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Abstract
Network information has become a common feature of many modern experiments. 
From vaccine efficacy studies to marketing for product adoption, stakeholders aim to 
estimate global treatment effects — what happens if everyone in a network is treated 
versus if no one is treated. Because individual outcomes are potentially influenced 
by the treatments or behaviors of others in the network, experimental designs must 
condition on the underlying network. Social networks frequently exhibit homophil-
ous community structure, meaning that individuals within observed or latent com-
munities are more similar to each. This observation motivates the development of 
community aware experimental design. This design recognizes that information 
between individuals likely flows along within community edges rather than across 
community edges. We demonstrate that this design reduces the bias of a simple dif-
ference in means estimator, even when the community structure of the graph needs 
to be estimated. Further, we show that as the community detection problem gets 
more difficult or if the community structure does not affect the causal question, the 
proposed design maintains its performance.

Keywords  Networks · Causal inference · Community detection · A/B testing

1  Introduction

Across industries, experiments provide important evaluation of new hypotheses and 
potential future directions (Kohavi et al. 2013; Xu et al. 2015). Whether it is testing 
the efficacy of a new drug or evaluating a change in the output of an algorithm, the 
quantity of interest must guide the experimental design. The classical experiment 
considers individuals in a population and a set of potential outcomes for each indi-
vidual — these potential outcomes are indexed by treatments that might affect them. 
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As such, an experiment between two alternative treatments (call them a treatment 
arm and a control arm) will randomly assign individuals to each arm, with the goal 
of quantifying a contrast between the potential outcomes of an individual had they 
been assigned to treatment versus had they been assigned to control. This is opera-
tionalized by first specifying several simplifying assumptions (discussed in detail 
below) about the causal process, specifying an estimand or quantity of interest and 
an estimator. A general estimand that we will consider in this paper is the global 
average treatment effect (GATE):

where Z = (Z1,… , ZN) is the vector of treatment assignments for all individuals in 
the sample and Yi(Z) is the potential outcome for individual i under the assignment 
vector Z . This estimand represents the difference in outcome had everyone in the 
sample been treated versus not treated at the same time point. It is fairly clear that 
without additional assumptions this quantity is not estimable from data since assign-
ing everyone to one of the arms of the experiment would not allow us to estimate 
anything. A further complication is that the potential outcome is indexed by the full 
vector of treatments — this suggests that an individual’s outcome might be affected 
by a treatment that is assigned to someone else, a notion referred to as interference.

The GATE is of particular interest in settings where individuals are networked 
since interference is likely. As a result, for GATE estimation, reasonable assump-
tions need to be made about how interference manifests in a network. The typical 
assumption is that of neighborhood interference: an individual is assumed to be 
impacted by his or her immediate neighbors and no one else (formally defined in 
the next section). While this assumption accounts for the basic structure of the net-
work, it fails to account for other potentially influential features of the network. For 
example, it is well established that not all connections between individuals in a net-
work are created equal and some ties are stronger or more influential than others. 
For example, same gender ties among college students are more likely and yield 
more meaningful connections than cross-gender ties in social media and face-to-face 
contact (Igarashi et  al. 2005). In what follows we formalize a new neighborhood 
interference assumption that makes it clear that only those important connections 
within a network lead to causal interference — this in turn suggests a novel design 
that allows for better estimation of the GATE in this setting.

To fix notation, throughout, we will represent a network in terms of its adja-
cency matrix A : a binary N × N matrix where Aij = 1 if individual i is connected 
to individual j. A network can be directed or undirected ( Aij = Aji ). Importantly, the 
development in this article only requires knowledge of the network A and does not 
assume access to any additional information about the individuals in the network. 
As such, identifying “important” connections or edges in a network must be done by 
simply looking at the adjacency matrix itself. To do this we concentrate on networks 
that exhibit community structure and argue that within community connections are 
more likely to lead to interference than cross-community connections. We discuss 
the potential downsides of such assumptions in Section 1.2.

(1)� =
1

N

N∑

i=1

[
Yi(Z = 1) − Yi(Z = 0)

]
,
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Below we discuss several common simplifying causal assumptions and the 
designs they motivate. We then formalize our own assumption that is motivated by 
the literature on community influence in social networks and develop an experi-
mental design that can lead to high quality, yet easily interpretable estimates of the 
GATE.

1.1 � Classical assumptions and designs

The most common assumption in causal inference, termed the Stable Unit Treat-
ment Value Assumption (SUTVA) or individualistic treatment assignment, (Rubin 
1990; Manski 1995), states that the treatment assigned to an individual can only 
affect their potential outcome. Under SUTVA the GATE reduces to the standard 
average treatment effect:

This estimand motivates a very simple experimental design and estimation pro-
cedure: assign individuals to treatment independently, and estimate �ATE using the 
naive difference in means estimator,

where, for notational convenience, NT and NC are the fixed number of treated and 
control individuals respectively.

Since we know that SUTVA is likely not a viable assumption in networked pop-
ulations, the literature has proposed several alternative assumptions that limit the 
influence of treatments across the network according to some notion of distance 
between individuals (Toulis and Kao 2013; Aronow and Samii 2017; Jagadeesan 
et al. 2020; Sussman and Airoldi 2017; Sävje et al. 2021).

In particular, these Network or Neighborhood SUTVA type assumptions can be 
written as follows: for treatment allocation vectors Z,Z′ with gi(Z) = gi(Z

�) we have 
Yi(Z) = Yi(Z

�) where the function gi(z) extracts the components of the vector z that 
relate to the individuals in the network who can interfere with unit i. For example, 
the Neighborhood Interference assumption of Sussman and Airoldi (2017) and 
Awan et al. (2020) takes gi(Z) =

(
Zi, {Zj ∶ Aij = 1}

)
 or the simplified neighborhood 

exposure assumption takes gi(Z) =
�
Zi,

∑
{j∶Aij=1}

Zj > 0

�
 . Note that this class of 

assumptions has been developed in order to study estimands that mimic �ATE rather 
than the more general GATE, and there is now a separate literature on different esti-
mation techniques that are agnostic to the experimental design (Aronow and Samii 
2017; Sävje 2021).

