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The purpose of this tutorial paper is to present a broad overview of photon-pair generation through the sponta-
neous four wave mixing (SFWM) process in optical fibers. Progress in optical fiber technology means that today
we have at our disposal a wide variety of types of fiber, which, together with the fact that SFWM uses two pump
fields, implies a truly remarkable versatility in the resulting possible photon-pair properties. We discuss how the
interplay of frequency, transverse mode, and polarization degrees of freedom—the first linked to the latter two
through fiber dispersion—leads to interesting entanglement properties both in individual degrees of freedom
and also permitting hybrid and hyper entanglement in combinations of degrees of freedom. This tutorial covers
methods for photon-pair factorability, frequency tunability, and SFWM bandwidth control, the effect of frequency
non-degenerate and counterpropagating pumps, as well as methods for characterizing photon pairs generated in
optical fibers. © 2023 Optica Publishing Group

https://doi.org/10.1364/JOSAB.478008

1. INTRODUCTION

Photon-pair sources are at the heart of the remarkable progress
made over the past two decades in the field of optical quantum
information processing [1]. There are two main experimental
avenues for photon-pair generation: the spontaneous paramet-
ric downconversion (SPDC) process based on second-order
nonlinear crystals [2], and the spontaneous four wave mix-
ing (SFWM) process based on third-order nonlinearities [3].
Typically, SFWM implementations rely, on one hand, on
waveguides or micro-resonators (including integrated optical
designs) [4], and on the other hand, on optical fibers [5–10].
Compared to SPDC, SFWM is advantageous because the two
pumps on which the process is based afford a greater scope
for source tailoring to particular needs [11]. Indeed, as will be
discussed below, making the two pumps non-degenerate spec-
trally, spatially, and/or in terms of propagation direction leads
to useful avenues for photon-pair state engineering. Among
SFWM sources, those based on optical fibers exhibit a tremen-
dous versatility in terms of the resulting photon-pair properties
because of the enormous variety of fibers available, including
photonic crystal [12], tapered [13], birefringent [14], gas-filled
hollow-core [15], and single- [6] and few-mode [16], among
others.

Fiber-based SFWM implementations exhibit a number
of distinct advantages in terms of the attainable brightness

over SPDC sources, including (i) a quadratic dependence of
the emitted flux on the pump power, in contrast to the lin-
ear dependence of SPDC, (ii) the possibility of an essentially
unlimited length of the nonlinear element, leading to larger
interaction lengths, (iii) an effective nonlinearity that can be
scaled by reducing the transverse mode area, and (iv) since pho-
ton pairs are generated in fiber modes, coupling into additional
optical fibers in a given experiment (beyond the fiber used as
the source) can be attained with very high efficiency. We discuss
these advantages in more detail in Section 4.

The purpose of this paper is to provide an ample overview,
in tutorial form, of photon-pair generation in optical fibers.
This overview includes in Sections 2–6 a description of the
two-photon state, with a discussion of the different combi-
nations of transverse and polarization modes (which become
correlated with the optical frequency of emission through
fiber dispersion), and the resulting various phasematching
configurations. In Sections 7–10, we describe methods for
factorable photon-pair/pure heralded single-photon genera-
tion, methods for spectrally tuning the two-photon state, and
SFWM bandwidth control (including generation of ultra-
narrow and ultra-broadband photon pairs). In Sections 11–13,
we describe methods to control the transverse mode, sponta-
neous Raman scattering (SRS) as a noise mechanism, as well
as SFWM source variations including the use of a dual pump
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(spectrally non-degenerate as well as counterpropagating) and
entanglement generation in energy–time, polarization [17],
frequency–transverse mode, frequency–polarization, and dis-
crete frequency. In Section 14, we cover the various techniques
that have been developed for photon-pair characterization, in
both spectral and spatial domains.

We hope that this tutorial paper will constitute a comprehen-
sive review of the field of photon-pair generation based on opti-
cal fibers, and as such can serve as an adequate starting point for a
reader interested in embarking on new research in this topic.

2. SPONTANEOUS FOUR WAVE MIXING
PROCESS

The SFWM process is a parametric third-order nonlinear
interaction in which photon pairs, conventionally called signal
and idler photons, are created upon the annihilation of two
pump photons, mediated by vacuum fluctuations. The process
is constrained to the fulfillment of energy conservation and
the phasematching condition, which in general, for an optical
fiber, take the form 1ω=ωp1 +ωp2 −ωs −ωi = 0 and
1k = k p1(ωp1)+ k p2(ωp2)− ks (ωs )− ki (ωi )− (γ1 P1 +

γ2 P2)= 0, respectively, where ωµ (µ= p1, p2, s , i ) is the
electric field frequency, kµ(ωµ) is the propagation constant, γν
(ν = 1, 2) is the effective nonlinear coefficient related to the self-
and cross-phase modulation (SPM and XPM) effects, and Pν are
the peak pump powers [11].

The photon pairs generated by SFWM in general exhibit
correlations in continuous-variable degrees of freedom (DOFs),
such as frequency and transverse momentum. However, in
media characterized by a single transverse mode (single-mode
optical fibers or rectangular waveguides), trasnverse momen-
tum correlations are suppressed. In few- or multi-mode fibers
(MMFs) or waveguides, correlations in discrete DOFs, such as
polarization, temporal modes, transverse waveguide modes, and
orbital angular momentum (OAM), can still emerge, depending
on waveguide dispersion properties and pump field character-
istics [18,19]. The SFWM process in specialty or conventional
optical fibers has led to the proposal or demonstration of entan-
gled two-photon states in several DOFs, e.g., polarization [20],
energy–time/polarization [21], discrete frequency [22], and
spatial entanglement [23], among others.

3. SFWM TWO-PHOTON STATE

The SFWM process can occur in different polarization and
transverse mode combinations among the four waves involved.
For the treatment below, we will assume that the fiber is birefrin-
gent, leading to the appearance of slow and fast principal axes
(labeled x and y , respectively), and that it supports more than
one transverse mode. From the third-order nonlinear polari-
zation of the medium, and following a standard perturbative
approach [24], it can be shown that the SFWM two-photon
state can be written in terms of a coherent superposition of the
contributions from the different polarization and transverse
mode combinations. The general two-photon state is then given
by |9〉 = |vac〉 + η|9〉2, with |vac〉 representing the vacuum, η
a global constant related to conversion efficiency, and |9〉2 the
two-photon component of the state given as

Table 1. List of SFWM Processes Related to Different
Polarization Combinations of the Participating Electric
Fields in Single-Transverse-Mode Fiber

Process p1 p2 s (λs <λ p) i (λ p <λi)

1 x x x x
2 y y y y
3 x y x y
4 x y y x
5 x x y y
6 y y x x

|9〉2 =

M∑
m=1

6∑
n=1

κmn
√

pmn1 pmn2

∫
dωs

∫
dωi Gmn(ωs , ωi )

× â †
s (ωs ; qm; φn)â

†
i (ωi ; rm; ϕn)|vac〉,

(1)

where the index m represents each of the transverse mode com-
binations among the four waves involved (pump 1, pump 2,
signal, and idler), an n represents each of the six different polari-
zation combinations allowed in an isotropic medium, such as
fused silica (see Table 1) [19,25]. The term κmn is a coefficient
weighing each SFWM interaction, which depends on the trans-
verse mode overlap among the four waves (pump 1, pump 2,
signal, and idler), pmnν (ν = 1, 2) represents the average pump
power for each of the two pump modes, Gmn(ωs , ωi ) is the
joint spectral amplitude (JSA) function, and â †

µ(ωµ; qm; φn)

(µ= s , i ) is the creation operator of photons at frequency ωµ,
transverse mode qm or rm , and polarizationφn orϕn .

For fixed values of m and n, Eq. (1) is reduced to a single term.
This would be the case, for example, for a SFWM interaction
in which all fields involved propagate in the fundamental trans-
verse mode and are co-polarized along one of the two axes. In
this case, the JSA is given by

F (ωs , ωi )=

∫
dω α(ω) α(ωs +ωi −ω) sinc

[
L
2
1k
]

exp

[
i

L
2
1k
]
,

(2)
where1k was defined in the previous section, L is the length of
the nonlinear medium, and α(ω) is the pump spectral envelope
function, assumed to be normalized so that

∫
dω|α(ω)|2 = 1.

For pump pulses with a Gaussian spectral envelope, expanding
the propagation constant as a Taylor series around the central
frequencies for which phasematching is fulfilled up to first order,
the JSA can be expressed as [11]

Flin(νs , νi )= α(νs + νi )φ(νs , νi ), (3)

where lin refers to the linear approximation of the phase-
mismatch function, α(νs + νi ) is the pump spectral envelope
function, φ(νs , νi ) is the phasematching function, and
νµ =ωµ −ωµ0, withωµ0 the central emission frequency.

4. BRIGHTNESS OF SFWM AND SPDC
SOURCES

The brightness of SFWM sources can be described by the emit-
ted photon-pair flux RSFWM. For degenerate pumps, RSFWM has
been shown to be proportional to the square of the average pump
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power p , pump bandwidth σ , fiber length L , and square of the
effective nonlinear coefficientγ [26–28]:

RSFWM ∝ p2σ Lγ 2. (4)

For non-degenerate pumps, on the other hand, p2 is replaced
by p1 p2, the product of two pump powers involved. In addi-
tion, there is a limit to the maximum interaction length, Lmax,
due to the longitudinal walk-off between the two pumps having
different group velocities. Thus, for L ≤ Lmax, the photon-pair
flux increases linearly, and for L > Lmax, the emission ceases (see
Section 13.B for more details).

In this respect, fiber-based SFWM implementations exhibit
a number of distinct advantages over SPDC sources in terms of
the attainable brightness [26,29] as outlined below.

First, the brightness of SFWM sources scales better with
incident pump power than that of SPDC sources. As discussed
earlier, while SFWM brightness scales either quadratically or
as the product of two pump powers, SPDC brightness scales
linearly with the pump power. Hence, with sufficiently large
pump power, the brightness of a given SFWM source can exceed
that of a SPDC source. This is manifested in [10,14,30,31] for
SFWM, where the raw rates of average photon pairs detected
(∼104 pairs/s, or∼104 pairs/s/mW2 to illustrate the quadratic
scaling more appropriately with the assumed ∼1 mW pump
power) are similar as those of SPDC sources (∼104 pairs/s, or
∼103 pairs/s/mW, with a ∼10 mW pump power) [32,33],
even with an order of magnitude lower pump power and in the
absence of superconducting nano-wire single-photon detectors
(SNSPDs).

Second, the accessible lengths of fiber-based SFWM
sources are substantially longer than those of SPDC
sources—fabrication and mounting considerations limit
the corresponding SPDC crystal lengths of the order of a few
cm. Note, however, that an increase in source brightness from
scaling the fiber length accompanies changes in spectral photon-
pair characteristics since phasematching properties are highly
dependent on the fiber length. Similar to the Lmax constraint
for non-degenerate pumps previously mentioned, degenerate
pumps also require a slight caveat when intended to be utilized
with a long fiber: for degenerate pumps, length-dependent
chirp may temporally broaden the pump pulses, thus changing
which frequency components can overlap temporally [34].
This, in turn, results in modifying the photon-pair spectral
characteristics and may constrain the total photon-pair flux.

Third, the transverse confinement of a fiber with a small
core radius can significantly boost the emission rate. The effec-
tive nonlinearity γ in Eq. (4) of fiber-based SFWM sources is
inversely proportional to the transverse mode area A, resulting
in an A−2 dependence on the emitted flux. Note, however,
that this advantage is not exclusive to fiber-based SFWM, and
waveguide-based SPDC sources will have similar behavior.
Nevertheless, the vast variety of fiber types explored as SFWM
sources (see Section 13.A) and their commercial availability
with various core sizes allow for more flexible and approachable
exploitation of this A−2 scaling benefit.

