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Abstract—A fundamental task in data exploration is to extract low dimensional representations that capture intrinsic geometry in data,
especially for faithfully visualizing data in two or three dimensions. Common approaches use kernel methods for manifold learning.
However, these methods typically only provide an embedding of the input data and cannot extend naturally to new data points.
Autoencoders have also become popular for representation learning. While they naturally compute feature extractors that are
extendable to new data and invertible (i.e., reconstructing original features from latent representation), they often fail at representing
the intrinsic data geometry compared to kernel-based manifold learning. We present a new method for integrating both approaches by
incorporating a geometric regularization term in the bottleneck of the autoencoder. This regularization encourages the learned latent
representation to follow the intrinsic data geometry, similar to manifold learning algorithms, while still enabling faithful extension to new
data and preserving invertibility. We compare our approach to autoencoder models for manifold learning to provide qualitative and
quantitative evidence of our advantages in preserving intrinsic structure, out of sample extension, and reconstruction. Our method is
easily implemented for big-data applications, whereas other methods are limited in this regard.

Index Terms—Autoencoders, dimensionality reduction, manifold learning, semi-supervised learning
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1 INTRODUCTION

The high dimensionality of modern data introduces
significant challenges in descriptive and exploratory data
analysis. These challenges gave rise to extensive work on di-
mensionality reduction aiming to provide low dimensional
representations that preserve or uncover intrinsic patterns
and structures in processed data. A common assumption
in such work is that high dimensional measurements are
a result of (often nonlinear) functions applied to a small
set of latent variables that control the observed phenomena
of interest. Thus one can expect an appropriate embedding
in low dimensions to recover a faithful latent data repre-
sentation. While classic approaches, such as principal com-
ponent analysis (PCA) [1] and classical multidimensional
scaling (MDS) [2], construct linear embeddings, more recent
attempts mostly focus on nonlinear dimensionality reduc-
tion. These approaches include manifold learning kernel
methods and deep learning autoencoder methods, each with
their own benefits and deficiencies.

Kernel methods for manifold learning include some of
the most popular nonlinear dimensionality reduction meth-
ods, dating back to the introduction of Isomap [3] and
Locally Linear Embedding (LLE) [4]. These two methods
proposed the notion of data manifolds as a model for in-
trinsic low-dimensional geometry in high dimensional data.
The manifold construction in both cases is approximated
by a local neighborhood graph, which is then leveraged to
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form a low-dimensional representation that preserves either
pairwise geodesic distances (in the case of Isomap) or local
linearity of neighborhoods (in LLE). The construction of
neighborhood graphs to approximate manifold structures
was further advanced by Laplacian eigenmaps [5] and
diffusion maps [6], together with a theoretical framework
for relating the captured geometry to Riemannian mani-
folds via the Laplace-Beltrami operators and heat kernels.
These approaches that, until recently, dominated manifold
learning can collectively be considered as spectral methods,
since the embedding provided by them is based on the
spectral decomposition of a suitable kernel matrix that en-
codes (potentially multiscale) neighborhood structure from
the data. They are also known as kernel PCA methods,
as they conceptually extend the spectral decomposition of
covariance matrices used in PCA, or that of a Gram (inner
product) matrix used in classic MDS.

Recent work in dimensionality reduction has focused
on visualization for data exploration [7], [8], [9], [10], [11],
[12], [13]. Spectral methods are generally unsuitable for such
tasks because, while their learned representation has lower
dimension than the original data, they tend to embed data
geometry in more dimensions than can be conveniently
visualized (i.e., � 2 or 3). This is typically due to the
orthogonality constraint and linearity of spectral decompo-
sitions with respect to the initial dimensionality expansion
of kernel constructions [7], [14]. This led to the invention of
methods like t-SNE (t-Distributed Stochastic Neighbor Em-
bedding) [15], UMAP (Uniform Manifold Approximation
and Projection) [8], and PHATE (Potential of Heat-diffusion
for Affinity-based Transition Embedding) [7]. These meth-
ods embed the data by preserving pairwise relationships
between points and can be viewed as generalizations of
metric and non-metric MDS. These methods and their ex-
tensions have been used in applications such as single cell
genomics [7], [10], [16], [17], [18], [19], [20], [21], visualizing
time series [9], visualizing music for a recommendation sys-
tem [22], and analyzing the internal representations in neu-
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ral networks [23], [24]. However, these and spectral methods
typically provide fixed latent coordinates for the input data.
Thus, they do not provide a natural embedding function to
perform out-of-sample extension (OOSE). This shortcoming
is usually tackled by employing geometric harmonics [25],
Nyström extension [26], or a landmark approach [27].

In contrast, Autoencoders (AEs) are a different paradigm
for non-linear dimensionality reduction. First introduced in
[28] and extended in many ways such as variational autoen-
coders (VAE) [29], this non-convex and parametric approach
has gained more attention in recent years, especially due
to the computational and mathematical advances in the
field enabling neural networks to be efficiently implemented
and trained. In contrast with kernel methods, AEs learn a
parametric function and are thus equipped with a natural
way to perform OOSE, as well as an inverse mapping from
the latent to the input space. Despite these properties, AEs
usually fail to accurately recover the geometry present in
the data. This not only limits their utility in exploratory data
analysis, e.g. via low-dimensional visualization, but can also
lead to poor reconstructions over certain regions of the data,
as we show in this work.

Motivated by the complementary advantages provided
by AE and kernel methods, we introduce Geometry regu-
larized autoencoders (GRAE), a general framework which
splices the well-established machinery from kernel methods
to recover a sensible geometry with the parametric struc-
ture of AEs. Thus we gain the benefits of both methods,
furnishing kernel methods with efficient OOSE and inverse
mapping, and providing the autoencoder with a geomet-
rically driven representation. To achieve this, GRAE intro-
duces a regularization on the latent representation of the
autoencoder, guiding it towards a representation previously
learned by a kernel method. In this paper we focus our
presentation using PHATE [7] as our preferred method for
finding a sensible geometry. Nevertheless, we also show
how GRAE performs when using UMAP [8] for computing
the reference embedding.

Our main contributions are as follows. First, we present
the geometric regularization, a general approach to leverage
the geometry-preserving properties of kernel-based dimen-
sionality reduction and manifold learning methods while
providing them with a natural OOSE and an invertible map-
ping. Secondly, we show that including the geometric reg-
ularization leads to qualitatively improved visualizations
relative to competing methods and decreases the reconstruc-
tion error of the autoencoder in many cases, suggesting that
the geometry learned from the kernel method leads to a
better representation for reconstruction. Further, we propose
an approach to implement GRAE in a scalable fashion
using mini-batch embeddings and combining them in a
sensible way. This alleviates the computational cost, which
is a typical limitation for kernel methods. Additionally, we
demonstrate that the better preservation of the geometric
properties of the data induced by GRAE allows for a con-
sistent generation of new data by following geodesic trajec-
tories discovered in the latent space. Finally , we show how
our geometric regularization can be used to perform semi-
supervised learning using a multi-task learning approach,
acting as an inductive bias.

The outline of this paper is as follows. Section 2 summa-

rizes the most relevant work related to ours. Section 3 de-
scribes GRAE. In Section 4, experimental comparisons with
other methods are provided. Some applications of GRAE
are also given in Section 4, in particular, semi-supervised
learning as well as data generation from the latent space.
Section 5 provides a discussion some of the limitations of
the approach while Section 6 concludes the paper.

