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Abstract

Network information has become a common feature of many modern experiments.
From vaccine efficacy studies to marketing for product adoption, stakeholders aim to
estimate global treatment effects — what happens if everyone in a network is treated
versus if no one is treated. Because individual outcomes are potentially influenced
by the treatments or behaviors of others in the network, experimental designs must
condition on the underlying network. Social networks frequently exhibit homophil-
ous community structure, meaning that individuals within observed or latent com-
munities are more similar to each. This observation motivates the development of
community aware experimental design. This design recognizes that information
between individuals likely flows along within community edges rather than across
community edges. We demonstrate that this design reduces the bias of a simple dif-
ference in means estimator, even when the community structure of the graph needs
to be estimated. Further, we show that as the community detection problem gets
more difficult or if the community structure does not affect the causal question, the
proposed design maintains its performance.

Keywords Networks - Causal inference - Community detection - A/B testing

1 Introduction

Across industries, experiments provide important evaluation of new hypotheses and
potential future directions (Kohavi et al. 2013; Xu et al. 2015). Whether it is testing
the efficacy of a new drug or evaluating a change in the output of an algorithm, the
quantity of interest must guide the experimental design. The classical experiment
considers individuals in a population and a set of potential outcomes for each indi-
vidual — these potential outcomes are indexed by treatments that might affect them.
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As such, an experiment between two alternative treatments (call them a treatment
arm and a control arm) will randomly assign individuals to each arm, with the goal
of quantifying a contrast between the potential outcomes of an individual had they
been assigned to treatment versus had they been assigned to control. This is opera-
tionalized by first specifying several simplifying assumptions (discussed in detail
below) about the causal process, specifying an estimand or quantity of interest and
an estimator. A general estimand that we will consider in this paper is the global
average treatment effect (GATE):

N
T =

1 — _ —
P [Y,(Z— D-Y2Z=0) (1)

where Z = (Z,, ..., Zy) is the vector of treatment assignments for all individuals in
the sample and Y;(Z) is the potential outcome for individual i under the assignment
vector Z. This estimand represents the difference in outcome had everyone in the
sample been treated versus not treated at the same time point. It is fairly clear that
without additional assumptions this quantity is not estimable from data since assign-
ing everyone to one of the arms of the experiment would not allow us to estimate
anything. A further complication is that the potential outcome is indexed by the full
vector of treatments — this suggests that an individual’s outcome might be affected
by a treatment that is assigned to someone else, a notion referred to as interference.

The GATE is of particular interest in settings where individuals are networked
since interference is likely. As a result, for GATE estimation, reasonable assump-
tions need to be made about how interference manifests in a network. The typical
assumption is that of neighborhood interference: an individual is assumed to be
impacted by his or her immediate neighbors and no one else (formally defined in
the next section). While this assumption accounts for the basic structure of the net-
work, it fails to account for other potentially influential features of the network. For
example, it is well established that not all connections between individuals in a net-
work are created equal and some ties are stronger or more influential than others.
For example, same gender ties among college students are more likely and yield
more meaningful connections than cross-gender ties in social media and face-to-face
contact (Igarashi et al. 2005). In what follows we formalize a new neighborhood
interference assumption that makes it clear that only those important connections
within a network lead to causal interference — this in turn suggests a novel design
that allows for better estimation of the GATE in this setting.

To fix notation, throughout, we will represent a network in terms of its adja-
cency matrix A: a binary N X N matrix where A; = 1 if individual i is connected
to individual j. A network can be directed or undirected (A; = A;;). Importantly, the
development in this article only requires knowledge of the network A and does not
assume access to any additional information about the individuals in the network.
As such, identifying “important” connections or edges in a network must be done by
simply looking at the adjacency matrix itself. To do this we concentrate on networks
that exhibit community structure and argue that within community connections are
more likely to lead to interference than cross-community connections. We discuss
the potential downsides of such assumptions in Section 1.2.
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Below we discuss several common simplifying causal assumptions and the
designs they motivate. We then formalize our own assumption that is motivated by
the literature on community influence in social networks and develop an experi-
mental design that can lead to high quality, yet easily interpretable estimates of the
GATE.

1.1 Classical assumptions and designs

The most common assumption in causal inference, termed the Stable Unit Treat-
ment Value Assumption (SUTVA) or individualistic treatment assignment, (Rubin
1990; Manski 1995), states that the treatment assigned to an individual can only
affect their potential outcome. Under SUTVA the GATE reduces to the standard
average treatment effect:

N

TATE = ]lv Z [Y,-(Z,- =D)-Y(Z = 0)]. 2)

This estimand motivates a very simple experimental design and estimation pro-
cedure: assign individuals to treatment independently, and estimate 7,5 using the
naive difference in means estimator,

N
t=r YZ——ZY(I Z,) 3)

where, for notational convenience, N, and N, are the fixed number of treated and
control individuals respectively.

Since we know that SUTVA is likely not a viable assumption in networked pop-
ulations, the literature has proposed several alternative assumptions that limit the
influence of treatments across the network according to some notion of distance
between individuals (Toulis and Kao 2013; Aronow and Samii 2017; Jagadeesan
et al. 2020; Sussman and Airoldi 2017; Sévje et al. 2021).

In particular, these Network or Neighborhood SUTVA type assumptions can be
written as follows: for treatment allocation vectors Z, Z’ with g,(Z) = g,(Z") we have
Y/(Z) = Y,(Z') where the function g,(z) extracts the components of the vector z that
relate to the individuals in the network who can interfere with unit i. For example,
the Neighborhood Interference assumption of Sussman and Airoldi (2017) and
Awan et al. (2020) takes g,(Z) = (Zl-, {Z, 1 A; = 1}) or the simplified neighborhood
exposure assumption takes g;(Z) = (Zi,z{j: A=) zZ > 0). Note that this class of
assumptions has been developed in order to study estimands that mimic 7, rather
than the more general GATE, and there is now a separate literature on different esti-
mation techniques that are agnostic to the experimental design (Aronow and Samii
2017; Savje 2021).