Last, fiber-based SFWM sources naturally facilitate cou-
pling into optical fibers (that may follow the source fiber) as the
created photon pairs are already in well-defined fiber spatial
modes [30]. On the contrary, efficient fiber coupling is often

challenging for bulk-crystal SPDC sources [35–37]. Even
in the case of waveguide-based SPDC, coupling losses can
be significant, since the fiber and waveguide modes may
exhibit poor mode matching [38,39]. Importantly, fiber-
based SFWM sources permit straightforward integration with
fiber optic networks [40] and full access to the current optical
fiber technology.

We now briefly consider additional metrics for which SFWM
sources have quantitative performance comparable to their
SPDC counterparts: heralded single-photon purity, herald-
ing efficiency, and entanglement fidelity (see Section 14 and
[41,42] for definitions of these metrics). When factorable
photon-pair sources are used as heralded single-photon sources,
both SFWM [9,30,43,44] and SPDC [32,45,46] sources have
demonstrated purities that are close to or above 90%. In terms
of heralding efficiency, an important metric not only to assess
the performance of a heralded source but also for applications
in quantum information science [29,47,48], SFWM [30] and
SPDC [33,46] both have shown >80% normalized heralding
efficiencies. Here, the normalized heralding efficiency, some-
times called collection efficiency, refers to a heralding efficiency
normalized with detection efficiency [41,46,49] and is often
found in the literature to emphasize the detection-independent
properties intrinsic to the source [30,31,33]. Analogously,
the entanglement fidelity, often a Bell-state fidelity (fidelity
with respect to the target Bell state), is similar in both SFWM
and SPDC sources. Bell-state fidelities of >95% have been
demonstrated with SFWM [34,50,51] and SPDC sources
[41,52–55]. It is also worth noting that both SFWM and SPDC
sources have been reported (just to name a few here) to produce
photon pairs in near-infrared [9,14,30,31,34,35,45,56] and
telecommunications [6,12,32,33,43,46] wavelengths.

5. PHASEMATCHING CONFIGURATIONS

Optical fibers constitute a versatile system for photon-pair gen-
eration through the SFWM process. It is important to remark
that optical fibers can lead to phasematching for different com-
binations of transverse and polarization modes, which in turn
become correlated to the emission frequency through fiber
dispersion. This opens up the possibility for the preparation
of two-photon states with entanglement in one of these DOFs
individually, or alternatively hybrid- or hyper-entanglement
involving more than one of these DOFs. Examples of the
above include polarization entanglement [20], frequency
entanglement [22], transverse mode entanglement [23],
spatial-frequency correlations [18], polarization–frequency
correlations [19], spatial-polarization–frequency correla-
tions [57], as well as hyper-entanglement in polarization–
frequency [21].

The above discussion leads us to explore different SFWM
phasematching configurations. To this end, we consider as refer-
ence a commercial, polarization-maintaining photonic crystal
fiber (PCF)—NL-PM-750 from NKT Photonics—which is
single mode over a wide spectral range. We note that scaling
the transverse PCF structure (e.g., by pulling under the action
of heat) leads to the ability to tune the resulting photon-pair
properties, for example, emission frequency [58,59].
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Let us assume a PCF with its transverse dimensions increased
by 10% with respect to the reference fiber, which allows for
propagation of the fundamental transverse modes in its two
orthogonal polarizations HEx

11 and HEy
11, as well as higher

transverse modes TE01 and TM01, which are orthogonally
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Fig. 1. Transverse mode structure of the fiber under study. (a) HEx
11,

(b) HEx
11, (c) TE01, and (d) TM01.

polarized (along x and y , respectively) with the same par-
ity. Unless otherwise noted, this fiber is assumed in all of the
simulations presented in Sections 2–11. In Fig. 1, we show
the transverse intensity distributions |f(x, y)|2 of the men-
tioned modes, superimposed with the PCF structure. Note
also that we limit our discussion below to these four modes,
thus restricting the number of SFWM processes resulting from
transverse/polarization-mode combinations.

It is instructive to plot the fiber dispersion parameter
(D=− λ

c
d2n
dλ2 ) versus wavelength for each of these four modes,

as in Fig. 2. Note that within the spectral region shown, the
fundamental mode in its two polarizations exhibits one so-
called zero dispersion wavelength (ZDW) for which D= 0, at
which an optical pulse travels with zero quadratic dispersion;
see Figs. 2(a) and 2(b) [25]. We have shown in blue (pink) areas
the normal dispersion regime (λ< λzd ) {anomalous disper-
sion regime [λ> λzd ]). Interestingly, the higher transverse
modes (TE01 and TM01) exhibit two ZDWs; see Figs. 2(c)
and 2(d) [60]. As discussed below, the ZDWs are intimately
related to the phasematching properties for single-transverse
mode and co-polarized degenerate pump SFWM interactions;
while for a single ZDW, phasematching occurs for pump
wavelengths around λzd , for two ZDWs, λZ D1 and λZ D2 phase-
matched pump wavelengths are contained by the two ZDWs,
i.e.,λZ D1 <λ< λZ D2.

Figure 3 shows the phasematching diagrams, i.e., composed
of solutions to 1k = 0, where the vertical axis represents
the SFWM frequencies, as a detuning from the pump
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Fig. 2. Fiber dispersion parameter for transverse modes (a) HEx
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Fig. 3. Phasematching contours for SFWM processes characterized by the following combinations of transverse modes for the four waves
involved (pump 1, pump 2, signal, idler). (a) HEx

11 +HEx
11→HEx

11 +HEx
11 (solid black) and HEy

11 +HEy
11→HEy

11 +HEy
11 (dashed red).

(b) TE01 +TE01→TE01 +TE01 (solid blue) and TM01 +TM01→TM01 +TM01 (dashed magenta). (c) HEy
11 +HEy

11→HEx
11 +HEx

11 (solid
black) and HEx

11 +HEx
11→HEy

11 +HEy
11 (dashed red). (d) HEx

11 +HEy
11→HEx

11 +HEy
11 (solid black) and HEx

11 +HEy
11→HEy

11 +HEx
11

(dashed red). (e) TM01 +TM01→TE01 +TE01 (solid blue). (f ) HEx
11 −HEx

11→−HEx
11 +HEx

11 (dashed yellow); +HEy
11 −TM01→

−TE01 +HEx
11 and+HEy

11 −TM01→+TE01 −HEx
11 (solid blue);+HEy

11 −TM01→−HEx
11 +TE01 and+HEy

11 −TM01→+HEx
11 −TE01

(solid black). Note:+/− signs indicate forward/backward propagation.

1s ,i =ωs ,i −ωp , and the horizontal axis represents the pump
frequencyωp , for different combinations of the modes depicted
in Fig. 1. In these diagrams, the top half (1> 0) corresponds
to the idler photon, whereas the bottom half (1< 0) corre-
sponds to the signal ; note that energy conservation imposes a
symmetry between these two halves. Black-shaded areas cor-
respond to non-physical regions in the sense that one or both
SFWM frequencies would have to be negative to fulfill energy

conservation. Note that these phasematching curves are based
on the numerical evaluation of the fiber dispersion relations
employing a numerical finite-difference time-domain vectorial
mode solver; gray-shaded areas lie outside the spectral region of
the numerical evaluation, so these portions of the contours can
be considered as extrapolations and may depart from the actual
observed behavior. We have used the convention that solid lines
in black (blue) correspond to photons emitted in the HEx

11
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(TE01) mode, while dashed lines in red (magenta) represent
emitted signals traveling in the HEy

11 (TM01) mode.
Let us first consider cases in which all four waves propagate

in the same mode, whether fundamental modes HEx
11 and

HEy
11 [Fig. 3(a)] or non-fundamental modes TE01 and TM01

[Fig. 3(b)], corresponding to processes 1 and 2 in Table 1. In
these cases, if the optical fiber exhibits two points of zero disper-
sion (λZ D1, λZ D2) in the spectral region of interest, the1k = 0
contours take the form of two closed loops, constrained byλZ D1

and λZ D2, as can be seen in Figs. 3(a) and 3(b). The 1k = 0
contour’s splitting into two loops results from the modulation
instability of the pump field and is controlled by the pump peak
power, leading to a nonlinear shift from the trivial solution (see
Fig. 4) [61–63]. In contrast, if the optical fiber is characterized
by just one ZDW, the1k = 0 contour consists of nearly parallel
lines for pump wavelengths λp <λZ D, which open up sharply
forλp >λZ D.

Let us now explore the phasematching properties of inter-
actions in which the four participating fields travel in the
same transverse mode but involve the two polarizations, cor-
responding to processes 3–6 in Table 1. In Fig. 3(c), we show
the phasematching contours for processes 5 and 6, which
involve co-polarized signal and idler photons, while in Fig. 3(d),
we show the phasematching contours for processes 3 and 4,
involving cross-polarized signal and idler photons. Both figures
suggest the potential for a polarization entanglement two-
photon state, especially in Fig. 3(d), around a 0.78 µm pump
wavelength, for which the two differently colored contours are
nearly coincident; we have verified (not shown here) that scaling
up the transverse fiber structure beyond the 10% assumed here
tends to bring these two contours even closer together. Note that
Figs. 3(a)–3(d) show that this fiber fulfills phasematching for
all the processes summarized in Table 1, at pump wavelengths
accessible from a Ti:sapphire laser.
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Fig. 4. Self/cross-phase nonlinear shifting in SFWM signals for
the NL-PM-750 fiber. The solid contour corresponds to a nonlinear
shifting of 240× 10−6 µm−1; the red (black) line represents the
inner (outer) solution to 1k = 0. Dashed black lines correspond to
nonlinear shiftings of 480× 10−6 µm−1, 960× 10−6 µm−1, and
1920× 10−6 µm−1, as indicated by the blue arrows. Note that the two
zero dispersion wavelengths have been indicated.

Figure 3(e) shows the phasematching contour for the SFWM
interaction in which the pump fields propagate in the TM01

mode, while signal and idler fields travel in the TE01 mode;
this is similar to process 6 in Table 1, but involving the non-
fundamental transverse modes. We will leave discussion of
Fig. 3(f ), which involves counterpropagating SFWM, to
Subsection 13.B.1.

Figure 3 and the discussion in this section make it clear that
optical fibers or waveguides, with χ (3) nonlinearity, constitute
a versatile platform for the generation of SFWM photon pairs
characterized by a wide range of characteristics, as permitted by
the dispersion properties. In this section, we have discussed how
the spectral, transverse mode, and polarization DOFs become
intertwined through the phasematching properties, leading
to the experimenter’s ability to tap into any one DOF, or any
combination of DOFs. In particular, we will discuss in Section 8
how the state can be engineered spectrally to be anywhere from
factorable to highly entangled.

6. INNER AND OUTER BRANCHES OF
PHASEMATCHING DIAGRAMS

In general, for SFWM processes involving all waves propagating
in the same transverse and polarization modes, the solutions to
1k = 0 in {ωp , 1s ,i } space will be in the form of two symmetric
loops (for the idler photon with 1> 0 and for the signal with
1< 0), provided that the pump spectral window of interest is
large enough to encompass two ZDWs. We can then distinguish
between the portion of the loops furthest from the 1= 0 axis
(referred to as the outer branches) and the portions closest to
the1= 0 axis (referred to as the inner branches). In Fig. 4, we
illustrate these two branches for the NL-PM-750 fiber with all
four waves propagating in the HEx

11 mode; while the solid black
line represents the outer branch, the solid red line represents the
inner branch.

For the former, signal and idler photons can typically be
sufficiently separated from the pump field, to avoid correlation
degradation of the two-photon states due to SRS. It has been
shown that the inner branches are particularly responsive to
SPM and XPM effects mediated by the pump power (this effect
is described in the next subsection), so that an increase in pump
power leads to an enhanced separation between the inner branch
and the1= 0 axis. Thus, it has been shown that through fiber
dispersion management and pump power control, it is possible
to generate inner-branch photon pairs sufficiently separated
from the pump and the Raman background, even at low levels of
pump power [64]. Note that such Raman suppression is of inter-
est because the inner branches lead to straightforward access
to the group velocity matching regimes required for factorable
and positive-correlation states (see further discussion of this in
Section 8) [64].