2 RELATED WORK

Manifold learning methods for dimensionality reduction
typically assume data lie on a low dimensional manifoldM
immersed in the high dimensional ambient space. Therefore
they aim to map points from M to a low dimensional Eu-
clidean space that encodes or reveals its intrinsic geometry.
However, in practice, such methods only consider a finite set
of data points x1, . . . , xn ∈ RD (for D dimensional ambient
space), assumed to be sampled from M, and optimize a
fixed set of low dimensional points y1, . . . , yn ∈ Rd (for
d � D) such that the Euclidean relations between pairs
(yi, yj) will reflect intrinsic nonlinear relations between
the corresponding (xi, xj). Recent manifold learning kernel
methods typically follow the framework introduced in [30]
and further extended by t-SNE [15], which are themselves
generalizations of the metric MDS algorithm, whereby the
coordinates in the latent space are optimized by gradient
descent to recreate the pairwise similarities (as defined by
a kernel) in the input space. Intuitively, the use of a kernel
which outputs high similarities for close neighbors enables
the capture of the curvature of the underlying manifold
in the ambient space. t-SNE, for instance, uses normalized
Gaussian similarities in the input space and t-distributed
similarities in the latent space. The embedding is optimized
so as to minimize the Kullback-Leibler divergence between
both distributions.

UMAP [8] was introduced as an improvement of t-SNE,
with claims of improved preservation of global features
and better run times. Specifically, the cost function of t-
SNE is replaced with cross-entropy and similarities between
objects in the input space are computed based on the smooth
nearest neighbor distances, that is:

vj|i = e
−d(xi,xj)−pi

σi , (1)

where pi is the distance between xi and its nearest neighbor,
σi is the bandwidth, and d is a distance, not necessarily Eu-
clidean. In contrast with t-SNE, UMAP does not normalize
similarities and relies on an approximation of the neigh-
borhoods using the Nearest-Neighbor-Descent algorithm of
[31]. UMAP further distinguishes itself from t-SNE by not
restricting the embedded space to two or three dimensions.

Recently, the claim that UMAP is superior to t-SNE in
preserving global structure has been challenged in [32],
in which the authors attribute the better global structure
commonly obtained by UMAP to the differences between
both methods in the initialization procedure. Typically t-
SNE uses a random initialization, whereas UMAP uses
Laplacian eigenmaps as its starting point. They showed that
nearly identical results can be obtained by also initializing
t-SNE with Laplacian eigenmaps. At any rate, as kernel
methods, neither t-SNE nor UMAP provide a natural OOSE.
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PCA naturally provides an extendable and (approxi-
mately) invertible embedding function of a given dimension
by finding the optimal linear transformation in terms of the
reconstruction loss. To generalize this approach to nonlinear
embedding functions over a data manifold M, autoen-
coders (AEs) define an encoder function f :M −→ R

d and
a decoder function f† : Rd −→M, which is an approximate
inverse of f . Both functions are parametrized by a neural
network and trained via a reconstruction loss to ensure the
composite function f†◦f acts as an identity on data sampled
from M. By considering datasets in matrix notation (i.e.,
with rows as datapoints), the AE optimization is generally
formulated as

arg min
f,f†

L(f, f †) = Lr(X, f †(f(X))), (2)

where f, f† are applied separately to each row in their
input matrix (yielding corresponding output data points
organized in matrix form), and Lr denotes a loss function
that measures the discrepancy between the original and re-
constructed data points (commonly MSE) [28]. It is common
to select d < D, forcing the autoencoder to find a repre-
sentation in latent codes of dimension d while retaining as
much information for reconstruction as possible. In this case
the autoencoder is undercomplete. Under this formulation,
instead of learning new coordinates for the input data, we
learn an embedding function f and an inverse function f†. If
f is a linear function, the network will project onto the same
subspace spanned by the principal components in PCA [33].

Manifold learning algorithms are typically based on the
eigendecomposition of a kernel matrix (Diffusion Maps) or
a stochastic optimization of the latent coordinates (metric
MDS, UMAP). Therefore, in constrast to neural networks,
they do not provide a general embedding function that
operates on, or provides a representation of, the entire
manifold M. Thus these methods are not applicable to
arbitrary input points in R

D , which we would ideally
want to project onto the learned manifold. To address this
shortcoming, a parametric version of t-SNE using a neural
network approach was proposed in [34] where a multi-step
training procedure is used to optimize the t-SNE objective
with a neural network.

Another well-known solution to the lack of OOSE is
the Nyström extension [35] and its improvements, such as
geometric harmonics [25], which approximate an empirical
function over new points using linear combinations of the
eigenvectors of a kernel matrix computed on the training
set. Let X = {x1, ..., xn} be the training set used to compute
the initial kernel matrix K with kernel function k(·, ·). Then
a new point x′ can be extended to the learned latent space
using the eigenvectors ψi of K with eigenvalues λi as

follows: ψ̂i(x′) ≈ 1
λi

n∑
j=1

k(xj , x
′)ψj(xj).

One can thus project a function on the eigenvectors of
K and then extend to new points using the new approx-
imated eigenvectors. However, this approach has several
drawbacks [36]. Given n training points (resulting in K
being n × n), extending a function (e.g. a dimensionality
reduction function such as PHATE or UMAP) to m new
points requires us to compute m new kernel rows leading
to a time complexity of O(nm). Furthermore, the empirical

function must be within the interpolation range of a given
kernel, which may require hyperparameter tuning or trying
different kernel functions.

Other methods perform OOSE by a linear combination
of training points (the “landmarks”) close to the new points
in the input space [27], as in PHATE [7] and landmark
MDS [37]. UMAP takes a similar approach to OOSE by ini-
tializing latent coordinates of new points in the latent space
based on their affinities with training points in the input
space. The new layout is then optimized by gradient descent
using the embeddings of training points as reference.

All of these approaches require the training points, or
a subset, to be stored in memory with their embeddings
as a proxy for the target function, which can quickly be-
come inconvenient for a large dataset or lead to a loss
in embedding quality due to subsampling or the use of
landmarks. Moreover, they do not provide a straightforward
approximation of the inverse function, which is critical in
assessing how well the information is preserved in the
embedded space. As such, they are not directly comparable
to GRAE and other AE based models, which present a native
approximation of the inverse and only need to store the
weights and biases of the network to perform OOSE. Thus
their memory requirements are independent of the training
set size.

The vanilla AE formulation in (2) has been extended for
many purposes by adding regularization as a prior on the
function space of f and f†. Denoising AEs (DAE) [38] are
widely used to find good latent representations and perform
feature extraction, exploiting the flexibility provided by
neural networks (e.g. [39], [40]). Contractive autoencoders
(CAE) [41] penalize the Frobenius norm of the Jacobian
of the encoder f , encouraging a robust representation to
small perturbations in the training data. When using a high
dimensional latent space (e.g., the overcomplete case), sparse
AEs [42] are particularly useful, introducing a sparsity con-
straint that forces the network to learn significant features
in the data. Extensions to produce generative models, such
as variational autoencoders (VAE) [29], regularize the latent
representation to match a tractable probability distribution
(e.g., isotropic multivariate Gaussian), from which it is pos-
sible to sample over a continuous domain to generate new
points. β-VAE [43] extends the VAE framework by adding a
hyperparameter β to modulate the prior regularization.

