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1. Introduction

The existence of Landau-Siegel zeros (or the Alternative Hypothesis) implies that there are long ranges
where all the zeros of the Riemann zeta-function are always spaced no closer than one half of the average
spacing. Numerical evidence, however, strongly agrees with the GUE model that suggests there is a pos-
itive proportion of consecutive zeros within any small multiple of the average spacing, a conclusion that
is also a consequence of Montgomery’s pair correlation conjecture. There are three methods in the liter-
ature used to study small spacings between zeros of the zeta-function (see [7] and [2], [6], and [9].) The
Montgomery—Odlyzko method [7] produces superior results, albeit for infinitely many consecutive zeros and
under assumption of the Riemann Hypothesis (RH). Nevertheless, we are interested in how far one can push
this method.

Let us state the problem more precisely. Write the nontrivial zeros of the Riemann zeta-function ((s) as
p =0+ iy, where 8 € (0,1) and vy € R. Let 0 < 93 < 72 < -+ <, < --- denote the ordinates of the
nontrivial zeros of {(s) in the upper half-plane. Since
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T
NT) = Y L~ —logT,
0<~y<T

it follows that the gap between consecutive zeros v,1 — vy, is 27/ log~y, on average. To examine how far
gaps deviate from the average, define

g S . Tn+1 — Tn
w= lgggf m and A= hgsolip m.

Trivially, we have that u < 1 < A, and it is expected that © = 0 and A = co. After much work, the best
current result for small gaps under RH is p < 0.515396 by Preobrazhenskii [8] and for large gaps under
RH is A > 3.18 by Bui and Milinovich [1]. We refer the reader to [4] for the history of and progress on this
problem.

The result of [8] is obtained by an argument based on a method introduced by Montgomery and Odlyzko
[7] and simplified by Conrey, Ghosh, and Gonek [2]. Assuming RH, let ny(t) be the number of zeros 1/2+ iy
of the Riemann zeta-function with v in the interval [t — %, t+ %] of length h. We assume ¢t < T, where T is
large, and take h = 2m¢/log T so that the interval has length ¢ times the average spacing between zeros in
this range. Define, for T'> 2, ¢ > 0, y = T for some ¢ > 0, and a;, a sequence of complex numbers,

2T 2

/ na(t) % dt

k<y

2T 2

/Z% dt

T k<y

Clearly if H(c) > 1 for all sufficiently large 7" with some choice of the ay’s, ¢, and a small positive 4, then
there must exist a value of ¢ € [T, 27] with ny(¢) > 1, which implies n,(¢) > 2 for this value of t. Hence
p < c. Similarly, for large gaps, if we have H(c) < 1 then we obtain A > ¢. By [7] or [2] one obtains
H(c) ~ h(c) as T — oo, with y = T'~? for some small § > 0, and

A(n)

R Z akmg(n)l—/g 9 si wclogn
kn<y n Sll’l( log T )
h(c) :=c— , where g(n) = ————~. (1)
Z lak|? wlogn
k<y

Notice that g(n) is continuous and differentiable in ¢ for all ¢ > 0, and therefore so is h(c).
Conrey, Ghosh, and Gonek [2] showed that, for any choice of ay,

hic) <1 if c<1/2, (2)

which shows that the Montgomery—Odlyzko method is unable to obtain p < 1/2. Due to the connection to
Landau-Siegel zeros, which is described explicitly in [3], it is a tantalizing hope that we might nevertheless
reach this barrier. We prove, however, that the Montgomery—Odlyzko method falls well short of being able
to prove p < 1/2. Thus a new idea is needed to make further progress on this problem.

Theorem 1. If ¢ < 0.5042, then h(c) < 1.

We note that a much weaker version of this result has been known to the experts for some time via un-
published work of the first-named author. We also mention the following information concerning limitations
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of the Montgomery—Odlyzko method for large gaps between zeros. Conrey, Ghosh, and Gonek [2, p. 423]
showed that h(c) > 1 if ¢ > 6.2, whence, the Montgomery-Odlyzko method cannot prove the existence
of gaps at least 6.2 times the average spacing. In a note added in the proof stage of their paper, Conrey,
Ghosh, and Gonek remark that 6.2 may be replaced by 3.74. Correcting for a misprint in their paper, their
first result is based on the inequality

1/2

1
¢ [ |sinmeu|
PN I | .
hic) > ¢ - / ” dv (3)
0

Using Mathematica one finds that h(c) > 1 for ¢ > 5.5602.... Their second improvement result can be
obtained from the inequality

e 1/2

h(c)>c—2 %/(Sizv)zdv (4)

0

proved by a small change in the proof of the previous bound. One now finds with Mathematica that h(c) > 1
if ¢ > 3.6747....

We note that the work by Bui and Milinovich [1] uses a different method based on the work of Hall [5]
and hence is not limited in this way.

2. Proof of Theorem 1

We take 0 < ¢ < 1. Letting ay = byk™'/?, we obtain from (1) that

S |bk||brn ||g(n) |A(n)

- e where S = Z o . (5)

hic) <c+
Zkgy k kn<y

For any «, 3 > 0 with 4a8 > 1, we have |ab| < ala|?> + §]b[?, and therefore

by |2 A bien |2
s<a 3 gAML g 5o Bl ) am) = asi + 555, (6)
kn<y kn<y

Using |sinz| < |z|, we have for ] <u<yand 0 <ec <1

: mclogu
2sin ( log T ) 2c
<

0 <glu)= mwlogu ~ logT"’ (™)
To evaluate S1, we have
|bx|? , A(n)
Sy = Z TH(y/k)7 where  H(z) := Z g(n)T (8)
k<y n<x
Using partial summation with the elementary asymptotic formula
A(n)

L(z) := — =1 0(1), 9
(1) =3 " togz +0(1) )

n<z

we have
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1 1

:/Mdu—FO(g(x))—%—O /|9I(U)|du

By (7) g(u) < 1/logT, and since x cosx — sinx < 2° for 0 <z < 1,

mclogu \ mclogu s mclogu
’ 2 cos ( log T ) log T s ( logT ) IOg’U,
g (u) = - 2 < 30
™ ulog”u ulog® T

we have [ |¢'(u)| du < log® z/log” T, and hence

x

H(z) = /@dvﬁo (E:j;) .