7. SPECTRAL SHIFTING DUE TO
SELF/CROSS-PHASE MODULATION

In χ (3) materials, nonlinear refraction effects, particularly SPM
and XPM, add a term to the phase mismatch that governs the
SFWM process, which ultimately can lead to spectral shift-
ing of the photon pairs. Note that since the pump waves are
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much more intense than the signal and idler fields, the latter
have a negligible SPM effect, or cross-modulation on other
waves. In consequence, the nonlinear term in the SFWM phase-
mismatch relation is linear with the pump power and can be
expressed as φnl = γ1 P1 + γ2 P2, where γ1,2 is the fiber effective
nonlinear coefficient and P1,2 the pump peak power for each
of the two pump waves, so that the phase mismatch becomes
1k = k p1 + k p2 − ks − ki + φnl .

In Fig. 4, we show the effect of SPM and XPM on the SFWM
phasematching properties of the NL-PM-750 fiber in a configu-
ration in which all fields propagate in the HEx

11 mode. Dashed
black lines indicate the effects of varying the pump power on
the SFWM phasematching contours, with the blue arrows
indicating an increasing pump power. As can be seen, the phase-
matching contours shrink as the pump power increases, with
the change particularly apparent in the position of the inner
branches discussed in the previous subsection. Note that if the
pump power is further increased, eventually the phasematching
loops shrink to a single point, and beyond that, phasemathc-
ing is no longer fulfilled (the pump powers typically used are
significantly below this level). Note that by increasing the non-
linear coefficients γ1,2, a separation of the inner branches that
is sufficient for Raman noise suppression occurs at lower pump
powers.

8. PURE-STATE HERALDED SINGLE PHOTONS
AND FACTORABILITY

Based on a SFWM photon-pair source, detection of one of
the daughter photons (say in the idler mode) may herald
the conjugate photon (in the signal mode)—we refer to this
arrangement as a heralded single-photon source. It is well
known that the purity of the heralded single photon ps is deter-
mined by the entanglement in the photon pair, as quantified
by the Schmidt number K , as ps = 1/K [65]. This implies
that to herald a quantum-mechanically pure single photon,
the two-photon state produced by the SFWM source must
be factorable. Specifically for a single-mode fiber (SMF) or
waveguide, for which photon-pair entanglement may reside
only in the spectral DOF, this means that the joint spectrum
must be factorable, i.e., functions S(ωs ) and I (ωi) must
exist so that the joint spectrum F (ωs , ωi ) may be written as
F (ωs , ωi )= S(ωs )I (ωi ).

As described in Eq. (3), the joint spectrum F (ωs , ωi ) may
be expressed (within a small frequency interval around the
central emission frequencies ωs 0 and ωi0) as the product of the
phasematching function |φ(νs , νi )|

2 and the pump envelope
function |α(νs , νi )|

2; here, νµ =ωµ −ωµ0 represents the
frequency detunings for the signal (µ= s ) and idler (µ= i )
modes. While the orientation of the |α(νs , νi )|

2 function is
always −45◦ in {ωs , ωi } space, the orientation θωs ωi of the
|φ(νs , νi )|

2 function depends on the dispersion properties
of the fiber or waveguide. It is known that as long as θωs ωi lies
within the range 0≤ θωs ωi ≤ 90◦, a combination of fiber length
and pump bandwidth exists, yielding a factorable state [11];
note that this approach often requires the use of an ultrashort,
e.g., ps- or fs-duration, pump.

Expanding k(ωµ) in a first-order Taylor series about frequen-
cies for which perfect phasematching is attained ω0

p1,p2,s ,i , the

linearized phase mismatch1klin becomes

L1klin = L1k(0) + Ts νs + Tiνi , (5)

where the zeroth-order term 1k(0) must vanish to guarantee
phasematching at these center frequencies. The coefficients Tµ
are given by Tµ = τµ + τpσ

2
1 /(σ

2
1 + σ

2
2 ), where τµ represent

group velocity mismatch terms between the pump centered at
frequency ω0

p2 and the generated photon centered at frequency
ω0
µ, and τp is the group velocity mismatch between the two

pumps:

τµ = L
[
k(1)2

(
ω0

p2

)
− k(1)µ

(
ω0
µ

)]
,

τp = L
[
k(1)1

(
ω0

p1

)
− k(1)2

(
ω0

p2

)]
, (6)

written in terms of k(n)µ (ω)= dnkµ/dωn
|ω=ω0

µ
.

The type of spectral correlations observed in a SFWM
two-photon state is determined in part by the slope of the
phasematching contour. If the phasematching contour is given
by a closed loop, all phasematching orientation angles θωs ωi

are possible, controlled by the pump frequency. Thus, for cer-
tain relative orientations and widths of these two functions, it
becomes possible to generate factorable two-photon states. A
factorable state is possible if

Ts Ti ≤ 0. (7)

Among those states that fulfill Eq. (7), those exhibiting a
phasematching angle of θωs ωi = 45◦, or Ts =−Ti , are of par-
ticular interest. For these states, in the degenerate pump case, a
factorable, symmetric state is guaranteed if

20σ 2
|Ts Ti | = 1, (8)

with 0 ≈ 0.193. The condition in Eq. (7) constrains the
group velocities: either k(1)(ωs ) < k(1)(ωp) < k(1)(ωi ) or
k(1)(ωi ) < k(1)(ωp) < k(1)(ωs ) must be satisfied. The condi-
tion in Eq. (8) constrains the bandwidths and fiber length. Thus,
the region in {ωs , ωi } space in which factorability is possible is
bounded by the conditions Ts = 0 and Ti = 0.

As described in Section 5, a useful graphical depiction of
the phasematching properties involves plotting the 1k = 0
contour on the {ωp , 1s ,i } space. The slope of the 1k = 0
contour θ1ωp is directly related to the joint spectrum angular
orientation θωs ωi =−arctan(Ts /Ti ) through the relationship
θ1ωp = 45◦ − θωs ωi , which in turn means that within the range
−45◦ ≤ θ1ωp ≤ 45◦, it becomes possible to obtain a factorable
state.

In Fig. 5(a), we show a plot of the1k = 0 contour for a source
based on the NL-PM-750 fiber, assuming all waves propagate
in the HEx

11 mode, that exhibits two zero dispersion frequencies
(indicated by vertical dashed lines in the figure). Note that
the portion of the curve where factorable states are possible is
highlighted in red. In Figs. 5(b)–5(e), we show four different
examples of joint spectral intensities, each obtained for a differ-
ent choice of pump wavelength, indicated with dashed vertical
lines in Fig. 5(a), along with a different choice of fiber length
and pump bandwidth. Note that while Fig. 5(b) corresponds to
a state with frequency anti-correlations and Fig. 5(d) to a state
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Fig. 5. (a) SFWM phasematching contour for the NL-PM-750 fiber. Red portions of the diagram represent the wavelengths that fulfill, addition-
ally to phasematching, group velocity matching properties for generating factorable two-photon states. (b)–(e) Four different joint spectral intensities
obtained for different choices of pump wavelength (indicated by vertical dashed lines in (a) along with a different choice of fiber length and pump
bandwidth, as indicated in each panel).

with positive correlations, both Figs. 5(c) and 5(e) represent fac-
torable states that fulfill Eq. (8). It is noteworthy that the same
fiber can produce a wide range of spectral correlation behaviors.
Note that the cases represented by the joint spectral intensities
in Figs. 5(d) and 5(e) fulfill Eq. (7), i.e., in both cases, the fields
involved meet the group velocity matching condition; how-
ever, this guarantees only the orientation of the phasematching
function. For the generation of a factorable two-photon state,
Eq. (8) must be satisfied additionally, which connects the pump
bandwidth and fiber length, as is the case for the JSI in Fig. 5(e).

9. PHOTON-PAIR SPECTRAL TUNABILITY

As described above, particularly in the context of the 1k = 0
contours in {ωp , 1s ,i } space (see Figs. 3 and 6), the SFWM
phasematching properties depend on the underlying dispersion
in the fiber or waveguide. The overall dispersion is controlled,
in turn, on one hand, by the material dispersion, and on the
other hand, by the waveguiding geometry. The fact that as one
decreases the core radius the waveguide dispersion component
tends to become more dominant can be used as the basis for
spectrally tuning the two-photon state. This idea has been
experimentally demonstrated in [58] in which it was directly
shown in a SFWM photon-pair source based on an optical
taper that the signal and idler emission frequencies can be con-
trolled by the degree of tapering. While the signal and idler were
shown to be tunable over a range of ∼12−18 nm, for a limited
tapered radius reduction (down to 70% of the original value), a
much greater tuning range is expected for more drastic tapering
(down to core diameters of the order of 1µm). In this particular
experiment, which relied on a bow-tie birefringent fiber, the
maximum tapering was constrained by the onset of structural
damage to the stress bows required to maintain polarization-
maintaining behavior. As shown in the same paper, two possible
alternatives to fiber tapering so as to achieve SFWM tunability

(with a comparatively shorter tuning range) are fiber heating and
the room-temperature application of longitudinal stress. Note
that a number of other works have demonstrated photon-pair
sources based on micro/nano fibers or waveguides [12,66,67].
As an example, we show in Fig. 6 the effect of decreasing the
transverse dimensions of our NL-PM-750 fiber uniformly
(i.e., a single scaling factor applied to the transverse struc-
ture). Figure 6(a) corresponds to our NL-PM-750 fiber, while
Figs. 6(b) and 6(c) correspond to the phasematching contours
for fibers with dimensions decreased by a factor of 10% and
25.25%, respectively, with respect to the fiber in Fig. 6(a). The
figure clarifies that the phasematching contours both change in
shape, as well as shift spectrally as a result of down-scaling the
fiber transverse profile (note that the ZDWs shift from 0.75µm
and 1.38µm to 0.71µm and 0.91µm, respectively).

10. SFWM BANDWIDTH CONTROL

In SFWM two-photon states produced in SMFs or waveguides,
while entanglement in transverse modes is suppressed, one is
relatively free to engineer the spectral DOF. In this case, the
source can be designed to prepare single-photon wave packets
characterized by a spectral width ranging from ultra-broadband
to ultra-narrowband.

A. Ultra-Broadband Photon Pairs

One of the key features of SFWM photon-pair sources is that
through dispersion engineering of the fiber or waveguide, it is
possible to obtain a wide variety of two-photon states, ranging
from ultra-narrowband to ultra-broadband, also including the
already described factorable states.

The width of the signal–idler time of emission difference
distribution is determined by the reciprocal of the SFWM emis-
sion bandwidth. Therefore, an ultra-broadband photon-pair
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Fig. 6. Phasematching diagrams for PCFs obtained by transverse scaling of the NL-PM-750 fiber. (a) Reference PCF. (b) Transverse dimensions
decreased by 10% with respect to the fiber in (a). (c) Transverse dimensions decreased by a 25.25% with respect to the fiber in (a). Blue (pink) areas
represent normal (anomalous) dispersion regimes. All fibers exhibit two zero dispersion wavelengths within the spectral range of interest. The fiber in
(b) fulfills the properties for ultra-broadband photon-pair generation.

source leads to a high degree of simultaneity between the signal
and idler photons (i.e., a narrow time of emission difference
distribution). Note that if the two emitted photons are input
into a Hong–Ou–Mandel (HOM) inteferometer, such a sharp
simultaneity is manifested as a very narrow HOM dip, which
in turn serves as the basis for maximizing the attainable axial
resolution in quantum optical coherence tomography (QOCT)
setups [68]. Note that fiber-based ultra-broadband photon-pair
sources that are naturally collinear would be well suited for
Michelson-interferometer-based (rather than HOM-based)
QOCT implementations [69].

