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Instability of a dusty vortex
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We investigate the effect of inertial particles dispersed in a circular patch of finite radius
on the stability of a two-dimensional Rankine vortex in semi-dilute dusty flows. Unlike
the particle-free case where no unstable modes exist, we show that the feedback force
from the particles triggers a novel instability. The mechanisms driving the instability
are characterized using linear stability analysis for weakly inertial particles and further
validated against Eulerian—Lagrangian simulations. We show that the particle-laden vortex
is always unstable if the mass loading M > 0. Surprisingly, even non-inertial particles
destabilize the vortex by a mechanism analogous to the centrifugal Rayleigh—Taylor
instability in radially stratified vortex with density jump. We identify a critical mass
loading above which an eigenmode m becomes unstable. This critical mass loading drops
to zero as m increases. When particles are inertial, modes that fall below the critical
mass loading become unstable, whereas modes above it remain unstable but with lower
growth rates compared with the non-inertial case. Comparison with Eulerian—-Lagrangian
simulations shows that growth rates computed from simulations match well the theoretical
predictions. Past the linear stage, we observe the emergence of high-wavenumber modes
that turn into spiralling arms of concentrated particles emanating out of the core, while
regions of particle-free flow are sucked inward. The vorticity field displays a similar pattern
which leads to the breakdown of the initial Rankine structure. This novel instability for a
dusty vortex highlights how the feedback force from the disperse phase can induce the
breakdown of an otherwise resilient vortical structure.
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1. Introduction

Vortical flows with heavy dispersed particles occur in diverse scenarios, both of natural
and engineering origins (Balachandar & Eaton 2010; Guazzelli & Morris 2011). To cite a
few examples, they include atmospheric funnel-type vortices (such as the ‘dust devil’)
(Bluestein, Weiss & Pazmany 2004), centrifugal separation devices, swirling biomass
combustors and aircraft trailing vortices with condensation droplets (Paoli et al. 2008;
Paoli & Shariff 2016). The rudimentary understanding of the process is that particles that
are denser than the surrounding fluid drift away from intense vortical regions at a rate
controlled by particle inertia. However, even in elementary vortical flows such as columnar
vortices, the dispersion of inertial particles (micron-sized solid spheres, or liquid droplets,
sufficiently small to remain spherical under the action of surface tension) is difficult
to predict accurately. This uncertainty is due to models and simulations often omitting
the particle feedback force. Yet, the latter may be significant even in dilute conditions
(particle volume fractions is 107 < (p) < 1073) provided that the density ratio is high
(op/pr = O(1000), where p, and pr are the particle and fluid densities, respectively), e.g.
when the carrier fluid is gas. In this study, we shall show that particle feedback arising
from two-way momentum coupling activates a novel vortex instability, and this instability
is controlled by particle inertia and the vortex structure.

To discuss the stability properties in a vortex flow, we adopt the Rankine vortex as
a typical vortex tube, i.e. one with uniform vorticity within the core and zero outside
(Saffman 1995). Many measurements of atmospheric phenomena show that the Rankine
vortex is suitable for describing the velocity structure of naturally occurring vortical flows.
Doppler radar measurements prove that tornados are well approximated by the Rankine
vortex profile (Bluestein er al. 2003). A mesocyclone is another example of atmospheric
flow that is well approximated by a Rankine vortex with an inner core of solid rotation as
large as 5 km (Brown et al. 2005).

The simple velocity profile of the Rankine vortex makes stability investigations
amenable to analytical treatments, thus, often helping in better identifying the underlying
physics. Lord Kelvin (Thomson 1880; Lamb 1993) analysed the linear stability of an
incompressible Rankine vortex. He showed that, for two-dimensional (2-D) perturbations
characterized by mode number m, only one real eigenvalue exists, indicating that the
perturbation will propagate with no growth or decay, corresponding to neutral stability.
Besides these neutrally stable discrete modes, a Rankine vortex also supports a continuous
spectrum of modes whose combination may lead to algebraic growth for short times
(Roy & Subramanian 2014). The inclusion of additional physics can destabilize a vortex
column. For instance, acoustic waves radiating to infinity can destabilize a Rankine
vortex by extracting energy from the vortex core (Broadbent & Moore 1979). Analogous
destabilization mechanisms have been shown to exist for shallow water flows (Ford 1994)
and stratified flows (Schecter & Montgomery 2004; Le Dizes & Billant 2009), where
outgoing waves draw energy from the mean flow. Recently a new instability mechanism
has been found for a Rankine vortex in dilute polymer solutions (Roy et al. 2022). The
instability occurs due to the resonant interaction of a pair of elastic shear waves aided
by the differential convection of the irrotational shearing flow outside the vortex core.
Compressibility effects may also destabilize a Rankine vortex, as shown by Sozou &
Lighthill (1987).

The configuration of a radially stratified vortex has special relevance, since, as we
shall discuss in detail later, it bears analogy with a particle-laden vortex in the limit of
zero particle inertia. If density increases monotonically with radius, Fung & Kurzweg
(1975) showed that the flow is stable to both axisymmetric and non-axisymmetric
modes. In contrast, a heavy-cored vortex may become unstable, as shown by
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Sipp et al. (2005), through two mechanisms, one due to a centrifugal instability involving
short-axial wavelength modes, and the second due to a Rayleigh-Taylor instability
involving 2-D modes. Similarly, Joly, Fontane & Chassaing (2005) found that heavy-cored
2-D vortices are subject to a Rayleigh-Taylor instability. They attributed the basic
mechanism to baroclinic vorticity generation caused by the misalignment between
density gradient and centripetal acceleration. Using numerical simulations, Joly et al.
(2005) showed that the unstable modes lead to the formation of spiralling arms in the
density and vorticity fields that roll-up eventually as nonlinear effects emerge. Dixit &
Govindarajan (2011) analysed the case of a radially stratified vortex with a density jump.
They showed that both heavy-cored and light-cored vortices could be unstable if the
density jump is sufficiently steep. They proposed that the instability is triggered by the
wave-interaction mechanism between the Kelvin wave located at the vortex core edge and
counter-propagating internal waves caused by the centrifugal force (see Carpenter et al.
(2011) and Balmforth, Roy & Caulfield (2012) for discussions on instabilities originating
from interaction between waves riding on vorticity/density jumps). When the vorticity and
density jumps are sufficiently separated, they act as ‘independent’ neutral modes; the two
interfacial displacements are in phase with each other and out of phase with the radial
velocity. Thus, the radial velocity neither aids nor retards the interfacial displacement.
When the jumps are located close to each other, the interfacial displacements are out of
phase, and the radial velocity reinforces the interfacial displacement at the density jump,
resulting in a growing mode. Dixit & Govindarajan (2011) also found that a heavy-cored
vortex is stabilized when the density jump is placed in a region immediately outside the
vortex core. Our analysis in section § 3.3 will reveal that, when we neglect particle inertia
but account for non-zero mass loading, the system analysed in the present study mimics
a non-Boussinesq fluid. Thus, the observed instability has an interesting analogy with the
physical mechanisms elucidated in the investigations mentioned above.