Some designs focus on only estimating the direct effect of treatment which results
in the goal of minimizing the impact of interference in the design. That is, consider
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how the GATE can be decomposed into a direct effect of treatment on an individual
and an effect of neighborhood influence. However, in direct effect estimation, only
the former is desired. When this is the goal, the design proposed below is sub-opti-
mal (unless direct and interference effects can easily be decoupled which is gener-
ally not true).

To obtain high quality estimates of the GATE, network aware experimental
design is crucial. A natural idea is to identify subsets of the network that are far
enough apart but that represent the interference pattern of the full network. Assign-
ing such subsets to treatment or control provides a particular view of the GATE.
This approach was formalized by Ugander et al. (2013) and Eckles et al. (2016) as
graph cluster randomization (GCR) .

Formally, the justification for these methods rests in the notion that within a
large network there are small sub-networks that are separated from each other by
sufficient network distance so as to not influence the treatment effect of individu-
als across them. Following this, graph cluster randomization approaches partition
the network into clusters using some type of clustering method (e.g. epsilon-net and
one-hop max in Ugander and Yin (2020)). Letting C(i) indicate the cluster that node
i is assigned to, each cluster is assigned to treatment with probability g. These meth-
ods lead to a provable reduction in bias and variance when compared to classic rand-
omization schemes. However, these experimental designs fail to leverage additional
network information.

1.2 Our approach: community interference assumptions and design

The previously used network interference assumptions effectively treat every edge
or connection in a network equivalently. That is, the presence of an edge implies
that interference must occur. However, not all connections are created equal (Aukett
et al. 1988; Staber 1993; Chamberlain et al. 2007; Bail et al. 2018), which should
be reflected in the design. Specifically, we consider the setting where individuals
belong to distinct communities and the probability of connections between two
individuals is only a function of their (likely unobserved) community membership.
To formalize notation, let individual i belong to one of K communities.It is natu-
ral to represent community membership as a K dimensional binary vector U; where
U, =1 if individual i belongs to community k and Zlel U, = 1. When the prob-
ability that individuals i and j have a connection or an edge between them is only a
function of U; and U, this fully specifies the stochastic block model (SBM), a type of
popular network model that has received a lot of attention due to its tractability and
success at describing real world networks (Holland et al. 1983; Abbe 2017; Adamic
and Glance 2005).

An important aspect of such networks is that they encode homophilous relation-
ships — individuals within the same community behave similarly towards oth-
ers both in terms of how they form connections (Lorrain and White 1971; White
et al. 1976; Holland et al. 1983; Faust and Wasserman 1992) and in terms of other
social processes. For example, non-romantic same sex and opposite sex friendships
exhibit community structure (Aukett et al. 1988). More importantly, edges within
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communities are special: same-sex edges are associated with greater sharing and
intimate activities. This would suggest that deploying a treatment (e.g. a pamphlet
for health screenings) within such communities would likely lead to interference
within the communities but not outside the communities. Similar differences have
been observed in an entrepreneurial setting (Staber 1993). Beyond that, it has been
observed that online (e-mail) and offline (phone, in person) communication are cor-
related among small social circles which again suggests that similarity within a
network may be associated with similar behaviors in other domains (Kossinets and
Watts 2006).

This framing motivates the definition of community network interference
where only individuals connected by within community edges can interfere with one
another. Formally, let

8i(Z) = (Z,‘, {Z, 1 A;=1and U, = Uj})’

be the community network interference function — for unit i it extracts the entries
of the treatment allocation vector belonging to i’s friends from within the same com-
munity. We say that the community network inteference assumption holds if for
treatment allocation vectors Z, Z' we have Y,(Z) = Y(Z')if g,(Z) = g,(Z)).

This assumption is stronger than the one made in the general neighborhood inter-
ference literature since it further restricts interference, but it is justifiable when treat-
ment is personal and local (e.g health or finances related) and community structure
is likely. For example, in Section 5, we base our simulations on network data from
an anti-bullying experiment in middle schools (Paluck et al. 2020, 2016), where
there are natural friendship communities (gender and grade) as well as possible
latent communities.

Designing a community aware mechanism for treatment assignment is thus cru-
cial to capture and balance community level differences while also accurately cap-
turing the impact of interference. In the following sections, we show how leverag-
ing community structure, either known or estimated, improves experimental design,
leading to better estimation of the GATE. As the community detection problem
becomes more challenging, our methods reduce to that of standard graph cluster
randomization.

Our proposed approach is as follows: identify the communities that exist in the
graph and perform randomized graph cluster randomization within these commu-
nities. There are thus two crucial steps in this design that can be notationally and
conceptually confusing: (1) identifying communities that inform which units share
behavior and (2) identifying design-relevant clusters which assist in randomizing
treatment. Both of these steps technically use forms of clustering algorithms. How-
ever, an important distinction between these is the existence of ground truth: When
we speak of community labels we are postulating that there exist true community
labels that we must try to estimate — these communities inform along which con-
nections interference will happen. As such, the quality of estimation of these com-
munities is important and so we discuss nodes with incorrectly estimated labels if
they are estimated to be in the wrong community. On the other hand, the clusters
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that are used to operationalize graph cluster randomization are purely technical arti-
facts and so there is no notion of ground truth.

Potential limitations and criticisms of the assumption. It is important to note that
we are particularly concerned with interference (the treatment of my friend affects
my outcome) rather than contagion (the outcome of my friend affects my outcome).
In contagious settings, such as when studying product adoption (Aral et al. 2009),
it has been documented that cross-community ties are crucial for broad adoption of
a product. Beyond this, the strength of weak ties has been touted as an important
avenue for economic mobility (Granovetter 1973; Aldrich and Dubini 1991), which
contrasts with our notion of important edges in a network. Importantly, such “weak”
edges are usually defined as cross-community edges with few mutual connections
and low interaction frequency (Rajkumar et al. 2022). A clear example of this is a
network with directed edges such as Twitter: low-status (regular) individuals may
follow high-status (influencer) individuals thus forming essentially two communities
where only one type of cross-community edges are important for interference. In
such a setting, treating a high status individual may lead to changes in the outcomes
of lower status individuals, but not the other way around. Evaluating or developing
trials on such networks using our proposed assumption would be inappropriate.