1

Since y < T, we thus conclude

[be|* y/k() 1

- k

Si=>Y" - / d+O<IgT)
k<y 1

welog(y/k)
log T

B |br]? | 2 / sinv 1
_Z k T v dv+0 logT ’

k<y 0

where we made the change of variable v = wclogu/logT in the last integral.
For S; we use (7) and the elementary relation },,, A(d) = logn, to obtain

bin b bi|
SQIOgTz“ logTz'z —k,gTz"“

n|lm

Hence from (6) we obtain
wclog(y/k)
log T

|b? | 2Bclogk = 2a / sin v 1
< _— 4+ — d
S*Z k logT + T v vt O logT
k<y 0 (10)

B |be|? log k 1
_Z k ¢ logT +0 logT )’

k<y
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where, for 0 <z <1 -6,

me(l—6—z)
9 .
G(z) = G(z,, B, ¢) == 2Pcx + -« / MY . (11)
T v
0
We thus conclude, for 0 < ¢ < 1,
S 1
s el = 0<rt s Gla)+0 <logT) (12)
k<y k

Since G(x) is continuous and differentiable on [0,1 — ], the maximum above exists and occurs at either a
critical point or at an endpoint of the interval. It is also clear from (6) that the smallest maximum occurs
when

408 =1, (13)
which we henceforth assume. By the fundamental theorem of calculus, for 0 <z <1 —4,

G'(z) = 2ac(§ — sinc(me(l — § — m))), where sinc(u) := sizu. (14)

Case 1. Suppose 5 > «. Since sinc(u) < 1 and equal to 1 if and only if v = 0, from (14) G(z) is increasing
on [0,1 —¢] and max G(z) = G(1 — §) = 2B¢c(1 — §) < 2Bc. We choose the smallest value of 8 by taking
B =« = 1/2, which from (5) and (12) recovers (2).'

Case 2. Suppose 8 < a.. Thus by (13) § < 1/2. Since sinc(me(1 — 0 — x)) increases for x € [0,1 — J], we see

G'(x) decreases through this interval. By (14) G’(0) > 0 when 432 > sinc(mc(1 —§)), and it is easy to check
with Mathematica that

G'(0)>0  providled 05<c<0.52 042<8<05, and 0<6<0.1, (15)

and we may immediately see that G'(1 — §) = 2ac (g - 1) < 0. Thus, with £, ¢, and J in the range given
n (15), there is a unique value = = x¢ with G'(z¢) = 0 with zy € [0,1 — ¢], and thus G(x) has a relative
maximum at x = x¢ which is also the absolute maximum on [0,1 — J].

We conclude by (12) that

S 1
— < G(x)+O ( > : (16)
Tey g T
where z satisfies
. B e
sinc (me(1 —§ — xp)) = = = 457, (17)
o'
and by (5)
1
< — .
h(c) < c+ G(xo) + O <1ogT> (18)

1 See the last section for comments on how this approach differs from that of [2].
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Using Mathematica it is easy to compute the largest ¢ obtainable from (11), (17), and (18) for which
h(c) < 1. In performing computations ¢ can be taken arbitrarily smaller than the accuracy being used in
the calculations, and therefore for computations we can take § = 0 and thus y = T in (16). Given values for
c and 8 we can use (17) to find z¢ and thus G(z), or alternatively, we can directly compute the maximum
of G(x). We start with an initial choice of ¢ = ¢; = 0.5. Searching with a grid of values of 5 we determine
an interval for 8 where h(c1) < 1. Next we replace ¢; by a slightly larger value ¢y and repeat the process.
This method quickly converges. We can stop this process whenever we attain as many digits of accuracy as
we desire, at which point we have found values 3, ¢,, and use (17) to compute z, where the maximum
of G(z) occurs. We now check directly that h(c,) < ¢, + G(zpn,1/48n, Bn,cn) < 1. In this way we find
¢ = 0.5042, 8, = 0.476, x,, = 0.51974624430935 . . ., and h(c,) = 0.99999350103135. . ..

3. A comment on the approach
In the previous section we recovered the result (2) of [2] in the simple case that 8 > «. Conrey, Ghosh,

and Gonek’s proof of (2) in [2, pp. 422-423] is different, which we describe here for the interested reader.
There the authors use (7) and (9) to obtain

Z'b’“ > ff)logTZ'b,’; (108(y/k) +0(1)). (19)

k<y n<y/k

51 <

log T

Thus, in place of (10) they obtain

< 1o?gCT Z |b2| (alog(y/k) + Blogk + O(1)).
k<y

Letting f(u) = alog(y/u) + Slogu, one finds that f(1) = alogy, f(y) = Blogy, and f’(u) = ﬁ%(", and
thus f(u) < max(a, 8)logy for 1 < u < y. The optimal bound is obtained by taking a = 8 = 1/2, and with
this choice

clogy + O(1) |b | |b |
< < Drl
S —gT X kS

k<y k<y

Substituting into (5) the authors obtain h(c) < 2¢, and thus (2). Actually in [2] the usual choice « = 5 =1/2
was used in the argument, which we now see is also the optimal choice when using (19).
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