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ABSTRACT

Creativity is typically defined as the generation of novel and useful ideas or artifacts. This 
generative capacity is crucial to everyday problem solving, technological innovation, scientific 
discovery, and the arts. A central concern of cognitive scientists is to understand the processes that 
underlie human creative thinking. We review evidence that one process contributing to human 
creativity is the ability to generate novel representations of unfamiliar situations by completing 
a partially specified relation or an analogy. In particular, cognitive tasks that trigger generation of 
relational similarities between dissimilar situations – distant analogies – foster a kind of creative 
mind-set. We discuss possible computational mechanisms that might enable relation-driven gen-
eration, and hence may contribute to human creativity, and conclude with suggested directions for 
future research.

ARTICLE HISTORY 

Received June 9, 2022  

Creativity: product and process

General criteria for creativity

A necessary, though certainly not sufficient, criterion 

for a creative act is that it serves to generate a novel idea 

or artifact that proves useful. To be creative is to make 

something that is both novel and (by some functional or 

aesthetic criterion) valuable (Sternberg & Lubart, 1995; 

Ward, Finke, & Smith, 1995). The nature of the created 

product can be indefinitely varied – a deeper under-

standing of genetics, a poem, a cryptocurrency, a more 

effective way to teach math, an artistic style, an energy- 

efficient heating system, a good joke. But one basic 

quality links them all: something new has come into 

being.

However, an idea or other product may be new, and 

prove to be of value, yet still not be considered highly 

creative (Boden, 2004). It has often been argued that 

a creative act cannot, in general, be identified solely on 

the basis of its product. Rather, what makes something 

creative may be defined in part by the process underlying 

the act itself (Green, Beaty, Kenett & Kaufman, 2023; 

Holyoak, 2019). Besides what was generated, we need to 

consider how it was generated – the mode of generation. 

A salient example of this general claim concerns the 

origin of a work of art – was this painting rendered by 

the hand of the master, or by a meticulous forger? If the 

latter, the painting’s value – and probably its beauty in 

the eye of its beholder – is diminished. Goodman (1968, 

chapter “Art and Authenticity”) has argued that an 

aesthetic difference in a work of art need not require 

a perceptual difference: however accurate a forgery may 

be, its aesthetic value is less than that of the original.

Generation by direct copying constitutes a process at 

the low end of a continuum of creativity. As schema-

tized in Figure 1, a system for generating novel and 

potentially useful products can be viewed as having 

three interrelated components: an agent who selects 

inputs to which processes are applied to generate pro-

ducts. Each of these components can vary in ways that 

impact the perceived creativity of the system, yielding 

a rough continuum of creativity (in Figure 1, the high 

end is shown at top and low end at bottom). The agent 

can be autonomous or restricted in various ways; the 

input can be relatively open or closed, and the process 

can be relatively general (with constraints that guide 

search in a relatively open-ended space of possibilities) 

or specialized to a particular type of input. A generative 

process operating on relatively closed input might only 

apply to a particular domain of thought (e.g., mathe-

matics) or a particular sensory modality (e.g., vision), 

whereas a process operating on more open input might 

apply to multiple semantic domains or sensory modal-

ities. By an autonomous agent, we mean one with a set of 

characteristics often associated with human creativity 

(Amabile, 1996; Baum & Baumann, 2019): internal 

motivation to create, the capacity to select one’s own 

goals, inputs, and processes, and the ability to evaluate 

partial and complete products. To the extent an agent 

lacks any of these characteristics, the overall process is 
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less creative. A more autonomous agent is likely to have 

access to a more open set of inputs, making it possible to 

generate novel products by expanding the input set. 

A broader set of potential inputs in turn requires more 

general processes to operate on them. These general 

processes will be guided by inductive biases character-

ized by specifiable constraints (unlike, for example, 

simple random generation of options). These con-

straints serve (at least implicitly) to evaluate emerging 

products, thereby guiding the generation of ones likely 

to prove valuable (enabling the autonomous agent to act 

as a “self-critic”).

This framework implies that creativity is best viewed 

as multidimensional, with multiple factors involved, 

rather than a strict dichotomy. But for simplicity, the 

extremes sketched in Figure 1 can be viewed as two 

modes of generation. Low versus high creativity can be 

related to a number of other contrasts that have been 

drawn in the fields of problem solving and expertise. 

