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ABSTRACT

We report our recent progress in the generation and verification of a transverse-mode Bell state using spontaneous
four-wave mixing in a few-mode polarization-maintaining fiber. Utilizing spatial light modulators, we show
control over individual four-wave mixing processes through precise beam shaping of the pump transverse mode
and verify entanglement via quantum state tomography. We discuss challenges in temporal and frequency
distinguishability and illustrate how they can be resolved. This work represents a first step towards creating a
versatile fiber-based transverse mode-entangled photon-pair source matched to fiber infrastructure.
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1. INTRODUCTION

The innate high-dimensionality of the transverse mode degree of freedom of photon pairs can be used to enhance
quantum information capacity and for diverse quantum applications such as quantum computation1 and quantum
key distribution.2 Optical fibers3 are appealing for building such spatial mode-entangled sources due to their
capability for smooth integration with existing fiber technology, the existence of well-developed multiplexing
techniques,4,5 and the potential for hybrid entanglement.6,7 Despite these benefits, the fiber platform8–10 has
seen less progress compared to free-space1 and waveguide11 implementations.

In this work, we report our recent progress in generation and verification of a transverse-mode Bell state,
|ψsi⟩ = 1/

√
2(|ee⟩ + |oo⟩) (see Fig. 1(a)), using spontaneous four-wave mixing in a few-mode polarization-

maintaining fiber (PMF). Here, e and o represent linearly polarized (LP) even (LP11e) and odd (LP11o) modes
that are supported in our PMF along with the fundamental Gaussian mode (LP01). Compared to typical
schemes where transverse-mode shaping is implemented post-photon-pair creation, our scheme pre-shapes the
pump transverse mode to control the creation of a transverse-mode-entangled photon-pair state.

2. METHODS AND RESULTS

As shown in Fig. 1(b), the experimental setup involves preparing the pump photons in a specific quantum
state and measuring the created signal and idler quantum states. Pump photons emitted from a laser (central
wavelength at 620 nm, 80 MHz repetition rate, and ≈ 200 fs pulse duration) are first precisely tailored in
polarization and transverse spatial mode using a spatial light modulator (SLM) and employing multiplexing
techniques developed for classical communication.4,5 These pump photons are then coupled into our polarization-
maintaining fiber where signal (∼ 570 nm) and idler (∼ 680 nm) photons corresponding to desired spontaneous
four-wave mixing (SFWM) processes are created. Out-coupled from the fiber, the photon-pairs are filtered based
on both polarization and wavelength. To reconstruct the quantum state, we perform quantum state tomography
(QST), which utilizes an SLM and two single-mode fibers to perform 36 projective coincidence measurements
on the photon pairs. Finally, the resulting quantum state represented in a density matrix form is analyzed for
quantities such as concurrence, state fidelity to target state, and purity.
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Figure 1. (a) Target transverse-mode Bell state for signal and idler photon pair. (b) Simplified experimental setup for p:
pump, s: signal, and i: idler photons. PMF: polarization-maintaining optical fiber used as a SFWM medium, SLM: spatial
light modulator for transverse-mode control, POL: polarization control optics including linear polarizers, half-wave plates,
and quarter-wave plates, Λ: spectral control optics consisting of spectral filters and dichroic mirrors, SMF: single-mode
optical fibers used in-series with an SLM to filter out undesired transverse modes, &: coincidence counter comprised of
single photon detectors and a time-tagger, QST: quantum state tomography.

To quantify the performance of our source of photon pairs whose transverse mode is controlled by the pump
transverse mode, we measure a maximum quantum state purity of ≈ 0.99 (derived from QST measurements)
for both for |ee⟩ and |oo⟩ states, using independent control of pump transverse modes in e and o, both with a
maximum intensity fidelity of ≈ 0.97 (measured with a camera).

Expanding on our previous work,8 we further investigate the temporal and spectral distinguishability between
modes |ee⟩ and |oo⟩ caused by modal dispersion within the fiber. One possible solution requires using two PMFs
in series, where the latter, 90-degree-rotated PMF compensates for the dispersion caused by the former. Using
this method, we measure a preliminary concurrence of ≈ 0.36 for the targeted Bell state, which indicates partial
entanglement. This may be improved through choosing the optimal length of PMF to maximize the spectral
overlap between the two SFWM processes.

In summary, we have generated and verified a transverse-mode Bell state in few-mode fiber controlled solely
by pump transverse mode. With further improvements related to indistinguishability, we envision our fiber-
based photon-pair source may allow for generation of high-fidelity transverse-mode-entangled states, providing
pathways to diverse quantum applications, including quantum random walks12 and entanglement distillation.13
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