Some attempts to impose geometrically driven regular-
izations on the latent space have been proposed over the
past two decades, which are more closely related to our
work. Stacked Similarity-Aware Autoencoders, for instance,
enforce a cluster prior based on pseudo-class centroids to
increase subsequent classification performance [44].

A relatively new implementation called Diffusion
Nets [36] encourages the AE embedding to learn the ge-
ometry from Diffusion Maps (DM) [6], a manifold learn-
ing algorithm. This approach combines an MSE loss in
the embedding coordinates with the so-called eigenvector
constraint to learn the diffusion geometry. Diffusion Nets
inherits some of the inherent issues of Diffusion Maps. Per-
haps most importantly, they inherit its inability as a spectral
method to ensure significant representation of the data on
a fixed lower dimension, due to the natural orthogonality
imposed among the diffusion coordinates [7]. Therefore,
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effective use of Diffusion Nets may require the network
architecture to be determined from the numerical rank of the
diffusion affinity kernel used in DM. This, in turn, would
limit the capabilities of this approach in data exploration
(e.g., visualization), while in contrast PHATE (and UMAP)
can specifically optimize a chosen dimension (e.g., 2D or
3D). Moreover, as a spectral method, DM itself1 tends to
be more computationally expensive than PHATE (which we
use in this work, see Sec. 3) or UMAP [7], [8].

The formulation of Diffusion Nets is closely related to
Laplacian autoencoders (LAE) [45] and Embedding with
Autoencoder Regularization (EAER) [46]. Both of these
methods include a regularization term that penalizes inac-
curate preservation of neighborhood relationships:

arg min
f,f†

L(f, f †) = Lr(X, f †(f(X))) (3)

+ λ
n∑
i<j

L′(f(xi), f(xj), φij),

where Lr is the AE reconstruction loss presented in (2) and
L′ is a specific regularization applied to the encoder. The
values φij are given by some pairwise distance or similarity
measure. For instance, in EAER the regularization term L′
is the classical MDS objective:

L′(f(xi), f(xj), φij) = (‖f(xi)− f(xj)‖ − φij)2, (4)

where φij is a given distance computed in the input space.
It can also be margin-based, where embedding distances
between neighbors are penalized if not 0, while distances
between non-neighbors are penalized if not above a cer-
tain margin. Finally, L′ can take the form

∑n
i<j ‖f(xi) −

f(xj)‖2φij . In this case, the φij values are computed using
the weighted edges in an adjacency graph. This gives the
objective function of Laplacian eigenmaps. LAE employs a
similar loss term, but goes further by adding a second-order
term involving the Hessian of f .

Another approach derived from manifold learning meth-
ods can be found in [47], in which the authors aimed to
replicate Isomap’s objective function by using a Siamese
network architecture trained over the pairwise geodesic
distances. Their method, however, scales quadratically in
the number of landmarks selected for training.

Recently, topological autoencoders (TAE) [48] were pro-
posed which include a regularization based on a topological
signature of the input data. The topology of a manifold can
be characterized by homology groups, which, depending on
their dimension, represent various topological features such
as the number of disconnected components or the number
of cycles on the manifold that cannot be deformed into
each another. When data are sampled from a manifold,
such topological features can be approximately derived
from an ε-ball neighborhood graph of the data. Persistent
homology [49], [50] was introduced as a means to identify
the topological signature of manifolds based on how long
topological features persist when progressively increasing
the ε-ball of the neighborhood graph. Topological features
with a short ε lifespan are attributed to noise. TAE thus

1. We note that the DM runtime (relative to UMAP) is equivalent
to that of Laplacian eigenmaps reported in [8], as the algorithmic
difference between these spectral methods is negligible [6].

penalizes discrepancies between the topological signatures
of the input space and the latent space.

3 GEOMETRY-REGULARIZED AUTOENCODER

3.1 Learning embedding functions

In this work, we aim to learn a data manifold geometry
to find an appropriate embedding function f : M → R

d,
rather than just a fixed point-cloud embedding. This con-
trast can be seen, for example, by considering the classic
PCA and MDS methods. While both of these methods
can be shown analytically to extract equivalent (or even
the same) linear embeddings from data, MDS only assigns
coordinates to fixed input points (similar to the described
manifold learning methods), while PCA provides an em-
bedding function (albeit linear) defined by a projection
operator on principal components. Here, we aim to establish
a similar equivalence in nonlinear settings by providing an
alternative to popular manifold learning approaches that
constructs an embedding function (as a nonlinear succes-
sor of PCA) and also yields representations that capture
an intrinsic geometry similar to that of established kernel
methods (seen as successors of MDS).

3.2 Extendable and invertible embedding with autoen-
coders

The AE formulation presented in (2) departs from manifold
learning approaches as it lacks an explicit condition to
recover geometric interactions between observations. To fill
that gap, we propose a general framework called GRAE
(Geometry Regularized Autoencoders) which explicitly pe-
nalizes misguided representations in the latent space from a
geometric perspective. Thus, we add a soft constraint in the
bottleneck of the autoencoder as follows:

arg min
f,f†

L(f, f †) = Lr(X, f †(f(X))) + λLg(f(X), E). (5)

The Lg term in (5) is the geometric loss, penalizing the
discrepancy between the latent representation and the em-
bedding E previously learned by a manifold learning algo-
rithm. Specifically, given an embedding of training points
E = {e1, e2, . . . , en}, we define the geometric loss as
Lg(f(X), E) =

∑n
i=1 ‖ei − f(xi)‖2.

The parameter λ ≥ 0 determines how strongly the latent
space of the AE should match the embedding E . Thus for
λ > 0, the network will implicitly force the latent space
of the autoencoder to preserve the relationships learned
by the manifold learning technique, resulting in a non-
linear embedding function f and its inverse f† that are
consistent with sensible geometric properties. Assuming a
neural network architecture of sufficient capacity, a high
λ will ensure the latent space almost perfectly matches E .
Conversely, a low λ will yield an embedding indistinguish-
able from a standard AE embedding. In general, λ can be
tuned by a visual assessment of the bottleneck or, as we do
in this work, by cross-validation of the reconstruction term
Lr . We observed empirically that the latter approach will
select a value of λ that improves both the geometry of the
latent space and the reconstruction quality of the decoder in
comparison to standard AE training.
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3.3 Computing the geometric reference E
Geometric regularization can rely on any manifold learning
approach to compute E , e.g. UMAP, Isomap, t-SNE, etc. The
resulting latent space will then inherit the corresponding
strengths and weaknesses of the selected approach.

To generate E in this work, we suggest using PHATE [7]
as it has proven to preserve long-range relationships (global
structure) in a low-dimensional representation beyond the
capabilities of spectral methods such as Laplacian eigen-
maps, Diffusion Maps, LLE, and Isomap, especially when
the dimension d is required to be 2 or 3 for visualization.
PHATE is built upon diffusion geometry [6], [51]. PHATE
first computes an α−decay kernel with an adaptive band-
width, which captures local geometry while remaining ro-
bust to density changes. The kernel matrix is normalized to
obtain a probability transition matrix P (diffusion operator)
between every pair of points. Various scales of the geometry
can then be uncovered by computing a t-step random walk
over P , with a higher t implying more diffusion, pushing
transition probabilities to a more global scale.

