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ABSTRACT

Creativity is typically defined as the generation of novel and useful ideas or artifacts. This
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generative capacity is crucial to everyday problem solving, technological innovation, scientific
discovery, and the arts. A central concern of cognitive scientists is to understand the processes that
underlie human creative thinking. We review evidence that one process contributing to human
creativity is the ability to generate novel representations of unfamiliar situations by completing
a partially specified relation or an analogy. In particular, cognitive tasks that trigger generation of
relational similarities between dissimilar situations — distant analogies - foster a kind of creative
mind-set. We discuss possible computational mechanisms that might enable relation-driven gen-
eration, and hence may contribute to human creativity, and conclude with suggested directions for

future research.

Creativity: product and process
General criteria for creativity

A necessary, though certainly not sufficient, criterion
for a creative act is that it serves to generate a novel idea
or artifact that proves useful. To be creative is to make
something that is both novel and (by some functional or
aesthetic criterion) valuable (Sternberg & Lubart, 1995;
Ward, Finke, & Smith, 1995). The nature of the created
product can be indefinitely varied - a deeper under-
standing of genetics, a poem, a cryptocurrency, a more
effective way to teach math, an artistic style, an energy-
efficient heating system, a good joke. But one basic
quality links them all: something new has come into
being.

However, an idea or other product may be new, and
prove to be of value, yet still not be considered highly
creative (Boden, 2004). It has often been argued that
a creative act cannot, in general, be identified solely on
the basis of its product. Rather, what makes something
creative may be defined in part by the process underlying
the act itself (Green, Beaty, Kenett & Kaufman, 2023;
Holyoak, 2019). Besides what was generated, we need to
consider how it was generated - the mode of generation.
A salient example of this general claim concerns the
origin of a work of art — was this painting rendered by
the hand of the master, or by a meticulous forger? If the
latter, the painting’s value — and probably its beauty in
the eye of its beholder - is diminished. Goodman (1968,
chapter “Art and Authenticity”) has argued that an

aesthetic difference in a work of art need not require
a perceptual difference: however accurate a forgery may
be, its aesthetic value is less than that of the original.
Generation by direct copying constitutes a process at
the low end of a continuum of creativity. As schema-
tized in Figure 1, a system for generating novel and
potentially useful products can be viewed as having
three interrelated components: an agent who selects
inputs to which processes are applied to generate pro-
ducts. Each of these components can vary in ways that
impact the perceived creativity of the system, yielding
a rough continuum of creativity (in Figure 1, the high
end is shown at top and low end at bottom). The agent
can be autonomous or restricted in various ways; the
input can be relatively open or closed, and the process
can be relatively general (with constraints that guide
search in a relatively open-ended space of possibilities)
or specialized to a particular type of input. A generative
process operating on relatively closed input might only
apply to a particular domain of thought (e.g., mathe-
matics) or a particular sensory modality (e.g., vision),
whereas a process operating on more open input might
apply to multiple semantic domains or sensory modal-
ities. By an autonomous agent, we mean one with a set of
characteristics often associated with human creativity
(Amabile, 1996; Baum & Baumann, 2019): internal
motivation to create, the capacity to select one’s own
goals, inputs, and processes, and the ability to evaluate
partial and complete products. To the extent an agent
lacks any of these characteristics, the overall process is
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Figure 1. Schematic representation of modes of generation at high and low ends of a continuum of creativity.

less creative. A more autonomous agent is likely to have
access to a more open set of inputs, making it possible to
generate novel products by expanding the input set.
A broader set of potential inputs in turn requires more
general processes to operate on them. These general
processes will be guided by inductive biases character-
ized by specifiable constraints (unlike, for example,
simple random generation of options). These con-
straints serve (at least implicitly) to evaluate emerging
products, thereby guiding the generation of ones likely
to prove valuable (enabling the autonomous agent to act
as a “self-critic”).

This framework implies that creativity is best viewed
as multidimensional, with multiple factors involved,
rather than a strict dichotomy. But for simplicity, the
extremes sketched in Figure 1 can be viewed as two
modes of generation. Low versus high creativity can be
related to a number of other contrasts that have been
drawn in the fields of problem solving and expertise.
These distinctions include well-defined versus ill-
defined problems (the latter including “insight” pro-
blems; Reitman, 1964), routine versus adaptive expertise
(Hatano & Inagaki, 1986), and the hypothesis that pro-
blem solving involves search in a dual space (Klahr &
Dunbar, 1988), where one space operates within a fixed
problem representation and the other involves a search
for alternative representations. The less creative mode
includes the application of specialized methods acquired
by experts, such as well-defined algorithmic procedures
(e.g., an established method for solving a class of math-
ematical problems). It has been argued that routine
expertise is sometimes the enemy of creativity. As
noted in a book offering advice on how to create comics,

“It’s hard for something original to make it past ‘already
knowing how.” Being good at something is its own
curse ...~ (Barry, 2019).