To obtain ultra-broadband states, let us consider again the
1k = 0 contours in {ωp , 1s ,i } space (see Fig. 6). As has already
been discussed, along the ωp axis, the phasematching curve is
approximately bounded by the zero dispersion frequency or
frequencies. What is needed for the state to be ultra-broadband
is that for a fixed value of ωp , the longest possible stretch of
±1s ,i values (representing the signal and idler frequencies) are
phasematched. This can be accomplished by choosing a fiber
geometry that results in the suppression of the1k = 0 contour
curvature at 1s ,i = 0. As discussed in [70], this curvature is
proportional to k(4)/k(3), where k(n) represents the nth fre-
quency derivative of k. The condition k(4) = 0 at zero dispersion
frequency therefore turns into the condition k(2) = k(4) = 0,
i.e., both the second and fourth derivatives must vanish.

As explained in Section 9, Fig. 6 illustrates the explained
behavior, where (a) corresponds to the NL-PM-750 fiber,
while (b) and (c) show the phasematching contours for fibers
with dimensions decreased by a factor of 10% and 25.25%,
respectively, with respect to the NL-PM-750 fiber. It can be seen
that the fiber considered for Fig. 6(b) meets the properties for
ultra-broadband photon-pair generation, as discussed in [70].

B. Ultra-Narrowband Photon Pairs

On the opposite extreme, SFWM sources may be designed and
built so that the emitted photon pairs are characterized by an
ultra-narrow bandwidth.

A heralded single photon, obtained from a SFWM photon-
pair source, may serve as a flying qubit for quantum information

processing applications. Provided that such a single photon
can be deterministically absorbed by a single atom, the latter
may then constitute a quantum memory. Such efficient single-
photon absorption by a single atom requires matching: (i) the
single-photon frequency to the desired electronic transition of
the atom, and (ii) the single-photon bandwidth to that of the
transition.

Note that for spontaneous parametric processes, including
both SPDC and SFWM, there is no intermediate level defining
the energy splitting ratio for the signal and idler photons. The
range of possible splitting ratios, which determines the signal
and idler emission bandwidth, is mainly limited by the phase-
matching constraint, which can be many orders of magnitude
larger than the typical electronic transitions with bandwidths
of the order of MHz. To design SFWM sources that can emit
photon pairs with MHz or sub-MHz bandwidths, two main
strategies are possible: (i) the use of atomic nonlinearities as the
basis for SFWM, which are naturally narrowband and directly
suited for single photon–single atom interfaces [71,72]; (ii) the
use of cavity-enhanced SFWM in which photon pair emission
occurs only within the sharp spectral resonances defined by a
resonator [73]. The first strategy is promising but lies outside the
scope of the fiber-based focus of this tutorial paper. The second
strategy includes a considerable body of work based on nonlin-
ear devices in the form of a micro-cavities including disks [74],
toroids [75], and spheres [76], all with large Q values, which
likewise lies outside the current fiber-based focus. An interesting
possible approach is the use of extended fiber cavities, either of a
linear kind based on fiber Bragg resonators to act as mirrors, or
of a loop kind with one output port of a fiber beam splitter con-
nected to one input port, and the two remaining ports acting as
overall input and output for the device. Such a source could pro-
vide an interesting platform for the generation of narrowband
photon pairs for single photon–single atom interfaces.

11. SFWM TRANSVERSE MODE CONTROL

As explained above, the SFWM process photon-pair emission
can include a coherent superposition of a number of different
processes, each characterized by a particular combination of
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transverse modes and polarizations for the four participating
fields [see Eq. (1) and Fig. 3]. Thus, the two-photon state can
include in this manner contributions from various transverse
modes. With the aim of taking advantage of the transverse mode
DOF, it is necessary to: (i) control the transverse modes present
in the emitted state, (ii) be able to deterministically switch
from one emitted mode to another, and (iii) be able to transmit
over longer distances single photons described by particular
transverse modes.

In [77], it was demonstrated that a device known as a mode
selective photonic lantern (MSPL) can accomplish the deter-
ministic conversion of the transverse mode in which a single
photon travels to the coherent superposition of two other
modes. Note that the polarization DOF has been used widely
to encode information, in part because of the readily available
optical elements such as polarizers and wave plates that permit
the full manipulation of this DOF. It is comparatively more
difficult to control the transverse mode DOF, due to the unavail-
ability of devices that act in a manner analogous to polarizers
and wave plates. In [78], it is shown that a MSPL device may
act as a half-wave plate analog for spatial modes, and that the
mode-converted single photon may travel over a long distance
in a few-mode fiber with minimal mode distortion.

12. SPONTANEOUS RAMAN SCATTERING AS
A NOISE MECHANISM

When compared to photon-pair sources based on SPDC,
those based on SFWM in fibers tend to be affected to a greater
degree by noise mechanisms. The appearance of uncorrelated
noise photons has the effect of weakening the signal–idler
correlations, which can be quantified through a reduced
coincidence-to-accidental ratio (CAR). Among possible noise
mechanisms affecting SFWM photon-pair sources, SRS of the
pump field or fields plays an important role [79]. Particularly
for fused-silica optical fibers, the dominant Stokes contribution
to SRS occurs towards the red from each of the pumps over a
bandwidth of ∼50 THz. Photon-pair sources based on other
materials such as chalcogenides [80,81] have also been shown
to be affected by SRS. Possible strategies to mitigate the SRS
contamination of emitted photon pairs include: (i) relying on a
phasematching scheme with a large spectral detuning between
the pump and each of the signal and idler photons (particu-
larly relying on the outer branch of the phasematching curves;
see Fig. 4), (ii) cryogenic cooling of the optical fiber [82], and
(iii) using SFWM sources in which the nonlinear material is in
gaseous form, e.g., in xenon-filled hollow-core fibers [83], or in
liquid form as in [84,85].

13. SFWM PROCESS VARIATIONS

The two-photon state given by Eq. (1) and the phasematching
properties examined in Section 5 highlight the variability of
configurations in which the SFWM may be implemented,
leading to the generation of photon pairs with engineered
entanglement properties involving discrete (polarization, spatial
mode) and continuous (spectral) DOFs. This section discusses
SFWM variations implemented in different optical fibers and

beyond the co-polarized, co-propagating, and single-mode
configuration.

A. SFWM in Various Types of Fiber

Since the first demonstration of a SFWM source [3], several
fiber geometries have been used to exploit this nonlinear interac-
tion’s potential for preparing two-photon states with engineered
correlation and entanglement properties, as discussed in previ-
ous sections. Fortunately, fiber optic technology has advanced
dramatically in the last two decades [86–89], leading to the
accessibility of a system with controllable dispersion properties
that can be exploited in quantum optics to engineer photon-pair
sources for different applications. To mention a few, the types
of optical fibers that have been used for the implementation
of photon pairs are telecom dispersion-shifted [5,43,90,91],
polarization-maintaining [14,18,22], commercial grade [30],
photonic crystal [6,19,92–94], hollow-core [15,83,84], tapered
[13,58,95], and few-mode fibers [16,96–98].

B. Non-degenerate Dual Pump Scheme

As opposed to SPDC, which relies on a χ (2) nonlinear interac-
tion in which only one pump photon is annihilated, in SFWM,
the χ (3) nonlinear process involves the annihilation of two
pump photons and the creation of one signal and one idler pho-
ton. The dual pump nature of SFWM makes the photon-pair
generation process more controllable through different pump
polarizations [34,79,99,100], transverse modes [18,101,102],
frequencies [19,103], and/or temporal delays [44,66], which
can lead to a variety of applications including creating fac-
torable, ultra-broadband, or ultra-narrowband photon-pair
states, as discussed in previous sections.

Without special treatment, the photon pairs produced
in SFWM are in general entangled in spectral and spatial
DOFs due to the strong correlations introduced by energy and
momentum conservation constraints. To reduce the spectral
entanglement in photon-pair generation, much progress has
been made in tailoring the photon-pair joint spectrum by
using degenerate pumps and shaping pumps temporally (see
Section 8) [11]. In this section, we discuss how SFWM with two
frequency-non-degenerate pumps with temporal walk-off in
standard silica polarization-maintaining fibers (PMFs) can be
used to eliminate the spectral correlation.

In the weak pump power regime where SPM and XPM can be
ignored, the SFWM process is constrained by the phasematch-
ing conditions [11,66]

1ω=ωp1 +ωp2 −ωs −ωi = 0, (9)

1k = k p1(ωp1)+ k p2(ωp2)− ks (ωs )− ki (ωi )= 0. (10)

When considering the case where the pumps’ polarizations are
along one of the principal axes of the fiber, while the signal and
idler photons are generated orthogonally to the pump, the dis-
persion relation is given as k p1(ω)= k p2(ω)=

ω(n(ω)+1n)
c and

ks (ω)= ki (ω)=
n(ω)ω

c , where 1n is the fiber birefrengence.
Expanding on the first-order linear approximation for the joint
spectral function introduced in Section 1 to include the pump
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spectral envelopes, we have

Flin(νs , νi )= α(νs + νi ) φ(νs , νi )

= exp

[
−
(νs + νi )

2

σ 2
1 + σ

2
2

]
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[
−

(
Ts νs + Tiνi

στp

)2
]

×

[
erf

(
σ(τ + τp)

2
− i

Ts νs + Tiνi

στp

)

− erf

(
στ

2
− i

Ts νs + Tiνi

στp

)]
,

(11)

where σ1(2) denotes the pump 1(2) spectral bandwidth,
while σ = σ1σ2/

√
σ 2

1 + σ
2
2 is the effective pump band-

width; Tµ = τµ + (σ 2
1 − σ

2
2 )/(σ

2
1 + σ

2
2 )τp/2, where τµ =

L((k′p1 + k′p2)/2− k′µ) is the group delay difference
between the signal (idler) and the average group delay of the
pumps acquired during the propagation in the fiber, where
k′µ = dk/dω|ωµ is the inverse group velocity of the signal/idler
in the fiber, τp = L(k′p1 − k′p2) is the group delay between
the two pumps acquired during propagation in the fiber, and
k′p1(2)

= dk/dω|ωp1(2)
+1n/c is the inverse group velocity of

pump 1(2) in the fiber.
As mentioned in Section 8, since the pump envelope function

α(νs + νi )= exp[− (νs+νi )
2

σ 2
1+σ

2
2
] has an orientation of −45◦ in

{ωs , ωi } space to obtain a factorable state, the phasematching
function angle θωs ωi =− arctan(Ts /Ti ) should be set to be in
the range of 0◦ < θωs ωi< 90◦, which corresponds to the condi-
tion Ts Ti < 0. There are two regions in which this condition can
be satisfied.

Negligible temporal walk-off : when the temporal walk-off
between pumps is negligible (i.e., |στp | � 1 or even τp = 0).
This is the case discussed in Section 8, and in [11], where
the phasematching function is reduced to a sinc function
φ|στp |�1(νs , νi )= sinc( Ts νs+Ti νi

2 ) with Ts ≈−Ti . In this case,
the phasematching function has an orthogonal orientation
compared to the pump envelope function α(νs + νi ); however,
unlike the Gaussian function, the oscillatory behavior of the sinc
function carries sidelobes that result in spectral correlation and
thus limit the maximal factorability that one can achieve.

Complete temporal walk-off : the opposite limit, where the
two pumps are temporally separated with |στp | � 1. In this
region, when sending the slow pump ahead of the fast by a time
|τp/2|, the interaction gradually increases as the fast pump
catches up with the slow pump and turns off and vanishes as the
pumps separate towards the end of the fiber, which results in
an interaction function of a Gaussian shape (depending on the
pump envelope function), and thus the phasematching function
can be approximated to be a Gaussian function:

φ|στp |�1(νs , νi )= exp

[
−

(
Ts νs + Tiνi

στp

)2
]

. (12)

In PMF, when working at regions far from the fiber ZDW (i.e.,
τs =−τi ), factorability is possible when the pumps are well
separated (i.e., τp ≈

τs
2 ). A numerical simulation as well as

experimental demonstration can be found in Fig. 7 [44]. Note
that the choice of a non-degenerate dual pump configuration
determines the levels of factorability that can be achieved.