Subsequently PHATE computes the potential distances
D′t, which have proven to be informative distances between
the transition probabilities encoded in P t. Finally, metric
MDS is applied to D′t to optimally preserve the potential
distances in a low-dimensional representation. Figure 1
shows an overview of GRAE using the PHATE embedding.

As with any kernel-based method, PHATE’s computa-
tional complexity will be dominated by the need to compute
O(n2) pairwise distances for n observations. In practice, the
implementation will approximate the full algorithm usingm
landmarks with m << n [7]. Additionally, only the nearest
neighbors are actually connected in the pairwise distance
matrix, leading to a sparse structure than can be leveraged
to save memory and computations.

3.4 Embedding-based optimization
Most of the regularized AE methods discussed in Section
2 rely on jointly minimizing the reconstruction loss and
the regularizing loss during training. We instead choose to
precompute E for three reasons. First, typical optimization
objectives based on manifold learning, such as those used
by Diffusion Nets, EAER, and parametric t-SNE, require
a pairwise affinity or distance matrix which needs to be

Fig. 1. Overview of GRAE on the Teapot dataset [52]. The geometric
regularization is applied to the bottleneck to enforce similarity between
the GRAE and PHATE embeddings. The resulting embedding captures
the rotational geometry of the data whereas the vanilla autoencoder fails
(see Figure 3).

accessible during training and entails a memory cost of
scale O(n2) for n observations. While GRAE may require
a pairwise matrix to precompute E , only E needs to be
retained for training the AE architecture, with a memory
requirement ofO(nd), where d is the latent space dimension
and typically d � n. Other methods, such as TAE, do not
require a pairwise distance matrix from the whole dataset,
but instead compute distance matrices within mini-batches.
Given a mini-batch B of size p, this approach leads toO(p2)
additional operations for every gradient step beyond typical
AE training. The GRAE loss, for its part, only requires com-
puting the Euclidean distance between f(xi) and its target
ei ∈ E , which is O(p). Thus, our optimization approach
is better for big data applications given the computational
complexity of competing methods. See Appendix B.5 for a
runtime comparison.

Second, the optimization techniques employed for some
dimensionality reduction methods can be superior in per-
formance than common approaches for neural network opti-
mization. For instance, PHATE uses the SMACOF algorithm
to perform MDS over the potential distances matrix. In
practice, we find that this obtains a better optimum than
stochastic gradient descent or its variants.

Finally, we depart from previous methods by providing a
more general approach that is applicable to many manifold
learning techniques. In many applications, there may not be
strong reasons for imposing a particular relationship in the
geometric loss that resembles a loss function from a specific
kernel method. Any approach employed to find E , whether
it be PHATE, Isomap, t-SNE, LLE, etc., is already performing
an optimization to its particular loss function, imposing the
preservation of its desired geometric relationships in the
data. Thus, GRAE implicitly enforces such a relationship.

3.5 Scalable GRAE

Kernel methods typically have computational limitations.
Even when using speed-up variants, such as landmarks
or the Barnes-Hut algorithm for t-SNE, their application
to large data sets is not as scalable as an AE. Motivated
by such limitations, we show how the introduction of the
autoencoder structure in GRAE also allows us to create a
visualization of a very large dataset (see Figure 2).

We first partition the data in mini-batches B =
{B1, B2, . . . , BN} each containing common observations
Xc and unique observations Xi. Thus, Bi = {Xc ∪Xi}.
Then, we apply the manifold learning method (in this case,
PHATE) to each mini-batch, which produces an embedding
Ei = {EXc ∪ EXi

} containing embedding coordinates EXi

for the unique observation and coordinates EXc for the
common observations (Figure 2A). Since each embedding
might vary in orientation, scale, and reflection with respect
to the others, we apply the Procrustes method [53] among
the common points to extract a linear transformation, which
is then applied to the whole mini-batch embedding. This
allows us to consistently combine all embeddings. This
final embedding is not as refined as computing PHATE for
the whole dataset, and some local information is lost (Fig-
ure 2B). Fortunately, GRAE is able to refine the discrepancies
(Figure 2C), generating near similar embeddings whether
E is generated by computing PHATE over the whole data



SUBMISSION TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 6

Fig. 2. Scalable GRAE. Overview of GRAE applied to 200,000 observations of iPSC data (see Section 4.1). Data points are colored by observation
time. A) Mini-batch PHATE embeddings, each of which share some common observations. B) Combined embedding using the Procrustes method
to align the mini-batch embeddings. C) GRAE embedding using (B) as E in the geometric loss. D) PHATE embedding computed over the whole
data set. E) GRAE embedding using (D) as E in the geometric regularization. Although both approaches produce near identical embeddings, the
mini-batch approach takes around 850 seconds to compute and scales linearly. In contrast, PHATE applied to the whole data takes around 3894
seconds and scales quadratically.

(Figure 2E), or by the Procrustes transformations over mini-
batches. This makes the computational complexity linear
with respect to the number of mini-batches.

4 EXPERIMENTS

In this section, we experimentally compare GRAE with
a standard AE, Diffusion Nets [36], TAE [48], EAER-
Margin [46], DAE [38], CAE [41], and β-VAE [43] on 9
different datasets using a two-dimensional latent space. The
motivation behind such a low-dimensional latent space is
two-fold: to visualize the geometry of the latent space, and
to offer a challenging dimensionality reduction task. We
provide results for higher dimensional bottlenecks on the
image datasets in Appendix B.4. Training is unsupervised
and the ground truth is only used for visualizing and scor-
ing embeddings. To compare different ways of computing
E , we benchmark GRAE with both PHATE and UMAP.

4.1 Experimental setup
4.1.1 Compared methods
We compared with a standard AE to measure improvements
in latent space geometry and reconstruction quality. We se-
lected additional regularized autoencoders (EAER-Margin2,
TAE, and Diffusion Nets) as they also include regulariza-
tions to force the AE to introduce more structure in the latent
space via a prior driven by geometry or topology. While
of limited use for data exploration and visualization, other
non-geometric auto-encoders (DAE, CAE, and β-VAE) were
added for a complete evaluation of the metrics pertaining to
the prediction of latent factors or classes. We also included
comparisons with PCA to show the relevance of non-linear
dimensionality reduction techniques on our problem set.

2. While EAER also introduces loss terms based on Laplacian Eigen-
maps and MDS, the margin-based loss performed best according to
their benchmarks.

We did not benchmark parametric t-SNE [34] given the
absence of an invertible mapping and the fact that UMAP
is similar to t-SNE from an algorithmic standpoint and
provides similar embeddings at a lower computational cost.

4.1.2 Datasets
We perform comparisons on 9 datasets, which are illustrated
in Figure 3 and described in depth in Appendix A. They
include two 3D manifold problems (Swiss Roll, Toroidal
Helices), five images datasets (Teapot, Rotated Digits, Ob-
ject Tracking, UMIST Faces, COIL-100), and two single-cell
datasets (induced pluripotent stem cell (iPSC) mass cytome-
try data [54] and single-cell RNA-sequencing measurements
of embryoid bodies (EB) [7]). The latter two datasets consist
of genetic markers of cultured cells sampled at various time
points. In both cases, cells are known to specialize as time
goes on, leading to distinct manifold branches.