In the remainder of this paper, we focus on one (but
by no means the only) candidate process that may play
a role in the more creative mode: generation of ideas
based on semantically distant analogies. To investigate
basic cognitive mechanisms that may support creativity,
it can be useful to examine relatively simple tasks that
lend themselves to both experimental and computa-
tional investigations, such as insight problems. There
is evidence that solving verbal analogies in the tradi-
tional A:B:C:D format sometimes evokes the “aha” reac-
tion associated with other laboratory-style insight
problems (see Kounios & Beeman, 2014). We do not
claim that solving such analogy problems counts as
“creative” per se; but will review evidence that perfor-
mance on some verbal analogies taps cognitive pro-
cesses that are also involved in real-life creativity.

Processing semantically distant analogies
Relations and analogical reasoning

An analogy holds between two situations, termed the
source and target, when systematic correspondences (a
mapping) can be established between elements of the
two, based on similarity of the entities and/or relations
involved in each (Gick & Holyoak, 1980, 1983). Based
on the mapping, it is possible to use knowledge about
the source analog (typically better understood) to gen-
erate systematic inferences about the target.
Understanding an analogy requires appreciation that



the same or similar relations hold in both situations. In
general, relational reasoning depends on explicit repre-
sentations of relations that are distinct from, but bound
to, the entities they relate (Holyoak & Lu, 2021). For
example, thinking about a cloud above a mountain
requires a representation in which the relation above is
distinct from the objects being related (cloud and
mountain), while also indicating that the cloud is the
higher object and the mountain is the lower one, rather
than the reverse (for a review of relevant evidence, see
Doumas & Hummel, 2012). An explicit representation
of the relation above makes it possible to identify
a relational similarity between a cloud above
a mountain and a table above a cat, even though the
objects involved in the two situations are highly
dissimilar.

Relations are often directly stated using language.
However, in many cases, the reasoner will first need to
retrieve or detect relations between entities, a process
that in the psychometric literature is termed eduction of
relations (Spearman, 1923). Both perception and higher
cognition contribute to the eduction of relations. A wide
variety of visuospatial relations appear to be picked up
very quickly by early perceptual processes. These
include physical relations, such as whether one object
surrounds another or supports another, and whether two
objects would fit together to form a natural whole.
Certain basic events are quickly detected, such as one
object breaking another, or launching another (the first
object appearing to strike the second and set it in
motion). Even some social events, which seem to
depend on understanding goals and intentions, can be
perceived rapidly: an object chasing another, or helping
another, or two people meeting each other (for a review
see Hafri & Firestone, 2021). Many other relations rele-
vant to analogy can be derived by active reasoning
processes. These include causal relations, which are
central to achieving goals, and thus especially important
in real-world analogies that may contribute to the gen-
eration of creative products (Holyoak, 1985).

Far analogies as a source of creative ideas

Importantly, the overall similarity of the source and
target can vary. In general, analogical transfer is easier
to achieve when the analogs are drawn from the same
domain of knowledge (near analogies) than when they
are drawn from semantically-distant domains (far
analogies; e.g., Holyoak & Koh, 1987; Keane, 1987).
Near analogies are likely to share causal relations, so
that the source will be a useful guide to understanding
the target. However, analogies drawn within a limited
domain that includes the target seem less creative. In
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contrast, it has often been suggested that far analogies
are especially important for human creativity. For
example, one early paper on analogical problem sol-
ving began, “Where do new ideas come from? What
psychological ~ mechanisms underlie creative
insight? ... The anecdotal reports of creative scientists
and mathematicians suggest that the development of
a new theory depends on noticing and applying an
analogy drawn from a different domain of knowl-
edge ... 7 (Gick & Holyoak, 1980, p. 306). Holyoak
and Thagard (1995) surveyed many real-world exam-
ples of new ideas in science, philosophy, and other
areas that were apparently triggered by far analogies
(see also Hofstadter & Sander, 2013). For example,
when Alexander Graham Bell was in the process of
inventing the first telephone, he made explicit use of
an analogy with the structure and function of the
human ear. The productive power of far analogies
extends well beyond science and technology.
Although analogies in general vary in semantic dis-
tance between source and target, those that serve as
the basis for novel metaphors are always drawn
between entities from different semantic domains
(e.g., Lakoff & Turner, 1989).