These distinctions include well-defined versus ill- 

defined problems (the latter including “insight” pro-

blems; Reitman, 1964), routine versus adaptive expertise 

(Hatano & Inagaki, 1986), and the hypothesis that pro-

blem solving involves search in a dual space (Klahr & 

Dunbar, 1988), where one space operates within a fixed 

problem representation and the other involves a search 

for alternative representations. The less creative mode 

includes the application of specialized methods acquired 

by experts, such as well-defined algorithmic procedures 

(e.g., an established method for solving a class of math-

ematical problems). It has been argued that routine 

expertise is sometimes the enemy of creativity. As 

noted in a book offering advice on how to create comics, 

“It’s hard for something original to make it past ‘already 

knowing how.’ Being good at something is its own 

curse . . . ” (Barry, 2019).

In the remainder of this paper, we focus on one (but 

by no means the only) candidate process that may play 

a role in the more creative mode: generation of ideas 

based on semantically distant analogies. To investigate 

basic cognitive mechanisms that may support creativity, 

it can be useful to examine relatively simple tasks that 

lend themselves to both experimental and computa-

tional investigations, such as insight problems. There 

is evidence that solving verbal analogies in the tradi-

tional A:B:C:D format sometimes evokes the “aha” reac-

tion associated with other laboratory-style insight 

problems (see Kounios & Beeman, 2014). We do not 

claim that solving such analogy problems counts as 

“creative” per se; but will review evidence that perfor-

mance on some verbal analogies taps cognitive pro-

cesses that are also involved in real-life creativity.

Processing semantically distant analogies

Relations and analogical reasoning

An analogy holds between two situations, termed the 

source and target, when systematic correspondences (a 

mapping) can be established between elements of the 

two, based on similarity of the entities and/or relations 

involved in each (Gick & Holyoak, 1980, 1983). Based 

on the mapping, it is possible to use knowledge about 

the source analog (typically better understood) to gen-

erate systematic inferences about the target. 

Understanding an analogy requires appreciation that 

Figure 1. Schematic representation of modes of generation at high and low ends of a continuum of creativity.
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the same or similar relations hold in both situations. In 

general, relational reasoning depends on explicit repre-

sentations of relations that are distinct from, but bound 

to, the entities they relate (Holyoak & Lu, 2021). For 

example, thinking about a cloud above a mountain 

requires a representation in which the relation above is 

distinct from the objects being related (cloud and 

mountain), while also indicating that the cloud is the 

higher object and the mountain is the lower one, rather 

than the reverse (for a review of relevant evidence, see 

Doumas & Hummel, 2012). An explicit representation 

of the relation above makes it possible to identify 

a relational similarity between a cloud above 

a mountain and a table above a cat, even though the 

objects involved in the two situations are highly 

dissimilar.

Relations are often directly stated using language. 

However, in many cases, the reasoner will first need to 

retrieve or detect relations between entities, a process 

that in the psychometric literature is termed eduction of 

relations (Spearman, 1923). Both perception and higher 

cognition contribute to the eduction of relations. A wide 

variety of visuospatial relations appear to be picked up 

very quickly by early perceptual processes. These 

include physical relations, such as whether one object 

surrounds another or supports another, and whether two 

objects would fit together to form a natural whole. 

Certain basic events are quickly detected, such as one 

object breaking another, or launching another (the first 

object appearing to strike the second and set it in 

motion). Even some social events, which seem to 

depend on understanding goals and intentions, can be 

perceived rapidly: an object chasing another, or helping 

another, or two people meeting each other (for a review 

see Hafri & Firestone, 2021). Many other relations rele-

vant to analogy can be derived by active reasoning 

processes. These include causal relations, which are 

central to achieving goals, and thus especially important 

in real-world analogies that may contribute to the gen-

eration of creative products (Holyoak, 1985).

Far analogies as a source of creative ideas

Importantly, the overall similarity of the source and 

target can vary. In general, analogical transfer is easier 

to achieve when the analogs are drawn from the same 

domain of knowledge (near analogies) than when they 

are drawn from semantically-distant domains (far 

analogies; e.g., Holyoak & Koh, 1987; Keane, 1987). 

Near analogies are likely to share causal relations, so 

that the source will be a useful guide to understanding 

the target. However, analogies drawn within a limited 

domain that includes the target seem less creative. In 

contrast, it has often been suggested that far analogies 

are especially important for human creativity. For 

example, one early paper on analogical problem sol-

ving began, “Where do new ideas come from? What 

psychological mechanisms underlie creative 

insight? . . . The anecdotal reports of creative scientists 

and mathematicians suggest that the development of 

a new theory depends on noticing and applying an 

analogy drawn from a different domain of knowl-

edge . . . ” (Gick & Holyoak, 1980, p. 306). Holyoak 

and Thagard (1995) surveyed many real-world exam-

ples of new ideas in science, philosophy, and other 

areas that were apparently triggered by far analogies 

(see also Hofstadter & Sander, 2013). For example, 

when Alexander Graham Bell was in the process of 

inventing the first telephone, he made explicit use of 

an analogy with the structure and function of the 

human ear. The productive power of far analogies 

extends well beyond science and technology. 

