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A B S T R A C T   

The behavioral activation system (BAS) and behavioral inhibition system (BIS) are thought to underly affective 
dispositions and self-regulatory processes. The BAS is sensitive to reward and involved in approach behaviors, 
and the BIS is sensitive to punishment and involved in avoidance behaviors. Trait BAS and BIS relate to distinct 
behavioral profiles and neural activity, but little is known about how trait BAS and BIS relate to functional 
networks in EEG. We applied a data-driven method called connectome predictive modeling (CPM) to identify 
networks relating to trait BAS and BIS and tested whether the strength of those networks predicted trait BAS and 
BIS in novel subjects using a leave-one-out cross-validation procedure. Adult participants (N = 107) completed a 
resting state task with eyes closed and eyes open, and trait BAS and BIS were measured via Carver and White’s 
(1994) BIS and BAS scales. We hypothesized distinct positive (more synchronization) and negative (less syn-
chronization) networks would relate to trait BAS and BIS. For eyes closed, we identified two negative networks, 
one in theta and one in alpha predicted BIS. We identified three positive networks, one in theta and one in beta 
predicted Fun Seeking and one in theta predicted Drive. For eyes open, negative theta and alpha networks 
predicted BIS, a positive theta network predicted Fun Seeking, and a negative gamma network predicted mean 
BAS. Visualization of the networks are presented. Discussion centers on the observed networks and how to 
advance application of CPM to EEG, including with clinical implications.   

Approach and avoidance are motivational processes involved in 
regulating thoughts, emotions, and behavior and are governed by the 
activity of the behavioral activation system (BAS) and behavioral inhi-
bition system (BIS), respectively (Gray, 1981; Pickering & Corr, 2008). 
While both approach and avoidance are important processes for healthy 
human functioning, a consistent use of one or the other to self-regulate is 
associated with mental and behavioral health problems. A large litera-
ture has shown individual differences in trait BAS and BIS are linked to 
neural activity in the electroencephalogram (EEG), the primary focus of 
which has been measures based on EEG power. Little research has 
examined how trait BAS and BIS relate to functional connectivity in the 
EEG. This was the aim of the current study. Specifically, we used a 
data-driven approach called connectome predictive modeling (CPM; 
Shen et al., 2017) to identify functional networks in the resting state EEG 
that relate to trait BAS and BIS measured via self-report. The goal of CPM 
is to identify networks in one set of subjects that can predict behavior in 
novel subjects. We used a built-in cross-validation procedure to test 
whether the strength of BAS and BIS networks identified in one set of 
subjects and extracted from novel subjects could predict their self-report 

BAS and BIS scores. 

1. Behavioral activation and behavioral inhibition 

The BAS and BIS are two systems involved in emotion regulation as 
described in Gray’s Reinforcement Sensitivity Theory (Gray, 1981; 
Pickering & Corr, 2008). In the original formulation of the theory, the 
BAS was described as sensitive to reward cues and underlying approach 
behaviors, and the BIS was described as sensitive to punishment cues 
and underlying avoidance and withdraw behaviors (Gable et al., 2018; 
Pickering & Corr, 2008). Healthy daily functioning requires use of both 
approach and avoidance, such as use of approach to engage in social 
interactions and avoidance when encountering uncertain or dangerous 
situations. However, mental and behavioral health problems can arise 
from overactivity of the BAS or BIS. For example, individuals high in 
trait BAS are more likely to be highly social, seek stimulating activities 
(e.g., skydiving; Wagner & Houlihan, 1994; Zuckerman, 1994; see 
Roberti, 2004 for review), and engage in more risk behaviors (e.g., drug 
use, Franken & Muris, 2006). Individuals high in trait BIS are more likely 
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to experience depression or anxiety (Carver & White, 1994; Jorm et al., 
1998; Reniers et al., 2016). 

Trait BAS and BIS are commonly measured using the BAS/BIS scales 
developed by Carver and White (1994). The scales included are a BIS 
scale and three BAS subscales. The BIS scale measures sensitivity to 
punishment cues. Higher ratings on the BIS scale are associated with 
negative affect (Gable et al., 2000), a lower likelihood of engaging in 
aggressive behavior (Wingrove & Bond, 1998), and a higher likelihood 
of experiencing anxiety and depression (Quay, 1988). The BAS scales 
measure different aspects of reward sensitivity and include Drive, 
Reward Responsiveness, and Fun Seeking. Drive measures a tendency to 
engage in goal-directed behaviors, Reward Responsiveness measures the 
positive responses to the anticipation or receipt of reward, and Fun 
Seeking measures impulsive sensation seeking, or reward seeking be-
haviors. People high in BAS measured via a composite score also have 
greater positive affectivity (Gable et al., 2000), are more likely to engage 
in aggressive behavior (Wingrove & Bond, 1998), and have a greater 
potential for addiction (Zohreh & Ghazal, 2018). Higher levels of com-
posite BAS are also associated with higher rates of impulsivity measured 
via self-report as well as risky decision making (e.g., drinking and 
driving; Braddock et al., 2011) and personality traits such as psychop-
athy and narcissism (Stenason & Vernon, 2016). 