In general, analogy is a cognitive process that can be
used to link a source and target drawn from any domain.
Notably, individual differences in analogical reasoning
tend to be correlated across broad domains (verbal, spatial,
and mathematical; Snow, Kyllonen, & Marshalek, 1984)
and across sensory modalities (Weinberger et al., 2022).
This generality implies that the possible inputs to analogy
are drawn from an open set. Moreover, analogy is guided
by domain-general but systematic constraints. According
to the multiconstraint theory (Holyoak & Thagard, 1989;
Lu, Ichien, & Holyoak, 2022), analogy involves matching
elements so as to maximize similarity of entities and their
relations, with a focus on important elements (i.e., those
involved in causal relations relevant to goals), and with
a soft preference for one-to-one (isomorphic) mappings.
When the source and target are drawn from semantically-
remote domains, analogy displays characteristics asso-
ciated with the open mode of idea generation.

In psychological studies of creativity, semantic dis-
tance between elements is a well-established marker of
divergent thinking. Indeed, degree of divergent thinking
is typically assessed using some index of semantic dis-
tance (either human ratings or measures derived from Al
models; e.g., Olson, Nahas, Chmoulevitch, Webb, &
Webb, 2021; Orwig, Diez, Vannini, Beaty, & Sepulcre,
2021). At the level of individuals, measures based on
semantic-memory structure (He et al., 2021), including
neural connectivity analyses (Ovando-Tellez et al., 2022),
have been used to predict creativity for real-world tasks.
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Semantic distance is also an important predictor of
cortical activity during analogical reasoning tasks. For
four-term verbal analogies (A:B : C:D), neural activity in
a subregion of the left frontopolar cortex increases para-
metrically with semantic distance between the A:B and C:D
terms (Green, Kraemer, Fugelsang, Gray, & Dunbar,
2010). For example, a near analogy such as blindness :
sight : deafness : hearing evokes less frontopolar activity
than does a far analogy such as blindness : sight : poverty :
money. This impact of semantic distance was reliable even
after statistically controlling for measures of general pro-
blem difficulty, such as response time to decide whether or
not the analogy is valid. Similar findings were obtained
when the task required generation of the missing D term
(i.e., A:B : C:% Green, Kraemer, Fugelsang, Gray, &
Dunbar, 2012). Other studies found that interventions
that increase frontopolar activity, and connectivity
between that area and more posterior cortical regions,
tend to enhance performance in tasks linked to creativity
(Green, Cohen, Raab, Yedibalian, & Gray, 2015; Green
et al,, 2017; Lundy, Dasara, Beeghly, Kazmi, & Krawczyk,
2022; for reviews of the neural basis for creativity, see;
Green, 2016, 2018; for analogical reasoning, see; Holyoak
& Monti, 2021).

Triggering a relational set

Work on interventions that may facilitate creative think-
ing imply that people may vary not only in a general
tendency to be creative (i.e., trait creativity), but also in
a more transient propensity triggered by the current

A. Transfer task: picture mapping

context (i.e., state creativity; Green, 2018). An intriguing
possibility is that state creativity can be fostered by tasks
that encourage a focus on relations—i.e., a relational set.
There is a great deal of empirical evidence that two
separable pools of semantic information-one based on
entities and the other on relations - impact judgments of
similarity. Relational similarity tends to be more potent
when overall relational similarity across analogs is rela-
tively high (Goldstone, Medin, & Gentner, 1991), when
the objects in visual analogs are sparse rather than rich
(Markman & Gentner, 1993), and for older as compared
to younger children (Gentner & Rattermann, 1991).
Although analogy appears to depend on both types of
similarity (Lu, Ichien, & Holyoak, 2022), relational simi-
larity is more central, especially for far analogies.