1.3 Paper outline

The rest of this manuscript is structured as follows: in the next section, we provide
a detailed outline of our proposed procedure. In Section 3 we characterize the bias
of the naive difference in means estimator under three designs: independent assign-
ment, GCR, and our proposed community informed design (CID). We demonstrate
both analytically and empirically why we expect our procedure to lead to a reduction
in bias under community driven interference. Section 4 describes the behavior of
our method when the first stage of the community detection problem becomes more
difficult. Section 5 showcases the empirical performance of our approach on sev-
eral simulated datasets (including under misspecification of the interference assump-
tion). We also implement our design using real network data.

2 Methods

We develop a procedure that yields a high quality design for conducting experiments
in networks with community structure. To illustrate this, Figure 1 shows examples
of clusters that will be assigned to treatment or control under community informed
design (left) versus standard GCR (right) on a network where nodes belong to one
of two communities, denoted by the shape of the node. Recall that for networks with
community interference, only within community ties are meaningful for GATE esti-
mation. As a result, clusters of all same community nodes are desirable. Red nodes
indicate that all nodes in a cluster belong to community 1 while blue indicates that
all nodes in a cluster belong to community 2. Purple nodes indicate that a cluster
contains nodes from both communities.
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Fig. 1 This figure shows two versions of the same network where each has a clustering design imple-
mented. The left plot shows example cluster assignments under community informed design while the
right shows standard graph cluster randomization. This network is generated from a 2 community sto-
chastic blockmodel. The true community labels are indicated by the node shape (triangles for community
1, circles for community 2). Red nodes indicate clusters where all nodes in a cluster are in community 1
whereas blue nodes indicate all nodes in a cluster are in community 2. Purple nodes indicate clusters that
have nodes from both community 1 and 2. Not all clusters are colored; hence why some nodes are gray

Notice that while standard GCR can produce clusters that fall into a single com-
munity, it also yields clusters that cross community boundaries. When these multi
community clusters exist, individuals are less likely to share treatment with their
within community neighbors. The consequences of this are explored in later sec-
tions. In contrast, community informed design guarantees that all clusters only con-
sist of same community nodes thus capturing the true underlying interference struc-
ture. This figure also illustrates the potential of our approach even if the community
structure is not informative of interference as the clusters identify potential GCR
clusters.

To implement our method, community informed design can be divided into three
main parts 1) estimate community labels 2) find clusters of closely connected indi-
viduals within community level sub-graphs and 3) perform randomization at the

Step 1: Step 2: Partition A Step 3: Run

Estimate H , network into s ... clustering algorithm

community subgraphs based . on each subgraph
off of estimated separately to get

community label

clusters for
treatment allocation

Fig.2 This figure is a visualization representation for steps 1-3 in Algorithm 1
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cluster level for treatment allocation. This process is summarized in Algorithm 1,
visually demonstrated in Figure 2, and each step is discussed in detail below.

Algorithm 1 Community Informed Design

INPUT:

Adjacency matrix A,

Number of communities K,
Community detection algorithm f(, -),
Clustering algorithm A(-, -),

Treatment assignment s(-)

OUTPUT: Z

1. Estimate community labels, U, using a community detection algorithm of choice, denoted
f(A, K). Specification of K a priori may not be necessary for all algorithms

2. Create a community induced sub-graph for each community based off of U that contains only
within community edges

3. Run a clustering algorithm of choice, denoted (A, ) ), on each sub-graph independently such
that each sub-graph is partitioned into clusters, Cy. This ensures that only nodes belonging to the
same community can be in the same cluster.

4. Assign treatment according to some design, s(Cy). This could denote a pairing design, randomi-
zation designs with covariate information, etc.

2.1 Estimating community labels

First consider the algorithm choice for community label recovery, f(A, K). An abun-
dance of algorithms exist in the literature for this task (Abbe 2017; Bhattacharyya
and Bickel 2014; Bruna and Li 2017; Rohe et al. 2011; Mathews et al. 2019; Blon-
del et al. 2008), any of which could be used here. However given the recent theoreti-
cal and empirical results in information theory and statistics, we implement spectral
methods (Krzakala et al. 2013; Reeves et al. 2019; Mayya and Reeves 2019). At a
high level, spectral based methods produce an embedding of the observed network
in a lower dimensional space using an eigen-decomposition of the adjacency matrix.
There are several (nearly equivalent) approaches for doing this. We implement one
from Rohe et al. (2011) that considers the normalized graph Laplacian, a summary
of the network that better captures clustering behavior, especially for sparse net-
works. This is defined as

L= D—I/ZAD—I/Z

where, D is a diagonal matrix of degrees in adjacency matrix A, with D;; = Zj Ay

Using a K dimensional eigen-decomposition, we write that L ~ VAV’ where K
represents the number of communities one expects to observe in the network (this
value can be adaptively chosen by considering the size of the non-zero eigenvalues
of L, otherwise known as identifying the eigenvalues that fall far from the ‘bulk’,
Krzakala et al. 2013). After the embedding, the k-means algorithm with multiple
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restarts is applied to the top K eigenvectors, V. The resulting labels are used to cre-
ate .

Throughout we assume that the number of communities K is known, but note
that this is not a limitation of the proposed approach, as the number of communi-
ties can be learned directly from the adjacency matrix. To address this we consider
simulations in Section 5 where the community detection problem with K known is
easier or harder — when it is easy then there is significant separation of the eigen-
values of the Graph Laplacian and so K can be easily identified from the data; when
it is harder then it would be similarly hard to estimate K from the adjacency matrix
and so performance of the procedure would be expected to suffer (Rohe et al. 2011;
Newman and Reinert 2016; Budel and Van Mieghem 2020; Geng et al. 2019). This
is addressed in the simulation section.

