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ARTICLE INFO ABSTRACT

Keywords: The behavioral activation system (BAS) and behavioral inhibition system (BIS) are thought to underly affective
Connectome predictive modeling dispositions and self-regulatory processes. The BAS is sensitive to reward and involved in approach behaviors,
BIS/BAS

and the BIS is sensitive to punishment and involved in avoidance behaviors. Trait BAS and BIS relate to distinct
behavioral profiles and neural activity, but little is known about how trait BAS and BIS relate to functional
networks in EEG. We applied a data-driven method called connectome predictive modeling (CPM) to identify
networks relating to trait BAS and BIS and tested whether the strength of those networks predicted trait BAS and
BIS in novel subjects using a leave-one-out cross-validation procedure. Adult participants (N = 107) completed a
resting state task with eyes closed and eyes open, and trait BAS and BIS were measured via Carver and White’s
(1994) BIS and BAS scales. We hypothesized distinct positive (more synchronization) and negative (less syn-
chronization) networks would relate to trait BAS and BIS. For eyes closed, we identified two negative networks,
one in theta and one in alpha predicted BIS. We identified three positive networks, one in theta and one in beta
predicted Fun Seeking and one in theta predicted Drive. For eyes open, negative theta and alpha networks
predicted BIS, a positive theta network predicted Fun Seeking, and a negative gamma network predicted mean
BAS. Visualization of the networks are presented. Discussion centers on the observed networks and how to

Resting state EEG

advance application of CPM to EEG, including with clinical implications.

Approach and avoidance are motivational processes involved in
regulating thoughts, emotions, and behavior and are governed by the
activity of the behavioral activation system (BAS) and behavioral inhi-
bition system (BIS), respectively (Gray, 1981; Pickering & Corr, 2008).
While both approach and avoidance are important processes for healthy
human functioning, a consistent use of one or the other to self-regulate is
associated with mental and behavioral health problems. A large litera-
ture has shown individual differences in trait BAS and BIS are linked to
neural activity in the electroencephalogram (EEG), the primary focus of
which has been measures based on EEG power. Little research has
examined how trait BAS and BIS relate to functional connectivity in the
EEG. This was the aim of the current study. Specifically, we used a
data-driven approach called connectome predictive modeling (CPM;
Shen et al., 2017) to identify functional networks in the resting state EEG
that relate to trait BAS and BIS measured via self-report. The goal of CPM
is to identify networks in one set of subjects that can predict behavior in
novel subjects. We used a built-in cross-validation procedure to test
whether the strength of BAS and BIS networks identified in one set of
subjects and extracted from novel subjects could predict their self-report
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BAS and BIS scores.
1. Behavioral activation and behavioral inhibition

The BAS and BIS are two systems involved in emotion regulation as
described in Gray’s Reinforcement Sensitivity Theory (Gray, 1981;
Pickering & Corr, 2008). In the original formulation of the theory, the
BAS was described as sensitive to reward cues and underlying approach
behaviors, and the BIS was described as sensitive to punishment cues
and underlying avoidance and withdraw behaviors (Gable et al., 2018;
Pickering & Corr, 2008). Healthy daily functioning requires use of both
approach and avoidance, such as use of approach to engage in social
interactions and avoidance when encountering uncertain or dangerous
situations. However, mental and behavioral health problems can arise
from overactivity of the BAS or BIS. For example, individuals high in
trait BAS are more likely to be highly social, seek stimulating activities
(e.g., skydiving; Wagner & Houlihan, 1994; Zuckerman, 1994; see
Roberti, 2004 for review), and engage in more risk behaviors (e.g., drug
use, Franken & Muris, 2006). Individuals high in trait BIS are more likely
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to experience depression or anxiety (Carver & White, 1994; Jorm et al.,
1998; Reniers et al., 2016).

Trait BAS and BIS are commonly measured using the BAS/BIS scales
developed by Carver and White (1994). The scales included are a BIS
scale and three BAS subscales. The BIS scale measures sensitivity to
punishment cues. Higher ratings on the BIS scale are associated with
negative affect (Gable et al., 2000), a lower likelihood of engaging in
aggressive behavior (Wingrove & Bond, 1998), and a higher likelihood
of experiencing anxiety and depression (Quay, 1988). The BAS scales
measure different aspects of reward sensitivity and include Drive,
Reward Responsiveness, and Fun Seeking. Drive measures a tendency to
engage in goal-directed behaviors, Reward Responsiveness measures the
positive responses to the anticipation or receipt of reward, and Fun
Seeking measures impulsive sensation seeking, or reward seeking be-
haviors. People high in BAS measured via a composite score also have
greater positive affectivity (Gable et al., 2000), are more likely to engage
in aggressive behavior (Wingrove & Bond, 1998), and have a greater
potential for addiction (Zohreh & Ghazal, 2018). Higher levels of com-
posite BAS are also associated with higher rates of impulsivity measured
via self-report as well as risky decision making (e.g., drinking and
driving; Braddock et al., 2011) and personality traits such as psychop-
athy and narcissism (Stenason & Vernon, 2016).