The BAS scales are thought to measure two different components of 
approach behaviors: responses to rewards and impulsivity. The Reward 
Responsiveness and Drive scales have been shown in psychometric 
studies to be more closely related to other potential markers of reward- 
sensitivity (e.g., goal-directedness, extraversion, reward-expectancy) 
whereas the Fun Seeking scale has been shown to be associated with 
novelty seeking, impulsiveness, and psychoticism (Caseras et al., 2003; 
Knyazev et al., 2004; Smillie et al., 2006; Zelenski & Larsen, 1999). The 
Reward Responsiveness and Drive scales predicted reactions to reward 
in an experimental setting, whereas Fun Seeking did not (Carver & 
White, 1994). The BAS scales have also been shown to be related to 
different behaviors. For example, higher Reward Responsiveness is 
associated with psychological well-being and resilience (Taubitz et al., 
2015). A study by Voigt and colleagues found Reward Responsiveness 
was associated with lower levels of risk behaviors, such as alcohol and 
drug use, safe sex practices, and general safety (e.g., seatbelt use), 
whereas higher Fun Seeking has been associated with higher levels of 
risk behaviors, including drug and alcohol use, risky sex practices, and 
less use of general safety practices (Voigt et al., 2009). Additionally, 
while the BAS scales are often considered as separate fine-grained 
measures, there is evidence of an overarching BAS factor that accounts 
for much of the variance in each of these subscales (Kelley et al., 2019), 
suggesting that the BAS scales can also be considered together as they 
may be capturing an larger BAS construct. A large body of evidence 
indicates resting EEG activity relates to individual differences in BAS 
and BIS activity. We provide an overview of resting state EEG and this 
literature next. 

2. Resting state EEG 

Resting state tasks measure the intrinsic dynamics of the brain while 
participants perform no assigned task. A typical resting state task in-
volves asking participants to remain still and relaxed with eyes closed or 
while maintaining attention on a fixation cross. Resting brain activity is 
associated with performance and behavioral tendencies observed in 
other contexts (e.g., Karamacoska et al., 2017; Perone et al., 2018; 
Rogala et al., 2020; for a review, see Anderson & Perone, 2018) and the 
study of resting activity has shed light on the neural basis of mental 
health conditions, such as major depression (Greicius et al., 2007), and 
neurodegenerative diseases, such as Alzheimer’s Disease (Link-
enkaer-Hansen et al., 2005; Stam et al., 2009). EEG is a continuous 
recording of electrical activity in cortex measured at electrode sites 
placed over the scalp. EEG records the oscillatory behavior of neural 
populations firing together across a range of frequencies. One common 

measure extracted from the EEG is power, higher levels of which reflect 
more neurons firing together within a given frequency. EEG power is 
typically averaged across frequency into distinct bands, named theta 
(4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz), and gamma (30–50 Hz). 
The current study focuses on functional connectivity which is a measure 
of the statistical dependencies between the EEG in each frequency at 
recording sites placed over the scalp. The strength of connectivity be-
tween all electrode pairs creates site-by-site connectivity matrices which 
can be computed for each frequency band. Functional networks are 
patterns of connectivity within the matrix extracted in an a priori or 
data-driven fashion. 

Resting brain activity is often viewed as reflecting the dynamics of 
brain networks specifically active at rest or those networks that are 
engaged while completing specific tasks (Damoiseaux et al., 2006; 
Gusnard & Raichle, 2001; Raichle, 2010). A large literature has shown 
resting EEG power is associated with individual differences in trait-level 
indicators of the BAS and BIS. Much of this literature has focused on 
frontal alpha asymmetry which is a measure of relative levels of alpha 
activity recorded at left and right sites over the frontal region of the 
brain. People who exhibit more relative left frontal alpha activity at rest 
also exhibit more approach-oriented behaviors and have a positive af-
fective disposition, whereas those who exhibit more relative right 
frontal alpha activity exhibit more avoidance-oriented behaviors and 
have a negative affective disposition (e.g., Harmon-Jones & Allen, 1997; 
Tomarken et al., 1990; see Allen et al., 2018 for review). Individual 
differences in frontal alpha activity have also been linked to scores on 
the BIS and BAS subscales. For example, a composite of the BAS sub-
scales is associated with greater relative left frontal alpha activity (Coan 
& Allen, 2003; Harmon-Jones & Allen, 1997; Krmpotich et al., 2013), 
and the BIS scale is associated with greater right frontal alpha activity 
(Balconi & Mazza, 2009; Shackman et al., 2009; Sutton & Davidson, 
2000). Relations between resting EEG power in other bands and pro-
cesses thought to rely on BAS and BIS activity have also been observed. 
For example, higher levels of frontal theta power relate to reward 
sensitivity as measured in the Iowa Gambling Task (Massar et al., 2014), 
a higher frontal theta to beta ratio relates to top-down regulation over 
emotional cues in a response inhibition task (Putman et al., 2010), and 
more right (sourced) prefrontal theta power relates to more risk taking 
in a gambling task (Studer et al., 2013). Some evidence indicates theta 
and beta may be involved in distinct aspects of reward processing. For 
example, Marco-Pallares et al. (2008) observed higher levels of beta 
upon reward but higher levels theta upon loss. Less research has focused 
on functional connectivity in the EEG as it relates to the BAS and BIS, 
which is the focal point of the current study. 