1. CounterpropagatingSFWMPhoton-Pair Sources

In all SFWM sources demonstrated to date, all four partici-
pating optical fields, i.e., the two pumps, signal, and idler,
propagate along the nonlinear medium in the same direction.
Specifically in relation to fiber- and waveguide-based photon-
pair generation, an interesting possibility is to design sources
in which the two pump fields (with frequencies ω1 and ω2) are
launched into the nonlinear medium from opposite ends so that
they counterpropagate [104]. It has been shown [105] that in a
situation in which all four fields are co-polarized and propagate
in a single transverse mode, phasematching is then automati-
cally attained in such a manner that the signal photon is emitted
with frequency ωs =ω1 in a direction opposite to that of
pump 1, and the idler photon is emitted with frequency
ωi =ω2 in a direction opposite to that of pump 2. Such a
process is referred to as counterpropagating SFWM (CP-
SFWM). In addition, in [105], it has been shown that if the
region of the fiber (or waveguide) in which the two pumps
overlap—assuming that both pumps are pulsed—is much
shorter than the fiber length, the state becomes automatically
factorable (regardless of the material dispersion properties),
thus ensuring that single heralded photons derived from such a
source are in a quantum-mechanically pure state. For the men-
tioned pump scheme, the JSA (FCP) of the two-photon state is
given by

FCP(ωs , ωi )=

∫
dω α1+ (ω)α2− (ωs +ωi −ω)sinc

[
L
2
1kCP

]

× exp

[
i

L
2
κ

]
exp(iωτ),

where α1+(ω) represents the pump spectral envolope for the
forward-propagating pump, while α2−(ω) is the pump spectral
envelope for the backward-propagating pump. τ represents the
time arrival difference between the two pump pulses at the cor-
responding fiber end. In this case, the phase-mismatch function
1kCP ≡1kCP(ω, ωs , ωi ), and the function κ ≡ κ(ω, ωs , ωi )

are given by

1kCP = k1(ω)− k2(ωs +ωi −ω)− ks (ωs )+ ki (ωi )+ φNL ,

(13)

κ = k1(ω)+ k2(ωs +ωi −ω)+ ks (ωs )+ ki (ωi ), (14)

with φNL the phase shift related to processes derived from the
nonlinear refraction effect [105].

The key importance of this proposal is that while in gen-
eral for a given nonlinear optical material phasematching and
factorability (group velocity matching) occur only for specific
sets of wavelengths, CP-SFWM permits these conditions at
arbitrary, user-controlled frequencies. Note that in practice,
the ωs =ω1 and ωi =ω2 symmetry may be broken (aiding
experimental pump-SFWM discrimination), by letting the four
participating modes propagate in different spatial modes or with
different polarizations, as shown in Fig. 3(f ).
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Fig. 7. Experimental (top row) and theoretical (bottom row) joint spectral densities (JSDs) for various detunings. Experimental data are measured
via stimulated emission. (a), (b) Degenerate pump at 715 nm; (c), (d) dual pump at 772 and 652 nm; (e), (f ) dual pump at 772 and 534 nm. From left
to right, corresponding to increasing detuning between the two pumps, the sidelobes’ intensities weaken and the JSD of the signal and idler photons
becomes less correlated. Here, F is the fidelity of the experimental JSD with respect to the corresponding theoretical JSD [44].

In Fig. 3(f ), we show the phasematching characteristics
for a counterpropagating configuration, for the same fiber
assumed in Section 5. In this case, we fix the pump-2 wave-
length at 0.532 µm while allowing the pump-1 wavelength
to vary. We have plotted in a yellow dashed line the phase-
matching contour for the situation in which all four fields
propagate in the HEx

11 mode. As can be seen, the 1k = 0
contour is formed by two oblique lines that cross at the degen-
eracy point (ω1 =ω2 =ωs =ωi = 2πc/0.532 µm), with
signal and idler photons traveling in counterpropagation.
Other solutions within the yellow lines represent signal and
idler pairs that counterpropagate with ω1 =ωs and ω2 =ωi

(symmetric phasematching). Such symmetry can be bro-
ken if the SFWM process is allowed to involve different
polarizations and transverse modes, as shown in Fig. 3(f ),
where we have shown the 1k = 0 contours for the following
SFWM interactions: (i) +HEy

11 −TM01→−TE01 +HEx
11,

(ii) +HEy
11 −TM01→+TE01 −HEx

11, (iii) +HEy
11 −

TM01→−HEx
11 +TE01, and (iv) +HEy

11 −TM01→

+HEx
11 +−TE01, with+ (−) representing forward (backward)

direction. Note that the colors follow the convention used in
Section 5. It is remarkable in this figure that there is a phase-
matched solution that departs from symmetric phasematching,
in which the SFWM photons propagate in modes HEx

11 and
TE01, plotted in solid black and blue lines, respectively. Note
that in this configuration, the counterpropagating pairs pump
1-signal and pump 2-idler become orthogonally polarized and
acquire a spectral shift, aiding experimental discrimination.

C. Quantum Correlations in Different Degrees
of Freedom

From Eq. (1) and the discussion in Section 5, we know that the
flexibility of the SFWM process can be exploited so as to gener-
ate photon pairs exhibiting correlations, and entanglement, in
different DOFs or combinations of DOFs.

1. EntanglementGeneration

While correlations in continuous-variable DOFs are sometimes
undesirable, the intentional creation of correlations in energy–
time [106,107], polarization [34,99,108,109], spatial mode
[18,23,98], or discrete frequency [21,51] is important for many
applications in quantum information science. Fiber-based
entangled photon-pair sources hold the advantage of ready inte-
gration into fiber-based quantum networks and of supporting
high-dimensional discrete transverse modes. We now consider
fiber-based sources of photon pairs entangled in various DOFs.

Entanglement in energy and time. Although continuous
spectral correlation in the continuous-wave (CW) pump
regime is often undesirable for applications that require indis-
tinguishable photons, such correlations can be a resource for
other quantum applications. Photon pairs with continuous
energy–time correlations can be understood as entangled in
the infinite-dimensional Hilbert space and thus can violate
the Clauser–Horne–Shimony–Holt (CHSH) inequality.
Energy–time entanglement can be measured in a Franson-type
interferometer consisting of two unbalanced Mach–Zehnder
interferometers [21,107,110]. Since the photon pair is strongly
correlated in time, the resulting state can be written as
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|9〉 =
1
√

2
[|short〉|short〉 + e i(α+β)

|long〉|long〉], (15)

where α and β are the phases applied in the unbalanced Mach–
Zehnder interferometers. The unbalanced interferometer path
length difference is set to be much shorter than the coherence
time of the pump but longer than the coherence time of the
signal and idler.

Entanglement in polarization. Polarization-entangled photon
pairs can be created through SFWM inside a PMF Sagnac inter-
ferometer [34]. The pump, whose polarization is oriented at
45o, is split equally by a polarizing beam splitter. The horizontal
component is transmitted and then coupled into one end of the
PMF to generate photon pairs with vertical polarization, which
changes to horizontal polarization due to a 90o twist in the fiber.
Similarly, the vertical pump component is coupled to the other
end of the PMF and generates photon pairs with horizontal
polarization, which exit the fiber vertically polarized. At the
output port of the beam splitter, the photon pair state generated
is of the form

|9〉 =
1
√

2
|8〉(|H H〉 + e iφ

|V V 〉), (16)

where |8〉 is the spectral–temporal photon-pair state assuming
pumps with fixed polarization along the principal axes of the
fiber.

Entanglement in frequency–transverse mode. If instead of work-
ing with SMF as in the previous examples, few-mode or MMF
is employed, more than one spatial mode should be considered
in the SFWM process, as reflected in the general photon-pair
state represented by Eq. (1). Different spatial modes in the
fiber experience different refractive indices; therefore, generally
speaking, photon pairs in different spatial modes are gener-
ated at different frequencies. This results in spatial-frequency
correlations between photons. The discrete nature of these
correlations allows for their full characterization and can be used
to build hyper-entangled or hybrid-entangled quantum states
of the form |ψ〉 =

∑
n |ω

n
s 〉|ω

n
i 〉|q

n
s 〉|q

n
i 〉, where |q n

〉 stands for
different spatial modes [23].

Few-mode optical fibers permit the generation of photon
pairs with a quantum state given by the coherent superposition
of distinct SFWM processes, each related to a different combi-
nation of transverse modes among the four waves involved. Such
a source involving three different processes, based on a bow-tie
birefringent fiber and on process 5 in Table 1, i.e., x x -y y , was
experimentally demonstrated in [18]. Note that by using a
shorter pump wavelength, or larger core radius so that a greater
number of transverse modes are supported, it is possible to
obtain a state built as the coherent superposition of a larger
number of distinct processes. Such a source has the potential
of exploiting hybrid entanglement in frequency and transverse
modes.

Entanglement in frequency–polarization. Single-transverse
spatial mode fibers that support the two fundamental polari-
zation modes permit the generation of two-photon states that
result from the coherent superposition of SFWM interactions
related to the different polarization combinations among the
four participating optical fields. In general, this leads to two-
photon states with hybrid entanglement in the spectral and
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Fig. 8. Logarithmic negativity as a function of the pump wave-
length for different fiber lengths and pump pulse durations in the
picosecond (ps) and femtosecond (fs) regimes [19].

polarization DOFs. The generation of photon pairs exhibiting
hybrid frequency–polarization correlations in a PCF has been
experimentally demonstrated in [19]. For this two-photon
state, we have calculated, in four different source configura-
tions, the logarithmic negativity (LN) as a metric of the hybrid
frequency–polarization entanglement [111,112], particularly
in the frequencies of the idler mode (ωi ) and the polarization
of the signal mode (ps ). Results are shown in Fig. 8, where it
can be seen that the hybrid frequency–polarization entangle-
ment increases for shorter fibers and shorter pulse duration,
conditions that favor the spectral overlap among the processes
corresponding to different polarization combinations; see
Table 1.

Entanglement in discrete frequency mode. Beyond bipartite
entangled state generation via SFWM, the higher-order terms in
SFWM can be used to create multipartite entangled states. An
example is a recent experimental demonstration of tripartite-
entangled W state generation in the discrete energy DOF in
optical fiber [110]. In this case, the pump power is increased
until the second-order term in SFWM becomes relevant:

|9〉 = (1− O(β2))|vac〉 + βa †
ωs

a †
ωi
|vac〉 +

β2

2
(a †
ωs
)2(a †

ωi
)2|vac〉.

(17)
By sending the pairs to a series of three beam splitters that are
balanced for equal output probability, a three-photon W state
on post-selection can be formed:

|W〉 =
1
√

3
(|ωiωsωs 〉 + |ωsωiωs 〉 + |ωsωsωi 〉). (18)

14. SFWM TWO-PHOTON STATE
CHARACTERIZATION

As discussed in previous sections, optical fiber sources can be
cleverly engineered to create photon pairs correlated in various
DOFs, and sometimes in complex combinations of them.
Depending on the possible applications, we might want to
exploit those photon-pair correlations to create entanglement



482 Vol. 40, No. 3 / March 2023 / Journal of the Optical Society of America B Tutorial

or avoid entanglement for high purity. Regardless, characteriza-
tion of the photon-pair source is an indispensable step towards
defining the correlations present in photon pairs so as to utilize
the source for appropriate applications.

There are four main DOFs when it comes to charac-
terizing photon pairs: polarization [19,79,113], temporal
[107,114,115], spectral [116,117], and transverse spatial DOFs
[101,118]. For polarization and temporal DOFs, there are many
well-developed methods that can measure the polarization and
temporal mode of photons in a relatively straightforward way
by using linear optics, single-photon detectors, and coincidence
electronics to reveal the correlations. Thus, here, we will focus
more on the characterization methods for two other DOFs—
spectral and transverse spatial modes—that may require a more
careful approach.

Before we delve into describing characterization methods for
specific DOFs, we introduce metrics that describe the degree of
quantum state purity of the source across all DOFs: quantum
state purity P , the second-order autocorrelation function g (2),
and the HOM dip. Using these quantities, we can assess whether
a fiber-based photon-pair source has high enough quantum
state purity for employment in diverse quantum information
processing applications.