If an analogy task requires special attention to
relations, then it is possible that solving some sorts
of analogies may trigger a relational set for a period
of time afterward, which could in turn lead to
a greater relational focus in a subsequent task. To
assess this possibility, Vendetti, Wu, and Holyoak
(2014) administered subsets of the verbal analogies
used previously by Green, Kraemer, Fugelsang, Gray,
and Dunbar (2010, 2012). Two experiments used
identical designs, with half of the participants receiv-
ing near analogies and half receiving far ones.
Immediately afterward, all participants completed
a picture-mapping task based on unrelated materials
(see Figure 2a). In Experiment 1A the analogy task
required verification of analogies (judging each to be
valid or invalid, as in the study by Green, Kraemer,

B. Vendetti et al. (2014) Exp. 1 Results

Experiment 1a Experiment 1b
Verification Generation

*
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Figure 2. (a): Example of picture-mapping task (materials from Markman & Gentner, 1993; Tohill & Holyoak, 2000) used as transfer task
by Vendetti, Wu, and Holyoak (2014). (b): Transfer results from Vendetti, Wu, and Holyoak (2014, Experiment 1). Prior generation of
solutions to (but not verification of) far analogies (but not near analogies) led to a greater proportion of relational objects chosen on
the picture-mapping transfer task. Adapted from Vendetti, Wu, and Holyoak (2014).



Fugelsang, Gray, & Dunbar, 2010). In Experiment
1B, the task instead involved generation of the miss-
ing D term, as in the study by Green, Kraemer,
Fugelsang, Gray, and Dunbar (2012). As shown in
Figure 2b, one of the resulting four conditions -
generation of solutions to far analogies in
Experiment 1B - was particularly likely to lead to
selection of a relational (rather than featural) match
in the subsequent picture-mapping task. Vendetti
et al. also found that for the generation task using
far analogies, a measure of fluid intelligence based on
a version of Ravens Progressive Matrices (RPM;
Arthur, Travis, Paul, & Sanchez-Ku, 1999) did not
reliably predict individual differences in people’s
propensity to select a relational match in the transfer
task, whereas the RPM did predict such individual
differences for the group that generated solutions to
near analogies (consistent with other evidence that
the RPM test typically predicts relational responding;
e.g., Gray & Holyoak, 2020).

The findings of Vendetti, Wu, and Holyoak (2014)
suggest that generation of solutions to far analogies is
particularly effective in evoking a relational set. This
relational set enhances subsequent processing of rela-
tions other than those used to elicit the set (thus going
beyond priming of specific relations; cf. Spellman,
Holyoak, & Morrison, 2001). Moreover, this state
manipulation of sensitivity to relations appeared to
override trait differences as measured by the RPM (at
least within the limited range of RPM variation among
college students). Several subsequent studies provided
additional evidence for a connection between genera-
tion of solutions to far analogies and subsequent rela-
tion-based responding in different tasks. Using the
Green, Kraemer, Fugelsang, Gray, and Dunbar (2012)
materials, Chaxel (2015) found that generating solutions
to far analogies increased subsequent information dis-
tortion (for ratings of product attributes in a choice
task), where the distortion was attributable to proces-
sing relations between attributes and alternative choices.
Using the same materials, Andrews and Bohadana
(2018; see also Du & Sun, 2022) showed that generating
solutions to far analogies facilitated solution of n-term
syllogisms (linear orderings); moreover, this manipula-
tion eliminated the predictive impact of a fluid intelli-
gence measure (consistent with the findings of Vendetti,
Wu, & Holyoak, 2014). Goldwater and Jamrozik (2019)
found that generating solutions to Green et al.’s far
analogies increased relational encoding and enhanced
later analogical retrieval (a potential source of creative
ideas). Finally, using age-appropriate materials, Simms
and Richland (2019) found that for four-year-old chil-
dren, generating (rather than being told) relations
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increased relational responding on a subsequent ana-
logy task involving unstudied relations.

A recent study by Chesebrough, Chrysikou, Holyoak,
Zhang, and Kounios (2023) introduced a different type
of relational generation task. Using materials inspired
by those of Green, Kraemer, Fugelsang, Gray, and
Dunbar (2010, 2012), these investigators created triplets
of relation pairs. These triplets were of two types. For
consistent triplets, each pair formed a near analogy such
that A:B : C:D : E:F (e.g., steering wheel : car, rudder :
boat, handlebars : bicycle). For expansive triplets, the
first two pairs were identical to those in a consistent
triplet, but the third triplet formed a far rather than near
analogy with the first two (e.g., steering wheel : car,
rudder : boat, voting : government). On each trial, parti-
cipants were initially shown only the first two pairs in
a triplet, and asked to generate a verbal description of
“the concept the analogy represents.” Then they were
shown the third pair, and again asked to describe the
relational concept (now linking all three pairs).
Independent raters assessed the degree of conceptual
change between the first and second descriptions of
the concept. In addition to other measures, participants
were asked to rate the extent to which they had an “aha”
experience (i.e., a sense of sudden insight; Kounios &
Beeman, 2014) when they processed the third triplet.
Chesebrough et al. found that expansive as compared to
consistent triplets triggered both greater conceptual
change in relational descriptions and a greater sense of
having an “aha” experience. Qualitatively, the expansive
condition seemed to trigger generation of a more
abstract characterization of the relational concept (e.g.,
for the example above, the near relation “steering
a vehicle” might be generalized into “directing some-
thing” to accommodate the semantically distant third
pair). The impact of generating a description based on
a far analogy thus seemed to trigger a type of processing
related to that associated with creative insights.