Although analogies in general vary in semantic dis-

tance between source and target, those that serve as 

the basis for novel metaphors are always drawn 

between entities from different semantic domains 

(e.g., Lakoff & Turner, 1989).

In general, analogy is a cognitive process that can be 

used to link a source and target drawn from any domain. 

Notably, individual differences in analogical reasoning 

tend to be correlated across broad domains (verbal, spatial, 

and mathematical; Snow, Kyllonen, & Marshalek, 1984) 

and across sensory modalities (Weinberger et al., 2022). 

This generality implies that the possible inputs to analogy 

are drawn from an open set. Moreover, analogy is guided 

by domain-general but systematic constraints. According 

to the multiconstraint theory (Holyoak & Thagard, 1989; 

Lu, Ichien, & Holyoak, 2022), analogy involves matching 

elements so as to maximize similarity of entities and their 

relations, with a focus on important elements (i.e., those 

involved in causal relations relevant to goals), and with 

a soft preference for one-to-one (isomorphic) mappings. 

When the source and target are drawn from semantically- 

remote domains, analogy displays characteristics asso-

ciated with the open mode of idea generation.

In psychological studies of creativity, semantic dis-

tance between elements is a well-established marker of 

divergent thinking. Indeed, degree of divergent thinking 

is typically assessed using some index of semantic dis-

tance (either human ratings or measures derived from AI 

models; e.g., Olson, Nahas, Chmoulevitch, Webb, & 

Webb, 2021; Orwig, Diez, Vannini, Beaty, & Sepulcre,  

2021). At the level of individuals, measures based on 

semantic-memory structure (He et al., 2021), including 

neural connectivity analyses (Ovando-Tellez et al., 2022), 

have been used to predict creativity for real-world tasks.
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Semantic distance is also an important predictor of 

cortical activity during analogical reasoning tasks. For 

four-term verbal analogies (A:B : C:D), neural activity in 

a subregion of the left frontopolar cortex increases para-

metrically with semantic distance between the A:B and C:D 

terms (Green, Kraemer, Fugelsang, Gray, & Dunbar,  

2010). For example, a near analogy such as blindness : 

sight : deafness : hearing evokes less frontopolar activity 

than does a far analogy such as blindness : sight : poverty : 

money. This impact of semantic distance was reliable even 

after statistically controlling for measures of general pro-

blem difficulty, such as response time to decide whether or 

not the analogy is valid. Similar findings were obtained 

when the task required generation of the missing D term 

(i.e., A:B : C:?; Green, Kraemer, Fugelsang, Gray, & 

Dunbar, 2012). Other studies found that interventions 

that increase frontopolar activity, and connectivity 

between that area and more posterior cortical regions, 

tend to enhance performance in tasks linked to creativity 

(Green, Cohen, Raab, Yedibalian, & Gray, 2015; Green 

et al., 2017; Lundy, Dasara, Beeghly, Kazmi, & Krawczyk,  

2022; for reviews of the neural basis for creativity, see; 

Green, 2016, 2018; for analogical reasoning, see; Holyoak 

& Monti, 2021).

Triggering a relational set

Work on interventions that may facilitate creative think-

ing imply that people may vary not only in a general 

tendency to be creative (i.e., trait creativity), but also in 

a more transient propensity triggered by the current 

context (i.e., state creativity; Green, 2018). An intriguing 

possibility is that state creativity can be fostered by tasks 

that encourage a focus on relations—i.e., a relational set. 

There is a great deal of empirical evidence that two 

separable pools of semantic information–one based on 

entities and the other on relations – impact judgments of 

similarity. Relational similarity tends to be more potent 

when overall relational similarity across analogs is rela-

tively high (Goldstone, Medin, & Gentner, 1991), when 

the objects in visual analogs are sparse rather than rich 

(Markman & Gentner, 1993), and for older as compared 

to younger children (Gentner & Rattermann, 1991). 

Although analogy appears to depend on both types of 

similarity (Lu, Ichien, & Holyoak, 2022), relational simi-

larity is more central, especially for far analogies.

If an analogy task requires special attention to 

relations, then it is possible that solving some sorts 

of analogies may trigger a relational set for a period 

of time afterward, which could in turn lead to 

a greater relational focus in a subsequent task. To 

assess this possibility, Vendetti, Wu, and Holyoak 

(2014) administered subsets of the verbal analogies 

used previously by Green, Kraemer, Fugelsang, Gray, 

and Dunbar (2010, 2012). Two experiments used 

identical designs, with half of the participants receiv-

ing near analogies and half receiving far ones. 