The BAS scales are thought to measure two different components of
approach behaviors: responses to rewards and impulsivity. The Reward
Responsiveness and Drive scales have been shown in psychometric
studies to be more closely related to other potential markers of reward-
sensitivity (e.g., goal-directedness, extraversion, reward-expectancy)
whereas the Fun Seeking scale has been shown to be associated with
novelty seeking, impulsiveness, and psychoticism (Caseras et al., 2003;
Knyazev et al., 2004; Smillie et al., 2006; Zelenski & Larsen, 1999). The
Reward Responsiveness and Drive scales predicted reactions to reward
in an experimental setting, whereas Fun Seeking did not (Carver &
White, 1994). The BAS scales have also been shown to be related to
different behaviors. For example, higher Reward Responsiveness is
associated with psychological well-being and resilience (Taubitz et al.,
2015). A study by Voigt and colleagues found Reward Responsiveness
was associated with lower levels of risk behaviors, such as alcohol and
drug use, safe sex practices, and general safety (e.g., seatbelt use),
whereas higher Fun Seeking has been associated with higher levels of
risk behaviors, including drug and alcohol use, risky sex practices, and
less use of general safety practices (Voigt et al., 2009). Additionally,
while the BAS scales are often considered as separate fine-grained
measures, there is evidence of an overarching BAS factor that accounts
for much of the variance in each of these subscales (Kelley et al., 2019),
suggesting that the BAS scales can also be considered together as they
may be capturing an larger BAS construct. A large body of evidence
indicates resting EEG activity relates to individual differences in BAS
and BIS activity. We provide an overview of resting state EEG and this
literature next.

2. Resting state EEG

Resting state tasks measure the intrinsic dynamics of the brain while
participants perform no assigned task. A typical resting state task in-
volves asking participants to remain still and relaxed with eyes closed or
while maintaining attention on a fixation cross. Resting brain activity is
associated with performance and behavioral tendencies observed in
other contexts (e.g., Karamacoska et al., 2017; Perone et al., 2018;
Rogala et al., 2020; for a review, see Anderson & Perone, 2018) and the
study of resting activity has shed light on the neural basis of mental
health conditions, such as major depression (Greicius et al., 2007), and
neurodegenerative diseases, such as Alzheimer’s Disease (Link-
enkaer-Hansen et al., 2005; Stam et al., 2009). EEG is a continuous
recording of electrical activity in cortex measured at electrode sites
placed over the scalp. EEG records the oscillatory behavior of neural
populations firing together across a range of frequencies. One common
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measure extracted from the EEG is power, higher levels of which reflect
more neurons firing together within a given frequency. EEG power is
typically averaged across frequency into distinct bands, named theta
(4-8 Hz), alpha (8-13 Hz), beta (13-30 Hz), and gamma (30-50 Hz).
The current study focuses on functional connectivity which is a measure
of the statistical dependencies between the EEG in each frequency at
recording sites placed over the scalp. The strength of connectivity be-
tween all electrode pairs creates site-by-site connectivity matrices which
can be computed for each frequency band. Functional networks are
patterns of connectivity within the matrix extracted in an a priori or
data-driven fashion.

Resting brain activity is often viewed as reflecting the dynamics of
brain networks specifically active at rest or those networks that are
engaged while completing specific tasks (Damoiseaux et al., 2006;
Gusnard & Raichle, 2001; Raichle, 2010). A large literature has shown
resting EEG power is associated with individual differences in trait-level
indicators of the BAS and BIS. Much of this literature has focused on
frontal alpha asymmetry which is a measure of relative levels of alpha
activity recorded at left and right sites over the frontal region of the
brain. People who exhibit more relative left frontal alpha activity at rest
also exhibit more approach-oriented behaviors and have a positive af-
fective disposition, whereas those who exhibit more relative right
frontal alpha activity exhibit more avoidance-oriented behaviors and
have a negative affective disposition (e.g., Harmon-Jones & Allen, 1997;
Tomarken et al., 1990; see Allen et al., 2018 for review). Individual
differences in frontal alpha activity have also been linked to scores on
the BIS and BAS subscales. For example, a composite of the BAS sub-
scales is associated with greater relative left frontal alpha activity (Coan
& Allen, 2003; Harmon-Jones & Allen, 1997; Krmpotich et al., 2013),
and the BIS scale is associated with greater right frontal alpha activity
(Balconi & Mazza, 2009; Shackman et al., 2009; Sutton & Davidson,
2000). Relations between resting EEG power in other bands and pro-
cesses thought to rely on BAS and BIS activity have also been observed.
For example, higher levels of frontal theta power relate to reward
sensitivity as measured in the lowa Gambling Task (Massar et al., 2014),
a higher frontal theta to beta ratio relates to top-down regulation over
emotional cues in a response inhibition task (Putman et al., 2010), and
more right (sourced) prefrontal theta power relates to more risk taking
in a gambling task (Studer et al., 2013). Some evidence indicates theta
and beta may be involved in distinct aspects of reward processing. For
example, Marco-Pallares et al. (2008) observed higher levels of beta
upon reward but higher levels theta upon loss. Less research has focused
on functional connectivity in the EEG as it relates to the BAS and BIS,
which is the focal point of the current study.