Opverall, behavioral studies support the general con-
clusion that generation (rather than simply verification)
of solutions to semantically far (rather than near) ana-
logies is especially effective in triggering a relational set,
which might plausibly support state creativity. The posi-
tive impact of generation is broadly consistent with
evidence from studies of episodic memory showing
that generation of responses (as compared to simply
reading them) enhances subsequent memory perfor-
mance (Bertsch, Pesta, Wiscott, & McDaniel, 2007),
and is correlated with greater neural activity across
a broad cortical network (Rosner, Elman, &
Shimamura, 2013). However, the possible impact of
semantic distance does not seem to have been system-
atically investigated in studies of the influence of
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generation on episodic memory; hence, these studies do
not shed light on why generation of far analogies seems
to be especially potent. In the remainder of this paper,
we consider potential mechanisms that may trigger
a relational set, drawing upon a framework provided
by computational models of relation representation and
processing.

Potential mechanisms for generation of
solutions to verbal analogy problems

To verify or evaluate an analogy in A:B : C:D format, the
obvious strategy is to educe the relation between the
elements of each concept pair (i.e., the relation A:B and
the relation C:D), and then assess whether these two
relations are sufficiently similar to be considered a valid
analogy (Lu, Wu, & Holyoak, 2019). The situation is
more complex for an analogy generation task in the
form A:B : C: 2. Without knowing the D term, it is
impossible to immediately identify the C:D relation;
hence, the matching strategy (compare A:B and C:D
relations) is blocked. Given some candidate D term,
the C:D relation might be obtained, enabling use of the
matching strategy to evaluate whether or not the pro-
posed D term forms a valid analogy. However, some
other procedure must first be applied to generate one or
more candidates for the role of D.

One potential mechanism for generating analogical
solutions is associative in nature, involving spreading
activation among semantic connections. Associative
generation seems particularly plausible for near analo-
gies. The intuitive basis for associative generation is
sketched in Figure 3a, using an example of a near ana-
logy (blindness : sight : deafness : ?, where a good com-
pletion would be hearing). Figure 3a indicates the salient
preexisting semantic links that connect the A and
B terms to C and the target D. In addition, the salient
relation between A and B (loss, specifically of a physical
sense) is identical to that linking C and the to-be-
retrieved target D. A qualitative account of the genera-
tion of D given A, B, and C would be that some sort of
spreading activation based on preexisting semantic links
will tend to activate the target D. In contrast, as sketched
in Figure 3b, prior semantic links are minimal in the
case of a far analogy (blindness : sight : poverty : 2, where
a good completion would be money), as the A and
B terms do not have strong links to the C or potential
D terms. Moreover, the salient relation between A and
B (physical loss) is not identical to that between C and
the target D (more abstract lack of something). Thus, an
associative process seems less likely to succeed in acti-
vating the target D for a far analog.

blindness : sight :: deafness :

B.

N
blindness : sight :: poverty :

Figure 3. Completing a near analogy problem (i.e., generating
D term) is aided by prior semantic associations from A:B to C:D
and from the (unstated) relation connecting words in each pair
(panel A); but prior semantic associations from A:B are less
available for far analogy problems (panel B).

An alternative approach to generation, less depen-
dent on spreading activation, involves making more
direct use of explicit representations of relations.
A natural strategy for generating the solution to
a verbal analogy is to first identify the relation between
A and B, and then project the same relation from C to
estimate an “optimal” completion for D that would
maximize the similarity of the A:B and C:D relations.
A search of the lexicon would then attempt to find an
actual D term as close as possible in meaning to the
estimated optimal D.