2.2 Determining clusters

After the labels are estimated, a community induced sub-graph is created for each
of the K communities. As a result, each sub-graph contains only within commu-
nity ties. For determining clusters for treatment, h(A, f/) is chosen to be the 3-net
(generically epsilon net) algorithm which is implemented on each sub-graph sepa-
rately. Unlike the previous step where the goal is to find ground truth communities
that define interference, the goal of this step is to find sets of closely connected indi-
viduals where each cluster is far from the other clusters. While community detection
algorithms used in the previous step could be used again, the goals of the previous
and current step differ, and, as such, different algorithms are better suited for each
task. For example, in Eckles et al. (2016) the authors report that performing this step
with the Louvain algorithm (Blondel et al. 2008) simulataneously results in large
variance increases and large bias decreases as compared to the 3-net algorithm.

We use 3-net due to its positive performance in the literature as demonstrated
in Ugander and Yin (2020). Further, this algorithm is equipped with useful theo-
retical properties for estimating network exposure probabilities that are leveraged
in later sections. At a high level, 3-net clustering generates a random ordering of all
nodes in the graph. Based on this ordering, a maximal distance 3 hop independent
set is created, and the nodes in this set are called seed nodes. The number of seed
nodes determines the number of clusters that will exist in the experiment. Each node
is assigned to its closest seed node based off of minimal graph distance, and these
assignments then form clusters. Since the seed nodes are guaranteed to be network
exposed to either control or treatment, this algorithm makes estimation of exposure
probabilities plausible through Monte Carlo simulation. Ugander et al. (2013) dem-
onstrate the theoretical and empirical properties of 3-net GCR which we adapt to our
community informed design. An explicit outline of the implementation of the com-
munity epsilon net is in the supplement.
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2.3 Randomization of clusters

Finally, for this work, s(Cy)) is defined to be independent cluster level randomization
where each cluster is treated with probability g = 0.5. However, this randomization
scheme can be altered depending on the desired estimand or if the design has con-
straints on randomization schema.

Note that community informed design generalizes other discussed methods. If com-
munity labels are known, Algorithm 1 can be adjusted such that U = U and thus step 1
can be skipped. Also, when K = 1, Algorithm 1 reduces to standard graph cluster rand-
omization, and further, if K = 1 and the number of clusters is set to N then Algorithm 1
becomes standard independent randomization.

3 Bias reduction

For the theoretical development in this section we will consider a further restriction on
the community network interference assumption by assuming that each within commu-
nity friend contributes equally and so the amount of interference is summarized by the
total number of within community friends of i who are treated. As such, let
&= JEN: Z; (where N7 is the neighborhood of within community neighbors of i) and

so in a slight abuse of notation we have g,(Z) = (Z,, g;), allowing us to write the poten-
tial outcome as Y;(Z;, g;). Under this assumption, the potential outcomes can be decom-
posed as Y;(Z;, g;) = Ci(Z;) + B;(g;) (this decomposition has been used when studying
interference in e.g. Karwa and Airoldi (2018), Sussman and Airoldi (2017), and
Jagadeesan et al. (2020)). Here Y;(1, g;) — ¥;(0, g;) = C;(1) — C;(0) can be interpreted
as the direct effect when keeping g, constant. Similarly, B;(g,) relates to the difference
in potential outcomes of the indirect effect when holding the treatment of individual i
constant. The true GATE, z, is then equal to:

N
]l\, > [(C,-(l) +B,(d)) — (Ci(0) + Bi(O))] 4)
i=1

where d is the number of within community neighbors of node i.
The derivation for the expectation of the estimator, 7, then follows as:

_ N N
1 1
E,[t1=E, | — YZ — — Y(1 -2
Z[ ] VA _NT g i NC lzzl z( z)]
_ | N 1 N
=E,|— Y(l,8)Z; — — Y(0,g)(1 - Zi)]
z | N ; Ne ;

_ N N
1 1
=E, ;2 (C1) + Big))Z; — o ; (C(0) + By(g)) (1 — z,.)].

The bias can then be written as:
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b = E,[#] — E[r]
N

- <C,-(1)7z,.(1) + m(1.d)BLd) + m(1,OBO) + Y m(l, g[)B(gl-)>
1

g#{0.d7}

™=

1l
—_

<ci<0)ni(0)+n,-(0,d;‘>Bi(d§>+n,.<o,0)3i(0)+ Y, gi)B(gi)>
&i#{0.d;}

N
1 c
- ( 5 ;(c,-a) + B(d)) = (CA0) + B,»<0>>>
where we define the following weights as:

z(l) = NLE[MZ. =1]] = Nip(z,. =1)

1

T T
7,(0) = NLE[JL[Z,. =0]] = Nium(zl. =0)
C C

and
mi(1 )—iE[Jl[Z—l G, = ]]—lum(z—l G, =g)
i ’gl_NT [ l_gl _NT [ l_gl
1 1
7(0,8) = —E[L[Z; =0,G; = gll = ——P(Z; =0,G; = g)).
N Ne

The values of the above weights are determined by the chosen design and accom-
panying interference assumptions. Note that for ease of exposition we treat N, and
N as fixed quantities. Treating them as fixed is not an overly unrealistic or stringent
assumption: in sufficiently large networks where within community degree is con-
centrated, the clusters will largely have the same number of individuals, meaning
that knowing the probability of assignment will also provide explicit knowledge of
N; and N under complete or paired randomizations. We further note that it is rea-
sonable to expect N to be approximately the same under the different designs we
consider (CID and GCR) and so the calculations below would still reduce to com-
parisons of inclusion probabilities. Below we consider N = N, = 1/2, though the
choice of any N = Ng, N~ = N(1 — g) would be appropriate.