3. Functional connectivity

Nunez et al. (2015) proposed functional connectivity reflects
state-dependent dynamics across spatially distributed brain regions,
creating global networks that are thought to be involved in integration
of information processing across local networks and essential for healthy
cognition. Much of our understanding of functional networks as it re-
lates to BAS and BIS activity is based on studies using fMRI (e.g.,
Bramson et al., 2020), many of which have examined resting functional
connectivity as it relates to trait levels of BAS and BIS activity using
self-report. For example, Adrian-Ventura et al. (2019) found individual
differences in reward sensitivity were associated with functional con-
nectivity in areas involved in conflict resolution and monitoring, such as
anterior cingulate cortex, and reward processing, such as ventral medial
prefrontal cortex. Huggins et al. (2018) found individual differences in
harm avoidance were inversely related to functional connectivity
involving anterior insula and other areas, such as dorsal anterior
cingulate cortex, and Caulfield et al. (2016) found that more behavior-
ally inhibited individuals exhibited higher levels of functional connec-
tivity between left dorsal lateral prefrontal cortex and dorsal anterior
cingulate cortex as well as between right dorsal lateral prefrontal cortex
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and cerebellum.

General patterns of results from the fMRI literature can help in
setting some expectations for the current study. For example, we might
expect to observe distinct networks to relate to scores on the BIS and BAS
subscales. Prior studies have shown different networks were active
depending on whether participants were asked to make an approach or
avoidance response (Leitao et al., 2022), and a large body of behavioral
evidence indicates activity of the BIS and BAS relate to distinct behav-
ioral profiles (e.g., Franken & Muris, 2006; Jorm et al., 1998; Reniers
et al., 2016; Zuckerman, 1994). We might also expect to observe net-
works positively and negatively relating to BIS or BAS subscales. Prior
studies have shown different coping styles to be related to more syn-
chronization of some resting networks and desynchronization of others.
Specifically, Santarnecchi et al. (2018) studied avoidance-oriented
coping, problem-oriented coping, and social-support-oriented coping
styles. They found distinct networks inversely related to
social-support-oriented and avoidance-oriented coping styles, whereas a
different network positively related to a problem-solving-oriented
coping style. CPM simultaneously tests for the presence of positive and
negative networks relating to behavioral measures.

4. Connectome predictive modeling

CPM is founded on the idea a common network relates to specific
behaviors across individuals, and what varies across individuals is the

Step 1: Connectivity matrices and
behavioral data

Step 2. Correlate edges with behavior
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relationship between the strength of the network and the behavior
(Rosenberg et al., 2017). CPM is used to identify common networks that
relate to behavior and test whether individual differences in the strength
of those networks predict behavior in novel subjects using a built-in
cross-validation procedure. The general CPM method is shown in
Fig. 1. The starting point is computing connectivity matrices for each
individual and pairing those with the scores on a behavioral measure for
all subjects (step 1). One subject is set aside, and correlations are
computed between functional connectivity for all possible electrode
pairs (referred to as edges) and behavioral scores for n-1 subjects, called
the training set (step 2). Positive and negative correlations are treated
separately to identify networks where stronger connectivity relate to
higher ratings on the BAS/BIS scale (positive networks) or weaker
connectivity relate to higher ratings on the BAS/BIS scale (negative
networks). Statistically significant edges are selected (step 3), and the
magnitude of the correlation is discarded prior to computing network
strength by summing the connectivity of the significant edges (step 4).
The behavioral data is then regressed onto network strength for the
training set (step 5). The coefficients from this linear model are used to
predict behavior in the subject set aside using their network strength
extracted from the same network identified in the training set. This
yields a predicted and observed score for the behavioral measure (step
6). This process is repeated until all subjects have been left out and a
predicted and observed score for the behavioral measure is obtained.
Pearson’s r is used to characterize the fit between observed and

Step 3. Select statistically significant edges
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Fig. 1. Step-by-step overview of Connectome Predictive Modeling. Figure based on method as depicted by Shen et al. (2017). Connectivity matrices and BIS and BAS
subscale scores for the training set (n-1 subjects) are selected (step 1), and Pearson’s r is computed for all site-by-site connectivity strengths (edges) and the
behavioral measure (step 2). Significant (p < .05, two-tailed) edges are selected (step 3). Positive and negative correlations were treated separately. The magnitude of
the r statistic is discarded, and network strength is computed by summing the edges relating to the behavioral measure of the training set (step 4). The behavioral
measure is regressed onto network strength for the training set (step 5). Using a built-in cross-validation procedure, the coefficients from the training are used to
construct a predictive model using the network strength from the subject set aside to predict their score on the scale (step 6). This process was repeated in an iterative

fashion until a predicted and observed score was obtained for all subjects.
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predicted scores, and the statistical significance of the r statistic is
determined using random permutation testing.

Numerous CPM studies using resting fMRI have identified networks
relating to task-based performance, such as fluid intelligence (Finn et al.,
2015) and attention (Rosenberg et al., 2016). These studies have iden-
tified both positive and negative networks relating to performance such
that more synchronization of the positive networks relate to better task
performance and more synchronization of negative networks relate to
poorer task performance. CPM has been used with resting fMRI to pre-
dict scores on self-report instruments as well. However, the capacity of
positive and negative networks to predict self-report scores in novel
subjects has not always been observed. For example, Hsu et al. (2018)
found positive and negative networks predicted extroversion and
neuroticism, Wang et al. (2021) found only a negative network pre-
dicted trait anxiety, and Feng et al. (2019) found only a positive network
predicted loneliness.