Unlike associative generation, relational generation
depends on the ability to form explicit representations
of semantic relations between words, which can then be
systematically manipulated. Our group (Ichien, Kan,
Holyoak, & Lu, 2022) has developed a model of rela-
tional generation based on explicit relation representa-
tions produced by BART (Bayesian Analogy with
Relational Transformations; Lu, Chen, & Holyoak,
2012; Lu, Wu, & Holyoak, 2019; see also Chen, Lu, &
Holyoak, 2017; Holyoak, Ichien, & Lu, 2022), a model of
relation learning that acquires representations of rela-
tions from unstructured vector representations of indi-
vidual word meanings. BART learns explicit
representations of the semantic relations between word
pairs from unstructured vector representations of indi-
vidual word meanings. BART’s input consists of con-
catenated pairs of word embeddings (300-dimensional
feature vectors that approximate word meanings) cre-
ated by an NLP model, Word2vec (Mikolov, Sutskever,
Chen, Corrado, & Dean, 2013). BART uses supervised



learning with positive and negative examples to acquire
each relation representation individually. For example,
a vector formed by concatenating the individual vectors
for old and young would constitute a positive example
for the relation X is the opposite of Y and might also
serve as a negative example of the relation X is
a synonym of Y. The model was initially trained on 79
common semantic relations (Bejar, Chaffin, &
Embretson, 1991) using word pairs drawn from
a norming study (Jurgens, Mohammad, Turney, &
Holyoak, 2012) as examples of each relation. Major
classes of trained relations include contrast, similarity,
class inclusion, part-whole, cause-purpose, and case
relations.

BART’s learning algorithm (for details see Lu, Wu,
& Holyoak, 2019) identifies a subset of the feature set
that most effectively predict the posterior probability
that a word pair instantiates the target relation. The
final basis for predicting this posterior probability is
a weight distribution over the selected feature dimen-
sions. Of particular note, BART’s learned weights can
be segregated into those based on features of the first
word in a pair and those based on features of
the second word. As we will see shortly, this charac-
teristic proves very important in modeling relational
generation, because the portion of the weight distri-
bution associated with one word can be used to help
estimate the embedding for some unknown word that
would complete a word pair instantiating a target
relation.

After learning, BART can compute a relation vector
consisting of the posterior probability that any word
pair instantiates each of its learned relations (thus
accomplishing the eduction of relations). Then, to
evaluate whether a four-term verbal analogy is valid,
the model assesses the cosine distance between the A:B
and C:D relation. If BART has been trained success-
fully, cosine distance tends to be smallest for near
analogies, somewhat larger for far analogies, and yet
larger for invalid analogies. In addition to supporting
human-like analogical reasoning on simple four-term
verbal problems (e.g., artificial : natural : friend :
enemy) (Lu, Wu, & Holyoak, 2019), BART’s relation
representations have been used to predict human judg-
ments of relational similarity among word pairs
(Ichien, Lu, & Holyoak, 2022), and to predict patterns
of similarity in neural responses to relations during
analogical reasoning (Chiang, Peng, Lu, Holyoak, &
Monti, 2021). BART can also support analogical map-
ping in problems that require finding correspondences
between multiple entities across complex relational
systems (e.g., mapping the solar system to atomic
structure; Lu, Ichien, & Holyoak, 2022).
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BART-Gen (Ichien, Kan, Holyoak, & Lu, 2022) is
able to use relation representations learned by BART
to generate completions of partially specified relations
and of four-term analogy problems. BART-Gen exploits
the fact that the weight distributions BART uses to
compute posterior probabilities of relations can be
decomposed into a portion based on the first word in
a pair and a portion based on the second word. If BART-
Gen is given a word C and asked to generate
a completion D that will result in an instantiation of
a specified relation, the model uses Bayesian inference
to compute the features of an “optimal” D given the
relation and the known features of C. This calculation
includes a prior expectation that D will be similar to
C (since in general, two words that are semantically
related will be similar to one another in a feature
space). In essence, the model estimates an optimal
D that is a compromise between a D that is similar to
C, and a D that makes the pair C:D highly likely to
instantiate the target relation. The similarity prior
ensures that the embedding for the optimal D will be
fully specified, even though BART only uses a subset of
feature dimensions to predict each relation. By default,
each feature of the predicted D will have the same value
as the corresponding feature of C, unless BART’s weight
distribution uses that feature to predict the C:D relation.

BART-Gen’s procedure for generating a completion
for any single relation can readily be generalized to
produce a solution for a four-term verbal analogy pro-
blem. For the analogy task, the model computes the
features of an optimal D given the relation and the
known features of C and also the A:B pair. Intuitively,
A:B serves to specify a pattern of relations, and BART-
Gen seeks to maximize the probability that some opti-
mal D creates the same pattern of relations for C:D
(subject to the similarity prior that D will be similar to
C). After BART-Gen calculates the feature embedding
for what it predicts to be the optimal D, this can be
compared to the Word2vec embeddings of words in
a lexicon, yielding a rank of actual words by their proxi-
mity to the optimal D in the Word2vec feature space.