Immediately afterward, all participants completed 

a picture-mapping task based on unrelated materials 

(see Figure 2a). In Experiment 1A the analogy task 

required verification of analogies (judging each to be 

valid or invalid, as in the study by Green, Kraemer, 

Figure 2. (a): Example of picture-mapping task (materials from Markman & Gentner, 1993; Tohill & Holyoak, 2000) used as transfer task 
by Vendetti, Wu, and Holyoak (2014). (b): Transfer results from Vendetti, Wu, and Holyoak (2014, Experiment 1). Prior generation of 
solutions to (but not verification of) far analogies (but not near analogies) led to a greater proportion of relational objects chosen on 
the picture-mapping transfer task. Adapted from Vendetti, Wu, and Holyoak (2014).
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Fugelsang, Gray, & Dunbar, 2010). In Experiment 

1B, the task instead involved generation of the miss-

ing D term, as in the study by Green, Kraemer, 

Fugelsang, Gray, and Dunbar (2012). As shown in 

Figure 2b, one of the resulting four conditions – 

generation of solutions to far analogies in 

Experiment 1B – was particularly likely to lead to 

selection of a relational (rather than featural) match 

in the subsequent picture-mapping task. Vendetti 

et al. also found that for the generation task using 

far analogies, a measure of fluid intelligence based on 

a version of Ravens Progressive Matrices (RPM; 

Arthur, Travis, Paul, & Sanchez-Ku, 1999) did not 

reliably predict individual differences in people’s 

propensity to select a relational match in the transfer 

task, whereas the RPM did predict such individual 

differences for the group that generated solutions to 

near analogies (consistent with other evidence that 

the RPM test typically predicts relational responding; 

e.g., Gray & Holyoak, 2020).

The findings of Vendetti, Wu, and Holyoak (2014) 

suggest that generation of solutions to far analogies is 

particularly effective in evoking a relational set. This 

relational set enhances subsequent processing of rela-

tions other than those used to elicit the set (thus going 

beyond priming of specific relations; cf. Spellman, 

Holyoak, & Morrison, 2001). Moreover, this state 

manipulation of sensitivity to relations appeared to 

override trait differences as measured by the RPM (at 

least within the limited range of RPM variation among 

college students). Several subsequent studies provided 

additional evidence for a connection between genera-

tion of solutions to far analogies and subsequent rela-

tion-based responding in different tasks. Using the 

Green, Kraemer, Fugelsang, Gray, and Dunbar (2012) 

materials, Chaxel (2015) found that generating solutions 

to far analogies increased subsequent information dis-

tortion (for ratings of product attributes in a choice 

task), where the distortion was attributable to proces-

sing relations between attributes and alternative choices. 

Using the same materials, Andrews and Bohadana 

(2018; see also Du & Sun, 2022) showed that generating 

solutions to far analogies facilitated solution of n-term 

syllogisms (linear orderings); moreover, this manipula-

tion eliminated the predictive impact of a fluid intelli-

gence measure (consistent with the findings of Vendetti, 

Wu, & Holyoak, 2014). Goldwater and Jamrozik (2019) 

found that generating solutions to Green et al.’s far 

analogies increased relational encoding and enhanced 

later analogical retrieval (a potential source of creative 

ideas). Finally, using age-appropriate materials, Simms 

and Richland (2019) found that for four-year-old chil-

dren, generating (rather than being told) relations 

increased relational responding on a subsequent ana-

logy task involving unstudied relations.

A recent study by Chesebrough, Chrysikou, Holyoak, 

Zhang, and Kounios (2023) introduced a different type 

of relational generation task. Using materials inspired 

by those of Green, Kraemer, Fugelsang, Gray, and 

Dunbar (2010, 2012), these investigators created triplets 

of relation pairs. These triplets were of two types. For 

consistent triplets, each pair formed a near analogy such 

that A:B : C:D : E:F (e.g., steering wheel : car, rudder : 

boat, handlebars : bicycle). For expansive triplets, the 

first two pairs were identical to those in a consistent 

triplet, but the third triplet formed a far rather than near 

analogy with the first two (e.g., steering wheel : car, 

rudder : boat, voting : government). On each trial, parti-

cipants were initially shown only the first two pairs in 

a triplet, and asked to generate a verbal description of 

“the concept the analogy represents.” Then they were 

shown the third pair, and again asked to describe the 

relational concept (now linking all three pairs). 

Independent raters assessed the degree of conceptual 

change between the first and second descriptions of 

the concept. In addition to other measures, participants 

were asked to rate the extent to which they had an “aha” 

experience (i.e., a sense of sudden insight; Kounios & 

Beeman, 2014) when they processed the third triplet. 