5. Current study

The goal of the current study was to apply CPM to resting EEG and
test whether functional networks related to trait BAS and BIS and could
predict individual differences in scale scores. A large literature has
shown trait BAS and BIS are associated with distinct behavioral profiles
(Carver & White, 1994; Roberti, 2004; Zuckerman, 1994) and patterns
of neural activity relate to individual differences in use of these systems
(Bramson et al., 2020) as well as trait levels of BAS and BIS activity (Hsu
et al., 2018; Meyer et al., 2018; Wang et al., 2021). Thus, the general
hypothesis guiding this research was distinct networks underlie the BAS
and BIS. We expected to observe networks positively and negatively
relating to BIS or BAS scales. This expectation is based on prior studies
showing different coping styles relate to more synchronization of some
networks and desynchronization of others at rest (Santarnecchi et al.,
2018). However, we did not have scale specific predictions. We also did
not have band specific predictions. Reasonable band predictions are
difficult to make because multiple bands often are shown to relate to
similar constructs, and different constructs are often shown to relate to
multiple bands (El-Badri et al., 2001; Perone et al., 2021; for a review,
see Anderson & Perone, 2018). Nevertheless, a body of evidence in-
dicates theta and beta relate to top-down regulation over reward cues
(Knyazev & Slobodskoy-Plusnin, 2009; Marco-Pallares et al., 2008;
Massar et al., 2014; Putman et al., 2010) and alpha relates to approach
and avoidance behaviors (Balconi & Mazza, 2009; Coan & Allen, 2003;
Harmon-Jones & Allen, 1997; Krmpotich et al., 2013; Sutton & David-
son, 2000). We might expect theta and beta to relate to the BAS scales
and alpha to relate to the BIS and BAS scales.

6. Method
6.1. Participants

The full sample consisted of 114 undergraduate students who
received extra credit for participation. Seven participants were excluded
due to excessive artifacts in the EEG (n = 1) or because their head size
was larger than the EEG cap (n = 6). The final sample consisted of 107
undergraduate students who received extra credit for participation (Mg
= 20.31, SDgge = 1.46, 84 females). Participants self-identified as White
(50.5%), Asian (16.8%), Hispanic/Latino (11.2%), African American/
Black (3.7%), Native/Indigenous (3%), and multiracial (16.8%).

6.2. Design and procedure

Participants completed the BIS/BAS scales prior to being fitted with
the EEG cap. Resting state EEG was recorded in a dimly lit room across
four 2-minute trials of alternating eyes closed and eyes open conditions
resulting in 4 min in each condition. For both conditions, participants
were instructed to remain still and relaxed. During the eyes open
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condition, participants were also instructed to look at a fixation cross
displayed on a computer monitor.

6.3. EEG data collection and processing

EEG data was collected using a 128-channel HydroCel net manu-
factured by Electrical Geodesics, Inc. Impedance levels were set below
80 kQ and typically below 50 kQ. The EEG was monitored prior to
recording, and electrodes were reset if needed to ensure high-quality
data collection. EEG was recorded using the NetAmp 400 at 1000 Hz,
referenced to Cz, and high-pass filtered at 0.1 Hz online. The EEG was
processed in Matlab using functions from EEGLab (Makeig & Delorme,
2004), ERPLab (Lopez-Calderon & Luck, 2014), FieldTrip (Oostenveld
et al,, 2011), and the CSD toolbox (Kayser & Tenke, 2006). The
continuous EEG was re-sampled at 500 Hz and high-pass filtered at 1 Hz
with a 60 Hz notch filter. Excessively noisy electrodes were identified
via visual inspection and removed (M = 3.08, SD = 3.44, Range = 0-18).
A small number of electrodes that exceeded + /— 250 microvolts for
more than 10 s were also flagged as excessively noisy and removed (M
=0.15, SD =.45, Range = 0-3). Independent Components Analysis was
used to identify and correct ocular artifacts. Blinks and horizontal eye
movements were identified via visual inspection of both components
and channel activations. Components capturing ocular artifacts were
removed. The corrected EEG was confirmed via visual inspection.
Missing electrodes were interpolated, and the EEG was referenced to the
average of all electrodes and divided into 1 s epochs with 75% overlap
which is within the range typically used in the literature (Cohen, 2014;
Luck, 2014; for examples, see Black et al., 2014; Park et al., 2021; Perone
et al., 2019). Epochs containing 1 or more electrodes with voltage
exceeding 150 microvolts for more than 100 ms were marked for
rejection. The average number of epochs used for analysis in the eyes
closed condition was 925.90 (97.05%, SD =0.052), and the average
number of epochs used for analysis in the eyes open condition was
897.16 (94.04%, SD =0.10). The EEG was Laplacian transformed to
increase the topographical localization of the signal. Laplacian trans-
formation was done using the CSD toolbox with default parameters (m =
4, head radius = 10, A = 0.00001). Time-frequency decomposition using
Fast Fourier transform (FFT) was performed on artifact-free epochs
using a Hanning window.