Some designs focus on only estimating the direct effect of treatment which results 
in the goal of minimizing the impact of interference in the design. That is, consider 

(2)�ATE =
1

N

N∑

i=1

[
Yi(Zi = 1) − Yi(Zi = 0)

]
.

(3)𝜏 =
1

NT

N∑

i=1

YiZi −
1

NC

N∑

i=1

Yi(1 − Zi)
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how the GATE can be decomposed into a direct effect of treatment on an individual 
and an effect of neighborhood influence. However, in direct effect estimation, only 
the former is desired. When this is the goal, the design proposed below is sub-opti-
mal (unless direct and interference effects can easily be decoupled which is gener-
ally not true).

To obtain high quality estimates of the GATE, network aware experimental 
design is crucial. A natural idea is to identify subsets of the network that are far 
enough apart but that represent the interference pattern of the full network. Assign-
ing such subsets to treatment or control provides a particular view of the GATE. 
This approach was formalized by Ugander et al. (2013) and Eckles et al. (2016) as 
graph cluster randomization (GCR) .

Formally, the justification for these methods rests in the notion that within a 
large network there are small sub-networks that are separated from each other by 
sufficient network distance so as to not influence the treatment effect of individu-
als across them. Following this, graph cluster randomization approaches partition 
the network into clusters using some type of clustering method (e.g. epsilon-net and 
one-hop max in Ugander and Yin (2020)). Letting C(i) indicate the cluster that node 
i is assigned to, each cluster is assigned to treatment with probability q. These meth-
ods lead to a provable reduction in bias and variance when compared to classic rand-
omization schemes. However, these experimental designs fail to leverage additional 
network information.

1.2 � Our approach: community interference assumptions and design

The previously used network interference assumptions effectively treat every edge 
or connection in a network equivalently. That is, the presence of an edge implies 
that interference must occur. However, not all connections are created equal (Aukett 
et al. 1988; Staber 1993; Chamberlain et al. 2007; Bail et al. 2018), which should 
be reflected in the design. Specifically, we consider the setting where individuals 
belong to distinct communities and the probability of connections between two 
individuals is only a function of their (likely unobserved) community membership. 
To formalize notation, let individual i belong to one of K communities.It is natu-
ral to represent community membership as a K dimensional binary vector Ui where 
Uik = 1 if individual i belongs to community k and 

∑K

l=1
Uil = 1 . When the prob-

ability that individuals i and j have a connection or an edge between them is only a 
function of Ui and Uj , this fully specifies the stochastic block model (SBM), a type of 
popular network model that has received a lot of attention due to its tractability and 
success at describing real world networks (Holland et al. 1983; Abbe 2017; Adamic 
and Glance 2005).

An important aspect of such networks is that they encode homophilous relation-
ships — individuals within the same community behave similarly towards oth-
ers both in terms of how they form connections (Lorrain and White 1971; White 
et al. 1976; Holland et al. 1983; Faust and Wasserman 1992) and in terms of other 
social processes. For example, non-romantic same sex and opposite sex friendships 
exhibit community structure (Aukett et  al. 1988). More importantly, edges within 
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communities are special: same-sex edges are associated with greater sharing and 
intimate activities. This would suggest that deploying a treatment (e.g. a pamphlet 
for health screenings) within such communities would likely lead to interference 
within the communities but not outside the communities. Similar differences have 
been observed in an entrepreneurial setting (Staber 1993). Beyond that, it has been 
observed that online (e-mail) and offline (phone, in person) communication are cor-
related among small social circles which again suggests that similarity within a 
network may be associated with similar behaviors in other domains (Kossinets and 
Watts 2006).

This framing motivates the definition of community network interference 
where only individuals connected by within community edges can interfere with one 
another. Formally, let

be the community network interference function — for unit i it extracts the entries 
of the treatment allocation vector belonging to i’s friends from within the same com-
munity. We say that the community network inteference assumption holds if for 
treatment allocation vectors Z, Z′ we have Yi(Z) = Yi(Z

�) if gi(Z) = gi(Z
�).

This assumption is stronger than the one made in the general neighborhood inter-
ference literature since it further restricts interference, but it is justifiable when treat-
ment is personal and local (e.g health or finances related) and community structure 
is likely. For example, in Section 5, we base our simulations on network data from 
an anti-bullying experiment in middle schools (Paluck et  al. 2020, 2016), where 
there are natural friendship communities (gender and grade) as well as possible 
latent communities.

Designing a community aware mechanism for treatment assignment is thus cru-
cial to capture and balance community level differences while also accurately cap-
turing the impact of interference. In the following sections, we show how leverag-
ing community structure, either known or estimated, improves experimental design, 
leading to better estimation of the GATE. As the community detection problem 
becomes more challenging, our methods reduce to that of standard graph cluster 
randomization.

Our proposed approach is as follows: identify the communities that exist in the 
graph and perform randomized graph cluster randomization within these commu-
nities. There are thus two crucial steps in this design that can be notationally and 
conceptually confusing: (1) identifying communities that inform which units share 
behavior and (2) identifying design-relevant clusters which assist in randomizing 
treatment. Both of these steps technically use forms of clustering algorithms. How-
ever, an important distinction between these is the existence of ground truth: When 
we speak of community labels we are postulating that there exist true community 
labels that we must try to estimate — these communities inform along which con-
nections interference will happen. As such, the quality of estimation of these com-
munities is important and so we discuss nodes with incorrectly estimated labels if 
they are estimated to be in the wrong community. On the other hand, the clusters 

gi(Z) =
(
Zi, {Zj ∶ Aij = 1 and Ui = Uj}

)
,
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that are used to operationalize graph cluster randomization are purely technical arti-
facts and so there is no notion of ground truth.

Potential limitations and criticisms of the assumption. It is important to note that 
we are particularly concerned with interference (the treatment of my friend affects 
my outcome) rather than contagion (the outcome of my friend affects my outcome). 
In contagious settings, such as when studying product adoption (Aral et al. 2009), 
it has been documented that cross-community ties are crucial for broad adoption of 
a product. Beyond this, the strength of weak ties has been touted as an important 
avenue for economic mobility (Granovetter 1973; Aldrich and Dubini 1991), which 
contrasts with our notion of important edges in a network. Importantly, such “weak” 
edges are usually defined as cross-community edges with few mutual connections 
and low interaction frequency (Rajkumar et al. 2022). A clear example of this is a 
network with directed edges such as Twitter: low-status (regular) individuals may 
follow high-status (influencer) individuals thus forming essentially two communities 
where only one type of cross-community edges are important for interference. In 
such a setting, treating a high status individual may lead to changes in the outcomes 
of lower status individuals, but not the other way around. Evaluating or developing 
trials on such networks using our proposed assumption would be inappropriate.