3. Functional connectivity 

Nunez et al. (2015) proposed functional connectivity reflects 
state-dependent dynamics across spatially distributed brain regions, 
creating global networks that are thought to be involved in integration 
of information processing across local networks and essential for healthy 
cognition. Much of our understanding of functional networks as it re-
lates to BAS and BIS activity is based on studies using fMRI (e.g., 
Bramson et al., 2020), many of which have examined resting functional 
connectivity as it relates to trait levels of BAS and BIS activity using 
self-report. For example, Adrián-Ventura et al. (2019) found individual 
differences in reward sensitivity were associated with functional con-
nectivity in areas involved in conflict resolution and monitoring, such as 
anterior cingulate cortex, and reward processing, such as ventral medial 
prefrontal cortex. Huggins et al. (2018) found individual differences in 
harm avoidance were inversely related to functional connectivity 
involving anterior insula and other areas, such as dorsal anterior 
cingulate cortex, and Caulfield et al. (2016) found that more behavior-
ally inhibited individuals exhibited higher levels of functional connec-
tivity between left dorsal lateral prefrontal cortex and dorsal anterior 
cingulate cortex as well as between right dorsal lateral prefrontal cortex 

A.J. Anderson and S. Perone                                                                                                                                                                                                                 



Biological Psychology 177 (2023) 108483

3

and cerebellum. 
General patterns of results from the fMRI literature can help in 

setting some expectations for the current study. For example, we might 
expect to observe distinct networks to relate to scores on the BIS and BAS 
subscales. Prior studies have shown different networks were active 
depending on whether participants were asked to make an approach or 
avoidance response (Leitão et al., 2022), and a large body of behavioral 
evidence indicates activity of the BIS and BAS relate to distinct behav-
ioral profiles (e.g., Franken & Muris, 2006; Jorm et al., 1998; Reniers 
et al., 2016; Zuckerman, 1994). We might also expect to observe net-
works positively and negatively relating to BIS or BAS subscales. Prior 
studies have shown different coping styles to be related to more syn-
chronization of some resting networks and desynchronization of others. 
Specifically, Santarnecchi et al. (2018) studied avoidance-oriented 
coping, problem-oriented coping, and social-support-oriented coping 
styles. They found distinct networks inversely related to 
social-support-oriented and avoidance-oriented coping styles, whereas a 
different network positively related to a problem-solving-oriented 
coping style. CPM simultaneously tests for the presence of positive and 
negative networks relating to behavioral measures. 

4. Connectome predictive modeling 

CPM is founded on the idea a common network relates to specific 
behaviors across individuals, and what varies across individuals is the 

relationship between the strength of the network and the behavior 
(Rosenberg et al., 2017). CPM is used to identify common networks that 
relate to behavior and test whether individual differences in the strength 
of those networks predict behavior in novel subjects using a built-in 
cross-validation procedure. The general CPM method is shown in  
Fig. 1. The starting point is computing connectivity matrices for each 
individual and pairing those with the scores on a behavioral measure for 
all subjects (step 1). One subject is set aside, and correlations are 
computed between functional connectivity for all possible electrode 
pairs (referred to as edges) and behavioral scores for n-1 subjects, called 
the training set (step 2). Positive and negative correlations are treated 
separately to identify networks where stronger connectivity relate to 
higher ratings on the BAS/BIS scale (positive networks) or weaker 
connectivity relate to higher ratings on the BAS/BIS scale (negative 
networks). Statistically significant edges are selected (step 3), and the 
magnitude of the correlation is discarded prior to computing network 
strength by summing the connectivity of the significant edges (step 4). 
The behavioral data is then regressed onto network strength for the 
training set (step 5). The coefficients from this linear model are used to 
predict behavior in the subject set aside using their network strength 
extracted from the same network identified in the training set. This 
yields a predicted and observed score for the behavioral measure (step 
6). This process is repeated until all subjects have been left out and a 
predicted and observed score for the behavioral measure is obtained. 
Pearson’s r is used to characterize the fit between observed and 

Fig. 1. Step-by-step overview of Connectome Predictive Modeling. Figure based on method as depicted by Shen et al. (2017). Connectivity matrices and BIS and BAS 
subscale scores for the training set (n-1 subjects) are selected (step 1), and Pearson’s r is computed for all site-by-site connectivity strengths (edges) and the 
behavioral measure (step 2). Significant (p < .05, two-tailed) edges are selected (step 3). Positive and negative correlations were treated separately. The magnitude of 
the r statistic is discarded, and network strength is computed by summing the edges relating to the behavioral measure of the training set (step 4). The behavioral 
measure is regressed onto network strength for the training set (step 5). Using a built-in cross-validation procedure, the coefficients from the training are used to 
construct a predictive model using the network strength from the subject set aside to predict their score on the scale (step 6). This process was repeated in an iterative 
fashion until a predicted and observed score was obtained for all subjects. 
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predicted scores, and the statistical significance of the r statistic is 
determined using random permutation testing. 

Numerous CPM studies using resting fMRI have identified networks 
relating to task-based performance, such as fluid intelligence (Finn et al., 
2015) and attention (Rosenberg et al., 2016). These studies have iden-
tified both positive and negative networks relating to performance such 
that more synchronization of the positive networks relate to better task 
performance and more synchronization of negative networks relate to 
poorer task performance. CPM has been used with resting fMRI to pre-
dict scores on self-report instruments as well. However, the capacity of 
positive and negative networks to predict self-report scores in novel 
subjects has not always been observed. For example, Hsu et al. (2018) 
found positive and negative networks predicted extroversion and 
neuroticism, Wang et al. (2021) found only a negative network pre-
dicted trait anxiety, and Feng et al. (2019) found only a positive network 
predicted loneliness. 