We focus our analysis on datasets where we can reason-
ably expect local Euclidean distances to reflect true pairwise
similarities; i.e. the manifold assumption is valid. This is
motivated by the importance of the distance matrix in GRAE
(to compute E) and in other compared methods driven
by geometry or topology. If such an assumption on the
Euclidean distance does not hold (e.g. as in the case of
high-dimensional heterogeneous images such as CIFAR-10),
methods based on manifold learning and topological data
analysis are unlikely to yield useful representations unless
an alternative means of computing similarities is developed,
which is tangential to this work.

4.1.3 Architecture, Training & Tuning
All autoencoder-based models in the experiments use the
same network architecture. The encoder and decoder are
typical fully-connected networks in the case of the synthetic
manifolds and the biological data, with additional convolu-
tion layers for the image datasets. Furthermore, we used
a random search over the parameter space to tune each
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model on each dataset. Details regarding the architecture,
the training procedure and the hyperparameter search can
be found in Appendix B.

4.1.4 Implementations
Some compared methods were limited computationally
while running our benchmarks, especially on larger prob-
lems like the iPSC data. For example, the algorithm pre-
sented in EAER had to be improved to support mini-batch
training. Such an improvement was not as straightforward
for Diffusion Nets because of the eigenvector constraint,
which requires the full dataset and the affinity matrix to be
held in GPU memory for training. In this case, subsampling
30,000 observations from the iPSC problem was necessary
to run experiments on the same hardware used to fit other
methods. We were unable to obtain a satisfactory embed-
ding with Diffusion Nets on the COIL-100 problem due
to memory constraints and thus chose not to report it. In
Appendix B.5, we compare the training times of GRAE and
the other methods on Swiss Roll, COIL-100 and iPSC.

4.1.5 Evaluation and Metrics
All experiments use a train-validation-test ratio of 70%-15%-
15%, except on the Swiss Roll problem, where a thin middle
slice of 500 points is removed and set aside for testing to
study how various methods would behave when required
to generalize to out-of-distribution data. The validation split
is used for tuning hyperparameters and early stopping (see
Appendix B). To account for the inherent stochasticity of
manifold learning algorithms and neural network training,
we report the average of each metric over 10 runs using
different seeds and different validation splits. All runs are
benchmarked on the same test split.

We score models using three measures depending on the
dataset: i) reconstruction as measured by the MSE between
the reconstructed samples and the original samples, ii) dis-
entanglement of ground truth factors by reporting the R2

of a linear regression predicting said factors using the latent
representation as input3, and iii) classification performance
by reporting the accuracy of a logistic regression on the la-
tent representation. For both R2 and classification accuracy,
we use the train split to fit the linear models and report the
metric on the test split (as embedded by the main model).

More specifically, the ground truth factors of interest
for the R2 metric are the manifold coordinate along the
test slice (Swiss Roll), the angle on the manifold (Toroidal
Helices, Teapot, Rotated Digits) and the x and y coordinates
of the character (Object Tracking). Additional information
is provided in Appendix C for the computation of the R2

metric. While the iPSC and EB Differentiation problems do
have a known factor of variation (i.e. time), we do not expect
methods to recover it in a linear fashion since cells of the
same age may express different genes and thus appear at
distinct locations in the latent space. We still use time for
coloring these embeddings in Figure 3.

4.2 Qualitative results
We qualitatively evaluate GRAE and the other methods by
visualizing the embedding layer after training as shown

3. If more than one factor exists (e.g. Object Tracking), an R2 score is
computed for each factor and the average is shown.

TABLE 1
Average performance metrics for all considered methods on 3D mani-
fold problems. Mean squared error (“MSE”) benchmarks reconstruction
quality. The R2 metric quantifies how some ground truth factors of varia-
tion can be predicted from the 2D embeddings using a linear regression.
Acc. stands for the accuracy of a supervised linear classifier trained on
the 2D embedding to predict some ground truth class labels. All metrics
are averaged over 10 runs on the test data. The MSE of each run can
be further visualized in Figure 4.

Metrics
Dataset Model MSE R2 Acc.

Swiss Roll

GRAE (PHATE) 0.0061 (3) 0.81 (2) n/a
GRAE (UMAP) 0.0026 (1) 0.87 (1) n/a

AE 0.0202 (7) 0.08 (7) n/a
EAER-Margin 0.0188 (6) 0.12 (6) n/a

TAE 0.0144 (4) 0.07 (9) n/a
Diffusion Nets 0.0039 (2) 0.68 (3) n/a

DAE 0.0288 (9) 0.08 (7) n/a
CAE 0.0169 (5) 0.23 (4) n/a
β-VAE 0.0208 (8) 0.16 (5) n/a
PCA 0.3235 (10) 0.05 (10) n/a

Toroidal Helices

GRAE (PHATE) 0.0002 (1) 0.98 (3) 0.98 (3)
GRAE (UMAP) 0.0002 (1) 0.75 (10) 1.00 (1)

AE 0.0013 (3) 0.82 (8) 0.51 (5)
EAER-Margin 0.0031 (7) 0.92 (5) 0.52 (4)

TAE 0.0023 (5) 1.00 (1) 0.50 (7)
Diffusion Nets 0.0028 (6) 0.79 (9) 1.00 (1)

DAE 0.0165 (9) 0.90 (6) 0.49 (10)
CAE 0.0040 (8) 0.97 (4) 0.51 (5)
β-VAE 0.0014 (4) 0.85 (7) 0.50 (7)
PCA 0.1660 (10) 1.00 (1) 0.50 (7)

in Figure 3. We first notice that GRAE recovers a sensi-
ble geometry for all problems while other methods fail at
basic tasks such as uncoiling the Swiss Roll, disentangling
the Rotated Digits, showing the coordinate plane on Ob-
ject Tracking, recovering a circular structure on Teapot, or
showing rings on COIL-100 (to reflect rotations of distinct
objects). Diffusion Nets outputs decent embeddings, ex-
cept for Rotated Digits and COIL-100. Interestingly, EAER-
Margin recovers good global structure on Object Tracking,
but appears to be collapsing neighborhoods and does not
display the grid-like texture of the GRAE and Diffusion
Nets embeddings, which could be related to the higher MSE
witnessed in Table 3. DAE and β-VAE embeddings do not
display any appreciable structural benefits over vanilla AE,
whereas the CAE embeddings of the Rotated Digits and the
Teapot datasets do show smoother curves — a likely result
of the Jacobian regularization.

Only GRAE (PHATE) and Diffusion Nets show the two
expected branches of the iPSC manifold as well as some
branches on the EB Differentiation problem. Other methods
fail to output any useful structure that can be leveraged for
data analysis (see Section 4.5). While GRAE (UMAP) comes
close to forming branches, we can see the built-in uniform
assumption of the UMAP algorithm favors spreading out
samples as opposed to concentrating them in branches.