Following the calculations for general interference in Karwa and Airoldi (2018),
the bias can be rewritten as:

N
b= Zl, Ci(1)<”i(1) - 1%,) - C(0) <7Ti(0) - %) (5a)

N
+ ZB,»(df)<7r,-(l,d§) - 7,0,d;) — %) (5b)

i=1
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N
+> ) B[(gi)<ni(1,gi>—n,»(o,g»). (5¢)

i=1 g;#{0.d°)

Above, g; # {0, df} is equivalent to g; € {1, ... ,(d[.C — 1)} and thus indicates the
set of all possible observed g; under our interference assumption except for those
where either no within community neighbors are treated or those where all within
community neighbors are treated. Anytime the assignment is different from (1, d})
or (0, 0), estimation of the counterfactuals that contribute to the GATE suffer.

As a result, a design is needed where the probability of observing these
is small. Below we show that CID leads to smaller bias than GCR. There are
three components to the bias. The first part, Eq. 5a, can be controlled by choos-
ing a design that treats nodes with probability ¢ = 0.5. The second component,
Eq. 5b, can also be controlled by the design: under community informed design,
n[CID(O, d?) = 0 since each individual belongs to a cluster within their own commu-
nity and must share treatment status with at least one of their within community
neighbors. We can further control 7&(1,d") which is given in Eq. (6). In con-
trast, under GCR, we will show that niGCR(O, d?) > 0 and niGCR(l, d?) < ﬂ'l.C[D (1,d7)
which leads to:

N
Z By(d) <nf’D(1, d°) — zEP(0,d) — %}) ‘ <
i=1

N
Y B <nfc’*(1, de) — 790, d5)) - }V> ‘
i=1

suggesting that CID reduces the impact of Eq. 5b.

To demonstrate the above, we consider GCR and CID with the 3-net clustering
algorithm. Let d¢  denote the maximal within community degree across all
nodes in A. Following from Ugander and Yin (2020), the network exposure prob-
abilities can be bounded for both designs. Tighter bounds are derived in the sup-
plement, however for simplicity, consider the worst case scenario. For community

informed design, P(Z; =1,G; =df) > %. By assumption, to obtain

max

7P(1,dS), we simply divide P(Z; = 1,G, = d°) by N/2:
1

<zPLdy < L <L
N x(vd = b Say sy ©)

max

assuming that a node has at least 1 within community neighbor which is reasonable
under assortative community structure.
Again, under CID when true communities are known, friCID 0, di”) =0 and

7P(1,d) < 1/N. However, we are not guaranteed that 7°%(0,d¢) = 0. Further,
under GCR, P(Z; =1,G,; = df) > dL. Since d,,,, > d¢ . these exposure

x(1+d max —

ax max)

probabilities under GCR are lower than that under our design. As a result, our
design yields a probability closer to 1/N; therefore CID yields lower bias in the
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second term. Also note, that under CID, given the higher values of
P(Z;,=1,G;=d}) and P(Z; = 0,G; = 0), the probability of ending up with less
desirable exposure is sufficiently reduced.

The last component of the bias calculation, Eq. Sc, contributes a fairly small
amount to the total bias. Note that ideally x;(1, g;) should be large when g; ~ d; and
small otherwise. Similarly 7;(0, g;) should be large when g; ~ 0 and small otherwise.
We show this empirically in Figure 3. If B,(g;) is relatively flat in g;, this will lead to
terms canceling in Eq. 5c. Alternatively, if B;(g;) is increasing in g;, only the terms
associated with large g; will contribute to the bias. While the exact ordering between
GCR and CID depends on the B;(g;), due to the fact that (1, dY) is larger for CID,
we expect the contribution to the bias to be smaller under CID.

4 Cost of estimating community labels

Thus far we have abstractly discussed the existence and identification of communi-
ties. Since these communities form the foundation of CID, it is crucial to understand
how community label estimation impacts the design and GATE estimation. In this
section, we derive the expected bias incurred for GATE estimation that is due to
incorrectly estimating the community label of individuals in the first stage of the
algorithm. Define a node, 7, to have an incorrect community label when U ;#ZU;up
to permutation of the labels (estimated community label does not match the true
community label). In order to explicitly derive the cost of mislabelled nodes we take

il
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Fig.3 Simulated P(Z;, g;) over 4000 simulations. This figure demonstrates how community informed
design puts higher probability on more desirable quantities
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a model assisted approach (Basse and Airoldi 2018; Sérndal et al. 2003). Consider
the following outcome model:

Y, =a+ BZ + [(UTU"); 0A,1Z" + ¢, (7)
N

=a+pZ+ ) U,TU XAZ; +e, ®)
j=1

where « is a baseline effect, f§ is overall direct effect, Z is the treatment indicator
vector, and I is a K X K matrix describing the effect of treated neighbors based on
community membership and e represents individual variability. Further, A is the
adjacency matrix of the network, generated from a stochastic blockmodel (SBM)
(Holland et al. 1983). Under the SBM, the probability of a connection between
nodes i and j depends solely upon the community memberships of those nodes. For
a SBM with K communities,

T
AU, U; ~ Bern(U; QU;)

where U ~ Py is again a N X K membership matrix drawn such that each row con-
tains one 1 indicating which community a node belongs to. Let Q be a K X K prob-
ability matrix describing the relations between communities where Q is param-
eterized by 2 probabilities, a and b, such that Ag/|Ui» Uj ~ Bern(a) if U; = Uj or
A;\U, U; ~ Bern(b) if U; # U;. We evaluate how well the GATE is estimated in a
setting where U; = Uj but lA]i * ﬁj.

Studying the effect of mislabelled nodes can be reduced to asking how close an
observed Y, is to the actual counterfactual of interest.