Quantum state purity P. For a quantum state defined by the
density operatorρ, the purity is generally defined as in Eq. (19):

P ≡Tr
[
ρ2] , (19)

where P = 1 for a pure state, and P = 1/d for a d -dimensional
maximally mixed state [42]. For photon-pair generation, P rep-
resents the quantum state purity of the heralded single-photon
state (sometimes called single-photon purity) when one of the
two daughter photons in a photon-pair source is used to indicate
the presence of another. The heralded photon’s quantum state
purity P is inversely proportional to the effective number of
eigenmodes, described by Schmidt number K :

P =
1

K
. (20)

Given that the signal–idler photon-pair state can be written in
orthonormal states of signal and idler using Schmidt (singular
value) decomposition as f s ,i =

∑
j

√
λ j g s , j g i, j , the Schmidt

number is defined as

K =
1∑

j
λ2

j

, (21)

where the Schmidt coefficients λ j satisfy the normalization
condition

∑
j λ j = 1. Qualitatively speaking, K describes the

effective number of populated eigen-Schmidt modes or the
degree of entanglement.

Second-order autocorrelation function g (2). There are various
types of second-order correlation measurements that are useful
in characterizing photon-pair sources, e.g., to determine signal–
idler cross-correlations and the degree to which the source is
producing true single-photon states; for a discussion of these, we
refer the reader to [119]. Here, we focus on the autocorrelation
g (2), defined as

g (2) = g (2)(τ = 0)=
〈n1(t)n2(t + τ)〉
〈n1(t)〉〈n2(t)〉

∣∣∣∣
τ=0

=
Ncoinc R
N1 N2

,

(22)
which can be used to determine the quantum state purity
through the use of a beam splitter in just one arm of the photon-
pair source and measuring the two-fold coincidences at the
outputs [120,121]. This type of g (2) measurement can be simply
described as a Hanbury Brown–Twiss type of interferometric
measurement conducted on either signal or idler side of the
photon-pair source. For a photon-pair source with K thermal
eigenmodes (Schmidt number), the following relation holds
[122,123]:

g (2) = 1+
1

K
= 1+ P . (23)

The more thermal eigenmodes the quantum state comprises,
the more Poissonian (〈n2

〉 = n̄, where n̄ is the average photon
number), and less thermal or super-Poissonian (〈n2

〉> n̄) it is
[124]. If in addition the photons are heralded, the three-fold
coincidences of two signal (idler) ports and one idler (signal)
port g (2)s 1,s 2,i (g (2)s ,i1,i2) gives zero when the heralded single-photon
state is pure, and greater than zero when it has multiple modes
[14,125]. Temporal resolution of the g (2) measurement is
dependent on the relative magnitude of detector response time
compared to the coherence time of the heralded single photon.
When the detector response time is longer than the coherence
time, the time-integrated version of the correlation function g (2)

should be considered (see [121] for more detail). In addition,
this measurement is conditioned upon the assumption that
there are a negligible number of photons arriving during the
avalanche photodiode’s (APD’s) dead time.

Hong–Ou–Mandel dip. HOM interferometry is a four-fold
coincidence measurement involving two photon pairs origi-
nating from two separate photon-pair sources [30]. For sources
with heralded single-photon purity P , the HOM interference
exhibits a dip whose visibility V satisfies V = P . Two-source
HOM interferometry thus provides a direct measurement of
quantum state purity, but it suffers from long acquisition times
that can extend up to days [120,121]. The purity derived from
the autocorrelation g (2) measurement provides an upper limit
to the purity acquired from the two-source HOM measurement
since HOM relies on the two different sources having the same
purity.

A. Spectral Characterization

While the above metrics provide information on overall quan-
tum state purity, it is often useful to characterize in specific
DOFs to address poor fidelity to the target state. There are
a number of different strategies to measure the spectral cor-
relations of photon pairs, including making direct joint
measurements of signal and idler spectral components, per-
forming measurements based on interference, stimulating
the FWM process, and combinations of these techniques (see
Fig. 9). When measuring the joint spectral function, it is some-
times valid to assume that the joint spectral phase (JSP) is flat
over the spectrum, and thus an intensity measurement of the
joint spectrum is sufficient to characterize the correlations.
Other methods can be realized that provide the full, complex
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Fig. 9. Spectral characterization methods for SFWM photon-pair source; p, pump; s, signal; i, idler; d, seed; st, stimulated signal; h, herald;
r, reference pulse. (a) Scanning monochromator measurement; �s ,i , monochromators for signal and idler photons. (b) Fourier transform spec-
troscopy; Ts ,i , Michelson or common path interferometers to change the relative temporal delay in each path. (c) Dispersive fiber spectroscopy;
single-mode fiber (SMF) for applying dispersion on both signal and idler, temporally spreading spectral components. Single-photon detectors are
connected to a coincidence counter (&). (d) Stimulated emission tomography; tunable seed laser (λd ) and a spectrometer (3st) for the stimulated
signal. (e) Chirped supercontinuum seed measurement; temporal delay τp , photonic crystal fiber (PCF) for supercontinuum generation, and a SMF
for chirping. (f ) Phase-sensitive tomography; one pump laser is combined with liquid-crystal-on-silicon wave shapers (LCoSWS) and an erbium-
doped fiber amplifier (EDFA) to produce pump, seed, and broadband phase reference pulses. (g) Intensity interferometry; signal is interfered on a
beam splitter (BS) with a weak reference pulse (Ref ) that has a relative temporal delay τr . Dispersion compensated fibers (DCF) are used for the same
purpose as the SMF in (c) dispersive fiber spectroscopy.

JSA, K [126], but may be susceptible to artifacts from, e.g., tem-
poral chirp in the pump. In both cases, the JSI gives a lower
bound on the Schmidt number K̃ (or upper bound on the
purity). The derived purity can be compared to the heralded
single-photon purity P obtained from autocorrelation g (2)

measurements [Eq. (23)], which includes information on the
JSP. Exploiting this property, inadequacies present in joint spec-
tral measurements can be revealed through comparison with
the purity obtained from autocorrelation g (2) measurements
[117,120,127,128].

1. ScanningMonochromatorMeasurement

The scanning monochromator measurement [Fig. 9(a)] is the
most direct method of measuring the spectral correlations of
photon pairs. It involves two-dimensional raster scanning of
the signal and idler photon frequencies by rotating the gratings
in two monochromators placed in each of the signal and idler
paths, and counting coincidences with single-photon detectors
at individual grating positions [120,121]. The 2D scan is pro-
cessed to provide the joint spectral intensity (JSI). Although it
may seem quite straightforward to implement, this method has
a major drawback of requiring a long data acquisition time (of
the order of many hours) to achieve a reasonable resolution, due
to the monochromator filtering a very narrow spectral window,

leading to relatively low pair collection efficiencies (∼0.1%).
Thus, compared to other measurement schemes, JSI measure-
ment through the scanning monochromator technique suffers
from low SNR.

2. Fourier TransformSpectroscopy

In Fourier transform spectroscopy [Fig. 9(b)], temporal interfer-
ence between either single photons or photon pairs is measured
and then Fourier transformed back to the spectral domain
using an interferometer with variable temporal delay in one
arm. If only one photon from the pair is sent to the interfer-
ometer, i.e., one-dimensional Fourier transform spectroscopy,
the single photon spectrum is measured. Sending both pho-
tons through the interferometer allows for measuring the
JSI, i.e., two-dimensional Fourier transform spectroscopy
[116]. Implementations include a Michelson or common path
polarization-based interferometer that uses a pair of quartz
wedges [120]. The time-dependent intensity signal I (τ ) is
Fourier transformed back to a frequency-dependent spectrum
I (ω) for one dimension as

I (ω)∝
∫
∞

0
dτ

(
I (τ )−

1

2
I (τ = 0)

)
cos(ωτ), (24)

and for two dimensions, with appropriate filtering, as
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I (ωs > 0, ωi > 0)=
∫

dτs dτi Ĩ (τs , τi ) exp(iωs τs + iωiτi )

∝ δ(ωs )δ(ωi )〈N̂s N̂i 〉 +
1

2
δ(ωs )〈N̂s Îi (ωi )〉

+
1

2
δ(ωi )〈N̂i Îs (ωs )〉+

1

4
I (ωs , ωi )

∝ (total coincidence counts at origin)

+ (heralded idler spectrum atωi axis)

+ (heralded signal spectrum atωs axis)

+ (JSI),
(25)

where Îs ,i (ωs ,i ) and N̂s ,i =
∫

dω Îs ,i (ω) are operators that each
represents the spectral intensity and total number of signal or
idler photons. Although two-dimensional Fourier spectroscopy
requires N2 data points compared to N for the one-dimensional
case, this can be reduced to N by performing diagonal Fourier
spectroscopy if it can be assumed that the JSI is approximately
a Gaussian ellipse aligned along the diagonal (ωs +ωi ) and
anti-diagonal axes (ωs −ωi ). Then, a 1D scan along the ts + ti
axis—the ωs +ωi axis in Fourier space—gives diagonal (σd )
and anti-diagonal bandwidth (σa ) information of the JSI. The
ratio of the two r ≡ σ 2

d /σ
2
a can then be utilized to calculate the

quantum state purity.

3. Dispersive Fiber Spectroscopy

Dispersive fiber spectroscopy [Fig. 9(c)] uses frequency-
dependent photon time-of-arrival information to measure
the spectral correlation of photon pairs. As an example, in
[120,121], both the 810 nm signal and idler photons are
sent into the same 400-m-long fiber that introduces a dis-
persion of −120 ps/nm/km, or group velocity dispersion
of +41.8 fs2

/mm. Then, the photon pairs are counted in
coincidences triggered by the detection of pump photons,
and the 2D JSI is recreated based on the following relation:
1λs ,i ≈ c (ts ,i − tp), where ts ,i and tp correspond to time
stamps of the signal, idler, and pump (sync trigger). Although
in this particular example the photon pairs were created from
a type-I degenerate SPDC process in β-BBO (barium borate)
crystal, the measurement technique can be equivalently applied
to fiber-based SFWM sources, as can be seen in the intensity
interferometry example discussed in Subsection 14.A.7.

The resolution of the measurement can be improved by
higher dispersion or longer propagation distance in media, but
at the same time can be limited by the photon loss and timing
jitter of the detection. There exists an algorithmic method to
deconvolve the effect of timing jitter, but it is limited to the case
where the jitter is of the order of the narrow bandwidth of the
JSI ellipse. In regard to improving the loss, use of a chirped fiber
Bragg grating (CFBG) was proposed [129]. As compared to
ordinary SMF to introduce group delay dispersion, a CFBG
combined with a fiber circulator can provide a relatively low-loss
all-fiber solution (faster data acquisition by up to a factor of 20).

4. Stimulating theProcesswith aSeed: StimulatedEmission
Tomography

First theoretically proposed in [130], and experimentally
demonstrated in fiber in [131], stimulated emission tomogra-
phy (SET) is a relatively fast (order of tens of minutes acquisition
time) measurement technique that can yield high-SNR JSI
results [Fig. 9(d)]. Simply put, SET relies on having a tunable
narrowband seed laser at either the signal or idler wavelength
to stimulate FWM processes. Then the number of stimulated
photons is proportional to the product of the number of corre-
sponding spontaneous photon pairs and the stimulating seed
photon flux.

The SNR of the JSI obtained from SET is high compared to
the other JSI characterization techniques described above, even
when normalized by acquisition time and spectral resolution
to remove the any equipment-dependent bias (see Table 3 in
[121]). Thus, SET can be applied to efficiently compare spectral
correlations for varying fiber lengths [131] or characterize an
entangled photon-pair source in multiple dimensions, such as in
both polarization and frequency DOFs [50].