When inertial particles heavier than the carrier fluid disperse in the flow, they tend to
migrate from regions of high rotation rate to regions of high strain rate. This mechanism,
known as preferential concentration (Squires & Eaton 1991; Wang & Maxey 1993), results
from a slip velocity between particles and flow, which increases with increasing particle
inertia. Preferential concentration leads to the clustering of inertial particles around
vortical cores.

Although particle dispersion in vortical flows exhibits a rich dynamics, the disperse
phase does not alter the fundamental stability of the flow unless two-way coupling is
considered. Recently, there has been a strong interest in the modulation of flow instabilities
due to the feedback force from small, heavy particles. Magnani, Musacchio & Boffetta
(2021) considered the effect of particle inertia in two-way coupled dusty Rayleigh—Taylor
turbulence. They observed that the system behaves similarly to an equivalent denser fluid
for low inertia particles. When particle inertia increases, turbulent mixing gets delayed.
The non-monotonic role of the disperse phase was also observed by Sozza et al. (2022)
in their stability study of two-way coupled dusty Kolmogorov flow. When particle inertia
is weak, the instability is enhanced. However, for larger Stokes number, particles can both
stabilize and destabilize the Kolmogorov flow, with a non-monotonic dependence on the
mass fraction. Inertial particles can also trigger instabilities that would not otherwise exist
in particle-free flows. Kasbaoui ef al. (2015) showed that the interplay between preferential
concentration and gravitation settling triggers a non-modal instability in simple shear flow.
This instability may bootstrap additional Rayleigh—Taylor and particle-trajectory crossing
instabilities (Kasbaoui, Koch & Desjardins 2019a) and plays a role in the attenuation
of turbulent fluctuations in particle-laden homogeneously sheared turbulence (Kasbaoui
2019; Kasbaoui, Koch & Desjardins 20195).
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In the context of vortical flows, few studies considered the impact of two-way coupling
on the stability of such flows. Marshall (2005) studied the effect of turbulence on dispersed
particles in a vortex column under one-way coupling, i.e. neglecting the particle feedback
force. He showed that inertial particles initially inside the vortex core are driven out,
forming concentrated ring-like structures. Turbulence breaks these structures into smaller
sections. Ravichandran & Govindarajan (2015) studied the formation of particle clusters
around isolated and ensembles of two-dimensional vortices in one-way coupling. They
showed that particles initially within a critical radius, that depends on the vortex circulation
and particle response time, form caustics, thus potentially leading to higher collision
rates. When two-way coupling is considered, the dispersion of inertial particles may
lead to a modulation of the carrier flow. Druzhinin (1994) showed that the outward
ejection of inertial particles from a particle-rich vortex core causes the attenuation
of vorticity in the core. Considering two-dimensional axisymmetric perturbations, he
showed that the particles form a ring-shaped cluster that expands outwardly, akin to
a concentration wave, at a rate controlled by Stokes number Sty = 1,/77, Where 1,
is the particle response time, and 77 is the fluid characteristic time scale. These prior
observations were corroborated recently by Shuai & Kasbaoui (2022) in two-way coupled
Eulerian-Lagrangian simulations of a particle-laden Lamb—Oseen vortex. The authors
found that particle rings grow on a time scale 7. = 77/St, and proposed an expression
for their expansion rate. Similar to Druzhinin (1994), Shuai & Kasbaoui (2022) observed
that particle feedback on the fluid drives a faster decay of the vortex tube. Further, the
observation of naturally emerging azimuthal perturbations in the vorticity field suggests
that an instability activated by two-way coupling may be at play. These observations
motivate the present study on the stability of a particle-laden vortex.

This paper is organized as follows. Section §2 presents evidence of instability in
a two-way coupled particle-laden vortex. The governing equation and linear stability
analysis for small inertia particles are presented in § 3. In § 4, we compare the analytical
solutions with the results from Eulerian-Lagrangian simulations of the two-way coupled
system. Concluding remarks are given in § 5.

2. Evidence of instability in a two-way coupled particle-laden vortex

In this section, we show that the modulation of a prototypical vortex, here, the Rankine
vortex, is driven by an instability activated by two-way coupling. We illustrate this
behaviour in a sample flow using Eulerian—Lagrangian simulations.

2.1. Eulerian—Lagrangian method

The Eulerian—Lagrangian simulations presented in this work are based on the
volume-filtered formulation (Anderson & Jackson 1967; Jackson 2000; Capecelatro &
Desjardins 2013). In this formulation, the fluid phase is treated in the Eulerian frame,
whereas the particle phase is treated in the Lagrangian frame, i.e. each particle is
individually tracked.

The mass and momentum conservation equations for the carrier phase in the semi-dilute
regime are given by the incompressible Navier—Stokes equations

V.u =0, @2.1)

ou
of (8_tf +V. (ufuf)) =—-Vp+ vazuf + F,, 2.2)
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where uy is the fluid velocity, p is the pressure, pr is the fluid density and wy is the fluid
viscosity. The term F), represents momentum exchange between particles and fluid, which
is expressed as

(up —ur|p)

P

Fp=—¢pV - 7lp + ppdp (2.3)

where T = —pl + u(Vuy + Vu}) /2 is the total fluid stresses, ¢, is the particle volume

fraction, u,, is the Eulerian particle velocity, / is the identity matrix, T is the transpose
operator and (-)|, indicates fluid quantities at the particle locations. The first term in (2.3)
is the stresses exerted by the undisturbed flow at the particle location. The second term is
the stresses caused by the presence of particles which are represented using Stokes drag.
When the density ratio is large (o, /pr > 1), as is the case presently, Stokes drag dominates
the momentum exchange.

From a scaling analysis of the drag force in (2.3), it is clear that the mass loading M =
Pp{Pp)/ pr determines the strength of the coupling. Thus, if the mass loading is vanishingly
small, the particle phase has little effect on the stability of the Rankine vortex. Conversely,
if the mass loading is large, the interaction between two phases triggers a significant source
or sink of energy that may enhance or attenuate perturbations in the flow (Kasbaoui et al.
2015).

The particle phase is described in the Lagrangian frame. The motion of the ith particle
is given by (Maxey & Riley 1983)

dle; i
F(t) = u,, (1), (2.4)

dul 1 ) ur(xi, 1) — ul (1)
()= —V x4 2 TP 2.5)
dr Pp T

where x;, and u;, are the position and velocity of the ith particle, respectively, 1, =

ppdg /(18 ) is the particle response time and d,, the particle diameter. In this study, gravity
is ignored in order to focus on inertial effects. Other interactions, including collisions, are
negligible due to the large density ratio and low volume fraction. Note that, in the equations
above, the instantaneous particle volume fraction and Eulerian particle velocity field are
obtained from Lagrangian quantities using

N
$p(x, 1) =Y Vpg(llx — x5, (2.6)

i=1

N
Gpup(x. 1) = Y ul ()Vpg(llx — x|, 2.7)

i=1

where V), = ndg /6 is the particle volume, g represents a Gaussian filter kernel of size
dr = 3Ax, where Ax is the grid spacing (Capecelatro & Desjardins 2013).