Ichien, Kan, Holyoak, and Lu (2022) performed some
preliminary evaluations of BART-Gen as an account of
human generation of analogy solutions. Their simula-
tions made use of data collected by Peterson, Chen, and
Griffiths (2020), who reported the frequencies of alter-
native human completions for the Green, Kraemer,
Fugelsang, Gray, and Dunbar (2012) set discussed
above, which includes both near and far analogy pro-
blems, each with a missing D term. Model performance
was evaluated by finding the rank of the most frequent
human-generated response to each problem among all
human-generated responses across all problems. The



8 K. J. HOLYOAK ET AL.

most frequent human response was typically in the top
half dozen completions generated by BART-Gen, sug-
gesting that the model can produce human-like
responses on a generative analogy task. Moreover,
BART-Gen proved robust to variations in the semantic
distance of analogies in terms of accounting for human
judgments in generative analogical inference. The mod-
el’s ability to generate solutions to far analogies, for
which spreading activation contributes less information,
suggests that explicit relation representations play an
important role in human-like analogical generation.

What is special about generation of solutions to
far analogies?

In light of the recent developments in computational
modeling reviewed above, we can venture a possible
explanation of the puzzle posed by the findings of
Vendetti, Wu, and Holyoak (2014) and similar studies.
Why does generation of solutions to far verbal analo-
gies — but neither generation of solutions to near analo-
gies, nor verification of either type — appear to trigger
a relational set that increases relational responding in
a subsequent task based on different relations? More
speculatively, it seems generation of solutions to far
analogies may be an effective intervention for increasing
some form of state creativity.

We can consider this issue through the lens of com-
putational models capable of relational generation,
using BART as an example. BART learns and uses
explicit relational representations to verify and also
(when extended by BART-Gen) to generate solutions
to verbal analogy problems. In this approach, the task of
evaluating a verbal analogy problem evokes a procedure
that creates a relation vector for both the A:B and C:D
relations, followed by a comparison of vector similari-
ties (based on cosine distance). Semantic distance
impacts the difficulty of this comparison (in particular,
the difficulty of discriminating a valid analogy from an
invalid foil) because even when the dominant relation
might appear to be roughly the “same” for A:B and C:D,
the cosine distance between distributed vector represen-
tations of relations tends to be greater for far than near
analogies. The more difficult discrimination required to
evaluate far than near analogies likely leads to an
increased neural response in the left frontopolar area
identified by Green, Kraemer, Fugelsang, Gray, and
Dunbar (2010). However, regardless of semantic dis-
tance, analogy verification involves forming relation
vectors and comparing them.

The processes involved in generating solutions to
analogy problems are likely to be more diverse, and in
the case of far analogies more computationally intense,

than the processes involved in analogy verification. As
argued above, the core process in generation is not
comparison of two relation vectors (because without
a D term, the C:D relation is not initially specified).
Rather, two general approaches seem plausible. Using
an associative approach involving spreading activation,
a missing D term can be predicted based on semantic
associations among the tokens that provide its context
(i.e., the words A, B, and C). This approach to genera-
tion (which does not involve explicit relation represen-
tations) may often suffice for near analogies. Indeed,
there is evidence that generation of solutions to near
analogies does not activate the left prefrontal area that is
selectively associated with relational reasoning
(Wendelken, Bunge, & Carter, 2008).

However, simulation results reported by Ichien, Kan,
Holyoak, and Lu (2022), summarized above, indicate
that generation of solutions to far analogies may require
the relational approach exemplified by BART-Gen. To
generate a D term using BART-Gen, relation vectors are
not simply compared (as in verification). Rather, each
component of the relation vector is fed into a further
computation in order to compute a predicted optimal D.
This computation is much more demanding than is
a simple vector comparison. Moreover, the generation
process also requires selection of an actual D term from
a large lexicon of possible completions (i.e., identifying
an actual word sufficiently similar to the predicted D).
Finally, once one or more actual words have been iden-
tified as possible completions, proposed solution(s) may
be further assessed by computing the cosine distance
between the A:B relation and each (tentative) C:D that
has been generated. That is, although generation cannot
begin by comparison of two relation vectors, it may
sometimes end with it.