4.3 Quantitative results

We report the quantitative results of our experiments in
Tables 1 (3D manifold problems), 2 (biological data), and
3 (image datasets). We see from these results that GRAE
outperforms the vanilla AE with respect to the reconstruc-
tion MSE on nearly all benchmarks using either PHATE or
UMAP. This suggests that the geometric regularization gen-
erally guides the AE to a better region in the optimization
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Fig. 3. Latent space visualizations. Latent representations learned in a fully unsupervised manner by all considered methods on 9 datasets. On
the Swiss Roll plots, training points are grayscale and test points are colored. We show here the run with the best test MSE, as assessed in Sec. 4.3,
without any additional hand tuning. GRAE recovers a sensible geometry for all problems while other methods fail on multiple datasets (e.g. unrolling
the Swiss Roll and disentangling the Rotated Digits).

space than is typically achieved without the regularization.
The reduction in MSE by GRAE is achieved while still pre-
serving ground truth information in the data as measured
by the R2 and accuracy metrics, being top three on all
problems with the exception of GRAE (UMAP)’s R2 score
on Toroidal Helices. These results show that explicitly pre-
serving geometry in the encoder loss gives GRAE a superior
ability to reveal latent structure in data, while enhancing the
decoder’s ability to invert the latent space.

Importantly, no stable competitor to GRAE arises from
the comparisons. Diffusion Nets perform well on recon-
structing the Swiss Roll and the Teapot samples, but is less
successful at reconstructing Toroidal Helices and Rotated
Digits, in addition to struggling at providing a separa-
ble embedding for the latter (see Figure 3). EAER-Margin
achieves good classification performance on most of the
relevant problems. This is unsurprising since its margin

regularization explicitly seeks to pull apart points belonging
to different neighborhoods and is therefore expected to
separate classes relatively well. This was not universal, how-
ever, as EAR-Margin had poor accuracy on Toroidal Helices.
Additionally, EAER-Margin reduces reconstruction quality
on many benchmarks, performing worse than vanilla AE.

The MSE comparison over the 10 runs are further visu-
alized in Figure 4. Not only does GRAE achieve lower MSE,
but it does so with less variance between runs on many
problems, most notably on Toroidal Helices, Teapot, Rotated
Digits, and Object Tracking. This could be explained by the
non-parametric optimization of UMAP and PHATE, which
yield stable reference embeddings E throughout runs.

For its part, β-VAE only managed to extract useful
representations with low values of β. The poor performance
on the Object Tracking dataset on both the MSE and R2

metrics can be linked to the empirical observation that, in
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TABLE 2
Average performance metrics on the biological datasets. See Table 1

caption and the text for descriptions of the metrics.

Metrics
Dataset Model MSE R2 Acc.

EB Differentiation

GRAE (PHATE) 0.1766 (2) n/a n/a
GRAE (UMAP) 0.1765 (1) n/a n/a

AE 0.1773 (5) n/a n/a
EAER-Margin 0.1773 (5) n/a n/a

TAE 0.1806 (9) n/a n/a
Diffusion Nets 0.1777 (8) n/a n/a

DAE 0.1776 (7) n/a n/a
CAE 0.1770 (4) n/a n/a
β-VAE 0.1768 (3) n/a n/a
PCA 0.1814 (10) n/a n/a

iPSC

GRAE (PHATE) 0.7173 (6) n/a n/a
GRAE (UMAP) 0.7130 (5) n/a n/a

AE 0.7055 (4) n/a n/a
EAER-Margin 0.7658 (7) n/a n/a

TAE 0.8928 (9) n/a n/a
Diffusion Nets 0.8774 (8) n/a n/a

DAE 0.6919 (2) n/a n/a
CAE 0.6910 (1) n/a n/a
β-VAE 0.6929 (3) n/a n/a
PCA 1.3669 (10) n/a n/a

many runs, the decoder only reconstructed the background
without the character. We further discuss the selection of the
β parameter in the β-VAE in Appendix B.2.

Furthermore, no distance-based method managed to im-
prove beyond the AE reconstruction performance on the
iPSC data, although GRAE fared considerably better than its
counterparts in that regard (Figure 4). Other regularization
methods (DAE, CAE, β-VAE) do show a small improvement
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Fig. 4. MSE between the input and the reconstructions. Lower is better.
Each point is a given run of a model on the data with the same hyper-
parameters, but using a different seed, with 10 runs total. PCA’s MSE
was not included to improve plot scaling. Not only does GRAE achieve
lower MSE, but it is also more stable with a lower variance across runs
on most datasets.

TABLE 3
Average performance metrics on the images datasets. See Table 1

caption and the text for descriptions of the metrics.

Metrics
Dataset Model MSE R2 Acc.

Teapot

GRAE (PHATE) 0.0004 (3) 1.00 (1) n/a
GRAE (UMAP) 0.0003 (2) 1.00 (1) n/a

AE 0.0016 (6) 0.21 (9) n/a
EAER-Margin 0.0026 (8) 0.27 (8) n/a

TAE 0.0015 (5) 0.40 (5) n/a
Diffusion Nets 0.0002 (1) 1.00 (1) n/a

DAE 0.0010 (4) 0.35 (7) n/a
CAE 0.0016 (6) 0.43 (4) n/a
β-VAE 0.0028 (9) 0.19 (10) n/a
PCA 0.0112 (10) 0.40 (5) n/a

Rotated Digits

GRAE (PHATE) 0.0002 (1) 0.94 (1) 1.00 (1)
GRAE (UMAP) 0.0004 (2) 0.87 (2) 1.00 (1)

AE 0.0045 (8) 0.20 (9) 0.90 (7)
EAER-Margin 0.0024 (3) 0.45 (3) 1.00 (1)

TAE 0.0038 (5) 0.23 (6) 0.34 (9)
Diffusion Nets 0.0043 (6) 0.23 (6) 0.32 (10)

DAE 0.0049 (9) 0.22 (8) 0.77 (8)
CAE 0.0044 (7) 0.26 (4) 0.91 (6)
β-VAE 0.0032 (4) 0.24 (5) 0.96 (5)
PCA 0.0619 (10) 0.19 (10) 1.00 (1)

Object Tracking

GRAE (PHATE) 0.0031 (1) 0.98 (2) n/a
GRAE (UMAP) 0.0035 (2) 1.00 (1) n/a

AE 0.0051 (6) 0.39 (7) n/a
EAER-Margin 0.0061 (7) 0.98 (2) n/a

TAE 0.0084 (8) 0.37 (8) n/a
Diffusion Nets 0.0048 (4) 0.97 (4) n/a

DAE 0.0049 (5) 0.29 (9) n/a
CAE 0.0040 (3) 0.51 (5) n/a
β-VAE 0.0093 (9) 0.15 (10) n/a
PCA 0.0100 (10) 0.51 (5) n/a

UMIST Faces

GRAE (PHATE) 0.0078 (2) n/a 0.50 (3)
GRAE (UMAP) 0.0076 (1) n/a 0.56 (2)

AE 0.0090 (6) n/a 0.29 (9)
EAER-Margin 0.0102 (8) n/a 0.64 (1)

TAE 0.0093 (7) n/a 0.36 (6)
Diffusion Nets 0.0081 (5) n/a 0.39 (4)

DAE 0.0104 (9) n/a 0.27 (10)
CAE 0.0080 (4) n/a 0.35 (7)
β-VAE 0.0079 (3) n/a 0.33 (8)
PCA 0.0181 (10) n/a 0.39 (4)

COIL100

GRAE (PHATE) 0.0098 (2) n/a 0.60 (3)
GRAE (UMAP) 0.0093 (1) n/a 0.65 (2)

AE 0.0113 (6) n/a 0.47 (7)
EAER-Margin 0.0114 (7) n/a 0.66 (1)

TAE 0.0145 (8) n/a 0.48 (6)
Diffusion Nets n/a n/a n/a

DAE 0.0112 (4) n/a 0.46 (8)
CAE 0.0110 (3) n/a 0.53 (5)
β-VAE 0.0112 (4) n/a 0.55 (4)
PCA 0.0269 (9) n/a 0.35 (9)

over the AE. However we show that geometry-based regu-
larizations still help to gather useful insights and explore
the GRAE iPSC embedding in more depth in Section 4.5.