This computational framework was recently applied by the authors in a configuration
similar to the one considered here. In Shuai & Kasbaoui (2022), the dynamics of a
particle-laden Lamb—Oseen vortex at moderate Stokes numbers is investigated using the
Eulerian-Lagrangian methodology presented here. Readers interested in further details
about the numerical approach are referred to this study.
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Figure 1. Isocontours of normalized vorticity (w,/w®.) with St = 0.025 and Re; = 1000, for one-way
coupling and two-way coupling at five non-dimensional times ¢/zy.

2.2. Hlustration of the instability

To illustrate the unstable dynamics activated by two-way coupling, we consider a
Rankine vortex at the circulation Reynolds number Rey = I'/(2mv) = 1000, laden with
mono-disperse particles having diameter at the Stokes number Stp = 1,/77 = 0.025,
average volume fraction (¢,) = 1.2 x 1073, density ratio Pp/pr = 830 and mass loading
M = 1. Here, I" corresponds to the vortex circulation, r. is the initial vortex core
radius, 77 = 2mr2 /T is the characteristic fluid velocity, T, = ppdz /(18ur) is the particle
response time and d), is the particle diameter. The particles are seeded randomly within
the core region r < r. with velocities matching the fluid velocity at their respective
locations. We use the Eulerian—Lagrangian framework described above on uniform
Cartesian grid with resolution r./Ax = 50. The simulations performed here are termed
‘pseudo-two-dimensional’, meaning that the axial direction z is resolved with one grid
point and taken periodic with a thickness Az = 3d,. This allows the definition of
volumetric quantities such as particle volume and volume fraction. Despite considering
pseudo-2-D simulations, a large number of particles must be tracked, here N = 376 612,
due to the large scale ratio r./d, = 1400. The remaining numerical parameters are as in
Shuai & Kasbaoui (2022).

In addition to two-way coupled simulations, we perform one-way coupled simulations
where the momentum exchange term (2.3) is purposely set to zero. In this way, comparing
one-way and two-way simulations reveals the effect of particle feedback on the flow
dynamics.

Figure 1 shows the evolution of the isocontours of axial vorticity w, normalized by
the initial centre vorticity w, = w (r = 0, t = 0). Successive snapshots are given between
t/7r = 0 and 48. When the particle feedback force is neglected, i.e. in one-way coupling,
we observe that the vorticity field remains axisymmetric at all times. Although some
viscous diffusion can be observed near the vorticity jump r ~ r., the vorticity magnitude
within the core remains mostly flat as viscous effects are too small to cause significant
diffusion within the time frame 0 < #/7y < 48. Contrary to the case of one-way coupling,
we observe significant distortion of the flow field when two-way coupling is accounted
for. The vorticity field quickly loses its cylindrical symmetry due to the emergence
of azimuthal perturbations. The latter grow into vorticity filaments by #/7; ~ 12 that
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Figure 2. Isocontours of normalized particle volume fraction (¢, /{¢,)) with Sty = 0.025 and Re = 1000,
for one-way coupling and two-way coupling at five non-dimensional times #/7;.

are gradually convected away from the vortex core. By #/7y ~ 48, we observe several
well-established spiral arms emanating from the vortex core. In this region, vorticity
assumes a diffuse profile in contrast to the nearly flat profile seen in one-way coupled
simulations.

Particle dispersion is also significantly impacted by the interaction between the two
phases. Figure 2 shows the isocontours of particle volume fraction. When the particle
feedback is neglected, the particles gradually accumulate into a ring-shaped cluster of
diameter of approximately 1.5 x r.. This clustering dynamics was reported in the earlier
work of Druzhinin (1994, 1995), Marshall (2005) and later by Shuai & Kasbaoui (2022).
The outward particle ejection is due to preferential concentration (Squires & Eaton 1991)
whereby inertial particles are driven out of strongly vortical regions. Like the carrier flow,
the particle distribution is axisymmetric only in one-way coupled simulations. In contrast
to these prior observations, two-way coupling leads to a loss of symmetry along with
fast and wide dispersion of the particles. The two-way coupled simulations in figure 2
reveal the presence of azimuthal perturbations superimposed on the particle patch at
t/tr = 12. The perturbations extend into spiralling particle filaments reminiscent of the
density-driven radial Rayleigh—Taylor instability observed by Dixit & Govindarajan (2011)
and Joly et al. (2005). These perturbations destroy the ring structure observed in one-way
coupled simulations.

The simulations shown in figures 1 and 2 suggest that semi-dilute inertial particles
trigger a modal instability. The latter cannot be attributed to purely hydrodynamic nor
purely granular effects since the Rankine vortex is neutrally stable and particle—particle
interactions are neglected. Rather, it is an instability that arises from the two-way
momentum exchange between the two phases.

The instability observed here represents a distinct mechanism from the one studied by
Kasbaoui et al. (2015). There, the authors show that the interplay between particle settling
and preferential concentration activates a non-modal instability in two-way coupled
shear flows. This results in the formation of sheets of concentrated particle clusters
that rotate to progressively align with the direction of the shear flow. Since particle
settling is required for perturbations to grow, the resulting growth rates depend on the
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gravitational acceleration. In the present work, a modal instability arises regardless of
gravitational effects.

3. Linear stability analysis for weakly inertial particles

In this section, we establish a theoretical grounding to this novel two-phase instability
through rigorous linear stability analysis (LSA). The analysis is intended to reveal the
mechanisms that cause the 2-D particle-laden vortex flow to be unstable, and their
functional dependence on the non-dimensional numbers at hand. This study is restricted
to the assumption of small, but non-zero, particle inertia such that St < 0.1.

In the following, we adopt an Eulerian—Eulerian description of the particle-laden flow
based on the two-fluid model (Marble 1970; Druzhinin 1995; Jackson 2000; Kasbaoui
et al. 2015, 2019b). In this framework, the conservation equations for the fluid phase and
particle phase in the two-fluid model read

dur _ 2 ppVpr
pr\ =, T Ve ) = =Vp+ uViuy + =y — up), (3.2)
1
appn

LE 4V - (opnuy) =0, (3.3)

appnu ppVpn
% + V- (ppnupup) = — pfp (up — uy), (3.4)

14

where uy is the fluid velocity, u), is the particle velocity, V), is the particle volume and
n = ¢p,/V), is the particle number density. Equations (3.1) and (3.2) express mass and
momentum conservation for the fluid phase, respectively. Equations (3.3) and (3.4) express
mass and momentum conservation for the particle phase. In these equations, it is assumed
that the particles experience a hydrodynamic force equal to Stokes drag. The two phases
are coupled through Stokes drag, as seen in (3.2) and (3.4). If the particle feedback force
is dropped from the fluid momentum equation (3.2), the evolution of the fluid becomes
decoupled from that of the particles. The fluid evolves as in single phase, and the flow may
not become unstable, as shown in § 2 and Michalke & Timme (1967). The momentum
exchange between the two phases is critical for the development of an instability.

Compared with the Eulerian—-Lagrangian framework presented in § 2, the form of the
differential equations in the two-fluid model is more suitable for theoretical analysis using
LSA. Still, the two approaches yield qualitatively and quantitatively similar evolution
of particle-laden flows in the semi-dilute regime provided that particle inertia is small.
Further details on the comparison of the two formulations can be found in Kasbaoui et al.
(2019a). Thus, we restrict the analysis to cases where St < 1.