1.3 � Paper outline

The rest of this manuscript is structured as follows: in the next section, we provide 
a detailed outline of our proposed procedure. In Section 3 we characterize the bias 
of the naive difference in means estimator under three designs: independent assign-
ment, GCR, and our proposed community informed design (CID). We demonstrate 
both analytically and empirically why we expect our procedure to lead to a reduction 
in bias under community driven interference. Section  4 describes the behavior of 
our method when the first stage of the community detection problem becomes more 
difficult. Section  5 showcases the empirical performance of our approach on sev-
eral simulated datasets (including under misspecification of the interference assump-
tion). We also implement our design using real network data.

2 � Methods

We develop a procedure that yields a high quality design for conducting experiments 
in networks with community structure. To illustrate this, Figure 1 shows examples 
of clusters that will be assigned to treatment or control under community informed 
design (left) versus standard GCR (right) on a network where nodes belong to one 
of two communities, denoted by the shape of the node. Recall that for networks with 
community interference, only within community ties are meaningful for GATE esti-
mation. As a result, clusters of all same community nodes are desirable. Red nodes 
indicate that all nodes in a cluster belong to community 1 while blue indicates that 
all nodes in a cluster belong to community 2. Purple nodes indicate that a cluster 
contains nodes from both communities.
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Notice that while standard GCR can produce clusters that fall into a single com-
munity, it also yields clusters that cross community boundaries. When these multi 
community clusters exist, individuals are less likely to share treatment with their 
within community neighbors. The consequences of this are explored in later sec-
tions. In contrast, community informed design guarantees that all clusters only con-
sist of same community nodes thus capturing the true underlying interference struc-
ture. This figure also illustrates the potential of our approach even if the community 
structure is not informative of interference as the clusters identify potential GCR 
clusters.

To implement our method, community informed design can be divided into three 
main parts 1) estimate community labels 2) find clusters of closely connected indi-
viduals within community level sub-graphs and 3) perform randomization at the 

Fig. 1   This figure shows two versions of the same network where each has a clustering design imple-
mented. The left plot shows example cluster assignments under community informed design while the 
right shows standard graph cluster randomization. This network is generated from a 2 community sto-
chastic blockmodel. The true community labels are indicated by the node shape (triangles for community 
1, circles for community 2). Red nodes indicate clusters where all nodes in a cluster are in community 1 
whereas blue nodes indicate all nodes in a cluster are in community 2. Purple nodes indicate clusters that 
have nodes from both community 1 and 2. Not all clusters are colored; hence why some nodes are gray

Fig. 2   This figure is a visualization representation for steps 1-3 in Algorithm 1
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cluster level for treatment allocation. This process is summarized in Algorithm 1, 
visually demonstrated in Figure 2, and each step is discussed in detail below.

Algorithm 1 Community Informed Design

INPUT:
Adjacency matrix A,
Number of communities K,
Community detection algorithm f (⋅, ⋅),
Clustering algorithm h(⋅, ⋅),
Treatment assignment s(⋅)
OUTPUT: Z

   1. Estimate community labels, Û , using a community detection algorithm of choice, denoted 
f (A,K) . Specification of K a priori may not be necessary for all algorithms

   2. Create a community induced sub-graph for each community based off of Û that contains only 
within community edges

   3. Run a clustering algorithm of choice, denoted h(A, Û) , on each sub-graph independently such 
that each sub-graph is partitioned into clusters, C

Û
 . This ensures that only nodes belonging to the 

same community can be in the same cluster.
   4. Assign treatment according to some design, s(C

Û
) . This could denote a pairing design, randomi-

zation designs with covariate information, etc.

2.1 � Estimating community labels

 First consider the algorithm choice for community label recovery, f (A,K) . An abun-
dance of algorithms exist in the literature for this task (Abbe 2017; Bhattacharyya 
and Bickel 2014; Bruna and Li 2017; Rohe et al. 2011; Mathews et al. 2019; Blon-
del et al. 2008), any of which could be used here. However given the recent theoreti-
cal and empirical results in information theory and statistics, we implement spectral 
methods (Krzakala et al. 2013; Reeves et al. 2019; Mayya and Reeves 2019). At a 
high level, spectral based methods produce an embedding of the observed network 
in a lower dimensional space using an eigen-decomposition of the adjacency matrix. 
There are several (nearly equivalent) approaches for doing this. We implement one 
from Rohe et al. (2011) that considers the normalized graph Laplacian, a summary 
of the network that better captures clustering behavior, especially for sparse net-
works. This is defined as

where, D is a diagonal matrix of degrees in adjacency matrix A , with Dii =
∑

j Aij.
Using a K dimensional eigen-decomposition, we write that L ≈ V�VT where K 

represents the number of communities one expects to observe in the network (this 
value can be adaptively chosen by considering the size of the non-zero eigenvalues 
of L, otherwise known as identifying the eigenvalues that fall far from the ‘bulk’, 
Krzakala et  al. 2013). After the embedding, the k-means algorithm with multiple 

L = D−1∕2AD−1∕2
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restarts is applied to the top K eigenvectors, V . The resulting labels are used to cre-
ate Û.

Throughout we assume that the number of communities K is known, but note 
that this is not a limitation of the proposed approach, as the number of communi-
ties can be learned directly from the adjacency matrix. To address this we consider 
simulations in Section 5 where the community detection problem with K known is 
easier or harder — when it is easy then there is significant separation of the eigen-
values of the Graph Laplacian and so K can be easily identified from the data; when 
it is harder then it would be similarly hard to estimate K from the adjacency matrix 
and so performance of the procedure would be expected to suffer (Rohe et al. 2011; 
Newman and Reinert 2016; Budel and Van Mieghem 2020; Geng et al. 2019). This 
is addressed in the simulation section.