Chesebrough et al. found that expansive as compared to 

consistent triplets triggered both greater conceptual 

change in relational descriptions and a greater sense of 

having an “aha” experience. Qualitatively, the expansive 

condition seemed to trigger generation of a more 

abstract characterization of the relational concept (e.g., 

for the example above, the near relation “steering 

a vehicle” might be generalized into “directing some-

thing” to accommodate the semantically distant third 

pair). The impact of generating a description based on 

a far analogy thus seemed to trigger a type of processing 

related to that associated with creative insights.

Overall, behavioral studies support the general con-

clusion that generation (rather than simply verification) 

of solutions to semantically far (rather than near) ana-

logies is especially effective in triggering a relational set, 

which might plausibly support state creativity. The posi-

tive impact of generation is broadly consistent with 

evidence from studies of episodic memory showing 

that generation of responses (as compared to simply 

reading them) enhances subsequent memory perfor-

mance (Bertsch, Pesta, Wiscott, & McDaniel, 2007), 

and is correlated with greater neural activity across 

a broad cortical network (Rosner, Elman, & 

Shimamura, 2013). However, the possible impact of 

semantic distance does not seem to have been system-

atically investigated in studies of the influence of 
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generation on episodic memory; hence, these studies do 

not shed light on why generation of far analogies seems 

to be especially potent. In the remainder of this paper, 

we consider potential mechanisms that may trigger 

a relational set, drawing upon a framework provided 

by computational models of relation representation and 

processing.

Potential mechanisms for generation of 

solutions to verbal analogy problems

To verify or evaluate an analogy in A:B : C:D format, the 

obvious strategy is to educe the relation between the 

elements of each concept pair (i.e., the relation A:B and 

the relation C:D), and then assess whether these two 

relations are sufficiently similar to be considered a valid 

analogy (Lu, Wu, & Holyoak, 2019). The situation is 

more complex for an analogy generation task in the 

form A:B : C: ?. Without knowing the D term, it is 

impossible to immediately identify the C:D relation; 

hence, the matching strategy (compare A:B and C:D 

relations) is blocked. Given some candidate D term, 

the C:D relation might be obtained, enabling use of the 

matching strategy to evaluate whether or not the pro-

posed D term forms a valid analogy. However, some 

other procedure must first be applied to generate one or 

more candidates for the role of D.

One potential mechanism for generating analogical 

solutions is associative in nature, involving spreading 

activation among semantic connections. Associative 

generation seems particularly plausible for near analo-

gies. The intuitive basis for associative generation is 

sketched in Figure 3a, using an example of a near ana-

logy (blindness : sight : deafness : ?, where a good com-

pletion would be hearing). Figure 3a indicates the salient 

preexisting semantic links that connect the A and 

B terms to C and the target D. In addition, the salient 

relation between A and B (loss, specifically of a physical 

sense) is identical to that linking C and the to-be- 

retrieved target D. A qualitative account of the genera-

tion of D given A, B, and C would be that some sort of 

spreading activation based on preexisting semantic links 

will tend to activate the target D. In contrast, as sketched 

in Figure 3b, prior semantic links are minimal in the 

case of a far analogy (blindness : sight : poverty : ?, where 

a good completion would be money), as the A and 

B terms do not have strong links to the C or potential 

D terms. Moreover, the salient relation between A and 

B (physical loss) is not identical to that between C and 

the target D (more abstract lack of something). Thus, an 

associative process seems less likely to succeed in acti-

vating the target D for a far analog.

An alternative approach to generation, less depen-

dent on spreading activation, involves making more 

direct use of explicit representations of relations. 

A natural strategy for generating the solution to 

a verbal analogy is to first identify the relation between 

A and B, and then project the same relation from C to 

estimate an “optimal” completion for D that would 

maximize the similarity of the A:B and C:D relations. 

A search of the lexicon would then attempt to find an 

actual D term as close as possible in meaning to the 

estimated optimal D.

Unlike associative generation, relational generation 

depends on the ability to form explicit representations 

of semantic relations between words, which can then be 

systematically manipulated. Our group (Ichien, Kan, 

Holyoak, & Lu, 2022) has developed a model of rela-

tional generation based on explicit relation representa-

tions produced by BART (Bayesian Analogy with 

Relational Transformations; Lu, Chen, & Holyoak,  

2012; Lu, Wu, & Holyoak, 2019; see also Chen, Lu, & 

Holyoak, 2017; Holyoak, Ichien, & Lu, 2022), a model of 

relation learning that acquires representations of rela-

tions from unstructured vector representations of indi-

vidual word meanings. BART learns explicit 

representations of the semantic relations between word 

pairs from unstructured vector representations of indi-

vidual word meanings. BART’s input consists of con-

catenated pairs of word embeddings (300-dimensional 

feature vectors that approximate word meanings) cre-

ated by an NLP model, Word2vec (Mikolov, Sutskever, 

Chen, Corrado, & Dean, 2013). BART uses supervised 

Figure 3. Completing a near analogy problem (i.e., generating 
D term) is aided by prior semantic associations from A:B to C:D 