5. ChirpedSupercontinuumSeed

The spectral characterization schemes described above can be
combined to provide faster measurement and/or sensitivity to
the JSP of the photon pair. The chirped supercontinuum seed
scheme [Fig. 9(e)] combines SET with a highly dispersive fiber
to achieve even faster acquisition times (5–30 s depending on
the resolution) [132]. Contrary to the original SET demon-
stration that requires a separate narrowband tunable CW seed
laser, this scheme uses a single pulsed laser for both pump and
seed. Forming a Mach–Zehnder-like interferometer with the
pulsed laser at the input, the beam in one arm is sent into a PCF
for supercontinuum generation (broadband white light); by
sending the white light into a 8-m-long SMF to introduce chirp,
the frequency components of the white light are spread in the
temporal domain to result in a chirped supercontinuum. With
this chirped supercontinuum seed in hand, by adjusting the
temporal delay of the temporally narrowband pump beam, the
seed wavelength can be effectively tuned. The seed wavelength
calibration as a function of pump temporal delay can be per-
formed by utilizing a nonlinear interaction between the pump
and seed that results in a∼1% dip in the residual seed spectrum.

This chirped supercontinuum seed measurement can be
limited by the spectrometer and pump temporal delay resolu-
tion, and ultimately by the pulse width of the pump source—it
requires a short pump pulse (.10 ps) to prevent the finite
temporally selected seed bandwidth from broadening the
JSI. Nevertheless, this method can be used to compare JSI
correlations induced by varying the pump bandwidth.

6. Phase-Sensitive Tomography

Phase-sensitive tomography measurement [Fig. 9(f )] combines
SET with phase-sensitive amplification (PSA) to unveil both
the JSA and JSP of the photon-pair source, as shown for an
integrated silicon nanowire and highly nonlinear fiber source
in [126]. A single broadband laser at 1555 nm with 30 nm
bandwidth is combined with two dynamically tunable filters
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[liquid-crystal-on-silicon wave shaper (LCoSWS)] and an
erbium-doped fiber amplifier (EDFA) to produce three pulses:
pump, seed, and broadband phase reference pulse. These three
are then sent into the photon-pair source, whose output light
is then analyzed with an optical spectrum analyzer for inter-
ference. The interference, especially in the phase reference
spectrum, is the consequence of four different phase settings
applied on the seed pulse. By taking clever linear combinations
of the four measurements, the full JSA can be obtained.

Though the phase-sensitive tomography method’s resolution
can be restricted by the finite bandwidth of the seed that can be
created with the LCoSWS (10 GHz in this case), the resolution
is sufficient to reveal otherwise hidden features originating
from both intentional (pump chirp introduced by the second
LCoSWS) and unintentional (possible dispersive effects from
EDFA) phase correlations in the system. It is also sensitive to
small spectral oscillations not observable in the JSI.

7. Intensity Interferometry

The recently developed intensity interferometry [Fig. 9(g)]
method in [133] couples SET, dispersive fiber spectroscopy,
and Fourier transformation to measure both the JSA and JSP
of photon pairs. Although the method may seem compa-
rable to phase-sensitive tomography (Subsection 14.A.6), it
does not require additional phase stability, nonlinearity, or
spectral shaping. And unlike Fourier transform spectroscopy
(Subsection 14.A.2), the intensity interferometry method does
not scan a relative time delay, but rather relies on a fixed delay.

To perform the measurement, signal photons are interfered
with a weak reference pulse on a beam splitter, and spectral
intensity correlations are measured at two output ports (1, 2).
Dispersion-compensating fibers (dispersion of −997 ps/nm)
are implemented at the output ports to map frequency to arrival
time, and a time tagger is used to build a coincidence histogram.
The reference pulse is temporally delayed by a fixed amount τ
and attenuated to the single-photon level using neutral-density
(ND) filters. The measured 2D spectral intensity 〈Ĝ(ω1, ω2) is
then Fourier transformed and inverse Fourier transformed with
appropriate Fourier filtering to obtain the JSA ( f (ω1, ω2)) and
JSP (arg{ f (ω1, ω2)}) of the signal.

This technique’s resolution can be limited if the refer-
ence pulse bandwidth is greater than that of the signal. It also
requires a priori measurement of the reference pulse spec-
tral mode, using classical pulse characterization techniques,
e.g., frequency-resolved optical gating (FROG) and spectral
phase interferometry for direct electric-field reconstruction
(SPIDER). In addition, in the case of a photon-pair source, it
requires measuring three-fold coincidences (N(ω1, ω2, ωh)) of
signal, herald (idler), and reference photons, which leads to a few
hours of acquisition time. However, the process can be acceler-
ated by using a tunable CW laser as a seed to perform SET by
measuring two-fold coincidences between stimulated signal and
reference, yielding (N(ω1, ω2, ωseed)) instead. The method can
also be simplified by measuring two-fold coincidences directly,
without heralding or seeding. In both cases, although fringe
visibility is reduced, employing adequate Fourier filtering makes
the method relatively resilient to these alterations.

The method was also experimentally compared to other
methods discussed above. In comparing the uncorrelated
JSA produced from spectrally filtering the pump with a
phase-correlated JSA generated from chirping the pump
with a 5-m-long SMF, the intensity interferometry method
was able to uncover the correlations arising from the JSP:
K = 1.04 (g (2) = 1.96)→ K = 1.48 (g (2) = 1.68).

B. Transverse Spatial Mode Characterization

For characterizing the transverse spatial correlations of photon
pairs, parallels can be drawn with the strategies in Section 14.A
for spectral characterization. For spatial characterization, there
exist analogs of direct transverse intensity scanning measure-
ment, measurements based on interference, and stimulated
FWM processes. In contrast to spectral characterization, how-
ever, there are not as many examples due to the infancy of the
field in spatial DOFs. Yet, we can imagine employing similar,
relatively well-developed techniques used to characterize free-
space SPDC sources [134], integrated waveguide sources [125],
or even classical sources [135–137]. These strategies can be used
to reveal and verify transverse spatial mode correlations and
entanglement present in photon pairs created from optical fiber,
e.g., by quantum state tomography (QST) [138].

1. Transverse Intensity Scanning

Analogous to rasterized scanning of monochromators in
Subsection 14.A.1, transverse scanning of spatial intensity can
be employed to characterize spatial correlations [18]. In [18],
since frequency–transverse mode hybrid correlations were
explored, both spatial scanning and spectral monochromator
measurement were conducted simultaneously on the arms of a
signal and idler, e.g., spatial measurement on the signal heralded
by the spectral measurement on the idler. However, for general
purposes, the output collimator lens on the fiber-based photon-
pair source can be transversely translated in x , y directions to
record the corresponding coincidences of signal and idler using
MMFs attached to single-photon detectors such as APDs.

Naturally, though, this measurement technique can suf-
fer from long acquisition times depending on the resolution
required. Thus, for higher-order transverse modes that may have
small detailed features, this may not be the most optimal mea-
surement scheme. However, it is indeed one of the most direct
methods to record the transverse spatial intensity correlations of
photon pairs owing to the simplicity of the experimental setup.

2. TransverseModeProjectionMeasurement

An alternative way of characterizing the transverse spatial
correlations of photon pairs is to project individual photons
into different transverse mode basis states, thus mapping 2D-
transverse intensity into the probability amplitude (intensity)
of projection measurements [134,138]. In classical communi-
cation protocols, this method is sometimes referred to as mode
sorting or mode demultiplexing [135–137]. The main principle
is to use a phase-only spatial light modulator (SLM) to impose
different transverse spatial phases on incident photons and cou-
ple the output light into a SMF. If the applied phases is conjugate
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to that of incident photons, the SLM-reflected light will have
an approximately fundamental Gaussian mode shape at the far
field, in this case, at the input of the SMF. On the other hand, if
the SLM phase mask is different from the phase of the photon,
only a portion of the intensity proportional to the quantum
projection amplitude will be coupled into the SMF.

This method may require careful engineering of the SLM
phase masks and some a priori knowledge of the transverse
modes of the photon pairs to accurately define the basis states
that best represent the transverse modes of the photons. Despite
these possible experimental challenges, transverse mode pro-
jection is still one of the most versatile methods in the sense
that it can measure the transverse state of photons in quantum
superposition and thus can be used for QST [139], which
requires measuring in different basis states and superposition
states thereof [138]. In turn, QST is then able to statistically
reconstruct the density matrix ρ of the quantum photon-pair
state and be subsequently analyzed for any transverse spatial
entanglement present in the system as well as other quantum
metrics such as quantum state purity.

3. Temporal CorrelationMeasurement

Spatial correlation present in photon pairs can be indirectly
observed by transverse-mode-dependent time of arrival, as was
shown in a proof-of-principle-type experiment in [140]. This
technique resembles the dispersive fiber spectroscopy intro-
duced in Subsection 14.A.3, especially in that it also exploits the
group delay dispersion of a SMF to map the frequency of signal
and idler photons into the temporal DOF. Beyond the fact that
this method shares the same types of limitations as dispersive
fiber spectroscopy, such as timing jitter and fiber-dependent
loss, this technique has an additional critical flaw when it comes
to using it to assess the quantum nature of the given spatial cor-
relations, e.g., entanglement. Because it relies only on temporal
correlation in intensity and not phase, it is unable to distinguish
quantum entangled states from classically mixed states, and
thus cannot verify the exact quantum state of photon pairs to
determine suitability for quantum applications.

4. Stimulated-Emission-BasedTransverseMode
Measurement

Since spatial correlations residing in photon pairs are the result
of transverse phasematching conditions of the FWM interac-
tion in optical fiber, stimulated-emission-based measurement
can facilitate the characterization of spatial correlations. As
was explored in [141,142], not only can transverse-mode-
dependent spectral correlations be observed, but also direct
imaging of stimulated signal photons can be performed without
using single-photon-level detectors that require long exposure
times.

Because transverse modes are often non-degenerate in fre-
quency, they exhibit hybrid correlations, as was studied in
[18]. Thus, changes in the spatial correlation of signal and idler
photons can be observed via spectral correlation changes in
the JSI [143,144] (the OAM mode in fiber was used in these
references). As was seen in the evolution of spectral characteri-
zation techniques using SET, there lies an exciting path forward

for transverse spatial characterization utilizing the stimulated
process approach.

15. CONCLUSION

In this tutorial paper, we have presented a broad overview of the
topic of photon-pair generation through the SFWM process
in optical fibers. This overview covers the SFWM two-photon
state and the various possible phasematching configurations,
as well as methods for photon-pair factorability, frequency
tunability, and bandwidth control. It covers the use of dual
pumps in the form of both frequency non-degenerate pumps
and counterpropagating pumps. It also covers the generation
of entanglement in various DOFs or combinations of DOFs,
including energy–time, polarization, frequency–transverse
mode, frequency–polarization, and discrete frequency. Finally,
this paper covers characterization techniques for photon pairs
generated by SFWM in optical fibers, in both spectral and
spatial domains. It is hoped that this tutorial paper will con-
stitute a valuable resource for researchers who may be new
in the area, contributing to the consolidation of fiber-based
implementations of photon-pair sources.
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“Multiple intermodal-vectorial four-wave mixing bands generated
by selective excitation of orthogonally polarized LP 01 and LP 11
modes in a birefringent fiber,” Opt. Lett. 47, 2522–2525 (2022).

58. E. Ortiz-Ricardo, C. Bertoni-Ocampo, Z. Ibarra-Borja, R. Ramirez-
Alarcon, D. Cruz-Delgado, H. Cruz-Ramirez, K. Garay-Palmett, and
A. B. U’Ren, “Spectral tunability of two-photon states generated
by spontaneous four-wave mixing: fibre tapering, temperature
variation and longitudinal stress,” Quantum Sci. Technol. 2, 034015
(2017).

59. M. Kihara, M. Matsumoto, T. Haibara, and S. Tomita,
“Characteristics of thermally expanded core fiber,” J. Lightwave
Technol. 14, 2209–2214 (1996).

60. K. Saitoh, M. Koshiba, and N. A. Mortensen, “Nonlinear photonic
crystal fibres: pushing the zero-dispersion towards the visible,” New
J. Phys. 8, 207 (2006).

61. K. Tai, A. Hasegawa, and A. Tomita, “Observation of modulational
instability in optical fibers,” Phys. Rev. Lett. 56, 135–138 (1986).