5. Current study 

The goal of the current study was to apply CPM to resting EEG and 
test whether functional networks related to trait BAS and BIS and could 
predict individual differences in scale scores. A large literature has 
shown trait BAS and BIS are associated with distinct behavioral profiles 
(Carver & White, 1994; Roberti, 2004; Zuckerman, 1994) and patterns 
of neural activity relate to individual differences in use of these systems 
(Bramson et al., 2020) as well as trait levels of BAS and BIS activity (Hsu 
et al., 2018; Meyer et al., 2018; Wang et al., 2021). Thus, the general 
hypothesis guiding this research was distinct networks underlie the BAS 
and BIS. We expected to observe networks positively and negatively 
relating to BIS or BAS scales. This expectation is based on prior studies 
showing different coping styles relate to more synchronization of some 
networks and desynchronization of others at rest (Santarnecchi et al., 
2018). However, we did not have scale specific predictions. We also did 
not have band specific predictions. Reasonable band predictions are 
difficult to make because multiple bands often are shown to relate to 
similar constructs, and different constructs are often shown to relate to 
multiple bands (El-Badri et al., 2001; Perone et al., 2021; for a review, 
see Anderson & Perone, 2018). Nevertheless, a body of evidence in-
dicates theta and beta relate to top-down regulation over reward cues 
(Knyazev & Slobodskoy-Plusnin, 2009; Marco-Pallares et al., 2008; 
Massar et al., 2014; Putman et al., 2010) and alpha relates to approach 
and avoidance behaviors (Balconi & Mazza, 2009; Coan & Allen, 2003; 
Harmon-Jones & Allen, 1997; Krmpotich et al., 2013; Sutton & David-
son, 2000). We might expect theta and beta to relate to the BAS scales 
and alpha to relate to the BIS and BAS scales. 

6. Method 

6.1. Participants 

The full sample consisted of 114 undergraduate students who 
received extra credit for participation. Seven participants were excluded 
due to excessive artifacts in the EEG (n = 1) or because their head size 
was larger than the EEG cap (n = 6). The final sample consisted of 107 
undergraduate students who received extra credit for participation (Mage 
= 20.31, SDage = 1.46, 84 females). Participants self-identified as White 
(50.5%), Asian (16.8%), Hispanic/Latino (11.2%), African American/ 
Black (3.7%), Native/Indigenous (3%), and multiracial (16.8%). 

6.2. Design and procedure 

Participants completed the BIS/BAS scales prior to being fitted with 
the EEG cap. Resting state EEG was recorded in a dimly lit room across 
four 2-minute trials of alternating eyes closed and eyes open conditions 
resulting in 4 min in each condition. For both conditions, participants 
were instructed to remain still and relaxed. During the eyes open 

condition, participants were also instructed to look at a fixation cross 
displayed on a computer monitor. 

6.3. EEG data collection and processing 

EEG data was collected using a 128-channel HydroCel net manu-
factured by Electrical Geodesics, Inc. Impedance levels were set below 
80 kΩ and typically below 50 kΩ. The EEG was monitored prior to 
recording, and electrodes were reset if needed to ensure high-quality 
data collection. EEG was recorded using the NetAmp 400 at 1000 Hz, 
referenced to Cz, and high-pass filtered at 0.1 Hz online. The EEG was 
processed in Matlab using functions from EEGLab (Makeig & Delorme, 
2004), ERPLab (Lopez-Calderon & Luck, 2014), FieldTrip (Oostenveld 
et al., 2011), and the CSD toolbox (Kayser & Tenke, 2006). The 
continuous EEG was re-sampled at 500 Hz and high-pass filtered at 1 Hz 
with a 60 Hz notch filter. Excessively noisy electrodes were identified 
via visual inspection and removed (M = 3.08, SD = 3.44, Range = 0–18). 
A small number of electrodes that exceeded + /− 250 microvolts for 
more than 10 s were also flagged as excessively noisy and removed (M 
=0.15, SD =.45, Range = 0–3). Independent Components Analysis was 
used to identify and correct ocular artifacts. Blinks and horizontal eye 
movements were identified via visual inspection of both components 
and channel activations. Components capturing ocular artifacts were 
removed. The corrected EEG was confirmed via visual inspection. 
Missing electrodes were interpolated, and the EEG was referenced to the 
average of all electrodes and divided into 1 s epochs with 75% overlap 
which is within the range typically used in the literature (Cohen, 2014; 
Luck, 2014; for examples, see Black et al., 2014; Park et al., 2021; Perone 
et al., 2019). Epochs containing 1 or more electrodes with voltage 
exceeding 150 microvolts for more than 100 ms were marked for 
rejection. The average number of epochs used for analysis in the eyes 
closed condition was 925.90 (97.05%, SD =0.052), and the average 
number of epochs used for analysis in the eyes open condition was 
897.16 (94.04%, SD =0.10). The EEG was Laplacian transformed to 
increase the topographical localization of the signal. Laplacian trans-
formation was done using the CSD toolbox with default parameters (m =
4, head radius = 10, λ = 0.00001). Time-frequency decomposition using 
Fast Fourier transform (FFT) was performed on artifact-free epochs 
using a Hanning window. 

Functional connectivity was measured using Phase Lag Index (PLI) 
computed in FieldTrip. PLI measures the degree to which two signals 
consistently lead or lag each other over time and ranges from 0 (no 
synchrony) to 1 (perfect synchrony). PLI was computed for all electrode 
pairs in each frequency. For each pair of electrodes, the average PLI was 
computed across frequencies to create theta (4–8 Hz), alpha (8–13 Hz), 
beta (13–30 Hz), and gamma (30–50 Hz) bands. Electrodes on the face 
and the outer ring of electrodes on the posterior were removed (Calbi 
et al., 2019) leaving a 110 × 110 PLI connectivity matrix for analysis 
(Fig. 2). PLI values for each band at each pair of electrodes were win-
sorized such that values outside of 10% and 90% percentile were 
replaced with the most extreme remaining value within that range. This 
step was important to prevent extreme values from driving correlations 
between scales and connectivity. 