In fact, some post-generation comparison procedure
might play a role in cuing a transition from associative
to relational generation modes for far analogies.
A reasoner might initially adopt the computationally
cheap associative approach to generate the missing
D term in an analogy problem, and then perform
a comparison to evaluate the resulting candidate com-
pletion. If this comparison indicates that the A:B and
candidate C:D relations are sufficiently similar (which is
more probable for near analogies), the reasoner will
accept their associatively generated D term. However,
if this comparison indicates the candidate completion is
deficient, the reasoner may switch to the computation-
ally intensive relational approach to generate an alter-
native D term. Thus, generating solutions to near
analogies is insufficient to trigger a relational set because
it tends to evoke an associative process. In contrast,
generating solutions to far analogies tends to recruit



the relational approach, thereby altering inductive
biases in subsequent tasks in which different relations
are relevant (cf. Kroupin & Carey, 2022).

To summarize, generation of the solution to a far
verbal analogy requires not only thinking about the
relations between paired words, but also using the ele-
ments of relation vectors to perform the intensive com-
putations required to generate relational completions.
In the aftermath, the reasoner’s tendency to focus on
relations between entities (rather than the features of the
entities themselves) may be temporarily enhanced, trig-
gering a relational set that guides processing in subse-
quent tasks. Such a relational set may constitute a form
of state creativity, making it more likely that relation-
based long-distance connections will be noticed and
exploited (i.e., enhancing divergent thinking). An envir-
onment that often triggers a relational set may help to
foster creativity as a long-term trait.

Directions for future research

A model such as BART-Gen demonstrates that expli-
cit relations can be used to guide the generation of
analogical completions when both entities and rela-
tions are represented as high-dimensional vectors.
Unlike traditional symbolic models of analogical rea-
soning (e.g., Forbus, Ferguson, Lovett, & Gentner,
2017), vector-based knowledge representations are
broadly compatible with neural systems (both
human and artificial), and are able to exploit recent
advances in machine learning that enable automated
creation of semantic representations. By avoiding
hand-coding of complex propositional representa-
tions, vector-based models at least begin to capture
the human ability to operate as an autonomous agent
capable of using its own representations to generate
new knowledge.

At the same time, BART-Gen lacks the full gen-
erative ability required to solve problems by analogy.
Although four-term analogies provide a useful start-
ing point for model development, they do not require
the generation of entire propositions. Thus, BART-
Gen only produces the representation of a single ele-
ment (the D term) so as to form a relation between
C and D that matches that between A and B. More
generally, an analogical inference, such as an idea
about how to solve a target problem, depends on
first finding a mapping between the source and tar-
get, and then exploiting additional knowledge about
the source (ideally its solution) to fill a gap in knowl-
edge about the target. This inference process, some-
times called “copy with substitution” (Holyoak,
Novick, & Melz, 1994), involves taking an “extra”
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fact about the source and creating an inference
about the target by swapping the corresponding ele-
ments (and sometimes postulating a new element in
the target to complete the analogy). A creative pro-
duct based on analogy (such as Bell’s use of knowl-
edge about human hearing in developing the first
telephone) will usually depend on the generation of
a complex, multi-element extension of the target
representation, rather than just a single element.
Future computational work will be needed to extend
vector-based models to model generation of problem
solutions.

Another form of generation that poses a challenge
for vector-based models is the formation of more
general schemas, or relational categories. It has long
been known that the very process of drawing an
analogy between two analogs encourages people to
generalize the mapping they find, forming an abstract
schema that serves as an explicit representation of
commonalities between the analogs (Gick &
Holyoak, 1983). Many concepts in natural language
appear to be based on relations abstracted from con-
crete examples or metaphors (Goldwater & Schalk,
2016; Hofstadter & Sander, 2013; Turner, 1988).
Such concepts are often rooted in relational roles
(e.g., a barrier is something that obstructs something
else). Objects occupying the same role in a relation
(e.g., predator) come to be viewed as more similar to
each other overall (Jones & Love, 2007). There is
evidence that category labels and analogical compar-
isons increase general sensitivity to role-based cate-
gories (Goldwater, Markman, & Stilwell, 2011). It
seems plausible that manipulations of relational set
could also serve to enhance acquisition of relational
categories. Moreover, abstract schemas in turn foster
both retrieval of far analogs (Gick & Holyoak, 1983;
for a review see Holyoak, 2012) and also the ability to
detect systematic relationships between relatively far
analogs (for a review see Trench & Minervino, 2020).
Future work should examine the potential for using
forms of analogy-based generation to create a positive
feedback loop that can enhance the autonomous gen-
eration of creative products.
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