Under the assumption of weakly inertial particles, it is possible to further simplify the
governing equations by adopting the fast equilibrium approximation (see the work by
Balachandar and coworkers (Ferry & Balachandar 2001, 2002; Rani & Balachandar 2003)
and Maxey Maxey 1987). Provided that particle inertia is low enough, it is possible to
express the particle velocity field as

duy 2
u, =ur— 1, (W +uyf - Vuf> + 0(rp), 3.5
where it is seen that the particles deviate from the fluid streamlines by a small inertial
correction. Owing to the preferential concentration mechanism, particles suspended in a
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vortex do not follow the closed-loop streamlines of the carrier flow. Instead, they tend to
migrate outward radially at a rate controlled by their Stokes number.

Next, we combine (3.5) with the conservation equations (3.1), (3.2) and (3.3). Using .,
I'/(27tr,) and the core number density ng as the reference length scale, velocity scale and
number density, respectively, the following non-dimensionalized equations are obtained:

V.u"=0, (3.6)
* ou* * * * 1 2%
(1 + Mn™) a +u*-Vu')=-Vp* + EV u*, (3.7
0 (st (P L var)) - Vit = StV Vi (3.8)
ar* I\ gr - ’ ’ ’

where the stared variables denote non-dimensional quantities, Rer = I'/(27tv) is the
circulation Reynolds number, St = ‘cprg /I is the circulation Stokes number and M =
opVpno/ pr is the mass loading. Equation (3.7) is derived by injecting the small Stokes
expansion (3.5) into the momentum exchange term in (3.2). Likewise, (3.8) is obtained
from (3.3) by replacing the particle velocity field with the expansion (3.5). For ease of
notation, we drop the stars in the rest of the analysis.

In this form, the particle phase is coupled with the fluid through the preferential
concentration term appearing on the right-hand side of (3.8). Since Squires & Eaton
(1991), the preferential concentration term has been widely studied (Batchelor & Nitsche
1991; Squires & Eaton 1991; Wang & Maxey 1993; Druzhinin 1995). It is understood that
this term relates to compressibility effects of the particle phase since V - u, >~ —7,Vuy :
Vuy for low inertia particles. This term may be further expressed as Vuy : Vuy = S2 - R?,
where % and R? represent the second invariants of the fluid strain rate tensor S =
(Vu + VuT)/Z and rotation tensor R = (Vu — VuT)/Z (Squires & Eaton 1991). When the
local strain exceeds the local rotation, this term is positive leading to particle accumulation.
Conversely, when this term is negative, the particles are expelled. As a result, inertial
particles are progressively depleted from rotational regions, such as vortex cores. The
formation of a ring cluster shown in figure 2 is a direct effect of preferential concentration.

The number density term in (3.7) suggests that the particles may lead to a
non-Boussinesq dynamics similar to that observed in stratified fluids. In particular, Dixit
& Govindarajan (2010) showed that density gradients could lead to destabilization of
a 2-D vortex. Sipp et al. (2005) showed that density gradients produce two distinct
kinds of instability, namely the centrifugal instability, which mainly affects axisymmetric
eigenmodes, and the Rayleigh—Taylor instability, which mainly affects non-axisymmetric
eigenmodes. If particle inertia is negligible, one may ignore the preferential concentration
term, and treat the suspension as a fluid with effective density p.; = pf + ppVpn. In such
a case, the suspension would be susceptible to the instabilities of variable density vortex
flows previously mentioned. These effects are revisited for the case of non-inertial particles
in § 3.3, and then extended to the case of weakly inertial particles in § 3.4.

3.1. Base state

In the remainder of the manuscript, we perform a LSA for a base state initially
comprising monodisperse particles seeded randomly within a disk of non-dimensional
size r, and a Rankine vortex. A schematic of the configuration is given in figure 3(a). The

non-dimensional base fluid azimuthal velocity field u}[Z ¢ and number density fields n’ are
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Figure 3. Configuration studied using LSA: (a) a Rankine vortex with core radius 7. is seeded with particles
within the region r < r,; (b) the resulting preferential concentration term is negative within the vortex core,
which causes inertial particles in this region to be ejected outward.

given by

b N 1 r<1
uf’e(r,t—O)—il/r’ . (3.9)

I, ifr=<mr

b _ _
n(r,t=0) = {0, otherwise. (3.10)

Note that the task of defining a base state requires careful consideration when the
suspended particles are inertial. Even when the base flow is steady, the particle distribution
may be unsteady due to the outward ejection of particles caused by the preferential
concentration term in (3.8). The latter is plotted in figure 3(b) for the Rankine vortex in
(3.9). The preferential concentration term is negative within the core (r < 1), showing that
it acts as a sink in this region. Conversely, the preferential concentration term is positive
away from the core (r > 1), corresponding to regions where the particles will accumulate.
Thus, the base number density n” in (3.10) is expected to vary as time progresses.

The time evolution of the base state may be obtained by solving (3.6), (3.7) and (3.8).
Considering an inviscid and axisymmetric state (d()/d6 = 0), the equations dictating the
evolution of the base state are

5 _ 3.11)

ar ’
o g —0. 3.12
o7 + " ar((ug) n) (3.12)

Following Druzhinin (1994), it is possible to obtain an analytical solution for the unsteady
number density by applying the method of characteristics. Denoting the initial particle
number density in (3.10) by ng = nP(r, 0), the unsteady number density is written as

exp(—2Str t)nl (rexp(=Str 1)), ifr<1
2
() = § ——nb (4 =4St 0V4), ifr > landt < 1, (3.13)
Vit —4Strt
(rro)2n8 (ro) , ifr>1landt> ¢,
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where ., = (r4 — 1)/4Str and ro(r, t) is obtained from the equation 4logry + ré =
r* — 4Strt. Despite the explicit time dependence of the base number density field n?,
a quasi-steady assumption may be employed for weakly inertial particles. Under this
assumption, the base state is assumed frozen at ¢ = 0. This assumption is justified provided
that perturbations grow on a time scale that is much faster than the characteristic evolution
time of the number density field. From solution (3.13), it can be seen that the time scale
for the development of number density inhomogeneity is 7. = t7/St;. Shuai & Kasbaoui
(2022) showed from Eulerian—Lagrangian simulations that the time required to eject most
particles from the core of a vortex is ~37.. This time scale may be significantly larger than
the flow inertial time scale 77 when St < 1. For such weakly inertial particles with low
inertia, particle clustering is slow compared with inertial effects of the carrier vortex flow.
Since we expect the instability to develop on a time scale comparable to the flow inertial
time scale, the assumption of quasi-steady number density is justified.