6.4. Behavioral inhibition and activation 

Trait BIS and BAS was measured using Carver and White’s (1994) 
20-item self-report scale. Each item is rated on a 4-point scale ranging 
from very true (1) to very false (4). Mean values were calculated from 4 
subscales: BIS (M = 3.04, SD =0.53), BAS Reward Responsiveness (M =
3.54, SD =0.58), BAS Drive (M =2.79, SD =0.62), and BAS Fun Seeking 
(M = 3.03, SD =0.59), and a composite BAS score which was the mean of 
all BAS items (M = 3.15, SD =0.46). Cronbach’s alpha indicated 
acceptable to good internal consistency for all scales (range 
=0.73–0.86). Four scores for Reward Responsiveness were deemed 
outliers because they were 3 SD away from the mean and had no 
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neighboring values within 1 SD, which was confirmed via visual in-
spection. These scores were winsorized to the closest non-outlying score. 

6.5. Connectome predictive modeling 

CPM was used to identify functional networks relating to BIS and 

BAS scales. CPM was performed for condition (eyes closed, eyes open), 
each band (theta, alpha, beta, and gamma), and BIS and BAS scales 
separately. We tested whether the strength of these networks could 
predict scores on the scales in novel subjects using the leave-one-out 
built-in cross-validation method outlined in Shen et al. (2017) and 
illustrated in Fig. 1. Specifically, the connectivity matrices for a given 
band for the training set consisting of n-1 subjects were selected (step 1), 
and Pearson’s r was computed for all edges for a given BIS or BAS scales 
(step 2). Significant (p < .05, two-tailed) edges were selected (step 3). 
Positive and negative correlations were treated separately. The magni-
tude of the r statistic was discarded, and network strength was computed 
by taking the sum of edges relating to the BIS or BAS scales for n-1 
subjects (step 4). Scores on each scale were then regressed onto network 
strength for the training set (step 5). Using a built-in cross-validation 
procedure, the coefficients from the training set were used to construct a 
predictive model using the network strength from the subject set aside to 
predict their score on the scale (step 6). Importantly, the network 
strength computed for the novel subject was extracted from the same 
network identified in the training set. Thus, CPM tests whether networks 
identified in one set of subjects can predict behavior in novel subjects. 
This process was repeated in an iterative fashion until a predicted and 
observed score was obtained for all subjects. 

The capacity of the predictive model to reproduce the observed BIS 
or BAS scores was evaluated by computing Pearson’s r between the 
observed and predicted scores. The statistical significance of the r sta-
tistic was determined using random permutation testing for all r statis-
tics greater than zero because they indicate the predictive model 
generated scores in the same direction as the observed scores. Specif-
ically, the score for the BIS or BAS scale for all participants were shuffled 
to break the link between the connectivity matrix of a given subject and 
their scale score. All steps 1–6 in Fig. 1 of CPM were performed across 
5000 iterations of random pairings, creating a null distribution of the r 
statistic if the brain-behavior relation was observed by chance. The 
statistical significance of the true r statistic was computed by dividing 
the number of randomly generated r values exceeding the true r by the 
size of the null distribution. Only r statistics with p < .05 were consid-
ered significant. 

Fig. 2. EGI 128 channel scalp map. 110 electrodes were included in analysis 
(all colored electrodes). Nine different regions were used for visualizing and 
describing networks. Each hue shows a different region, including frontal 
(magenta), central (blue), and posterior (gold). For each hue, the darkest (e.g., 
dark gold) indicates the left-most region on the scalp while the lightest (e.g., 
light gold) indicates the right-most region on the scalp. 

Fig. 3. Shows fits for the eyes closed condition between observed and predicted scores on the BIS (top row) for theta (A) and alpha (B) and BAS subscales (bottom 
row) including Fun Seeking for theta (C), Fun Seeking for beta (D), and Drive for beta (E). 
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7. Results 

The results are presented in two sections. The first section presents 
the main results which is the capacity of the predictive models to 
reproduce scores on the BIS and BAS scales, which we present separately 
for each scale and band across conditions. The second section presents 
visualizations and descriptive statistics to characterize the networks 
used in the models we found to fit the behavioral data well. 

7.1. Model fits 

For the eyes closed condition, five models were able to predict 
observed scale scores at levels exceeding chance. Fig. 3 shows the 
relation between the observed and predicted scale scores for each of the 
models. Negative networks relating to BIS scores were observed for 
theta, r = 0.254, p = .004 (3 A) and alpha, r = 0.180, p = .019 (3B), 
indicating less synchronized activity in these networks relate to lower 
levels of behavioral inhibition. Positive networks predicting Fun Seeking 
were observed for theta, r = 0.186, p = .018 (3 C), and beta, r = 0.192, 
p = .022 (3D), as well as Drive for theta, r = 0.171, p = .029 (3E). As can 
be seen in Fig. 3, the range of predicted scores were narrower than the 
range of observed scores. To characterize the fit between the observed 
and predicted scores for each scale, we computed Root Mean Squared 
Error (RMSE) and slopes. The RMSE ranged from 0.53–0.63, indicating 
the predictive models produced scores that were inaccurate by about 
one-half of a score on the rating scale. Slopes were consistently below 1, 
indicating the predictive models consistently underestimated observed 
scores. 

For the eyes open condition, four models were able to predict 
observed scores at levels exceeding chance. Fig. 4 shows the relation 
between the observed and predicted scores for each of the models. Three 
of these models were also observed for the eyes closed condition, 
including negative networks relating to BIS for theta, r = 0.199, p = .017 
(4 A), and alpha, r = 0.200, p = .014 (4B), as well as a positive network 
relating to Fun Seeking for theta, r = 0.208, p = .011 (4 C). A negative 
network relating to mean BAS for gamma, r = 0.215, p = .012 (4D) was 
also observed. Like the networks for the eyes closed condition, the range 
of predicted scores were narrower than the range of observed scores. The 
RMSE ranged from 0.45–0.60, indicating the predicted models were 
inaccurate by about one-half of a score on the rating scale, and the slopes 
were consistently below 1, indicated the predictive models under-
estimated the observed scores. 