and from the (unstated) relation connecting words in each pair 
(panel A); but prior semantic associations from A:B are less 
available for far analogy problems (panel B).
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learning with positive and negative examples to acquire 

each relation representation individually. For example, 

a vector formed by concatenating the individual vectors 

for old and young would constitute a positive example 

for the relation X is the opposite of Y and might also 

serve as a negative example of the relation X is 

a synonym of Y. The model was initially trained on 79 

common semantic relations (Bejar, Chaffin, & 

Embretson, 1991) using word pairs drawn from 

a norming study (Jurgens, Mohammad, Turney, & 

Holyoak, 2012) as examples of each relation. Major 

classes of trained relations include contrast, similarity, 

class inclusion, part-whole, cause-purpose, and case 

relations.

BART’s learning algorithm (for details see Lu, Wu, 

& Holyoak, 2019) identifies a subset of the feature set 

that most effectively predict the posterior probability 

that a word pair instantiates the target relation. The 

final basis for predicting this posterior probability is 

a weight distribution over the selected feature dimen-

sions. Of particular note, BART’s learned weights can 

be segregated into those based on features of the first 

word in a pair and those based on features of 

the second word. As we will see shortly, this charac-

teristic proves very important in modeling relational 

generation, because the portion of the weight distri-

bution associated with one word can be used to help 

estimate the embedding for some unknown word that 

would complete a word pair instantiating a target 

relation.

After learning, BART can compute a relation vector 

consisting of the posterior probability that any word 

pair instantiates each of its learned relations (thus 

accomplishing the eduction of relations). Then, to 

evaluate whether a four-term verbal analogy is valid, 

the model assesses the cosine distance between the A:B 

and C:D relation. If BART has been trained success-

fully, cosine distance tends to be smallest for near 

analogies, somewhat larger for far analogies, and yet 

larger for invalid analogies. In addition to supporting 

human-like analogical reasoning on simple four-term 

verbal problems (e.g., artificial : natural : friend : 

enemy) (Lu, Wu, & Holyoak, 2019), BART’s relation 

representations have been used to predict human judg-

ments of relational similarity among word pairs 

(Ichien, Lu, & Holyoak, 2022), and to predict patterns 

of similarity in neural responses to relations during 

analogical reasoning (Chiang, Peng, Lu, Holyoak, & 

Monti, 2021). BART can also support analogical map-

ping in problems that require finding correspondences 

between multiple entities across complex relational 

systems (e.g., mapping the solar system to atomic 

structure; Lu, Ichien, & Holyoak, 2022).

BART-Gen (Ichien, Kan, Holyoak, & Lu, 2022) is 

able to use relation representations learned by BART 

to generate completions of partially specified relations 

and of four-term analogy problems. BART-Gen exploits 

the fact that the weight distributions BART uses to 

compute posterior probabilities of relations can be 

decomposed into a portion based on the first word in 

a pair and a portion based on the second word. If BART- 

Gen is given a word C and asked to generate 

a completion D that will result in an instantiation of 

a specified relation, the model uses Bayesian inference 

to compute the features of an “optimal” D given the 

relation and the known features of C. This calculation 

includes a prior expectation that D will be similar to 

C (since in general, two words that are semantically 

related will be similar to one another in a feature 

space). In essence, the model estimates an optimal 

D that is a compromise between a D that is similar to 

C, and a D that makes the pair C:D highly likely to 

instantiate the target relation. The similarity prior 

ensures that the embedding for the optimal D will be 

fully specified, even though BART only uses a subset of 

feature dimensions to predict each relation. By default, 

each feature of the predicted D will have the same value 

as the corresponding feature of C, unless BART’s weight 

distribution uses that feature to predict the C:D relation.

BART-Gen’s procedure for generating a completion 

for any single relation can readily be generalized to 

produce a solution for a four-term verbal analogy pro-

blem. For the analogy task, the model computes the 

features of an optimal D given the relation and the 

known features of C and also the A:B pair. Intuitively, 

A:B serves to specify a pattern of relations, and BART- 

Gen seeks to maximize the probability that some opti-

mal D creates the same pattern of relations for C:D 

(subject to the similarity prior that D will be similar to 

C). After BART-Gen calculates the feature embedding 

for what it predicts to be the optimal D, this can be 

compared to the Word2vec embeddings of words in 

a lexicon, yielding a rank of actual words by their proxi-

mity to the optimal D in the Word2vec feature space.