3.2. Linearized equations

We assume that the base state discussed previously is subject to small perturbations n’ and
u' such that the total number density and fluid velocity are n = n” +n’ and u = u® + u'.
Taking the inviscid limit (Re; — o00) and linearizing (3.6) and (3.7), the fluid perturbation
is subject to the following equations:

Vot 1,

=0, (3.14)
roor r a6
b b b2

(1 + Mn") 8_u/, ”_03_”?_2% —Mn/@ =_8_p/’ (3.15)

at r 90 r r ar

du,  ub ou, b uluf 1ap
| by (2o 4 Mo O 0 g ) 13D 316
(I ")<az I T r 90 (16)

where (3.14) represents mass conservation in cylindrical coordinates, and (3.15) and (3.16)
represent the radial and azimuthal fluid momentum conservation, respectively. Introducing

the base state angular velocity £2° = u}/r and axial vorticity o? = (3(ru})/3r)/r, (3.15)
and (3.16) become

op’

d 0
b b b b
(1 4+ Mn”) ((& + 2 %) u, — 282 ué) — Mn'r(2°)? = — P (3.17)
0 a 1ap’
b b b
The evolution of the perturbation axial vorticity, i.e.
10 10u,
W, = ;5(”/9) — ;a—er, (3.19)
is obtained by combing (3.17) and (3.18)
9 , 0\ , 90l
(82‘ + ae) Ot
M podn' P (9 b O\ b
=—m<(9)£+5 8_t+9@ uy +wu, | |. (3.20)
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The number density perturbation is solution to the following equation:

an’ n on’ n an’
— — 4+ —u
at 260 ar "
ony [ 0u. ou’ on’ anP
=St | — ( —~ + 20— ) - r(2b)?>— —202°—u,
r(3r<8t+ 39) r$2, ar 10
2 (0(r§2) (ou ou, d
b r / b="0 b\2N,./
t - —_— = —r2"—= = Str——((r§2 . 3.21
+spnr( u (ae iy) @S s Lt ). Gan

Next, the perturbations 7', uj, and u, are decomposed using Fourier series as

[ (r, 0, 1), uy(r, 0,0, 10 (r,0, 0] = [4,(r, 1), it (r, 1), A(r, )], (3.22)

where m represents the mode number. Combining this form of perturbations with (3.20)
and (3.21), the set of linear equations becomes

A

9 90
D (ﬁrD <ra—”t>> _ ﬁng + imQP(DGEFD(riy,)) — im2i,)

— imrD(iie?)i, + rm*(2°)*Mi = 0, (3.23)

9 3l
(a—’: _ StpD(nb)%) +imR°(n — StrD")iy) + Dby,

—iStr {;D(rZ(Qb)Zﬁ) - %pr(nb)D(rﬁr)
2n” b - 2 byn
_E[D(Q rD(riy)) — m“D(r$2%)u, ]y = 0. (3.24)

Here, D denotes the derivative with respect to » and n = 1 + Mn?. Note that (3.23) and
(3.24) retain the two-way coupling required for an instability.

Using the assumption of quasi-steady base state discussed above, we perform a modal
stability analysis with the base state being frozen in time by considering perturbations that
have an exponential dependence on time. Under this consideration, the perturbations can
be written as

[i‘r(r» t)’ ﬁg(r, t)s ﬁ(r7 t)] = [ur(”)v ug(r), n(r)] 60[7 (325)

where o is the complex growth rate. Perturbations whose real part of o, is positive grow
without bound. Thus, the condition for an unstable base state is Re(o) > 0. Injecting the
forms (3.25) into (3.23) and (3.24), we obtain

(0 +im2°)[D (arD(ruy)) — im*u,] — imrD R’ u, + rm*(2°)*Mn = 0, (3.26)
(o +im2°)(n = StrDn®)uy) + D)u, + St {%D(rz(ﬂb)zn) + %QbD(nb)D(rur)

2in? b 5 b
+ W[D(Q rD(ruy)) — m“D(r2%)u,] = 0. (3.27)

The above pair of equations can be treated as an eigenvalue problem to obtain the stability
parameters.
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3.3. Limit of inertia-less particles (St = 0) and non-Boussinesq effects

As previously discussed, with the absence of particle inertia (St = 0), the preferential
concentration term drops out of the governing equations. Also, the base state in the case
of Str = 0 remains constant over time, as shown in (3.11) and (3.12). Simplified linear
equations can be obtained as

(0 +im2°)[D (irD(ruy)) — im*u,] — imrD R’ u, + rm?(2°)*Mn = 0, (3.28)
D(n")
=———U,.
(o +im$20P)

The above linearized equations are identical to the equations for a vortex with a radially
stratified density written by Dixit & Govindarajan (2011). Without the particle inertia,
the problem reduces to that of a vortex with a density stratification induced by particles.
Following the approach of Dixit & Govindarajan (2011), it is possible solve (3.28) and
(3.29) analytically and obtain a dispersion relation for a Rankine vortex. This is done by
computing the perturbation velocity and number density fields separately in regions of
r<1,1<r<r,andr > r, The constants subsequently obtained are found using the
continuity condition at the jump locations » = 1 and r = r,,. The dispersion relation, thus
obtained, is written as

(3.29)

o3 +arxo? + ajo +ag =0, (3.30)
where
ay =i(m+2mr,* — 1= Atr,>™), (3.31)
ay = mr,*[2 = m@2 + 1, %) = At(r, > — 2r, 2], (3.32)
ao = im(1 — m)r, *[m + At(1 — r,>™)], (3.33)

where At = M /(2 + M) is the Atwood number. The latter is a non-dimensional number
that commonly arises in density stratified flows. Here, considering the particle—fluid
mixture as a fluid with effective density p.r = 1+ (op/pf)Vpn = 1 + Mn, we see that
in the core g (r) = 1 + M = pyay for r < 1, while per = 1 = pppin away from the core
(r = 1). Thus, the Atwood number is At = (Omax — Pmin)/ (Pmax + Pmin), Which measures
the relative magnitude of the density jump between the inner and outer regions.

Figures 4(a) and 4(b) show contours of growth rates for wavenumbers m = 2 and 4,
respectively, in the Az—r, plane. The white space labelled ‘S’ represents the region of
stability. Thus there exists a critical radius, r,", such that instability would only be observed
when the density jump is located beyond r;". Using the property of the cubic equation
(3.30) one can obtain a relation for " as a function of m and Az, which, on further

p
expanding for At < 1, yields

1/3
er _ Kelwin | | _ 3| At (m—1\"" / 23
ro = - = (= + O(Ar7), (3.34)

2 | 4m? m

where rKelVin —  /m/(m — 1) is the critical radius corresponding to the discrete Kelvin
mode (Roy & Subramanian 2014). As is evident from the complete numerical solution
and the above small-Atr asymptotic expression, the region of stability shrinks as the
wavenumber increases, suggesting that higher modes are more unstable. In addition, higher
values of growth rates are achieved with increasing values of Atwood number and with
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Figure 4. Contours of the analytically obtained growth rate (3.30) in the Ar — r,, plane for a Rankine vortex
with Sty = 0: (a) m = 2; (b) m = 4.

the value of r,, closer to one. This suggests that the configuration at r, = 1 with infinitely
heavy core (M — 00) is the most unstable configuration.