7.2. Network characterization 

Networks identified using data-driven methods such as CPM can be 
large and complex. To aid in characterizing networks, we created vi-
sualizations of their topography. The visualization of the networks 
identified for the eyes closed condition are shown in Fig. 5. The top row 
of Fig. 5A-B shows the networks relating to BIS in theta (5 A) and alpha 
(5B). The circles show electrode sites. More interconnected sites are 
depicted by larger circles, and each of the lines shows the connection 
(edge) related to BIS scores. To describe connectivity within and across 
regions, we carved the electrode map depicted in Fig. 2 into nine regions 
based on Calbi et al. (2019) consisting of left, midline, and right sections 
over frontal, central, and posterior regions. The second row shows a 
connectivity matrix for the total number of connections within and be-
tween regions. The third row shows the total number of connections 
involving each region. The bottom row shows the total number of con-
nections within more coarsely divided regions, consisting of all sites 
within the frontal, central, and posterior regions. For the negative theta 
BIS network, short-range frontal and mid-range frontal-central connec-
tivity was most salient. For the negative alpha BIS network, short-range 
frontal, mid-range frontal-central, mid-range central-posterior, and 
long-range frontal-posterior connectivity were prevalent. Fig. 5C-E 
shows the visualization of networks relating to the BAS subscales, 

including positive theta Fun Seeking (5 C), beta Fun Seeking (5D), and 
theta Drive (5E) networks. The topographies of the Fun Seeking net-
works were similar. Mid-range frontal-central, mid-range central--
posterior, and long-range frontal-posterior connectivity were most 
prevalent. For the theta Drive network, however, mid-range central--
posterior connectivity was most prevalent. 

The visualizations of the networks identified in the eyes open con-
dition are shown in Fig. 6. The topography of the networks that were 
observed for the eyes closed and eyes open condition were similar, 
especially those relating to BIS. For the negative theta BIS network, 
short-range frontal and mid-range frontal-central connectivity was most 
prevalent (6 A), and for the negative alpha BIS network, short-range 
frontal, mid-range frontal-central, mid-range central-posterior, and 
long-range frontal-posterior connectivity were prevalent (6B). The 
positive theta Fun Seeking network was also similar to the same network 
observed under the eyes closed (6 C), especially prevalence of mid-range 
frontal-posterior and long-range frontal-posterior connectivity. For the 
mean BAS gamma network, short-range posterior and mid-range cen-
tral-posterior connectivity was most salient. In the General Discussion, 
we draw on the extant literature to shed light on the networks we 
identified. 

8. General discussion 

One goal of human neuroscience is to understand how individual 
differences in brain function relate to behavior. Network activity reflects 
communication within and between brain regions thought to underlie 
cognition, and disruptions to networks may underlie dysregulation 
(Nunez et al., 2015). Networks underlying specific behavioral ten-
dencies are not always known or are too large and complex to be 
specified a priori. We used CPM to identify networks in the resting EEG 
under eyes closed and eyes open conditions relating to trait BIS and BAS 
in a data-driven fashion. Using a built-in cross-validation procedure, we 
tested whether the strength of these networks predicted trait BIS and 
BAS as measured by the BIS and BAS scales developed by Carver and 
White (1994). For the eyes closed condition, we were able to predict 
trait levels on the BIS from a negative theta and negative alpha network, 
Fun Seeking from a positive theta and positive beta network, and Drive 
from a positive theta network. For the eyes open condition, we also were 
able to predict trait levels on the BIS from a negative theta and negative 
alpha network and Fun Seeking from a positive theta network. A nega-
tive gamma network predicted mean BAS scores under these conditions 
as well. Prior studies have applied CPM to fMRI. Our study shows CPM 
can successfully be applied to EEG to identify networks relating to the 
BAS and BIS, which are well-studied systems involved in self-regulation 
and thought to underlie affective dispositions and self-regulatory pro-
cesses (Gray, 1976, 1981; Pickering & Corr, 2008). The use of CPM with 
EEG can advance our understanding of resting EEG networks and may 
have clinical implications. 

The most striking finding from the eyes closed condition was only 
negative networks related to BIS and only positive networks related to 
Fun Seeking and Drive. A similar pattern of results was observed for eyes 
open except a negative mean BAS gamma network was also observed. 
For BIS, negative resting networks in theta and alpha were observed 
when eyes were closed and open, indicating the more these networks 
synchronize the less sensitive the individual is to punishment cues. Prior 
studies using simultaneous fMRI-EEG have shown theta and alpha ac-
tivity are associated with amygdala activity and BIS-related processes. 
For example, Sperl et al. (2019) used a fear-conditioning task in which a 
face was paired with electrical stimulation and found frontal-central 
theta activity and amygdala activity were both higher during recall of 
non-extinguished fear cues. Other studies have found alpha connectivity 
over the frontal region also relates to BIS-related processes. For example, 
Zotev et al. (2016) used a neurofeedback design based on amygdala 
activity to guide depressed individuals to think about happy memories. 
They found those with higher levels of depression also exhibited an 
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increase in alpha connectivity over left frontal-temporal regions across 
trials. Alpha connectivity over frontal regions has also been observed 
while people process emotional expressions. For example, Balconi and 
Mazza (2009) observed the highest levels of right frontal-central alpha 
connectivity while processing fear, anger, and surprise. We also 
observed connectivity in the BIS alpha network over left, right, and 
central frontal regions to be especially interconnected. Together, these 
studies point to network activity recorded over these regions to be 
especially important to the BIS. 