Ichien, Kan, Holyoak, and Lu (2022) performed some 

preliminary evaluations of BART-Gen as an account of 

human generation of analogy solutions. Their simula-

tions made use of data collected by Peterson, Chen, and 

Griffiths (2020), who reported the frequencies of alter-

native human completions for the Green, Kraemer, 

Fugelsang, Gray, and Dunbar (2012) set discussed 

above, which includes both near and far analogy pro-

blems, each with a missing D term. Model performance 

was evaluated by finding the rank of the most frequent 

human-generated response to each problem among all 

human-generated responses across all problems. The 
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most frequent human response was typically in the top 

half dozen completions generated by BART-Gen, sug-

gesting that the model can produce human-like 

responses on a generative analogy task. Moreover, 

BART-Gen proved robust to variations in the semantic 

distance of analogies in terms of accounting for human 

judgments in generative analogical inference. The mod-

el’s ability to generate solutions to far analogies, for 

which spreading activation contributes less information, 

suggests that explicit relation representations play an 

important role in human-like analogical generation.

What is special about generation of solutions to 

far analogies?

In light of the recent developments in computational 

modeling reviewed above, we can venture a possible 

explanation of the puzzle posed by the findings of 

Vendetti, Wu, and Holyoak (2014) and similar studies. 

Why does generation of solutions to far verbal analo-

gies – but neither generation of solutions to near analo-

gies, nor verification of either type – appear to trigger 

a relational set that increases relational responding in 

a subsequent task based on different relations? More 

speculatively, it seems generation of solutions to far 

analogies may be an effective intervention for increasing 

some form of state creativity.

We can consider this issue through the lens of com-

putational models capable of relational generation, 

using BART as an example. BART learns and uses 

explicit relational representations to verify and also 

(when extended by BART-Gen) to generate solutions 

to verbal analogy problems. In this approach, the task of 

evaluating a verbal analogy problem evokes a procedure 

that creates a relation vector for both the A:B and C:D 

relations, followed by a comparison of vector similari-

ties (based on cosine distance). Semantic distance 

impacts the difficulty of this comparison (in particular, 

the difficulty of discriminating a valid analogy from an 

invalid foil) because even when the dominant relation 

might appear to be roughly the “same” for A:B and C:D, 

the cosine distance between distributed vector represen-

tations of relations tends to be greater for far than near 

analogies. The more difficult discrimination required to 

evaluate far than near analogies likely leads to an 

increased neural response in the left frontopolar area 

identified by Green, Kraemer, Fugelsang, Gray, and 

Dunbar (2010). However, regardless of semantic dis-

tance, analogy verification involves forming relation 

vectors and comparing them.

The processes involved in generating solutions to 

analogy problems are likely to be more diverse, and in 

the case of far analogies more computationally intense, 

than the processes involved in analogy verification. As 

argued above, the core process in generation is not 

comparison of two relation vectors (because without 

a D term, the C:D relation is not initially specified). 

Rather, two general approaches seem plausible. Using 

an associative approach involving spreading activation, 

a missing D term can be predicted based on semantic 

associations among the tokens that provide its context 

(i.e., the words A, B, and C). This approach to genera-

tion (which does not involve explicit relation represen-

tations) may often suffice for near analogies. Indeed, 

there is evidence that generation of solutions to near 

analogies does not activate the left prefrontal area that is 

selectively associated with relational reasoning 

(Wendelken, Bunge, & Carter, 2008).

However, simulation results reported by Ichien, Kan, 

Holyoak, and Lu (2022), summarized above, indicate 

that generation of solutions to far analogies may require 

the relational approach exemplified by BART-Gen. To 

generate a D term using BART-Gen, relation vectors are 

not simply compared (as in verification). Rather, each 

component of the relation vector is fed into a further 

computation in order to compute a predicted optimal D. 

This computation is much more demanding than is 

a simple vector comparison. Moreover, the generation 

process also requires selection of an actual D term from 

a large lexicon of possible completions (i.e., identifying 

an actual word sufficiently similar to the predicted D). 

Finally, once one or more actual words have been iden-

tified as possible completions, proposed solution(s) may 

be further assessed by computing the cosine distance 

between the A:B relation and each (tentative) C:D that 

has been generated. That is, although generation cannot 

begin by comparison of two relation vectors, it may 

sometimes end with it.

In fact, some post-generation comparison procedure 

might play a role in cuing a transition from associative 

to relational generation modes for far analogies. 