2.2 � Determining clusters

After the labels are estimated, a community induced sub-graph is created for each 
of the K communities. As a result, each sub-graph contains only within commu-
nity ties. For determining clusters for treatment, h(A, Û) is chosen to be the 3-net 
(generically epsilon net) algorithm which is implemented on each sub-graph sepa-
rately. Unlike the previous step where the goal is to find ground truth communities 
that define interference, the goal of this step is to find sets of closely connected indi-
viduals where each cluster is far from the other clusters. While community detection 
algorithms used in the previous step could be used again, the goals of the previous 
and current step differ, and, as such, different algorithms are better suited for each 
task. For example, in Eckles et al. (2016) the authors report that performing this step 
with the Louvain algorithm (Blondel et  al. 2008) simulataneously results in large 
variance increases and large bias decreases as compared to the 3-net algorithm.

We use 3-net due to its positive performance in the literature as demonstrated 
in Ugander and Yin (2020). Further, this algorithm is equipped with useful theo-
retical properties for estimating network exposure probabilities that are leveraged 
in later sections. At a high level, 3-net clustering generates a random ordering of all 
nodes in the graph. Based on this ordering, a maximal distance 3 hop independent 
set is created, and the nodes in this set are called seed nodes. The number of seed 
nodes determines the number of clusters that will exist in the experiment. Each node 
is assigned to its closest seed node based off of minimal graph distance, and these 
assignments then form clusters. Since the seed nodes are guaranteed to be network 
exposed to either control or treatment, this algorithm makes estimation of exposure 
probabilities plausible through Monte Carlo simulation. Ugander et al. (2013) dem-
onstrate the theoretical and empirical properties of 3-net GCR which we adapt to our 
community informed design. An explicit outline of the implementation of the com-
munity epsilon net is in the supplement.
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2.3 � Randomization of clusters

Finally, for this work, s(CÛ) is defined to be independent cluster level randomization 
where each cluster is treated with probability q = 0.5 . However, this randomization 
scheme can be altered depending on the desired estimand or if the design has con-
straints on randomization schema.

Note that community informed design generalizes other discussed methods. If com-
munity labels are known, Algorithm 1 can be adjusted such that Û = U and thus step 1 
can be skipped. Also, when K = 1 , Algorithm 1 reduces to standard graph cluster rand-
omization, and further, if K = 1 and the number of clusters is set to N then Algorithm 1 
becomes standard independent randomization.

3 � Bias reduction

For the theoretical development in this section we will consider a further restriction on 
the community network interference assumption by assuming that each within commu-
nity friend contributes equally and so the amount of interference is summarized by the 
total number of within community friends of i who are treated. As such, let 
gi =

∑
j∈Nc

i

Zj (where Nc
i
 is the neighborhood of within community neighbors of i) and 

so in a slight abuse of notation we have gi(Z) = (Zi, gi) , allowing us to write the poten-
tial outcome as Yi(Zi, gi) . Under this assumption, the potential outcomes can be decom-
posed as Yi(Zi, gi) = Ci(Zi) + Bi(gi) (this decomposition has been used when studying 
interference in e.g. Karwa and Airoldi (2018), Sussman and Airoldi (2017), and 
Jagadeesan et al. (2020)). Here Yi(1, gi) − Yi(0, gi) = Ci(1) − Ci(0) can be interpreted 
as the direct effect when keeping gi constant. Similarly, Bi(gi) relates to the difference 
in potential outcomes of the indirect effect when holding the treatment of individual i 
constant. The true GATE, � , is then equal to:

where dc
i
 is the number of within community neighbors of node i.

The derivation for the expectation of the estimator, 𝜏 , then follows as:

The bias can then be written as:

(4)1

N

N∑

i=1

[(
Ci(1) + Bi(d

c
i
)
)
−
(
Ci(0) + Bi(0)

)]

EZ[𝜏] = EZ

[
1

NT

N∑

i=1

YiZi −
1

NC

N∑

i=1

Yi(1 − Zi)

]

= EZ

[
1

NT

N∑

i=1

Y(1, gi)Zi −
1

NC

N∑

i=1

Y(0, gi)(1 − Zi)

]

= EZ

[
1

NT

N∑

i=1

(
Ci(1) + Bi(gi)

)
Zi −

1

NC

N∑

i=1

(
Ci(0) + Bi(gi)

)
(1 − Zi)

]
.
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where we define the following weights as:

and

The values of the above weights are determined by the chosen design and accom-
panying interference assumptions. Note that for ease of exposition we treat NT and 
NC as fixed quantities. Treating them as fixed is not an overly unrealistic or stringent 
assumption: in sufficiently large networks where within community degree is con-
centrated, the clusters will largely have the same number of individuals, meaning 
that knowing the probability of assignment will also provide explicit knowledge of 
NT and NC under complete or paired randomizations. We further note that it is rea-
sonable to expect NT to be approximately the same under the different designs we 
consider (CID and GCR) and so the calculations below would still reduce to com-
parisons of inclusion probabilities. Below we consider NT = NC = 1∕2 , though the 
choice of any NT = Nq,NC = N(1 − q) would be appropriate.

Following the calculations for general interference in Karwa and Airoldi (2018), 
the bias can be rewritten as: 

b = EZ[𝜏] − E[𝜏]

=

N∑

i=1

(
Ci(1)𝜋i(1) + 𝜋i(1, d

c
i
)Bi(d

c
i
) + 𝜋i(1, 0)Bi(0) +

∑

gi≠{0,d
c
i
}

𝜋i(1, gi)B(gi)

)

−

N∑

i=1

(
Ci(0)𝜋i(0) + 𝜋i(0, d

c
i
)Bi(d

c
i
) + 𝜋i(0, 0)Bi(0) +

∑

gi≠{0,d
c
i
}

𝜋i(0, gi)B(gi)

)

−

(
1

N

N∑

i=1

(Ci(1) + Bi(d
c
i
)) − (Ci(0) + Bi(0))

)

�i(1) =
1

NT

E
[
1[Zi = 1]

]
=

1

NT

ℙ(Zi = 1)

�i(0) =
1

NC

E
[
1[Zi = 0]

]
=

1

NC

ℙ(Zi = 0)

�i(1, gi) =
1

NT

E[1[Zi = 1,Gi = gi]] =
1

NT

ℙ(Zi = 1,Gi = gi)

�i(0, gi) =
1

NC

E[1[Zi = 0,Gi = gi]] =
1

NC

ℙ(Zi = 0,Gi = gi).