Only positive networks related to Fun Seeking and Drive, indicating 
the more these networks synchronize, the more sensitive the individual 
is to aspects of reward. Fun Seeking reflects pursuit of reward and relates 
to novelty seeking, impulsiveness, and more risk behaviors (Caseras 
et al., 2003; Knyazev et al., 2004; Smillie et al., 2006; Zelenski & Larsen, 
1999). For Fun Seeking, we found a positive theta network when eyes 
were closed and open and positive beta network when eyes were closed. 
These networks had strikingly similar topographies that involved 
long-range frontal-central, fontal-posterior, and central-posterior con-
nectivity. Prior studies indicate long-range theta connectivity is 
involved in top-down regulatory processes (Anguera et al., 2013; Miz-
uhara et al., 2004; Sauseng et al., 2005). It is possible the networks we 
observed are involved in control over reward processing. Some evidence 
indicates theta and beta activity are involved in distinct aspects of 
processing reward and punishment. For example, high-beta activity is 
associated with reward processing, whereas theta activity is associated 
with processing of losses, especially over frontal-central regions (Mar-
co-Pallares et al., 2008). Using simultaneous fMRI-EEG during a 
gambling task, Andreou et al. (2017) also observed high-beta activity 
was associated with processing of reward and theta activity was asso-
ciated with processing losses. Additionally, they found theta and beta 
were associated with distinct networks. Theta was associated with brain 

regions involved in conflict monitoring, such as anterior cingulate cor-
tex, whereas beta was associated with areas involved in reward pro-
cessing, such as ventral striatum. We also found a positive theta network 
relating to Drive when eyes were closed which reflects 
goal-directedness, extraversion, and reward expectancy (Carver & 
White, 1994). Notably, several studies have also found relations be-
tween brain activity and Drive. For example, Putman et al. (2010) found 
frontal theta/beta activity related to Drive, and Knyazev and 
Slobodskoy-Plusnin (2009) found frontal theta activity increased upon 
reward notification in those high in Drive. 

The extant literature on beta activation as it relates to motor func-
tioning and motivation can also shed light on our findings. Beta power 
has been shown to be stronger when motor movement is resisted or 
suppressed (Androulidakis et al., 2007; Lalo et al., 2007; Zhang et al., 
2008), to decrease in preparation and during completion of a goal 
(Pfurtscheller, 1997; Pogosyan et al., 2009), and that decreases in beta 
activity at rest over motor control regions related to higher composite 
BAS scores (Threadgill & Gable, 2018). Beta has also been shown to 
decrease more on reward trials relative to non-reward trials (Meadows 
et al., 2016) and when participants are told that a trial would be more 
difficult relative to trials that were anticipated to be easier (Wilhelm 
et al., 2021), suggesting that beta is involved in motivation based on 
reward as well as motivation to complete a difficult task. We found 
higher levels of Fun Seeking were predicted from a beta network during 
a resting state task in which participants were instructed to remain still 
and calm with their eyes closed. Participants who are higher in Fun 
Seeking may have a greater propensity to engage in impulsive behaviors 
and motivated by reward, and thus a resting state task that asks par-
ticipants to sit quietly with eyes closed may require greater control to 
complete for individuals higher in Fun Seeking than those who are lower 
in Fun Seeking. It is possible the beta network we observed during the 

Fig. 4. Shows fits for the eyes open condition between observed and predicted scores on the BIS for theta (A) and alpha (B) and Fun Seeking for theta (C) and BAS 
Mean for gamma (D). 
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eyes closed condition to relate to Fun Seeking is involved in these control 
processes. 

Studies using CPM with fMRI have primarily reported networks 
identified when participants rest with their eyes closed (Feng et al., 
2018, 2019; Lu et al., 2019; Wang et al., 2021). A contribution of this 
study is it applied CPM to resting EEG under eyes closed and eyes open 
conditions. These conditions are associated with distinct topographies 
and levels of EEG power, which may be due in part to the need to 
maintain attention on a visual stimulus during the eyes open condition 
(Barry et al., 2007; Perone et al., 2019; for a review, see Anderson & 
Perone, 2018). Consistent with this hypothesis, lower levels of the theta 
/ beta ratio have been observed during eyes open relative to eyes closed 
(Perone et al., 2019), which is a neural correlate of engaged attention 
(van Son et al., 2019). The pattern of results observed herein is also 
consistent with this hypothesis. We found more synchronization of a 
gamma network over the posterior related to lower levels of mean BAS 
only in the eyes open condition. Posterior gamma activity is involved in 
visually attending to a stimulus (Müller et al., 2000). People low in mean 
BAS are less impulsive (Braddock et al., 2011) and may be able to 
maintain attention control in the eyes open condition well, as indicated 
by more synchronization of the posterior gamma network. Some effects 
present in the eyes closed condition were absent from the eyes open 
condition, including the positive theta Drive and positive beta Fun 
Seeking networks. We speculate that these relations emerge when eyes 
are closed due to engaged control processes that are allocated elsewhere 
in the eyes open condition when there is a need to maintain attention on 
a visual stimulus. More research investigating the ongoing processes 
across resting conditions is crucial to more fully understand why some 
relations are observed in one condition and not the other, a topic we turn 
to next. 