It is important to note that only the neighborhood interference aspect of bias is
impacted by mislabelled nodes. Thus the direct effect is ignored in this section.
For example, when individual i is treated, we would want his or her true within
community connections to also be treated, thus consider:

E[Y(Z=1)-Y,|Z =1]
= E[yU; )| Ay x 1[U; = U1 = yU; ) Ay X 1[U; = U1 X Z| U]
j J

where the expectation is with respect to the model uncertainty and the design but
conditioned on U. Note that y denotes the diagonal elements of I'. Now consider the
situation when the label of node i is incorrectly estimated. Formally, let T}; be the

event that U; = U; and U, + 17 ;- As such, the difference between the counterfactual
and observed value for a misclassified treated node is equal to

N
E [ ZAUijU,-]lT”] :
j=1
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Note that conditional on T

;» A;; 1s independent of U; and Z, is independent of Z;.
Hence, we can write:

N K
E[ZAUijUiILTU_] =P(T)XNXxaxqgx Y nP, 9)
=1 k=1

where Py is the probability that a node belongs to community k. Recall P[Z;|T;] = g
and P[A;|T;] = a. The probability of T;; depends heavily on the network structure
and algorithm f (for label recovery). However, this probability can easily be repre-
sented in terms of the sizes of each community and the number of mislabelled nodes
within each community. A full derivation of Eq. (9) is provided in the supplement.
Let D, be the number of mislabelled nodes in community k and N, be the number of
nodes in true community k. For K = 2:

P(Ty) = E[ZLI(N;,V—ZDA)xsz].

Details on P(T}) for general K can be found in the supplement along with empiri-
cal validation of Eq. (9). Note that if GCR is used instead of CID, this is equivalent
to setting P(T;;) = 1/2 under the equal two community example (since this is the

worst case performance for community detection).

5 Simulations

We now demonstrate the empirical performance of our proposed design coupled
with the difference in means estimator in several scenarios. Since community
informed design generalizes GCR and independent assignment, we label the meth-
ods by the algorithm, A(:, -), used in step 3 of Algorithm 1. Throughout, we focus on
comparing the following:

e Ind: Independent random assignment without regard for network structure.

e Eps-Net: Epsilon net that knows about network structure but does not know
about communities (standard GCR as in Eckles et al. 2016).

e Community Eps-Net with True U : Performs epsilon net on each community
sub-graph using ground truth community labels.

e Community Eps-Net with Estimated U : Performs epsilon net on each commu-
nity sub-graph using estimated community labels.

While the main goal of this work is bias reduction, we also consider the potential
for bias/variance trade-off. Results comparing the root mean squared error (RMSE)
are given in the supplement. Consistently our methods maintain lower RMSE than
standard GCR and independent randomization when the interference is community
driven. In the main text of this section, we report the bias of the different approaches
relative to the bias under independent assignment. This is defined as the average
absolute bias for the difference in means estimator under a particular method divided
by the average absolute bias obtained from independent randomization.
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In the first set of simulations (Sections 5.1, 5.2, 5.3) we concentrate on networks
that have a true underlying community structure (whether or not that community
structure is informative of the true interference). In Sections 5.4 and 5.5 we explore
the behavior of our approach when there are no ground truth communities or when
there might be a slight mismatch between the communities driving interference and
the communities observed in the network.

For each distinct SBM specification, we simulate multiple networks and multiple
randomization clusterings for each network. As a result, the fraction of nodes with
incorrectly estimated labels acts as a proxy for the difficulty of community detection.
To ensure that community aware designs that know the community structure remain
consistent across the board (when interference is community driven), we keep the
within community probabilities the same and only vary the across community prob-
abilities to make the community detection problem more difficult. Throughout we
assume that the number of communities K is known apriori and so it does not need
to be estimated. Since we include a spectrum of easy to difficult community detec-
tion problems in our simulations, these can also serve as a proxy for the ease of
estimating the number of communities explicitly: when the problem is easy then
K is easy to estimate and so does not warrant its own study; when the problem is
hard then K is also hard to estimate (and would likely be under estimated due to the
nature of community detection) and so CID would look more similar to GCR.

5.1 Two communities

Throughout the simulation in this subsection we investigate networks with two
ground truth communities. There are N = 1600 individuals in the SBM, split equally
between the two communities. The probability of within community edges is set
to 0.04, and we vary the probability of cross-community edges to demonstrate the
behavior of our randomization as the community detection problem becomes more
difficult. Outcomes are generated following Eqn (7). We consider three scenarios:

1. Community interference: The true underlying interference mechanism for out-
comes is within community level interference. That is, a node is only influenced
by the treatment of within community connections, and we lety = (20/50,40/50)

2. Community agnostic interference: The true underlying interference mechanism
for outcomes is full neighborhood level interference. That is, all neighbors influ-
ence a node equally, and we let y = (20/50,20/50).

3. Anti community interference: The true underlying interference mechanism for
outcomes is that individuals are only influenced by neighbors that do not share
their community and thus I' has a dis-assortative structure:

[ o 20/50
F‘[40/50 0 ]

The results are presented in Figures 4, 5, 6. The x—axis in these figures represents
the difficulty of the community detection problem, measured in terms of the fraction
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Fig.4 Results for community interference simulation. The x-axis is the average fraction of nodes with
incorrectly estimated labels for a given regime. The y-axis is relative bias for the difference in means
estimator for different designs compared to independent random assignment. Standard error bars are over
2000 simulations
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Fig.5 Results for community agnostic interference. The x-axis is the average fraction of nodes with
incorrectly estimated labels for a given regime. The y-axis is relative bias for the difference in means
estimator for different designs compared to independent random assignment. Standard error bars are over

2000 simulations

of nodes assigned to the wrong community during the community detection step.
Unsurprisingly, our proposed approach performs exceptionally well in the first sce-
nario (Figure 4) when either the true labels are known or the community detection
task is easy. Importantly, as the community detection problem becomes more dif-
ficult, our proposed approach reduces to the standard GCR method. We also note
that GCR appears to be not very sensitive to the changes in the network in this
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Fig.6 Results for anti-community interference. The x-axis is the average fraction of nodes with incor-
rectly estimated labels for a given regime. The y-axis is relative bias for the difference in means estima-
tor for different designs compared to independent random assignment. Standard error bars are over 2000
simulations

simulation; this is likely because the vast majority of edges in the network are within
community (even when the community detection problem is more difficult), and so
the changing network structures likely do not induce substantively different biases in
estimation.