Functional connectivity was measured using Phase Lag Index (PLI)
computed in FieldTrip. PLI measures the degree to which two signals
consistently lead or lag each other over time and ranges from 0 (no
synchrony) to 1 (perfect synchrony). PLI was computed for all electrode
pairs in each frequency. For each pair of electrodes, the average PLI was
computed across frequencies to create theta (4-8 Hz), alpha (8-13 Hz),
beta (13-30 Hz), and gamma (30-50 Hz) bands. Electrodes on the face
and the outer ring of electrodes on the posterior were removed (Calbi
et al., 2019) leaving a 110 x 110 PLI connectivity matrix for analysis
(Fig. 2). PLI values for each band at each pair of electrodes were win-
sorized such that values outside of 10% and 90% percentile were
replaced with the most extreme remaining value within that range. This
step was important to prevent extreme values from driving correlations
between scales and connectivity.

6.4. Behavioral inhibition and activation

Trait BIS and BAS was measured using Carver and White’s (1994)
20-item self-report scale. Each item is rated on a 4-point scale ranging
from very true (1) to very false (4). Mean values were calculated from 4
subscales: BIS (M = 3.04, SD =0.53), BAS Reward Responsiveness (M =
3.54, SD =0.58), BAS Drive (M =2.79, SD =0.62), and BAS Fun Seeking
(M =3.03, SD =0.59), and a composite BAS score which was the mean of
all BAS items (M = 3.15, SD =0.46). Cronbach’s alpha indicated
acceptable to good internal consistency for all scales (range
=0.73-0.86). Four scores for Reward Responsiveness were deemed
outliers because they were 3 SD away from the mean and had no
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Fig. 2. EGI 128 channel scalp map. 110 electrodes were included in analysis
(all colored electrodes). Nine different regions were used for visualizing and
describing networks. Each hue shows a different region, including frontal
(magenta), central (blue), and posterior (gold). For each hue, the darkest (e.g.,
dark gold) indicates the left-most region on the scalp while the lightest (e.g.,
light gold) indicates the right-most region on the scalp.

neighboring values within 1 SD, which was confirmed via visual in-
spection. These scores were winsorized to the closest non-outlying score.

6.5. Connectome predictive modeling

CPM was used to identify functional networks relating to BIS and
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BAS scales. CPM was performed for condition (eyes closed, eyes open),
each band (theta, alpha, beta, and gamma), and BIS and BAS scales
separately. We tested whether the strength of these networks could
predict scores on the scales in novel subjects using the leave-one-out
built-in cross-validation method outlined in Shen et al. (2017) and
illustrated in Fig. 1. Specifically, the connectivity matrices for a given
band for the training set consisting of n-1 subjects were selected (step 1),
and Pearson’s r was computed for all edges for a given BIS or BAS scales
(step 2). Significant (p < .05, two-tailed) edges were selected (step 3).
Positive and negative correlations were treated separately. The magni-
tude of the r statistic was discarded, and network strength was computed
by taking the sum of edges relating to the BIS or BAS scales for n-1
subjects (step 4). Scores on each scale were then regressed onto network
strength for the training set (step 5). Using a built-in cross-validation
procedure, the coefficients from the training set were used to construct a
predictive model using the network strength from the subject set aside to
predict their score on the scale (step 6). Importantly, the network
strength computed for the novel subject was extracted from the same
network identified in the training set. Thus, CPM tests whether networks
identified in one set of subjects can predict behavior in novel subjects.
This process was repeated in an iterative fashion until a predicted and
observed score was obtained for all subjects.

The capacity of the predictive model to reproduce the observed BIS
or BAS scores was evaluated by computing Pearson’s r between the
observed and predicted scores. The statistical significance of the r sta-
tistic was determined using random permutation testing for all r statis-
tics greater than zero because they indicate the predictive model
generated scores in the same direction as the observed scores. Specif-
ically, the score for the BIS or BAS scale for all participants were shuffled
to break the link between the connectivity matrix of a given subject and
their scale score. All steps 1-6 in Fig. 1 of CPM were performed across
5000 iterations of random pairings, creating a null distribution of the r
statistic if the brain-behavior relation was observed by chance. The
statistical significance of the true r statistic was computed by dividing
the number of randomly generated r values exceeding the true r by the
size of the null distribution. Only r statistics with p < .05 were consid-
ered significant.
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7. Results

The results are presented in two sections. The first section presents
the main results which is the capacity of the predictive models to
reproduce scores on the BIS and BAS scales, which we present separately
for each scale and band across conditions. The second section presents
visualizations and descriptive statistics to characterize the networks
used in the models we found to fit the behavioral data well.

7.1. Model fits

For the eyes closed condition, five models were able to predict
observed scale scores at levels exceeding chance. Fig. 3 shows the
relation between the observed and predicted scale scores for each of the
models. Negative networks relating to BIS scores were observed for
theta, r = 0.254, p = .004 (3 A) and alpha, r=0.180, p =.019 (3B),
indicating less synchronized activity in these networks relate to lower
levels of behavioral inhibition. Positive networks predicting Fun Seeking
were observed for theta, r = 0.186, p = .018 (3 C), and beta, r = 0.192,
p = .022(3D), as well as Drive for theta,r = 0.171,p = .029 (3E). As can
be seen in Fig. 3, the range of predicted scores were narrower than the
range of observed scores. To characterize the fit between the observed
and predicted scores for each scale, we computed Root Mean Squared
Error (RMSE) and slopes. The RMSE ranged from 0.53-0.63, indicating
the predictive models produced scores that were inaccurate by about
one-half of a score on the rating scale. Slopes were consistently below 1,
indicating the predictive models consistently underestimated observed
scores.