A reasoner might initially adopt the computationally 

cheap associative approach to generate the missing 

D term in an analogy problem, and then perform 

a comparison to evaluate the resulting candidate com-

pletion. If this comparison indicates that the A:B and 

candidate C:D relations are sufficiently similar (which is 

more probable for near analogies), the reasoner will 

accept their associatively generated D term. However, 

if this comparison indicates the candidate completion is 

deficient, the reasoner may switch to the computation-

ally intensive relational approach to generate an alter-

native D term. Thus, generating solutions to near 

analogies is insufficient to trigger a relational set because 

it tends to evoke an associative process. In contrast, 

generating solutions to far analogies tends to recruit 
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the relational approach, thereby altering inductive 

biases in subsequent tasks in which different relations 

are relevant (cf. Kroupin & Carey, 2022).

To summarize, generation of the solution to a far 

verbal analogy requires not only thinking about the 

relations between paired words, but also using the ele-

ments of relation vectors to perform the intensive com-

putations required to generate relational completions. 

In the aftermath, the reasoner’s tendency to focus on 

relations between entities (rather than the features of the 

entities themselves) may be temporarily enhanced, trig-

gering a relational set that guides processing in subse-

quent tasks. Such a relational set may constitute a form 

of state creativity, making it more likely that relation- 

based long-distance connections will be noticed and 

exploited (i.e., enhancing divergent thinking). An envir-

onment that often triggers a relational set may help to 

foster creativity as a long-term trait.

Directions for future research

A model such as BART-Gen demonstrates that expli-

cit relations can be used to guide the generation of 

analogical completions when both entities and rela-

tions are represented as high-dimensional vectors. 

Unlike traditional symbolic models of analogical rea-

soning (e.g., Forbus, Ferguson, Lovett, & Gentner,  

2017), vector-based knowledge representations are 

broadly compatible with neural systems (both 

human and artificial), and are able to exploit recent 

advances in machine learning that enable automated 

creation of semantic representations. By avoiding 

hand-coding of complex propositional representa-

tions, vector-based models at least begin to capture 

the human ability to operate as an autonomous agent 

capable of using its own representations to generate 

new knowledge.

At the same time, BART-Gen lacks the full gen-

erative ability required to solve problems by analogy. 

Although four-term analogies provide a useful start-

ing point for model development, they do not require 

the generation of entire propositions. Thus, BART- 

Gen only produces the representation of a single ele-

ment (the D term) so as to form a relation between 

C and D that matches that between A and B. More 

generally, an analogical inference, such as an idea 

about how to solve a target problem, depends on 

first finding a mapping between the source and tar-

get, and then exploiting additional knowledge about 

the source (ideally its solution) to fill a gap in knowl-

edge about the target. This inference process, some-

times called “copy with substitution” (Holyoak, 

Novick, & Melz, 1994), involves taking an “extra” 

fact about the source and creating an inference 

about the target by swapping the corresponding ele-

ments (and sometimes postulating a new element in 

the target to complete the analogy). A creative pro-

duct based on analogy (such as Bell’s use of knowl-

edge about human hearing in developing the first 

telephone) will usually depend on the generation of 

a complex, multi-element extension of the target 

representation, rather than just a single element. 

Future computational work will be needed to extend 

vector-based models to model generation of problem 

solutions.

Another form of generation that poses a challenge 

for vector-based models is the formation of more 

general schemas, or relational categories. It has long 

been known that the very process of drawing an 

analogy between two analogs encourages people to 

generalize the mapping they find, forming an abstract 

schema that serves as an explicit representation of 

commonalities between the analogs (Gick & 

Holyoak, 1983). Many concepts in natural language 

appear to be based on relations abstracted from con-

crete examples or metaphors (Goldwater & Schalk,  

2016; Hofstadter & Sander, 2013; Turner, 1988). 

Such concepts are often rooted in relational roles 

(e.g., a barrier is something that obstructs something 

else). Objects occupying the same role in a relation 

(e.g., predator) come to be viewed as more similar to 

each other overall (Jones & Love, 2007). There is 

evidence that category labels and analogical compar-

isons increase general sensitivity to role-based cate-

gories (Goldwater, Markman, & Stilwell, 2011). It 

seems plausible that manipulations of relational set 

could also serve to enhance acquisition of relational 

categories. Moreover, abstract schemas in turn foster 

both retrieval of far analogs (Gick & Holyoak, 1983; 

for a review see Holyoak, 2012) and also the ability to 

detect systematic relationships between relatively far 

analogs (for a review see Trench & Minervino, 2020). 

Future work should examine the potential for using 

forms of analogy-based generation to create a positive 

feedback loop that can enhance the autonomous gen-

eration of creative products.
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