By comparing Figure 3 and the quantitative results, we
notice that embeddings with low MSE also tend to show
good global structure. That is, the manifold is unfolded in
the latent space with little to no self-intersections (e.g. the
GRAE embeddings of Rotated Digits, Object Tracking and
Teapot). We further discuss this connection in Section 4.4.

4.4 Impact of geometric regularization on reconstruc-
tion quality

Based on GRAE’s reconstruction errors (Tables 1, 2 and 3
and Figure 4), we observe that GRAE generally improves
the MSE of the decoder, despite adding a regularization
term that deteriorates the reconstruction error global mini-
mum. A possible explanation is that some latent space shifts
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A)
Distribution of 
reconstruction errors

AE 

EmbeddingB)
GRAE 

Embedding

Fig. 5. Reconstructing latent space interpolations with GRAE.
A) Distributions of errors of two rotated digits averaged over ten runs
for AE vs GRAE. Dashed lines represent the 1st and 3rd quartiles, and
solid lines represent the median. We notice that AE is more unstable
than GRAE, having a heavier tail, since it fails completely to reconstruct
certain images, while GRAE typically presents lighter tails. B) Typical
embeddings produced for AE and GRAE. Blue points represent a sub-
sample of the training data (subsampling only done for visualization
purposes). Black points are the generated points on the latent space
via interpolation. Red colored points in the AE embedding represent the
20 interpolated points with the highest reconstruction error. We observe
that bad reconstruction typically occurs in sparse regions or crossing
lines, i.e., in regions with poorly learned geometry.

caused by geometric regularization (e.g. forcing a circle on
Teapot, uncoiling the Swiss Roll) actually drive gradient
descent out of the local MSE minima in which vanilla
AE falls. Indeed, most AE embeddings in Figure 3 show
structural overlaps where points from different regions of
the original data manifold share the same latent space coor-
dinates, meaning the encoder function f is not injective and
hence not invertible. By enforcing better geometry, GRAE
appears to favor injective encoder mappings which, assum-
ing bijectivity on the manifold, should facilitate learning of
the inverse function f†, leading to the better reconstructions.

Additionally, the regularization generates a more stable
reconstruction over the whole dataset, especially in those
regions where the autoencoder produces inaccurate geome-
try in the latent space. To support these claims, we conduct
an experiment on two rotated MNIST digits (Figure 5),
generating a full rotation for each of the digits and removing
in-between observations as the test set. After training GRAE
(PHATE) on the remaining observations, we interpolate
over consecutive observations in the embedding space i.e.,
consecutive angle rotations in the training set. Then we
compute the reconstruction error between the generated
points via interpolation with the previously removed in-
between observations. The results show that the distribution
of the AE errors has a much heavier tail than the distribution
of the GRAE errors, suggesting that the GRAE embedding
is more stable.

This experiment also shows that learning accurate ge-
ometry from the data via GRAE can be useful for gen-
erating new points on the latent space via interpolation
over adjacent observations. Such points can then be fed
to the decoder, generating a more faithfully reconstructed
geodesic trajectory between points on the manifold in the
ambient space in comparison to AE. We further explore this
in Section 4.5.

4.5 Geometry consistent interpolations in the latent
space
Uncovering a consistent geometric structure in the latent
space, allows us to study the behavior of the data following
discovered trajectories which are otherwise unidentifiable

in the vanilla autoencoder scheme. We present a case study
showing the capabilities of GRAE (PHATE) in this regard.
We aim to recover marker interactions in the iPSC mass
cytometry data [54] across time-evolving trajectories discov-
ered in the latent representation. The experimental outline
is shown in Figure 6.

Mass cytometry data is noisy and marker expression
interactions are difficult to extract from the raw data. This
issue can be tackled with methods such as MAGIC [57],
a powerful diffusion-based approach that performs data
imputation and denoising, which has been shown to be
particularly useful for recovering gene-gene interactions in
complicated single-cell RNA-sequencing datasets. Thus, we
chose to compare GRAE’s reconstructed ambient space with
the MAGIC transformation of the raw data.

Figure 6 shows a comparison of GRAE (PHATE) with
a vanilla autoencoder in recovering gene-gene interactions.
We can observe how the latent space of GRAE preserves a
geometric structure consistent with the known biology of
the data [7], whereas the autoencoder generates a cloud of
points making it difficult to understand clear patterns. After
we have identified a trajectory, we observe the marker-to-
marker interactions in the ambient space following it. Thus,
we build a path in the latent space across an identified
trajectory and feed these new generated points through the
decoder. We use the method presented in [55] to compute
density-based geodesic trajectories estimated from finite
data. To draw a comparison with the vanilla autoencoder,
we compute a geodesic trajectory in both latent represen-
tations between the same start and end points. From the
results in Figure 6, it is clear that obtaining a latent space
consistent with the geometry of the data enables accurate re-
construction of newly generated points. In general, geodesic
paths drawn in GRAE’s latent space do not suffer from the
same ambiguities as the vanilla autoencoder, e.g. crossing
lines or lack of structure in the latent factors. Decoding the
trajectories back to the ambient space will follow the true
structure of the data. This however has its limitations when
the latent dimension is higher than two or three dimensions,
which complicates the identification and computation of
geodesic paths.

4.6 Semi-supervised learning using geometric regular-
ization

Lastly, we show how to leverage the geometric regular-
ization to perform semi-supervised learning. Following the
multi-task learning strategy implemented in [58], we build a
fully connected network where the output layer focuses on
classification over the labeled data. Auxiliary tasks are im-
posed on the inner layers seeking to minimize the geometric
loss. A schematic overview of our approach is displayed in
Figure 7.