For the eyes open condition, four models were able to predict
observed scores at levels exceeding chance. Fig. 4 shows the relation
between the observed and predicted scores for each of the models. Three
of these models were also observed for the eyes closed condition,
including negative networks relating to BIS for theta,r = 0.199,p =.017
(4 A), and alpha, r = 0.200, p = .014 (4B), as well as a positive network
relating to Fun Seeking for theta, r = 0.208, p = .011 (4 C). A negative
network relating to mean BAS for gamma, r = 0.215, p = .012 (4D) was
also observed. Like the networks for the eyes closed condition, the range
of predicted scores were narrower than the range of observed scores. The
RMSE ranged from 0.45-0.60, indicating the predicted models were
inaccurate by about one-half of a score on the rating scale, and the slopes
were consistently below 1, indicated the predictive models under-
estimated the observed scores.

7.2. Network characterization

Networks identified using data-driven methods such as CPM can be
large and complex. To aid in characterizing networks, we created vi-
sualizations of their topography. The visualization of the networks
identified for the eyes closed condition are shown in Fig. 5. The top row
of Fig. 5A-B shows the networks relating to BIS in theta (5 A) and alpha
(5B). The circles show electrode sites. More interconnected sites are
depicted by larger circles, and each of the lines shows the connection
(edge) related to BIS scores. To describe connectivity within and across
regions, we carved the electrode map depicted in Fig. 2 into nine regions
based on Calbi et al. (2019) consisting of left, midline, and right sections
over frontal, central, and posterior regions. The second row shows a
connectivity matrix for the total number of connections within and be-
tween regions. The third row shows the total number of connections
involving each region. The bottom row shows the total number of con-
nections within more coarsely divided regions, consisting of all sites
within the frontal, central, and posterior regions. For the negative theta
BIS network, short-range frontal and mid-range frontal-central connec-
tivity was most salient. For the negative alpha BIS network, short-range
frontal, mid-range frontal-central, mid-range central-posterior, and
long-range frontal-posterior connectivity were prevalent. Fig. 5C-E
shows the visualization of networks relating to the BAS subscales,
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including positive theta Fun Seeking (5 C), beta Fun Seeking (5D), and
theta Drive (5E) networks. The topographies of the Fun Seeking net-
works were similar. Mid-range frontal-central, mid-range central--
posterior, and long-range frontal-posterior connectivity were most
prevalent. For the theta Drive network, however, mid-range central--
posterior connectivity was most prevalent.

The visualizations of the networks identified in the eyes open con-
dition are shown in Fig. 6. The topography of the networks that were
observed for the eyes closed and eyes open condition were similar,
especially those relating to BIS. For the negative theta BIS network,
short-range frontal and mid-range frontal-central connectivity was most
prevalent (6 A), and for the negative alpha BIS network, short-range
frontal, mid-range frontal-central, mid-range central-posterior, and
long-range frontal-posterior connectivity were prevalent (6B). The
positive theta Fun Seeking network was also similar to the same network
observed under the eyes closed (6 C), especially prevalence of mid-range
frontal-posterior and long-range frontal-posterior connectivity. For the
mean BAS gamma network, short-range posterior and mid-range cen-
tral-posterior connectivity was most salient. In the General Discussion,
we draw on the extant literature to shed light on the networks we
identified.

8. General discussion

One goal of human neuroscience is to understand how individual
differences in brain function relate to behavior. Network activity reflects
communication within and between brain regions thought to underlie
cognition, and disruptions to networks may underlie dysregulation
(Nunez et al.,, 2015). Networks underlying specific behavioral ten-
dencies are not always known or are too large and complex to be
specified a priori. We used CPM to identify networks in the resting EEG
under eyes closed and eyes open conditions relating to trait BIS and BAS
in a data-driven fashion. Using a built-in cross-validation procedure, we
tested whether the strength of these networks predicted trait BIS and
BAS as measured by the BIS and BAS scales developed by Carver and
White (1994). For the eyes closed condition, we were able to predict
trait levels on the BIS from a negative theta and negative alpha network,
Fun Seeking from a positive theta and positive beta network, and Drive
from a positive theta network. For the eyes open condition, we also were
able to predict trait levels on the BIS from a negative theta and negative
alpha network and Fun Seeking from a positive theta network. A nega-
tive gamma network predicted mean BAS scores under these conditions
as well. Prior studies have applied CPM to fMRI. Our study shows CPM
can successfully be applied to EEG to identify networks relating to the
BAS and BIS, which are well-studied systems involved in self-regulation
and thought to underlie affective dispositions and self-regulatory pro-
cesses (Gray, 1976, 1981; Pickering & Corr, 2008). The use of CPM with
EEG can advance our understanding of resting EEG networks and may
have clinical implications.