(5a)b =

N∑

i=1

Ci(1)

(
�i(1) −

1

N

)
− Ci(0)

(
�i(0) −

1

N

)

(5b)+

N∑

i=1

Bi(d
c
i
)

(
�i(1, d

c
i
) − �i(0, d

c
i
) −

1

N

)
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Above, gi ≠ {0, dc
i
} is equivalent to gi ∈ {1,… , (dc

i
− 1)} and thus indicates the 

set of all possible observed gi under our interference assumption except for those 
where either no within community neighbors are treated or those where all within 
community neighbors are treated. Anytime the assignment is different from (1, dc

i
) 

or (0, 0), estimation of the counterfactuals that contribute to the GATE suffer.
As a result, a design is needed where the probability of observing these 

is small. Below we show that CID leads to smaller bias than GCR. There are 
three components to the bias. The first part, Eq. 5a, can be controlled by choos-
ing a design that treats nodes with probability q = 0.5 . The second component, 
Eq. 5b, can also be controlled by the design: under community informed design, 
�CID
i

(0, dc
i
) = 0 since each individual belongs to a cluster within their own commu-

nity and must share treatment status with at least one of their within community 
neighbors. We can further control �CID

i
(1, dc

i
) which is given in Eq.  (6). In con-

trast, under GCR, we will show that �GCR
i

(0, dc
i
) ≥ 0 and �GCR

i
(1, dc

i
) ≤ �CID

i
(1, dc

i
) 

which leads to:

suggesting that CID reduces the impact of Eq. 5b.
To demonstrate the above, we consider GCR and CID with the 3-net clustering 

algorithm. Let dc
max

 denote the maximal within community degree across all 
nodes in A. Following from Ugander and Yin (2020), the network exposure prob-
abilities can be bounded for both designs. Tighter bounds are derived in the sup-
plement, however for simplicity, consider the worst case scenario. For community 
informed design, ℙ(Zi = 1,Gi = dc

i
) ≥

0.5

dc
max

×(1+dc
max

)
 . By assumption, to obtain 

�CID
i

(1, dc
i
) , we simply divide ℙ(Zi = 1,Gi = dc

i
) by N/2:

assuming that a node has at least 1 within community neighbor which is reasonable 
under assortative community structure.

Again, under CID when true communities are known, �CID
i

(0, dc
i
) = 0 and 

𝜋CID
i

(1, dc
i
) < 1∕N . However, we are not guaranteed that �GCR

i
(0, dc

i
) = 0 . Further, 

under GCR, ℙ(Zi = 1,Gi = dc
i
) ≥

0.5

dmax×(1+dmax)
 . Since dmax ≥ dc

max
 , these exposure 

probabilities under GCR are lower than that under our design. As a result, our 
design yields a probability closer to 1/N; therefore CID yields lower bias in the 
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second term. Also note, that under CID, given the higher values of 
ℙ(Zi = 1,Gi = dc

i
) and ℙ(Zi = 0,Gi = 0) , the probability of ending up with less 

desirable exposure is sufficiently reduced.
The last component of the bias calculation, Eq.  5c, contributes a fairly small 

amount to the total bias. Note that ideally �i(1, gi) should be large when gi ≈ dc
i
 and 

small otherwise. Similarly �i(0, gi) should be large when gi ≈ 0 and small otherwise. 
We show this empirically in Figure 3. If Bi(gi) is relatively flat in gi , this will lead to 
terms canceling in Eq. 5c. Alternatively, if Bi(gi) is increasing in gi , only the terms 
associated with large gi will contribute to the bias. While the exact ordering between 
GCR and CID depends on the Bi(gi) , due to the fact that ℙ(1, dc

i
) is larger for CID, 

we expect the contribution to the bias to be smaller under CID.

4 � Cost of estimating community labels

Thus far we have abstractly discussed the existence and identification of communi-
ties. Since these communities form the foundation of CID, it is crucial to understand 
how community label estimation impacts the design and GATE estimation. In this 
section, we derive the expected bias incurred for GATE estimation that is due to 
incorrectly estimating the community label of individuals in the first stage of the 
algorithm. Define a node, i, to have an incorrect community label when Ûi ≠ Ui up 
to permutation of the labels (estimated community label does not match the true 
community label). In order to explicitly derive the cost of mislabelled nodes we take 

Z
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0
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Fig. 3   Simulated ℙ(Zi, gi) over 4000 simulations. This figure demonstrates how community informed 
design puts higher probability on more desirable quantities
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a model assisted approach (Basse and Airoldi 2018; Särndal et al. 2003). Consider 
the following outcome model:

where � is a baseline effect, � is overall direct effect, Z is the treatment indicator 
vector, and � is a K × K matrix describing the effect of treated neighbors based on 
community membership and � represents individual variability. Further, A is the 
adjacency matrix of the network, generated from a stochastic blockmodel (SBM) 
(Holland et  al. 1983). Under the SBM, the probability of a connection between 
nodes i and j depends solely upon the community memberships of those nodes. For 
a SBM with K communities,

where U ∼ PU is again a N × K membership matrix drawn such that each row con-
tains one 1 indicating which community a node belongs to. Let Q be a K × K prob-
ability matrix describing the relations between communities where Q is param-
eterized by 2 probabilities, a and b, such that Aij|Ui,Uj ∼ Bern(a) if Ui = Uj or 
Aij|Ui,Uj ∼ Bern(b) if Ui ≠ Uj . We evaluate how well the GATE is estimated in a 
setting where Ui = Uj but Ûi ≠ Ûj.

Studying the effect of mislabelled nodes can be reduced to asking how close an 
observed Yi is to the actual counterfactual of interest.