When there is community agnostic interference, Figure 5 shows that there are
not many gains from the community detection step of CID. The difference between
GCR and CID can likely be explained by the fact that there are substantially more
within community edges than across community edges across the networks we study
in this section and so most of the interference happens within a community.

Lastly, we see that our approach suffers substantially when the interference mech-
anism is completely misspecified (Figure 6). In this setting, the community interfer-
ence assumption is false and thus there is no reason to expect our design implemen-
tation to be successful. Similarly, we observe standard GCR performing similarly
to the setting of community informed interference since it suffers from a symmetric
misspecification (that some edges are less important than others).If the anti-commu-
nity interference phenomenon is known, our algorithm could be amended to only
consider cross-community ties for selecting clusters. However, if CID is imple-
mented and the community detection problem is challenging, then we see that there
is not a substantial loss in bias estimation.

5.2 Community level average treatment effect

Since communities are likely influenced by treatment in different ways, consider
community level treatment effects:
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N
1
W= ;[Yi(Z =1)=Y(Z =0)]1[U, = 1] (10)

where N, = Zil 1[Uy = 1]. This quantity can be estimated using a difference in
means estimator that only uses nodes in community k (whether those labels are
learned or estimated). Through community informed design, these quantities are
easily obtained. However, for the independent and standard GCR epsilon net meth-
ods, community information can only be leveraged after the experiment by partition-
ing outcomes by community labels. Figure 7 shows relative bias for estimating the
community level treatment effects from the simulation with community interference
in Section 5.1. From this experiment, again the benefits of community informed
design are apparent.

5.3 Varying number of communities

For the following simulation, consider performance for different values of K. Let N
scale with the number of communities such that there are 250 nodes in each commu-
nity (N =250 X K) and let y depend on K such that a sequence of length K is gener-
ated with values between 10/50 and 1. For generating the networks, define the SBM
parameters to be a = 0.04 and b = 0.03/(K — 1). Note that N and b are dependent on
K to maintain equal expected degree for the network, however slight variability in
outcomes persists due to y.

Figure 8 shows that conditioning on communities is beneficial across values of K.
The community detection problem becomes easier as N increases thus the method
using estimated U matches that of true U for high K.

Comm. 1 Comm. 2

Relative Bias
o
[(]
~N

0.96 Ix—x/:E/{ h/k/,l

0.0 0.1 0.2 0.3 0.40.0 0.1 0.2 0.3 0.4

Fraction of Nodes with Incorrect Estimated Community
e Eps—Net + Comm. Eps—-Net: Est U # Comm. Eps—Net: True U

Fig. 7 Relative bias for the difference in means estimator for different designs compared to independent

random assignment for community level treatment effect estimation over 2000 simulations reported in
Section 5.2
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Fig.8 The y-axis is relative bias for the difference in means estimator for different designs compared to
independent random assignment for varying K equally sized communities with standard error bars over
2000 simulations per value of K

5.4 No community structure or interference

Unlike the first three simulations, in this section we consider a network generative
model that does not exhibit explicit community structure. Similarly, the outcome
model relies on all edges in the network and so the community neighborhood inter-
ference assumption is violated. We follow the data generation procedure described
in Ugander and Yin (2020) which uses small world networks and a multiplicative
response model. Details of parameter specification are provided in the supplement.
Again, since the underlying network model does not exhibit meaningful community
structure, the estimated communities used in CID are themselves not relevant and
so we do not expect any performance gains from using CID as opposed to stand-
ard GCR. Table 1 shows the output of the two approaches relative to independent
design: the performance of community informed design with epsilon net nearly
matches that of the non community informed version.

Table 1 Results for the relative bias of epsilon-net and community informed design to independent
assignment in the setting where there is no community structure or interference. Simulations are based
on the response model from Section 6.2 of Ugander and Yin (2020). Standard errors (in parenthesis) are
over 100 simulations. Parameter details are provided in the supplement

Peer influence Eps-Net Comm. Eps-Net: Est U
0.5 0.78 (0.01) 0.79 (0.01)
1 0.77 (0.01) 0.78 (0.01)
1.5 0.77 (0.01) 0.78 (0.01)
2 0.77 (0.00) 0.77 (0.01)
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5.5 Potentially mismatched communities

Much of the work on network analysis has been driven by the study of student-stu-
dent networks (Hoff et al. 2013; Rienties and Nolan 2014; Mayer and Puller 2008;
Sentse et al. 2014).

While grade levels and genders represent natural communities within a net-
work, it is not necessarily the case that these community labels are to be recov-
erable from observed in-school networks (Mathews and Volfovsky 2021). Moti-
vated by a recent collection of network-driven experiments on the impact of
anti-bullying interventions (Paluck et al. 2020, 2016) we leverage the observed
networks and observed grade and gender labels for individuals in those networks
to study the performance of our experimental design.

As part of the original data collection in Paluck et al. (2016), students were
asked to record up to 10 friends (for the purposes of this simulation we con-
sider undirected versions of these networks, making the observed degree slightly
larger), making the problem of community detection substantially harder since
the networks are censored. We study four schools with different sample sizes
(N =126,104,370,530) and so for larger N the censoring makes the network
appear sparser, again potentially affecting the performance of community detec-
tion and our proposed approach.

For each of the schools, outcomes are generated according to Eqn (7). Under
this model, ground truth communities are defined as unique grade and gender
pairs. That is, if two students share grade and gender, they share a community.
Under this definition, we assume that interference in outcomes of students are
only driven by the treatment of neighbors who share the same grade and gender.
K is the count of unique gender-grade pairs in a particular school (ranging from
4 to 6 depending on the grades within the school). Students with NA values for
grade and/or gender are dropped from the data.