62. J. Fatome, S. Pitois, and G. Millot, “Measurement of nonlinear and
chromatic dispersion parameters of optical fibers using modulation
instability,” Opt. Fiber Technol. 12, 243–250 (2006).

63. M. Erkintalo, K. Hammani, B. Kibler, C. Finot, N. Akhmediev, J. M.
Dudley, and G. Genty, “Higher-order modulation instability in non-
linear fiber optics,” Phys. Rev. Lett. 107, 253901 (2011).

64. K. Garay-Palmett, A. B. U’Ren, and R. Rangel-Rojo, “Tailored
photon-pair sources based on inner-loop phasematching in fiber-
based spontaneous four-wave mixing,” Rev. Mex. Física 57, 15–22
(2011).

65. A. B. U’Ren, C. Silberhorn, R. Erdmann, K. Banaszek, W. P. Grice,
I. A. Walmsley, and M. G. Raymer, “Generation of pure-state
single-photon wavepackets by conditional preparation based
on spontaneous parametric downconversion,” Laser Phys. 15,
146–161 (2005).

66. B. Fang, O. Cohen, J. B. Moreno, and V. O. Lorenz, “State engineer-
ing of photon pairs produced through dual-pump spontaneous four-
wave mixing,” Opt. Express 21, 2707–2717 (2013).

67. J.-H. Kim, Y. S. Ihn, Y.-H. Kim, and H. Shin, “Photon-pair source
working in a silicon-based detector wavelength range using tapered
micro/nanofibers,” Opt. Lett. 44, 447–450 (2019).

68. A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M.
C. Teich, “Quantum-optical coherence tomography with dispersion
cancellation,” Phys. Rev. A 65, 053817 (2002).

69. D. López Mago, “Implementation of a two-photon Michelson inter-
ferometer for quantum-optical coherence tomography,” Ph.D.
dissertation (Instituto Tecnologico y de Estudios Superiores de
Monterrey, 2012).

70. K. Garay-Palmett, A. B. U’Ren, R. Rangel-Rojo, R. Evans, and S.
Camacho-López, “Ultrabroadband photon pair preparation by
spontaneous four-wave mixing in a dispersion-engineered optical
fiber,” Phys. Rev. A 78, 043827 (2008).

71. C. Shu, P. Chen, T. K. A. Chow, L. Zhu, Y. Xiao, M. M. T. Loy, and S.
Du, “Subnatural-linewidth biphotons from a Doppler-broadened hot
atomic vapour cell,” Nat. Commun. 7, 12783 (2016).

72. K.-K. Park, J.-H. Kim, T.-M. Zhao, Y.-W. Cho, and Y.-H. Kim,
“Measuring the frequency-time two-photon wavefunction of
narrowband entangled photons from cold atoms via stimulated
emission,” Optica 4, 1293–1297 (2017).

73. K. Garay-Palmett, Y. Jeronimo-Moreno, and A. B. U’Ren, “Theory of
cavity-enhanced spontaneous four wave mixing,” Laser Phys. 23,
015201 (2012).

74. T. J. Kippenberg, J. Kalkman, A. Polman, and K. J. Vahala,
“Demonstration of an erbium-doped microdisk laser on a silicon
chip,” Phys. Rev. A 74, 051802 (2006).

75. S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut,
and H. J. Kimble, “Ultrahigh-q-toroidal microresonators for cavity
quantum electrodynamics,” Phys. Rev. A 71, 013817 (2005).

76. E. Ortiz-Ricardo, C. Bertoni-Ocampo, M. Maldonado-Terrón, A.
G. Zurita, R. Ramirez-Alarcon, H. C. Ramirez, R. Castro-Beltrán,
and A. B. U’Ren, “Submegahertz spectral width photon pair source
based on fused silica microspheres,” Photon. Res. 9, 2237–2252
(2021).

77. S. G. Leon-Saval, N. K. Fontaine, J. R. Salazar-Gil, B. Ercan, R.
Ryf, and J. Bland-Hawthorn, “Mode-selective photonic lanterns for
space-division multiplexing,” Opt. Express 22, 1036–1044 (2014).

78. D. Cruz-Delgado, J. C. Alvarado-Zacarias, H. Cruz-Ramirez, J. E.
Antonio-Lopez, S. G. Leon-Saval, R. Amezcua-Correa, and A. B.
U’Ren, “Control over the transverse structure and long-distance
fiber propagation of light at the single-photon level,” Sci. Rep. 9,
9015 (2019).

79. J. Fan, M. D. Eisaman, and A. Migdall, “Bright phase-stable broad-
band fiber-based source of polarization-entangled photon pairs,”
Phys. Rev. A 76, 043836 (2007).

80. A. S. Clark, M. J. Collins, A. C. Judge, E. C. Mägi, C. Xiong, and B. J.
Eggleton, “Raman scattering effects on correlated photon-pair gen-
eration in chalcogenide,” Opt. Express 20, 16807–16814 (2012).

81. M. J. Collins, A. S. Clark, J. He, D.-Y. Choi, R. J. Williams, A. C.
Judge, S. J. Madden, M. J. Withford, M. J. Steel, B. Luther-Davies,
C. Xiong, and B. J. Eggleton, “Low Raman-noise correlated photon-
pair generation in a dispersion-engineered chalcogenide As2S3

planar waveguide,” Opt. Lett. 37, 3393–3395 (2012).
82. H. Takesue and K. Inoue, “1.5 µm band quantum-correlated photon

pair generation in dispersion-shifted fiber: suppression of noise
photons by cooling fiber,” Opt. Express 13, 7832–7839 (2005).

83. W. Larson, T. L. Courtney, and C. Keyser, “Spectrally pure photons
generated in a quasi-phase matched xenon-filled hollow-core pho-
tonic crystal fiber,” Opt. Express 30, 5739–5757 (2022).

84. M. Barbier, I. Zaquine, and P. Delaye, “Spontaneous four-wave
mixing in liquid-core fibers: towards fibered Raman-free correlated
photon sources,” New J. Phys. 17, 053031 (2015).

85. M. Afsharnia, Z. Lyu, T. Pertsch, M. A. Schmidt, S. Saravi, and F.
Setzpfandt, “Spectral tailoring of photon pairs from microstructured
suspended-core optical fibers with liquid-filled nanochannels,” Opt.
Express 30, 29680–29693 (2022).

86. S. Addanki, I. Amiri, and P. Yupapin, “Review of optical fibers-
introduction and applications in fiber lasers,” Results Phys. 10,
743–750 (2018).

87. M. Pisco and A. Cusano, “Lab-on-fiber technology: a roadmap
toward multifunctional plug and play platforms,” Sensors 20, 4705
(2020).

88. Y. Zuo, W. Yu, C. Liu, X. Cheng, R. Qiao, J. Liang, X. Zhou, J. Wang,
M. Wu, Y. Zhao, P. Gao, S. Wu, Z. Sun, K. Liu, X. Bai, and Z. Liu,
“Optical fibres with embedded two-dimensional materials for
ultrahigh nonlinearity,” Nat. Nanotechnol. 15, 987–991 (2020).

89. Y. Li, H. Xin, Y. Zhang, and B. Li, “Optical fiber technologies for
nanomanipulation and biodetection: a review,” J. Lightwave
Technol. 39, 251–262 (2021).

90. H. Takesue and B. Miquel, “Entanglement swapping using telecom-
band photons generated in fibers,” Opt. Express 17, 10748–10756
(2009).

91. Y.-H. Li, Z.-Y. Zhou, Z.-H. Xu, L.-X. Xu, B.-S. Shi, and G.-C. Guo,
“Multiplexed entangled photon-pair sources for all-fiber quantum
networks,” Phys. Rev. A 94, 043810 (2016).

92. J. Fulconis, O. Alibart, J. L. O’Brien, W. J. Wadsworth, and J. G.
Rarity, “Nonclassical interference and entanglement generation
using a photonic crystal fiber pair photon source,” Phys. Rev. Lett.
99, 120501 (2007).

93. H. J. McGuinness, M. G. Raymer, C. J. McKinstrie, and S. Radic,
“Quantum frequency translation of single-photon states in a
photonic crystal fiber,” Phys. Rev. Lett. 105, 093604 (2010).

94. L. Cui, X. Li, and N. Zhao, “Minimizing the frequency correlation of
photon pairs in photonic crystal fibers,” New J. Phys. 14, 123001
(2012).

95. E. Meyer-Scott, A. Dot, R. Ahmad, L. Li, M. Rochette, and T.
Jennewein, “Power-efficient production of photon pairs in a tapered
chalcogenide microwire,” Appl. Phys. Lett. 106, 081111 (2015).

https://doi.org/10.1016/j.optcom.2014.03.056
https://doi.org/10.1364/OE.21.006205
https://doi.org/10.1364/OL.456521
https://doi.org/10.1088/2058-9565/aa7a37
https://doi.org/10.1109/50.541209
https://doi.org/10.1109/50.541209
https://doi.org/10.1088/1367-2630/8/9/207
https://doi.org/10.1088/1367-2630/8/9/207
https://doi.org/10.1103/PhysRevLett.56.135
https://doi.org/10.1016/j.yofte.2005.07.005
https://doi.org/10.1103/PhysRevLett.107.253901
https://doi.org/10.1364/OE.21.002707
https://doi.org/10.1364/OL.44.000447
https://doi.org/10.1103/PhysRevA.65.053817
https://doi.org/10.1103/PhysRevA.78.043827
https://doi.org/10.1038/ncomms12783
https://doi.org/10.1364/OPTICA.4.001293
https://doi.org/10.1088/1054-660X/23/1/015201
https://doi.org/10.1103/PhysRevA.74.051802
https://doi.org/10.1103/PhysRevA.71.013817
https://doi.org/10.1364/PRJ.435521
https://doi.org/10.1364/OE.22.001036
https://doi.org/10.1038/s41598-019-45082-6
https://doi.org/10.1103/PhysRevA.76.043836
https://doi.org/10.1364/OE.20.016807
https://doi.org/10.1364/OL.37.003393
https://doi.org/10.1364/OPEX.13.007832
https://doi.org/10.1364/OE.446488
https://doi.org/10.1088/1367-2630/17/5/053031
https://doi.org/10.1364/OE.461331
https://doi.org/10.1364/OE.461331
https://doi.org/10.1016/j.rinp.2018.07.028
https://doi.org/10.3390/s20174705
https://doi.org/10.1038/s41565-020-0770-x
https://doi.org/10.1109/JLT.2020.3023456
https://doi.org/10.1109/JLT.2020.3023456
https://doi.org/10.1364/OE.17.010748
https://doi.org/10.1103/PhysRevA.94.043810
https://doi.org/10.1103/PhysRevLett.99.120501
https://doi.org/10.1103/PhysRevLett.105.093604
https://doi.org/10.1088/1367-2630/14/12/123001
https://doi.org/10.1063/1.4913743


Tutorial Vol. 40, No. 3 / March 2023 / Journal of the Optical Society of America B 489

96. K. Garay-Palmett, D. Cruz-Delgado, F. Dominguez-Serna, E. Ortiz-
Ricardo, J. Monroy-Ruz, H. Cruz-Ramirez, R. Ramirez-Alarcon, and
A. B. U’Ren, “Photon-pair generation by intermodal spontaneous
four-wave mixing in birefringent, weakly guiding optical fibers,”
Phys. Rev. A 93, 033810 (2016).

97. K. Rottwitt, J. G. Koefoed, and E. N. Christensen, “Photon-pair
sources based on intermodal four-wave mixing in few-mode fibers,”
Fibers 6, 32 (2018).

98. A. Shamsshooli, C. Guo, F. Parmigiani, X. Li, and M. Vasilyev,
“Progress toward spatially-entangled photon-pair generation in a
few-mode fiber,” IEEE Photon. Technol. Lett. 33, 864–867 (2021).

99. X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, “Optical-fiber source
of polarization-entangled photons in the 1550 nm telecom band,”
Phys. Rev. Lett. 94, 053601 (2005).

100. F. Kaiser, A. Issautier, L. A. Ngah, O. Dănilă, H. Herrmann, W. Sohler,
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