It is important to note that only the neighborhood interference aspect of bias is 
impacted by mislabelled nodes. Thus the direct effect is ignored in this section. 
For example, when individual i is treated, we would want his or her true within 
community connections to also be treated, thus consider:

where the expectation is with respect to the model uncertainty and the design but 
conditioned on Û . Note that � denotes the diagonal elements of � . Now consider the 
situation when the label of node i is incorrectly estimated. Formally, let Tij be the 
event that Ui = Uj and Ûi ≠ Ûj . As such, the difference between the counterfactual 
and observed value for a misclassified treated node is equal to

(7)Yi = � + �Zi + [(U�UT)i,◦Ai,]Z
T + �i

(8)= � + �Zi +

N∑

j=1

Ui,�U
T

j,
× AijZj + �i,

Aij|Ui,Uj ∼ Bern(UT

i
QUj)

E[Yi(Z = 1) − Yi|Zi = 1]

= E[𝛾Ui

∑

j

Aij × 1[Ui = Uj] − 𝛾Ui

∑

j

Aij × 1[Ui = Uj] × Zj|Û]

E

[ N∑

j=1

AijZj�Ui1Tij

]
.
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Note that conditional on Tij , Aij is independent of Ui and Zi is independent of Zj . 
Hence, we can write:

where Pk is the probability that a node belongs to community k. Recall P[Zj|Tij] = q 
and P[Aij|Tij] = a . The probability of Tij depends heavily on the network structure 
and algorithm f (for label recovery). However, this probability can easily be repre-
sented in terms of the sizes of each community and the number of mislabelled nodes 
within each community. A full derivation of Eq. (9) is provided in the supplement. 
Let Dk be the number of mislabelled nodes in community k and Nk be the number of 
nodes in true community k. For K = 2:

ℙ(Tij) =
E[
∑2

k=1
(Nk−Dk)×2Dk]

N2
.

Details on ℙ(Tij) for general K can be found in the supplement along with empiri-
cal validation of Eq. (9). Note that if GCR is used instead of CID, this is equivalent 
to setting ℙ(Tij) = 1∕2 under the equal two community example (since this is the 
worst case performance for community detection).

5 � Simulations

We now demonstrate the empirical performance of our proposed design coupled 
with the difference in means estimator in several scenarios. Since community 
informed design generalizes GCR and independent assignment, we label the meth-
ods by the algorithm, h(⋅, ⋅) , used in step 3 of Algorithm 1. Throughout, we focus on 
comparing the following:

•	 Ind: Independent random assignment without regard for network structure.
•	 Eps-Net: Epsilon net that knows about network structure but does not know 

about communities (standard GCR as in Eckles et al. 2016).
•	 Community Eps-Net with True U : Performs epsilon net on each community 

sub-graph using ground truth community labels. 
•	 Community Eps-Net with Estimated U : Performs epsilon net on each commu-

nity sub-graph using estimated community labels.

While the main goal of this work is bias reduction, we also consider the potential 
for bias/variance trade-off. Results comparing the root mean squared error (RMSE) 
are given in the supplement. Consistently our methods maintain lower RMSE than 
standard GCR and independent randomization when the interference is community 
driven. In the main text of this section, we report the bias of the different approaches 
relative to the bias under independent assignment. This is defined as the average 
absolute bias for the difference in means estimator under a particular method divided 
by the average absolute bias obtained from independent randomization.

(9)E

[ N∑

j=1

AijZj�Ui1Tij

]
= ℙ(Tij) × N × a × q ×

K∑

k=1

�kPk
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In the first set of simulations (Sections 5.1, 5.2, 5.3) we concentrate on networks 
that have a true underlying community structure (whether or not that community 
structure is informative of the true interference). In Sections 5.4 and 5.5 we explore 
the behavior of our approach when there are no ground truth communities or when 
there might be a slight mismatch between the communities driving interference and 
the communities observed in the network.

For each distinct SBM specification, we simulate multiple networks and multiple 
randomization clusterings for each network. As a result, the fraction of nodes with 
incorrectly estimated labels acts as a proxy for the difficulty of community detection. 
To ensure that community aware designs that know the community structure remain 
consistent across the board (when interference is community driven), we keep the 
within community probabilities the same and only vary the across community prob-
abilities to make the community detection problem more difficult. Throughout we 
assume that the number of communities K is known apriori and so it does not need 
to be estimated. Since we include a spectrum of easy to difficult community detec-
tion problems in our simulations, these can also serve as a proxy for the ease of 
estimating the number of communities explicitly: when the problem is easy then 
K is easy to estimate and so does not warrant its own study; when the problem is 
hard then K is also hard to estimate (and would likely be under estimated due to the 
nature of community detection) and so CID would look more similar to GCR.

5.1 � Two communities

Throughout the simulation in this subsection we investigate networks with two 
ground truth communities. There are N = 1600 individuals in the SBM, split equally 
between the two communities. The probability of within community edges is set 
to 0.04, and we vary the probability of cross-community edges to demonstrate the 
behavior of our randomization as the community detection problem becomes more 
difficult. Outcomes are generated following Eqn (7). We consider three scenarios: 

1.	 Community interference: The true underlying interference mechanism for out-
comes is within community level interference. That is, a node is only influenced 
by the treatment of within community connections, and we let � = (20∕50, 40∕50)

.
2.	 Community agnostic interference: The true underlying interference mechanism 

for outcomes is full neighborhood level interference. That is, all neighbors influ-
ence a node equally, and we let � = (20∕50, 20∕50).

3.	 Anti community interference: The true underlying interference mechanism for 
outcomes is that individuals are only influenced by neighbors that do not share 
their community and thus � has a dis-assortative structure: 

The results are presented in Figures 4, 5, 6. The x−axis in these figures represents 
the difficulty of the community detection problem, measured in terms of the fraction 

� =

[
0 20∕50

40∕50 0

]
.
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of nodes assigned to the wrong community during the community detection step. 
Unsurprisingly, our proposed approach performs exceptionally well in the first sce-
nario (Figure 4) when either the true labels are known or the community detection 
task is easy. Importantly, as the community detection problem becomes more dif-
ficult, our proposed approach reduces to the standard GCR method. We also note 
that GCR appears to be not very sensitive to the changes in the network in this 
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Fig. 4   Results for community interference simulation. The x-axis is the average fraction of nodes with 
incorrectly estimated labels for a given regime. The y-axis is relative bias for the difference in means 
estimator for different designs compared to independent random assignment. Standard error bars are over 
2000 simulations
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Fig. 5   Results for community agnostic interference. The x-axis is the average fraction of nodes with 
incorrectly estimated labels for a given regime. The y-axis is relative bias for the difference in means 
estimator for different designs compared to independent random assignment. Standard error bars are over 
2000 simulations
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simulation; this is likely because the vast majority of edges in the network are within 
community (even when the community detection problem is more difficult), and so 
the changing network structures likely do not induce substantively different biases in 
estimation.

