T

)⎞
⎟⎟⎠ ,

where we made the change of variable v = πc log u/ log T in the last integral.
For S2 we use (7) and the elementary relation 

∑
d|n Λ(d) = log n, to obtain

S2 ≤ 2c

log T

∑
kn≤y

|bkn|2
kn

Λ(n) = 2c

log T

∑
m≤y

|bm|2
m

∑
n|m

Λ(n) = 2c

log T

∑
k≤y

|bk|2
k

log k.

Hence from (6) we obtain

S ≤
∑
k≤y

|bk|2
k

⎛
⎜⎜⎝2βc log k

log T
+ 2α

π

πc log(y/k)
log T∫
0

sin v

v
dv + O

(
1

log T

)⎞
⎟⎟⎠

=
∑ |bk|2

k
G

(
log k

log T

)
+ O

(
1

log T

)
,

(10)
k≤y
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where, for 0 ≤ x ≤ 1 − δ,

G(x) = G(x, α, β, c) := 2βcx + 2α

π

πc(1−δ−x)∫
0

sin v

v
dv. (11)

We thus conclude, for 0 < c < 1,

S∑
k≤y

|bk|2

k

≤ max
0≤x≤1−δ

G(x) + O

(
1

log T

)
. (12)

Since G(x) is continuous and differentiable on [0, 1 − δ], the maximum above exists and occurs at either a 
critical point or at an endpoint of the interval. It is also clear from (6) that the smallest maximum occurs 
when

4αβ = 1, (13)

which we henceforth assume. By the fundamental theorem of calculus, for 0 ≤ x ≤ 1 − δ,

G′(x) = 2αc
(β

α
− sinc(πc(1 − δ − x))

)
, where sinc(u) := sin u

u
. (14)

Case 1. Suppose β ≥ α. Since sinc(u) ≤ 1 and equal to 1 if and only if u = 0, from (14) G(x) is increasing 
on [0, 1 − δ] and max G(x) = G(1 − δ) = 2βc(1 − δ) ≤ 2βc. We choose the smallest value of β by taking 
β = α = 1/2, which from (5) and (12) recovers (2).1

Case 2. Suppose β < α. Thus by (13) β < 1/2. Since sinc(πc(1 − δ − x)) increases for x ∈ [0, 1 − δ], we see 
G′(x) decreases through this interval. By (14) G′(0) > 0 when 4β2 > sinc(πc(1 − δ)), and it is easy to check 
with Mathematica that

G′(0) > 0 provided 0.5 ≤ c ≤ 0.52, 0.42 ≤ β < 0.5, and 0 ≤ δ ≤ 0.1, (15)

and we may immediately see that G′(1 − δ) = 2αc 
(

β
α − 1

)
< 0. Thus, with β, c, and δ in the range given 

in (15), there is a unique value x = x0 with G′(x0) = 0 with x0 ∈ [0, 1 − δ], and thus G(x) has a relative 
maximum at x = x0 which is also the absolute maximum on [0, 1 − δ].

We conclude by (12) that

S∑
k≤y

|bk|2

k

≤ G(x0) + O

(
1

log T

)
, (16)

where x0 satisfies

sinc (πc(1 − δ − x0)) = β

α
= 4β2, (17)

and by (5)

h(c) ≤ c + G(x0) + O

(
1

log T

)
. (18)

1 See the last section for comments on how this approach differs from that of [2].
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Using Mathematica it is easy to compute the largest c obtainable from (11), (17), and (18) for which 
h(c) < 1. In performing computations δ can be taken arbitrarily smaller than the accuracy being used in 
the calculations, and therefore for computations we can take δ = 0 and thus y = T in (16). Given values for 
c and β we can use (17) to find x0 and thus G(x0), or alternatively, we can directly compute the maximum 
of G(x). We start with an initial choice of c = c1 = 0.5. Searching with a grid of values of β we determine 
an interval for β where h(c1) < 1. Next we replace c1 by a slightly larger value c2 and repeat the process. 
This method quickly converges. We can stop this process whenever we attain as many digits of accuracy as 
we desire, at which point we have found values βn, cn, and use (17) to compute xn where the maximum 
of G(x) occurs. We now check directly that h(cn) ≤ cn + G(xn, 1/4βn, βn, cn) < 1. In this way we find 
cn = 0.5042, βn = 0.476, xn = 0.51974624430935 . . ., and h(cn) = 0.99999350103135 . . ..

3. A comment on the approach

In the previous section we recovered the result (2) of [2] in the simple case that β ≥ α. Conrey, Ghosh, 
and Gonek’s proof of (2) in [2, pp. 422-423] is different, which we describe here for the interested reader. 
There the authors use (7) and (9) to obtain

S1 ≤ 2c

log T

∑
k≤y

|bk|2
k

∑
n≤y/k

Λ(n)
n

= 2c

log T

∑
k≤y

|bk|2
k

(
log(y/k) + O(1)

)
. (19)

Thus, in place of (10) they obtain

S ≤ 2c

log T

∑
k≤y

|bk|2
k

(
α log(y/k) + β log k + O(1)

)
.

Letting f(u) = α log(y/u) + β log u, one finds that f(1) = α log y, f(y) = β log y, and f ′(u) = β−α
u , and 

thus f(u) ≤ max(α, β) log y for 1 ≤ u ≤ y. The optimal bound is obtained by taking α = β = 1/2, and with 
this choice

S ≤ c log y + O(1)
log T

∑
k≤y

|bk|2
k

≤ c
∑
k≤y

|bk|2
k

.

Substituting into (5) the authors obtain h(c) ≤ 2c, and thus (2). Actually in [2] the usual choice α = β = 1/2
was used in the argument, which we now see is also the optimal choice when using (19).
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