To further study the influence of the Atwood number on the critical wavenumber, we
investigate the specific case of r, = 1, for which the dispersion relation reduces to

i .
0 = S(L+ AN —im /(1 +An? — 4mAt. (3.35)

For r, =1, the third root of (3.30) corresponds to a mode rotating with core angular
frequency (0 = —im.) The expression (3.35) indicates the critical wavenumber (m,,) for
unstable system is

(1+An% (14 M)?
Mey = = .
4At 2+ MM

(3.36)

The above expression shows that increasing the Atwood number, or equivalently the mass
loading, promotes the instability by making lower-wavenumber modes unstable. In the
limit case where M — oo, corresponding to At — 1, the critical wavenumber becomes
mer — 1, showing that all modes are unstable. Conversely, when M — 0, none of the
modes are unstable since m., — 00. Thus, we recover the known behaviour for an unladen
Rankine vortex (M — 0).

From expression (3.35), the growth rate of unstable modes (m > m,,) is given by

Re(o) = 3v/4mAt — (1 + An? ~ VmAt  form > 1. (3.37)

From this relationship, we draw two conclusions. First, a naturally developing instability,
i.e. unforced, will tend to emerge at high wavenumbers since Re(o) increases with m.
Viscous effects are expected to curb Re(o) beyond a certain mode number m. Because
viscous effects are not accounted for in the present formulation, it is not possible to
estimate a priori which mode would emerge naturally. The second conclusion is that
the growth rate increases with mass loading. The maximum growth rate obtained when
M — 00 (At — 1) is Re(0)pax = /m.
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3.4. Effects of particle inertia

Next, we consider the effects of non-zero particle inertia (St 7~ 0) on the stability of
the particle-laden Rankine vortex. For this, we first perform a modal stability analysis by
solving (3.26) and (3.27) with a frozen base state.

For the case where the Rankine vortex and particle core have equal radii, i.e. r, = 1, a
dispersion relation can be obtained analytically

o —i (1 +At—-2m+imAtStr)o —m(m — 1 —i(m — 2)AtStr) = 0, (3.38)

which yields

o= %(1 4 Af + iA1Strm) — im + %\/(1 A7 + 1A1Strm)? — dm(Af + 2IAISI).
(3.39)

Note that expression (3.39) collapses on (3.35) when Sty — 0. The corresponding
expressions for the eigenfunctions of a mode m are

=D ifr<1
r , 1Imr <
= {r_(’”H), otherwise (3.40)
1+ 218t
n= (—Stp++—l_r)5(r— 1. (3.41)
o+ 1m

Here, 6(r — 1) denotes the Dirac delta function. These functions correspond to
perturbations that are concentrated at the number density and vorticity jumps r = r;, = 1.
To further study the stabilizing/destabilizing effect of particle inertia, we expand the
expression for growth rate (3.39) in a series of Stf as

mStrAt mAt(3 — At im2AR2 ((m — 2)At + 2
o = olg_o— ST i{ ( )Sl‘r+ (( ) )

s+ oS,
2 2\/2 A3/2 F}+ ( F)

(3.42)

where A = (1 +Af)2 — 4mAt. For Sty =0, A <0 provides the condition for instability
for a fixed m, that is, a mode m is stable if At < At,, =2m — 1 —2/m(m — 1). For
Str #0, particle inertia can play contrasting roles. For At < At., the dispersed phase
destabilizes the vortex

mAStr |3 — At
Re(o) =

> | va

while for At > At,,, the dispersed phase stabilizes the vortex

- 1} + O0(S13-), (3.43)

mStrAt
2

Figure 5(a) shows the variation of growth rate plotted over a range of Stokes numbers
for wavenumber m = 2. With the smaller value of Atwood number At = 0.1, the growth
rates decrease with increasing Stokes numbers. However, the trends get reversed for
higher Atwood numbers, with the growth rates increasing with increasing Stokes numbers,
confirming the predictions from the asymptotic calculations (3.43) and (3.44). Figure 5(b)
plots the growth rates over a range of Atwood numbers for three values of Stokes numbers.
It is found that the growth rate is always positive as long as the Atwood number Az and
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Figure 5. Growth rates Re(o) for a Rankine vortex with r, =1 and m = 2 obtained analytically (3.38),
(a) Re(o) — Re(o)]s:-=0 plotted over a range of Stokes numbers for Az = 0.1 (—), At =0.3 (- - -), At = 0.9
(---); (b) Re(o) plotted over a range of Atwood numbers for St = 0 (red), Sty = 0.01 (black) and Sty = 0.1
(blue).
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Figure 6. Growth rates Re(o) of mode m = 2 in the At-r;, plane obtained numerically using a smoothed
Rankine profile: (a) St = 0.01; (b) St = 0.1.

Stokes number St are non-zero. This indicates that destabilization of the vortex by the
particles is guaranteed as long as the particle inertia is non-zero.

For cases where r;, > 1, we solve (3.26) and (3.27) numerically using the Chebyshev
spectral collocation method (Trefethen 2000). To handle the discontinuities, we smooth the
base state using hyperbolic tangents of thickness A = 0.01. Figures 6(a) and 6(b) show the
contours of growth rate in the Az — r;, plane for Stokes numbers 0.01 and 0.1, respectively.
Unlike the case of St = 0 (see figure 4), there is no region of stability, indicating that
mode m = 2 is always unstable when the particles are inertial. Further, the particle-laden
vortex is unstable even for values of r, larger than 1. Whereas the results for non-inertial
particles are similar to those obtained by Dixit & Govindarajan (2011), inclusion of particle
inertia breaks the equivalence with a radially stratified Rankine vortex. For the case St =
0.01, the optimal value of r, leading to the largest growth rate is slightly in excess of 1
for low values of Az, and approaches r, = 1 as At increases. For the larger inertia case
Str = 0.1, r, = 1 leads to the largest growth rates for all values of Az.
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Case m Rep At M (dp) re/dy
A 2 5000 1/3 1 1.2 x 1073 10760
B 3 5000 1/3 1 1.2x 1073 10 760
C 4 5000 1/3 1 1.2 x 1073 10760
D 5 5000 1/3 1 1.2 x 1073 10760
E 6 5000 1/3 1 1.2x 1073 10 760
F 3 5000 16  2/5 1.2 x 1073 10760
G 3 5000 1/5 12 1.2 x 1073 10760
H 3 5000 74 273 1.2x 1073 10760

Table 1. Non-dimensional parameters considered in simulations.

4. Comparison of LSA with Euler-Lagrange simulations

In order to validate the LSA, we compare the analytical results with those from
Eulerian-Lagrangian simulations of the two-way coupled system. To make the comparison
tractable and accessible, the case r, = 1 is used as the benchmark since the growth rates
can be computed analytically from (3.38).

Table 1 lists a summary of non-dimensional parameters for 8 cases presently considered.
In all these simulations, the Stokes number, circulation Reynolds number Re; and ratio
rp/re are fixed at 0.002, 5000 and 1, respectively. The Stokes number is sufficiently
small such that the initial state can be considered quasi-steady and comparisons
with LSA are permissible. In dimensional terms, the carrier fluid has density pof =
1.2kgm™3 and viscosity wr = 1.8 x 103 kgm~! s~!. The initial vortex core is r. =
0.385m and circulation is I" = 9.42 x 1072 m?s~!. Particles are seeded with density
pp = 1000kg m~> and average volume fraction (dp) =12 x 1073, In all cases chosen,
the ratio r./d,, is large (of the order 10%), such that fluctuations due to the discrete particle
forcing fall well below the viscous dissipation scale. In this way, the coupling between
the fluid and particles occurs primarily through a collective particle dynamics at scales
comparable to r., rather than discrete effects at scales comparable to the inter-particle
distance.