The most striking finding from the eyes closed condition was only
negative networks related to BIS and only positive networks related to
Fun Seeking and Drive. A similar pattern of results was observed for eyes
open except a negative mean BAS gamma network was also observed.
For BIS, negative resting networks in theta and alpha were observed
when eyes were closed and open, indicating the more these networks
synchronize the less sensitive the individual is to punishment cues. Prior
studies using simultaneous fMRI-EEG have shown theta and alpha ac-
tivity are associated with amygdala activity and BIS-related processes.
For example, Sperl et al. (2019) used a fear-conditioning task in which a
face was paired with electrical stimulation and found frontal-central
theta activity and amygdala activity were both higher during recall of
non-extinguished fear cues. Other studies have found alpha connectivity
over the frontal region also relates to BIS-related processes. For example,
Zotev et al. (2016) used a neurofeedback design based on amygdala
activity to guide depressed individuals to think about happy memories.
They found those with higher levels of depression also exhibited an
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Fig. 4. Shows fits for the eyes open condition between observed and predicted scores on the BIS for theta (A) and alpha (B) and Fun Seeking for theta (C) and BAS

Mean for gamma (D).

increase in alpha connectivity over left frontal-temporal regions across
trials. Alpha connectivity over frontal regions has also been observed
while people process emotional expressions. For example, Balconi and
Mazza (2009) observed the highest levels of right frontal-central alpha
connectivity while processing fear, anger, and surprise. We also
observed connectivity in the BIS alpha network over left, right, and
central frontal regions to be especially interconnected. Together, these
studies point to network activity recorded over these regions to be
especially important to the BIS.

Only positive networks related to Fun Seeking and Drive, indicating
the more these networks synchronize, the more sensitive the individual
is to aspects of reward. Fun Seeking reflects pursuit of reward and relates
to novelty seeking, impulsiveness, and more risk behaviors (Caseras
et al., 2003; Knyazev et al., 2004; Smillie et al., 2006; Zelenski & Larsen,
1999). For Fun Seeking, we found a positive theta network when eyes
were closed and open and positive beta network when eyes were closed.
These networks had strikingly similar topographies that involved
long-range frontal-central, fontal-posterior, and central-posterior con-
nectivity. Prior studies indicate long-range theta connectivity is
involved in top-down regulatory processes (Anguera et al., 2013; Miz-
uhara et al., 2004; Sauseng et al., 2005). It is possible the networks we
observed are involved in control over reward processing. Some evidence
indicates theta and beta activity are involved in distinct aspects of
processing reward and punishment. For example, high-beta activity is
associated with reward processing, whereas theta activity is associated
with processing of losses, especially over frontal-central regions (Mar-
co-Pallares et al., 2008). Using simultaneous fMRI-EEG during a
gambling task, Andreou et al. (2017) also observed high-beta activity
was associated with processing of reward and theta activity was asso-
ciated with processing losses. Additionally, they found theta and beta
were associated with distinct networks. Theta was associated with brain

regions involved in conflict monitoring, such as anterior cingulate cor-
tex, whereas beta was associated with areas involved in reward pro-
cessing, such as ventral striatum. We also found a positive theta network
relating to Drive when eyes were closed which reflects
goal-directedness, extraversion, and reward expectancy (Carver &
White, 1994). Notably, several studies have also found relations be-
tween brain activity and Drive. For example, Putman et al. (2010) found
frontal theta/beta activity related to Drive, and Knyazev and
Slobodskoy-Plusnin (2009) found frontal theta activity increased upon
reward notification in those high in Drive.

The extant literature on beta activation as it relates to motor func-
tioning and motivation can also shed light on our findings. Beta power
has been shown to be stronger when motor movement is resisted or
suppressed (Androulidakis et al., 2007; Lalo et al., 2007; Zhang et al.,
2008), to decrease in preparation and during completion of a goal
(Pfurtscheller, 1997; Pogosyan et al., 2009), and that decreases in beta
activity at rest over motor control regions related to higher composite
BAS scores (Threadgill & Gable, 2018). Beta has also been shown to
decrease more on reward trials relative to non-reward trials (Meadows
et al., 2016) and when participants are told that a trial would be more
difficult relative to trials that were anticipated to be easier (Wilhelm
et al., 2021), suggesting that beta is involved in motivation based on
reward as well as motivation to complete a difficult task. We found
higher levels of Fun Seeking were predicted from a beta network during
a resting state task in which participants were instructed to remain still
and calm with their eyes closed. Participants who are higher in Fun
Seeking may have a greater propensity to engage in impulsive behaviors
and motivated by reward, and thus a resting state task that asks par-
ticipants to sit quietly with eyes closed may require greater control to
complete for individuals higher in Fun Seeking than those who are lower
in Fun Seeking. It is possible the beta network we observed during the
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eyes closed condition to relate to Fun Seeking is involved in these control
processes.