When there is community agnostic interference, Figure  5 shows that there are 
not many gains from the community detection step of CID. The difference between 
GCR and CID can likely be explained by the fact that there are substantially more 
within community edges than across community edges across the networks we study 
in this section and so most of the interference happens within a community.

Lastly, we see that our approach suffers substantially when the interference mech-
anism is completely misspecified (Figure 6). In this setting, the community interfer-
ence assumption is false and thus there is no reason to expect our design implemen-
tation to be successful. Similarly, we observe standard GCR performing similarly 
to the setting of community informed interference since it suffers from a symmetric 
misspecification (that some edges are less important than others).If the anti-commu-
nity interference phenomenon is known, our algorithm could be amended to only 
consider cross-community ties for selecting clusters. However, if CID is imple-
mented and the community detection problem is challenging, then we see that there 
is not a substantial loss in bias estimation.

5.2 � Community level average treatment effect

Since communities are likely influenced by treatment in different ways, consider 
community level treatment effects:
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Fig. 6   Results for anti-community interference. The x-axis is the average fraction of nodes with incor-
rectly estimated labels for a given regime. The y-axis is relative bias for the difference in means estima-
tor for different designs compared to independent random assignment. Standard error bars are over 2000 
simulations
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where Nk =
∑N

i=1
1[Uik = 1] . This quantity can be estimated using a difference in 

means estimator that only uses nodes in community k (whether those labels are 
learned or estimated). Through community informed design, these quantities are 
easily obtained. However, for the independent and standard GCR epsilon net meth-
ods, community information can only be leveraged after the experiment by partition-
ing outcomes by community labels. Figure 7 shows relative bias for estimating the 
community level treatment effects from the simulation with community interference 
in Section  5.1. From this experiment, again the benefits of community informed 
design are apparent.

5.3 � Varying number of communities

For the following simulation, consider performance for different values of K. Let N 
scale with the number of communities such that there are 250 nodes in each commu-
nity ( N = 250 × K ) and let � depend on K such that a sequence of length K is gener-
ated with values between 10/50 and 1. For generating the networks, define the SBM 
parameters to be a = 0.04 and b = 0.03∕(K − 1) . Note that N and b are dependent on 
K to maintain equal expected degree for the network, however slight variability in 
outcomes persists due to �.

Figure 8 shows that conditioning on communities is beneficial across values of K. 
The community detection problem becomes easier as N increases thus the method 
using estimated U matches that of true U for high K.

(10)�k =
1

Nk

N∑

i=1

[Yi(Z = 1) − Yi(Z = 0)]1[Uik = 1]

Comm. 1 Comm. 2

0.0 0.1 0.2 0.3 0.40.0 0.1 0.2 0.3 0.4

0.96

0.97

0.98

Fraction of Nodes with Incorrect Estimated Community

R
el

at
iv

e 
B

ia
s

Eps−Net Comm. Eps−Net: Est U Comm. Eps−Net: True U

Fig. 7   Relative bias for the difference in means estimator for different designs compared to independent 
random assignment  for community level treatment effect estimation over 2000 simulations reported in 
Section 5.2
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5.4 � No community structure or interference

Unlike the first three simulations, in this section we consider a network generative 
model that does not exhibit explicit community structure. Similarly, the outcome 
model relies on all edges in the network and so the community neighborhood inter-
ference assumption is violated. We follow the data generation procedure described 
in Ugander and Yin (2020) which uses small world networks and a multiplicative 
response model. Details of parameter specification are provided in the supplement. 
Again, since the underlying network model does not exhibit meaningful community 
structure, the estimated communities used in CID are themselves not relevant and 
so we do not expect any performance gains from using CID as opposed to stand-
ard GCR. Table 1 shows the output of the two approaches relative to independent 
design: the performance of community informed design with epsilon net nearly 
matches that of the non community informed version.
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Fig. 8   The y-axis is relative bias for the difference in means estimator for different designs compared to 
independent random assignment for varying K equally sized communities with standard error bars over 
2000 simulations per value of K 

Table 1   Results for the relative bias of epsilon-net and community informed design to independent 
assignment in the setting where there is no community structure or interference. Simulations are based 
on the response model from Section 6.2 of Ugander and Yin (2020). Standard errors (in parenthesis) are 
over 100 simulations. Parameter details are provided in the supplement

Peer influence Eps-Net Comm. Eps-Net: Est U

0.5 0.78 (0.01) 0.79 (0.01)
1 0.77 (0.01) 0.78 (0.01)
1.5 0.77 (0.01) 0.78 (0.01)
2 0.77 (0.00) 0.77 (0.01)
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5.5 � Potentially mismatched communities

Much of the work on network analysis has been driven by the study of student-stu-
dent networks (Hoff et al. 2013; Rienties and Nolan 2014; Mayer and Puller 2008; 
Sentse et al. 2014).

While grade levels and genders represent natural communities within a net-
work, it is not necessarily the case that these community labels are to be recov-
erable from observed in-school networks (Mathews and Volfovsky 2021). Moti-
vated by a recent collection of network-driven experiments on the impact of 
anti-bullying interventions (Paluck et  al. 2020, 2016) we leverage the observed 
networks and observed grade and gender labels for individuals in those networks 
to study the performance of our experimental design.

As part of the original data collection in Paluck et  al. (2016), students were 
asked to record up to 10 friends (for the purposes of this simulation we con-
sider undirected versions of these networks, making the observed degree slightly 
larger), making the problem of community detection substantially harder since 
the networks are censored. We study four schools with different sample sizes 
( N = 126, 104, 370, 530 ) and so for larger N the censoring makes the network 
appear sparser, again potentially affecting the performance of community detec-
tion and our proposed approach.