The initial conditions of the numerical simulations correspond to a superposition of the
base Rankine vortex and the perturbation eigenmodes (3.40) and (3.41). In order to capture
the linear regime described by the LSA, the perturbations are initialized with a small
amplitude € = 0.03. The Dirac delta function that appears in the eigenfunctions (3.40) and
(3.41) is discretized on the Cartesian grid according to the radial distance /; (i = 1, 2, 3, 4)
between the vortex core and the four vertices of each cell. Cells that are intersected by the
discontinuity (max(/;) > 1 and min(/;) < 1) have 6(r — 1) = 1/(AxAy), whereas §(r —
1) = 0 everywhere else. The Lagrangian particles are generated randomly within each
cell based on the number density computed with the aforementioned discrete perturbation.
The particle velocities are set to match the fluid velocity at their locations. Figures 7(a) and
7(b) show number density and axial vorticity isocontours of a representative perturbation
with mode m = 4 and disturbance amplitude € = 0.03.

Figure 8 shows the time evolution of the particle volume fraction between ¢ =0
and t = 6 for modes m = 2-6. All time values in this section are non-dimensionalized
with vortex response time 7. For ¢ < 3.0, the perturbed modes grow linearly, resulting
in the deformation of the interface at the number density jump. The latter, which is
initially circular, develops azimuthal perturbations depending on which mode has been
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Figure 7. Example of initial perturbation in the Eulerian-Lagrangian simulations. Normalized number
density (a) and axial vorticity (b) perturbations based on eigenmodes (3.40) and (3.41) with mode number
m=4.

triggered initially. Around 72~ 3.0, we notice the emergence of fast growing
high-wavenumber modes m ~ 24-26 that quickly overtake the initially seeded
low-wavenumber modes by r = 4.5. These high-wavenumber perturbations are triggered
by the discrete Lagrangian particle forcing and errors associated with the discretization
of the discontinuous eigenfunctions (3.40) and (3.41). As shown by the linear stability
analysis, the perturbation growth rate increases with wavenumber m, such that it may be
anticipated that such modes will eventually dominate. Thus, whereas the early stages are
controlled by the seeded low-wavenumber modes, the later stages are dominated by the
high-wavenumber perturbations. By ¢ = 6, these modes evolve into long spiralling arms
of inertial particles that expand radially outward, which indicates strong nonlinearity.
Regions of unladen fluid in between the particle arms are sucked inward forming
mushroom-like structures. The fact that the final stages seen in figure 8 show similar
number density patterns irrespective of the seeded mode, suggests that the mode that
would emerge naturally is a high-wavenumber mode that results from the balance between
two-way coupling and viscous dissipation.

This dynamics may be related to the misalignment between the particle density interface
and centripetal acceleration field (Joly et al. 2005), which is similar to the mechanism of
wave interaction between a density interface and vorticity interface (Dixit & Govindarajan
2011). The baroclinic torque caused by the misalignment concentrates vorticity on the
spiral arms and destroys it in between, resulting in radial filaments.

In order to determine the total perturbation growth rates from the present simulations,
we compute the perturbation kinetic energy

E:f/l(u—ub)-(u—ub)dS (4.1)
2 A S ’ :

where u}j is the base state velocity corresponding to a Rankine vortex. Figure 9(a)
shows the evolution of total perturbation energy in logarithmic scale for simulations with
perturbed modes m = 2—6. The perturbation energy is seen to increase with increasing
mode number m, reflecting the larger growth rate for higher mode numbers.
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Figure 8. Isocontours of normalized particle volume fraction (¢,/(¢p)) for cases A, B, C, D, E (see table 1)
at five time instants. As time progresses, the inertial particles are expelled out of the vortex cores, forming
cluster arms of which the number equals to the mode number. The small perturbations continue growing and
ultimately destroy the structure.
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Figure 9. Time evolution of the perturbation () normalized kinetic energy and (b) growth rate for cases A, B,
C, D and E, corresponding to a Rankine vortex excited with eigenmodes m = 2, 3,4, 5 and 6, respectively (see
table 1).
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The instability growth rate is obtained from Eulerian—Lagrangian simulations using the
relation

Re(o) = — —, 4.2)

Figure 9(b) shows the time evolution of the growth rate given by (4.2). Unlike the linear
stability analysis, which predicts a constant value, the instability growth rate varies with
time in Euler—Lagrange simulations. Figure 9(b) shows that the growth rate reaches peaks
between ¢t ~ 2 and ¢ ~ 4, depending on the seeded mode. The early transient is due to
imperfect initial conditions which cause the particles to be accelerated or decelerated until
they reach their equilibrium velocity. The time window around the peak growth rate is
associated with the exponential growth of kinetic energy seen in figure 9(a), and is thus
closest to the dynamics predicted by the LSA. The growth rate in figure 9(b) eventually
drops, as the perturbation kinetic energy in 9(a) saturates. The deviation from exponential
growth correlates with the emergence of nonlinear effects in the flow and number density
fields as seen in figure 8.

In order to quantify the contribution of a specific azimuthal mode m to the overall
dynamics, we compute the kinetic energy associated with this mode using

l— . 1< R
E, = // zum(r, 1) - upy(r,t)dS = / Eum(r, t) - upy(r,t)2mrdr, 4.3)
0

where i1, is the Fourier amplitude and reads

27
Uy (r, 1) = 1 (u — u}) exp(—im0) db. (4.4)
2n 0 ’

Figure 10 shows the time evolution of the total perturbation kinetic energy alongside
the contributions of modes 2 to 5 for simulation cases A, B, C and D. While the total
perturbation energy is the sum of the energies of all Fourier modes, the mode initially
seeded (i.e. m = 2 for case A, m = 3 for case B and so on) accounts for most of the
perturbation energy during the early evolution ¢ < 4. Thus, the growth rate computed
from the total perturbation energy, shown in figure 9(b), matches the growth rate of the
seeded mode early on. This is further evidenced in figure 11, showing the evolution of
the kinetic energy and growth rate associated with the seeded mode. The latter peaks
between ¢ = 2 and 3 depending on the wavenumber, at a level sensitively close to the peak
growth rate of the total perturbation in figure 9(b). At later times, the seeded mode is
no longer dominant as the energy of other modes rises to a comparable level. Further, as
time progresses, figure 10 shows that the energy of several low-wavenumber modes drops,
which corresponds to negative growth rates, also seen in figure 11(b). This indicates a
nonlinear energy transfer from low- to higher-wavenumber modes.