Studies using CPM with fMRI have primarily reported networks
identified when participants rest with their eyes closed (Feng et al.,
2018, 2019; Lu et al., 2019; Wang et al., 2021). A contribution of this
study is it applied CPM to resting EEG under eyes closed and eyes open
conditions. These conditions are associated with distinct topographies
and levels of EEG power, which may be due in part to the need to
maintain attention on a visual stimulus during the eyes open condition
(Barry et al., 2007; Perone et al., 2019; for a review, see Anderson &
Perone, 2018). Consistent with this hypothesis, lower levels of the theta
/ beta ratio have been observed during eyes open relative to eyes closed
(Perone et al., 2019), which is a neural correlate of engaged attention
(van Son et al., 2019). The pattern of results observed herein is also
consistent with this hypothesis. We found more synchronization of a
gamma network over the posterior related to lower levels of mean BAS
only in the eyes open condition. Posterior gamma activity is involved in
visually attending to a stimulus (Miiller et al., 2000). People low in mean
BAS are less impulsive (Braddock et al., 2011) and may be able to
maintain attention control in the eyes open condition well, as indicated
by more synchronization of the posterior gamma network. Some effects
present in the eyes closed condition were absent from the eyes open
condition, including the positive theta Drive and positive beta Fun
Seeking networks. We speculate that these relations emerge when eyes
are closed due to engaged control processes that are allocated elsewhere
in the eyes open condition when there is a need to maintain attention on
a visual stimulus. More research investigating the ongoing processes
across resting conditions is crucial to more fully understand why some
relations are observed in one condition and not the other, a topic we turn
to next.

An important contribution of the current study is application of CPM
to resting EEG to identify predictive networks related to motivational
processes that are thought to underlie a wide range of behaviors. We
identified four important directions for future research to advance un-
derstanding of networks identified using CPM with EEG. One direction
for future research is to study the link between resting state network
activity and ongoing processes at rest. The intrinsic dynamics of the
brain at rest may reflect individual differences in ongoing regulatory
processes also at work in other contexts. For example, a study by Diaz
and colleagues (2013) asked participants to report on their thoughts
during a resting state task, ranging from planning for the future to
thinking about other people. Participants also reported on the quality of
their thoughts (e.g., “I had busy thoughts™), their emotional valence
during the task (e.g., “I felt happy”), and attention to their body (e.g., “I
thought about my heartbeat”; Diaz et al., 2013). Importantly, partici-
pants’ ongoing cognition during rest was shown to relate to trait-level
indicators of mental well-being, anxiety, and depression. Asking par-
ticipants about their ongoing cognition across conditions during the
resting state task may shed light on the activity of BAS or BIS networks at
rest and whether it relates to BIS and BAS activity in other contexts.

A second direction for future research is to test the generalizability of
BAS and BIS networks. This could be achieved in several ways. For
example, the activity of resting BAS and BIS networks could be extracted
during a gambling task to test whether their activity predicts behavioral
measures of sensitivity to rewards and losses. In the current study, we
did not identify any resting networks that predicted Reward Respon-
siveness or the mean of all BAS items. It is possible that tasks that require
reward processing would be more likely to engage networks relating to
Reward Responsiveness and a BAS composite score. Another example is
applying CPM to performance in several tasks designed to measure BAS
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and BIS activity and identify whether core regions emerge across a range
of networks identified in a data-driven fashion. A third direction for
future research is to study networks across developmental periods to
determine their stability. For example, one question is whether the same
resting BAS and BIS networks identified during early adulthood have
predictive value during other periods of development. Braams et al.
(2014) found BAS-related processes (e.g., risk-taking) exhibited an
inverted u-shape trend from 8 to 27 years of age, which was also
observed for neural activity in a brain region associated with reward
processing (nucleus accumbens). Such age-related changes may be
associated with change in the strength of the same BAS or BIS networks,
or age-related change may be associated with distinct networks.

A fourth direction for future research is to test the clinical value of
CPM applied to the EEG. CPM is especially useful to identify networks
predictive of specific behaviors, and studies using fMRI have shown
there is clinical value to identifying such predictive networks. For
example, Yip et al. (2019) used CPM to identify networks that predicted
abstinence of cocaine use in novel subjects during treatment for cocaine
use disorder. Ju et al. (2020) identified networks that predicted how
well novel subjects with depression responded to treatment. One
implication of this clinical research is CPM may help tailor treatment
options to specific individuals. EEG is widely used across the lifespan,
and disruptions to functional networks might underlie disorders (Nunez
etal., 2015). Indeed, abnormalities in functional connectivity in the EEG
has been shown to relate to disorders, such as ADHD (Murias et al.,

2007), and abnormalities in functional connectivity in the EEG are
present prior to the emergence of neurodevelopmental disorders, such as
Autism (Orekhova et al., 2014; Righi et al., 2014). CPM may be helpful
in predicting responsiveness to treatment of developmental disorders or
identifying networks predictive of the later emergence of neuro-
developmental disorders before they develop.

In conclusion, we applied CPM to resting EEG and identified BAS and
BIS networks capable of predicting trait levels of BAS and BIS in novel
subjects measured via self-report. The BAS and BIS are widely studied
because their activity underlies regulatory processes across a range of
contexts, and variation in their activity across individuals is associated
with distinct behavioral profiles. Several areas of future research are
needed to advance use of CPM with EEG, including identifying core
interconnected regions across a range of contexts relying on BAS and BIS
activity and testing the stability of such networks across development.
CPM has been shown to have clinical value when applied to fMRI and
may be especially useful for EEG because it is widely used across the
lifespan and abnormalities in the EEG may be an important physiolog-
ical marker of disorders.
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