For each of the schools, outcomes are generated according to Eqn (7). Under 
this model, ground truth communities are defined as unique grade and gender 
pairs. That is, if two students share grade and gender, they share a community. 
Under this definition, we assume that interference in outcomes of students are 
only driven by the treatment of neighbors who share the same grade and gender. 
K is the count of unique gender-grade pairs in a particular school (ranging from 
4 to 6 depending on the grades within the school). Students with NA values for 
grade and/or gender are dropped from the data.

For each school the within community effect, � , is a vector of length K with 
values ranging from 0.4 to 1.6, and the direct effect is � = 1 . As shown in Table 2, 
leveraging community information reduces relative bias across all of the schools. 
However, we also note that the differences between standard GCR and commu-
nity informed methods are not always the same. For example, both Schools A 
and B are relatively small and we see that CID with estimated community labels 
nearly matches CID with true labels. On the other hand, we see the smallest 

Table 2   Relative bias for four schools from the middle school data set where outcomes are simulated 
based off of the true observed networks with standard error over 750 simulations. All standard errors 
were < 10

−2 and are omitted for clarity of notation

A B C D

Ind 6.57 8.65 7.21 7.96
Eps-Net 4.89 3.12 5.26 6.19
Comm. Eps-Net: Est U 3.82 1.83 4.65 6.03
Comm. Eps-Net: True U 3.49 1.88 4.19 5.11
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improvement between GCR and CID with estimated communities in School D 
which has the sparsest network, making the community detection problem the 
hardest.

6 � Discussion

This paper has proposed a new experimental design that leads to a reduction of 
bias of the naive difference-in-means estimator in the estimation of the global 
average treatment effect when interference is community driven. The approach 
improves on graph cluster randomization techniques by conditioning on the com-
munity structure of the graph (estimated or known) and provably reducing the 
fraction of low-quality randomizations. Importantly, the community interference 
assumption is meaningful in many applied settings, while realistic violations 
of it (such as non-within-community edges also leading to interference) do not 
lead to a substantive reduction in the quality of the proposed design. In settings 
where the community structure must be estimated from an observed network, we 
demonstrate both analytically and empirically that the improvement due to CID 
decreases as the community detection problem becomes more difficult, but this 
step does not lead to performance that is worse than naive graph cluster rand-
omization. Further, we demonstrate that when within and cross-community ties 
are influential, our method still improves estimation when community structure is 
present.

Network interference has been recognized as an important obstacle in experi-
mental design, leading to many recent advances. For example, Zhou et al. (2020) 
propose a cluster adaptive network testing procedure with a sequential cluster 
adaptive randomization and a cluster adjusted estimator for the average treatment 
effect. The proposed approach requires observing additional covariate informa-
tion on each of the individuals in the network. While this can improve the under-
lying clustering of the network, such data may be unavailable at times (such as 
when networks are elicited prior to experimentation) or latent community struc-
ture might not be correlated with observed covariates. Another recent approach 
proposes a cluster based regression adjustment that improves estimation of the 
GATE as well as testing for interference between individuals (Karrer et al. 2021). 
They show how tracking exposure to treatment can be used to further reduce vari-
ance in estimating the GATE but again rely heavily on the availability of addi-
tional side information about the individuals in the study.

Given the recent focus on covariates in the literature on community detection, 
it is a natural future direction to incorporate covariate information into the com-
munity informed design procedure. This can be done by incorporating covari-
ates into the community detection problem directly (Binkiewicz et al. 2017; Yan 
and Sarkar 2021; Shen et al. 2022) or by considering community detection as a 
component of a network regression problem (Mathews and Volfovsky 2021; Hoff 
2008). These approaches can further be coupled with post-hoc estimators that 
adjust for the potential community structure that may not have been accounted for 
during the design phase of an experiment.
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In addition to incorporating covariate information, alternative estimators such 
as the Horvitz-Thompson, Hajek and other inverse probability weighted estima-
tors can be used to address some bias concerns. This strategy has been leveraged 
in several causal inference with networks settings (Aronow and Samii 2017), 
including the works studying graph cluster randomization (Ugander et al. 2013; 
Eckles et al. 2016; Ugander and Yin 2020). We eschew these estimators in favor 
of the difference in means estimator because of a desire for an exceedingly simple 
to explain estimator, concerns of very small exposure probabilities (leading to 
large variances of estimators such as the Horvitz-Thompson) and the general dif-
ficulty in computing these exposure probabilities (with exact computation often 
being NP-hard). For example, Ugander and Yin (2020) use an order of magni-
tude more Monte Carlo samples as there are nodes in the network to compute the 
probabilities and still sometimes end up with relative errors that are order 0.1. 
Nonetheless, inverse weighting plays an important role in causal inference and 
may provide some robustness properties against misspecification of exposures 
(Sävje et al. 2021).

As we mention in the introduction and discuss in the simulation section, there 
are settings where the within-community interference assumption is inappropri-
ate. This suggests the need for data-driven adaptive designs that can first identify 
the type of interference and then implement an appropriate high quality experi-
mental design that targets that interference pattern specifically. One potential 
approach for settings where the population of interest is sufficiently large is to 
first perform a small pilot experiment to identify the type of interference within 
the network (e.g. whether community informed or anti-community informed) 
followed by a large scale, properly calibrated experiment on the larger popula-
tion. Identifying the type of interference can be achieved using exact testing or by 
imposing parametric assumptions on the potential outcomes (Athey et al. 2018; 
Puelz et al. 2019). These tests are have been shown to be powered against certain 
alternatives, but much work is still needed to properly identify the alternatives of 
interest in our settings and to fully analyze such adaptive data-driven designs.

Beyond studying the GATE, there is a great interest in the interference litera-
ture in estimands relating to a fraction of individuals being treated versus none at 
all or to estimating direct or indirect effects separately. This is usually addressed 
in the context of developing estimators but there is a dearth of literature on novel 
designs for such contexts. One of the complicating factors is that the same design 
rarely allows for high quality estimation of multiple estimands (Jagadeesan et al. 
2020). Our design is unfortunately no different since it targets the GATE specifi-
cally and, for example, would not be effective at estimating direct effects. Some 
strategies, such as potentially combining two stage randomization (Hudgens and 
Halloran 2008) with CID or GCR or studying marginalized estimands such as in 
Sävje et  al. (2021) appear promising in allowing us to expand the class of esti-
mands we can study using simple estimators as those used throughout this paper.
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