Figure 12 shows comparisons between growth rates predicted by the LSA and those
obtained from Euler-Lagrange simulations (4.2). From the latter, we report the total
perturbation peak growth rate and average value in a time window of size At = 1 centred
on the peak (see figure 9b). We also report the peak growth rate of the seeded mode
(see figure 11b). The difference between these values represents a confidence interval for
the comparison of LSA and Euler-Lagrange simulations. Figures 12(a) and 12(b) show
the results at various mode numbers m = 2—6 for Atwood numbers Az = 1/3 and 1/5,
respectively. Both Euler-Lagrange simulations and LSA capture the growth rate increase
with increasing mode number m. The quantitative agreement is good given the different
methodologies and underlying assumptions. The growth rates at various Atwood numbers
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(@) 10° (b) 10°

Figure 10. Evolution of the kinetic energy of the total perturbation and the kinetic energy associated with
azimuthal modes m = 2, 3, 4 and 5 in: (a) case A (seeded with m = 2), (b) case B (seeded with m = 3),
(c) case C (seeded with m = 4) and (d) case D (seeded with m = 5). The seeded mode dominates during the
early evolution 7 < 4.
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Figure 11. Time evolution of seeded mode (a) normalized kinetic energy and (b) growth rate from cases A,
B,C,DandE.

for mode m = 3 are shown in figure 12(c). Here, the Euler-Lagrange simulations and LSA
reproduce the same trend, that is, the instability growth rate increases with Atwood number
At. Further, the peak growth rates obtained by the fully nonlinear numerical simulation has
excellent agreement with linear stability predictions.

While the growth rate obtained from numerical simulations and linear stability analysis
are within close quantitative agreement, some of the differences can be related to
the discretization of the eigenmodes and Lagrangian representation of the particles
in the numerical simulations. Whereas eigenmodes derived from LSA require strict
discontinuities in number density and vorticity, these effects are necessarily smoothed out
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Figure 12. Comparison of instability growth rates between LSA and Eulerian—Lagrangian (EL) simulations at
Str = 0.002 and Rey = 5000. (@) Growth rates for mode numbers m = 2-6 at At = 1/3 (M = 1). (b) Growth
rates for mode numbers m = 2-6 at At = 1/5 (M = 1/2). (c¢) Growth rates for mode m = 3 at various Atwood
numbers. Symbols: e, LSA; ¢, EL peak growth rate of the total perturbation energy; [, EL average growth
rate of the total perturbation energy; A, EL peak growth rate of the seeded mode.

when discretized on a mesh. Further results from the LSA are derived on the premise that
viscous effects and discrete particle effects are negligible. However, these effects cannot
be ruled out in the Euler—Lagrange simulations where viscosity still plays a role despite the
large Rep = 5000 considered, and Lagrangian particles trigger high-wavenumber modes.
Despite the differences between the LSA and the Euler—Lagrange model, the agreement
between the two approaches is satisfactory.

5. Conclusion

In this work, we have shown that introducing heavy particles to the core of a vortex causes
the breakdown of the flow structure due to an instability activated by two-way coupling,
i.e. momentum exchange between the two phases. If particle feedback is neglected
(one-way coupling), no instability is observed: the vortex retains its coherent axisymmetric
structure while inertial particles are slowly expelled outward, forming a ring of clustered
particles around the core. The inclusion of two-way coupling breaks the axisymmetry
and gives rise to azimuthal perturbations in both number density and vorticity fields.
As these perturbations develop, they turn into spiralling arms of concentrated particles
emanating out of the core while regions of particle-free flow are sucked inward.
The vorticity field displays similar pattern which cause the breakdown of the initial

948 A56-22


https://doi.org/10.1017/jfm.2022.687

https://doi.org/10.1017/jfm.2022.687 Published online by Cambridge University Press

Instability of a dusty vortex

Rankine structure. Remarkably, this breakdown occurs even for inertia-less particles, i.e.
zero Stokes number, provided that the mass loading is not vanishingly small. Particle
inertia plays a dual role in that it destabilizes low-wavenumber modes, but reduces the
growth rate of high-wavenumber ones.

The mechanisms driving the instability are characterized using LSA of a base state
consisting of a Rankine vortex with core radius 7. and a circular patch of particles with
radius r,. To describe the two-phase flow, we use an inviscid two-fluid model, and assume
that the particles are weakly inertial, i.e. their Stokes number St is small but not zero.
This assumption has two merits. First, it allows us to approximate the particle velocity
field in terms of the carrier fluid velocity field and an inertial correction, thus reducing
the number of equations to solve. Second, it justifies a quasi-steady approach in which the
time dependence of the base state is ignored, enabling us to carry out a classic LSA. This
step is justified by the fact that variations of the base state have a time scale 7. = 77/Stp
which becomes very large in the limit St < 1 (Shuai & Kasbaoui 2022).

Analysis of growth rates obtained from LSA reveals the existence of unstable modes
regardless of the value of the Stokes number St~ and as long as the mass loading M # 0.
Generally, the most unstable configuration corresponds to matching particle patch and
vortex core radii, i.e. 7. = rp. For St = 0 particles, the problem becomes analogous to a
vortex with discontinuous radial density stratification described by Dixit & Govindarajan
(2011). Modes with wavenumber m above a critical wavenumber m,, = (1 +M)?/((2 +
M)M) are unstable and have a growth rate Re{o'} ~ ~/mAt when m > 1, and where the
Atwood number At = M /(2 + M) provides a measure of the relative magnitude of the
density jump between inner (particle-rich) and outer (particle-free) regions (0 < At < 1).
When the particles are inertial (St #0) all modes become unstable regardless St and
M #0, even those with m < m.,. However, the growth rate of modes m > m,, is reduced
compared with the case St = 0. For large-wavenumber modes m >> 1, the growth rate

approaches Re{o} ~ ~/mAt(1 — 2Stp~/mAt) + O(St%). For both inertial and non-inertial
particles, the tendency of growth rates to increase with wavenumber m suggests that
modes that naturally emerge in experiments and simulations will have a high wavenumber.
This mode is likely determined by a balance between viscous effects and preferential
concentration, although this cannot be ascertained as we have not considered viscous
effects in our LSA.

In addition to the LSA, Eulerian-Lagrangian simulations are carried out at St = 0.002,
Re = 5000 and mass loadings M = 0.4—1. The simulations are initialized with the base
state superimposed with eigenmodes found from LSA. The simulations allow us to
explore the transition from linear to nonlinear regimes. During the early evolution of
the perturbations, growth rates computed from the perturbation kinetic energy in the
Eulerian-Lagrangian simulations show excellent agreement with growth rates predicted
by the LSA for modes m = 2—6 and mass loadings M = 0.4—1 (or At = 1/6-1/3). When
the flow enters a nonlinear stage, we observe the emergence of a high-wavenumber mode
with m ~ 24-26. This mode develops into spiralling arms of number density and vorticity
that ultimately cause the breakdown of the initial base state.

One must note that the present study has a key difference from prior investigations of
dusty Kolmogorov flow and Rayleigh—Taylor turbulence — a particle-free vortex is always
stable. Our study emphasizes that the disperse phase can also be the source of a new
instability besides modifying an existing one. The novel instability for a dusty vortex
identified here highlights how the feedback force from a disperse phase can induce a
breakdown of an otherwise resilient vortical structure.
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