An important contribution of the current study is application of CPM 
to resting EEG to identify predictive networks related to motivational 
processes that are thought to underlie a wide range of behaviors. We 
identified four important directions for future research to advance un-
derstanding of networks identified using CPM with EEG. One direction 
for future research is to study the link between resting state network 
activity and ongoing processes at rest. The intrinsic dynamics of the 
brain at rest may reflect individual differences in ongoing regulatory 
processes also at work in other contexts. For example, a study by Diaz 
and colleagues (2013) asked participants to report on their thoughts 
during a resting state task, ranging from planning for the future to 
thinking about other people. Participants also reported on the quality of 
their thoughts (e.g., “I had busy thoughts”), their emotional valence 
during the task (e.g., “I felt happy”), and attention to their body (e.g., “I 
thought about my heartbeat”; Diaz et al., 2013). Importantly, partici-
pants’ ongoing cognition during rest was shown to relate to trait-level 
indicators of mental well-being, anxiety, and depression. Asking par-
ticipants about their ongoing cognition across conditions during the 
resting state task may shed light on the activity of BAS or BIS networks at 
rest and whether it relates to BIS and BAS activity in other contexts. 

A second direction for future research is to test the generalizability of 
BAS and BIS networks. This could be achieved in several ways. For 
example, the activity of resting BAS and BIS networks could be extracted 
during a gambling task to test whether their activity predicts behavioral 
measures of sensitivity to rewards and losses. In the current study, we 
did not identify any resting networks that predicted Reward Respon-
siveness or the mean of all BAS items. It is possible that tasks that require 
reward processing would be more likely to engage networks relating to 
Reward Responsiveness and a BAS composite score. Another example is 
applying CPM to performance in several tasks designed to measure BAS 

Fig. 5. Shows visualizations of predictive networks for the eyes closed condition. The top row shows the topography for predictive networks that fit the behavioral 
data well. Networks shown depict connectivity shared by 95% of iterations for the leave-one-out cross-validation procedure. Negative networks are shown in blue (A- 
B) and positive networks are shown in red (C-D). The second row shows a connectivity matrix depicting the number of connections (warmer colors, more con-
nections) within and between regions over the scalp as shown in Fig. 2, including left frontal (LF), central frontal (CF), right frontal (RF), left central (LC), central 
central (CC), right central (RC), and left posterior (LP), central posterior (CP), right posterior (RP). The third row shows the total number of connections involving 
each region. The bottom row shows a connectivity matrix depicting the number of connections within coarsely divided regions into frontal (F), central (C), and 
posterior (P) regions. 
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and BIS activity and identify whether core regions emerge across a range 
of networks identified in a data-driven fashion. A third direction for 
future research is to study networks across developmental periods to 
determine their stability. For example, one question is whether the same 
resting BAS and BIS networks identified during early adulthood have 
predictive value during other periods of development. Braams et al. 
(2014) found BAS-related processes (e.g., risk-taking) exhibited an 
inverted u-shape trend from 8 to 27 years of age, which was also 
observed for neural activity in a brain region associated with reward 
processing (nucleus accumbens). Such age-related changes may be 
associated with change in the strength of the same BAS or BIS networks, 
or age-related change may be associated with distinct networks. 

A fourth direction for future research is to test the clinical value of 
CPM applied to the EEG. CPM is especially useful to identify networks 
predictive of specific behaviors, and studies using fMRI have shown 
there is clinical value to identifying such predictive networks. For 
example, Yip et al. (2019) used CPM to identify networks that predicted 
abstinence of cocaine use in novel subjects during treatment for cocaine 
use disorder. Ju et al. (2020) identified networks that predicted how 
well novel subjects with depression responded to treatment. One 
implication of this clinical research is CPM may help tailor treatment 
options to specific individuals. EEG is widely used across the lifespan, 
and disruptions to functional networks might underlie disorders (Nunez 
et al., 2015). Indeed, abnormalities in functional connectivity in the EEG 
has been shown to relate to disorders, such as ADHD (Murias et al., 

2007), and abnormalities in functional connectivity in the EEG are 
present prior to the emergence of neurodevelopmental disorders, such as 
Autism (Orekhova et al., 2014; Righi et al., 2014). CPM may be helpful 
in predicting responsiveness to treatment of developmental disorders or 
identifying networks predictive of the later emergence of neuro-
developmental disorders before they develop. 

In conclusion, we applied CPM to resting EEG and identified BAS and 
BIS networks capable of predicting trait levels of BAS and BIS in novel 
subjects measured via self-report. The BAS and BIS are widely studied 
because their activity underlies regulatory processes across a range of 
contexts, and variation in their activity across individuals is associated 
with distinct behavioral profiles. Several areas of future research are 
needed to advance use of CPM with EEG, including identifying core 
interconnected regions across a range of contexts relying on BAS and BIS 
activity and testing the stability of such networks across development. 
CPM has been shown to have clinical value when applied to fMRI and 
may be especially useful for EEG because it is widely used across the 
lifespan and abnormalities in the EEG may be an important physiolog-
ical marker of disorders. 

Data availability 

The authors are unable or have chosen not to specify which data has 
been used. 

Fig. 6. Shows visualizations of predictive networks for the eyes open condition. The top row shows the topography for predictive networks that fit the behavioral 
data well. Networks shown depict connectivity shared by 95% of iterations for the leave-one-out cross-validation procedure. Negative networks are shown in blue 
and positive networks are shown in red. The second row shows a connectivity matrix depicting the number of connections (warmer colors, more connections) within 
and between regions over the scalp as shown in Fig. 2, including left frontal (LF), central frontal (CF), right frontal (RF), left central (LC), central central (CC), right 
central (RC), and left posterior (LP), central posterior (CP), right posterior (RP). The third row shows the total number of connections involving each region. The 
bottom row shows a connectivity matrix depicting the number of connections within coarsely divided regions into frontal (F), central (C), and posterior (P) regions. 
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