For each school the within community effect, y, is a vector of length K with
values ranging from 0.4 to 1.6, and the direct effect is § = 1. As shown in Table 2,
leveraging community information reduces relative bias across all of the schools.
However, we also note that the differences between standard GCR and commu-
nity informed methods are not always the same. For example, both Schools A
and B are relatively small and we see that CID with estimated community labels
nearly matches CID with true labels. On the other hand, we see the smallest

Table 2 Relative bias for four schools from the middle school data set where outcomes are simulated
based off of the true observed networks with standard error over 750 simulations. All standard errors
were < 1072 and are omitted for clarity of notation

A B C D
Ind 6.57 8.65 7.21 7.96
Eps-Net 4.89 3.12 5.26 6.19
Comm. Eps-Net: Est U 3.82 1.83 4.65 6.03
Comm. Eps-Net: True U 3.49 1.88 4.19 5.11
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improvement between GCR and CID with estimated communities in School D
which has the sparsest network, making the community detection problem the
hardest.

6 Discussion

This paper has proposed a new experimental design that leads to a reduction of
bias of the naive difference-in-means estimator in the estimation of the global
average treatment effect when interference is community driven. The approach
improves on graph cluster randomization techniques by conditioning on the com-
munity structure of the graph (estimated or known) and provably reducing the
fraction of low-quality randomizations. Importantly, the community interference
assumption is meaningful in many applied settings, while realistic violations
of it (such as non-within-community edges also leading to interference) do not
lead to a substantive reduction in the quality of the proposed design. In settings
where the community structure must be estimated from an observed network, we
demonstrate both analytically and empirically that the improvement due to CID
decreases as the community detection problem becomes more difficult, but this
step does not lead to performance that is worse than naive graph cluster rand-
omization. Further, we demonstrate that when within and cross-community ties
are influential, our method still improves estimation when community structure is
present.

Network interference has been recognized as an important obstacle in experi-
mental design, leading to many recent advances. For example, Zhou et al. (2020)
propose a cluster adaptive network testing procedure with a sequential cluster
adaptive randomization and a cluster adjusted estimator for the average treatment
effect. The proposed approach requires observing additional covariate informa-
tion on each of the individuals in the network. While this can improve the under-
lying clustering of the network, such data may be unavailable at times (such as
when networks are elicited prior to experimentation) or latent community struc-
ture might not be correlated with observed covariates. Another recent approach
proposes a cluster based regression adjustment that improves estimation of the
GATE as well as testing for interference between individuals (Karrer et al. 2021).
They show how tracking exposure to treatment can be used to further reduce vari-
ance in estimating the GATE but again rely heavily on the availability of addi-
tional side information about the individuals in the study.

Given the recent focus on covariates in the literature on community detection,
it is a natural future direction to incorporate covariate information into the com-
munity informed design procedure. This can be done by incorporating covari-
ates into the community detection problem directly (Binkiewicz et al. 2017; Yan
and Sarkar 2021; Shen et al. 2022) or by considering community detection as a
component of a network regression problem (Mathews and Volfovsky 2021; Hoff
2008). These approaches can further be coupled with post-hoc estimators that
adjust for the potential community structure that may not have been accounted for
during the design phase of an experiment.
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In addition to incorporating covariate information, alternative estimators such
as the Horvitz-Thompson, Hajek and other inverse probability weighted estima-
tors can be used to address some bias concerns. This strategy has been leveraged
in several causal inference with networks settings (Aronow and Samii 2017),
including the works studying graph cluster randomization (Ugander et al. 2013;
Eckles et al. 2016; Ugander and Yin 2020). We eschew these estimators in favor
of the difference in means estimator because of a desire for an exceedingly simple
to explain estimator, concerns of very small exposure probabilities (leading to
large variances of estimators such as the Horvitz-Thompson) and the general dif-
ficulty in computing these exposure probabilities (with exact computation often
being NP-hard). For example, Ugander and Yin (2020) use an order of magni-
tude more Monte Carlo samples as there are nodes in the network to compute the
probabilities and still sometimes end up with relative errors that are order 0.1.
Nonetheless, inverse weighting plays an important role in causal inference and
may provide some robustness properties against misspecification of exposures
(Sévje et al. 2021).

As we mention in the introduction and discuss in the simulation section, there
are settings where the within-community interference assumption is inappropri-
ate. This suggests the need for data-driven adaptive designs that can first identify
the type of interference and then implement an appropriate high quality experi-
mental design that targets that interference pattern specifically. One potential
approach for settings where the population of interest is sufficiently large is to
first perform a small pilot experiment to identify the type of interference within
the network (e.g. whether community informed or anti-community informed)
followed by a large scale, properly calibrated experiment on the larger popula-
tion. Identifying the type of interference can be achieved using exact testing or by
imposing parametric assumptions on the potential outcomes (Athey et al. 2018;
Puelz et al. 2019). These tests are have been shown to be powered against certain
alternatives, but much work is still needed to properly identify the alternatives of
interest in our settings and to fully analyze such adaptive data-driven designs.

Beyond studying the GATE, there is a great interest in the interference litera-
ture in estimands relating to a fraction of individuals being treated versus none at
all or to estimating direct or indirect effects separately. This is usually addressed
in the context of developing estimators but there is a dearth of literature on novel
designs for such contexts. One of the complicating factors is that the same design
rarely allows for high quality estimation of multiple estimands (Jagadeesan et al.
2020). Our design is unfortunately no different since it targets the GATE specifi-
cally and, for example, would not be effective at estimating direct effects. Some
strategies, such as potentially combining two stage randomization (Hudgens and
Halloran 2008) with CID or GCR or studying marginalized estimands such as in
Savje et al. (2021) appear promising in allowing us to expand the class of esti-
mands we can study using simple estimators as those used throughout this paper.
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