Our method relies on the manifold assumption for semi-
supervised learning, i.e. observations that are close to each
other on a low dimensional manifold share the same label.
This enables us to leverage the geometry learned from the
unlabeled data via the geometric regularization. By encour-
aging common representations, useful for classification as
well as for learning the geometry of the data, the neural
network will tend to force close points in the geometric
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Fig. 6. Geodesic paths in the regularized latent space of iPSC data. A,B) Latent representations in three dimensions of GRAE (PHATE) and
a vanilla autoencoder respectively. The grey points are the training data representation. The colored paths are the geodesic paths found using the
method presented in [55] between the same pair of points in both cases. The construction of such path clearly follows an identified branch in GRAE’s
embedding. In contrast, the autoencoder produces a cloud, from which it is difficult to determine if the computed geodesic follows a reasonable
trajectory consistent with the data. C,D) Reconstructed ambient space for the newly generated points (paths) compared with MAGIC’s recovered
interactions (solid points). We plot pairs of markers with the highest mutual information score computed by DREMI [56]. GRAE is able to denoise
the data and recover gene marker interactions from the raw data more consistently than the autoencoder. The geodesic found in the autoencoder
manifests a higher deviation from the MAGIC recovered interactions when decoded back to the ambient space, showing how the trajectories drawn
in the latent space do not reflect real paths in the data. To compute an error score that measures the discrepancy between the created path and
MAGIC’s trajectories, we compute the MSE between each generated point and its 3 nearest neighbors in the MAGIC reconstruction, as well as the
MSE between each MAGIC point and its 3 nearest neighbors in the generated points. The final obtained error scores indicate that the GRAE latent
space can be used to generate new points more accurately than the vanilla AE as GRAE outperforms the AE in most settings.

embedding to share the same label for classification. Thus,
the geometric loss acts as an auxiliary task, creating an
inductive bias that drives the model to prefer hypotheses
where the manifold assumption is included.

As a base classification model we implemented a neu-
ral network with 3 fully connected hidden layers with
dimensions 100-100-100. For these experiments we used
a two-dimensional UMAP embedding as the target E in
the geometric loss. Our approach, called GRNN (Geomet-
rically Regularized Neural Network), is compared against
three state of the art graph-based semi-supervised learning
methods: Laplace learning [59], p-Laplace learning [60], and
Poisson learning [61]. We also compared to a vanilla neural
network equipped with the same architecture as GRNN, but
lacking the geometric regularization.

TABLE 4
Datasets used for the semi-supervised learning experiments.

Dataset Number of classes Observations Features Reference
HumanPancreas 14 8569 1000 [62]

PBMC 6 1919 50 [63]
MNIST 10 5000 784

Xin 4 1449 1000 [64]
Zheng Sorted 10 20000 1000 [65]

Zheng68k 11 10000 1000 [65]

We performed comparisons using the datasets summa-
rized in Table 4 which include four single-cell RNA se-
quencing datasets (HumanPancreas, Xin, Zheng Sorted, and
Zheng 68k) previously tested for single-cell classification in

[66]. The datasets are publicly available at https://zenodo.
org/record/3357167#.YdX7q2jMKUk. We applied the same
preprocessing steps as in [66]. The PBMC dataset consists
of single-cell ATACseq measurements of peripheral blood
mononuclear cells [67]. For the MNIST dataset, experiments
where conducted on a subsampled version of 5000 obser-
vations as in [68] to maintain a small quantity of labeled
observations.

The results are summarized in Table 5. We considered
different label rates and reported the average accuracy on
the unlabeled data over 10 randomized runs. We found that
the geometric regularization helps to perform better learn-
ing, obtaining the best results in most of the cases, especially
in the low sample regime (1%-10%). In contrast, the vanilla
NN often, but not always, has the worst performance.
The other three approaches vary in their performance but
perform worse than GRNN in nearly all cases.

Finally, we present an ablation study showing the dif-
ferences in performance between the vanilla network and
our approach for networks of different sizes. The results
are shown in Figure 10 of Appendix C.1. The geometric
regularization in our approach improves the robustness of
the network as it achieves fairly consistent accuracy for
different numbers of layers. In contrast, the vanilla neural
network’s performance degrades when more layers are in-
cluded, suggesting it is more vulnerable to overfitting.
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TABLE 5
Semi-supervised classification accuracy results. Average testing

accuracy is given over 10 runs for various levels of available labeled
data. Comparisons are between our approach (GRNN), a Vanilla

Neural Network, and three graph-based methods for semi-supervised
learning.

Dataset Model
Labeled percentage

1.00% 5.00% 10.00% 20.00% 40.00%

Human Pancreas

GRNN (Ours) 0.909 (1) 0.934 (1) 0.936 (1) 0.940 (1) 0.942 (2)
Vanilla NN 0.495 (5) 0.693 (5) 0.707 (5) 0.866 (4) 0.943 (1)

Laplace 0.765 (3) 0.818 (3) 0.854 (3) 0.884 (3) 0.909 (4)
p-Laplace 0.787 (2) 0.837 (2) 0.868 (2) 0.892 (2) 0.913 (3)
Poisson 0.693 (4) 0.765 (4) 0.796 (4) 0.821 (5) 0.838 (5)

PBMC

GRNN (Ours) 0.867 (1) 0.919 (1) 0.922 (1) 0.936 (1) 0.941 (1)
Vanilla NN 0.389 (5) 0.650 (5) 0.775 (5) 0.865 (5) 0.923 (4)

Laplace 0.514 (4) 0.809 (4) 0.908 (3) 0.930 (2) 0.940 (2)
p-Laplace 0.628 (3) 0.880 (3) 0.911 (2) 0.925 (3) 0.934 (3)
Poisson 0.857 (2) 0.899 (2) 0.905 (4) 0.911 (4) 0.919 (5)

MNIST

GRNN (Ours) 0.884 (1) 0.929 (1) 0.947 (1) 0.954 (3) 0.955 (3)
Vanilla NN 0.563 (5) 0.750 (5) 0.836 (5) 0.894 (5) 0.930 (4)

Laplace 0.721 (4) 0.917 (3) 0.943 (2) 0.957 (1) 0.966 (1)
p-Laplace 0.776 (2) 0.919 (2) 0.942 (3) 0.955 (2) 0.963 (2)
Poisson 0.775 (3) 0.886 (4) 0.891 (4) 0.902 (4) 0.903 (5)

Xin

GRNN (Ours) 0.721 (2) 0.831 (3) 0.856 (3) 0.869 (4) 0.885 (3)
Vanilla NN 0.459 (5) 0.562 (5) 0.590 (5) 0.565 (5) 0.470 (5)

Laplace 0.645 (3) 0.857 (2) 0.876 (2) 0.896 (2) 0.903 (2)
p-Laplace 0.764 (1) 0.872 (1) 0.882 (1) 0.900 (1) 0.905 (1)
Poisson 0.624 (4) 0.816 (4) 0.853 (4) 0.871 (3) 0.885 (3)

Zheng

GRNN (Ours) 0.732 (1) 0.784 (1) 0.807 (1) 0.812 (2) 0.823 (2)
Vanilla NN 0.528 (3) 0.720 (2) 0.783 (2) 0.824 (1) 0.855 (1)

Laplace 0.446 (5) 0.545 (5) 0.604 (5) 0.656 (5) 0.691 (4)
p-Laplace 0.498 (4) 0.565 (4) 0.617 (4) 0.660 (4) 0.691 (4)
Poisson 0.635 (2) 0.663 (3) 0.675 (3) 0.688 (3) 0.700 (3)

Zheng 68k

GRNN (Ours) 0.555 (1) 0.596 (1) 0.604 (1) 0.608 (1) 0.618 (1)
Vanilla NN 0.337 (4) 0.455 (4) 0.506 (4) 0.549 (4) 0.590 (2)

Laplace 0.390 (3) 0.541 (3) 0.573 (2) 0.588 (2) 0.576 (3)
p-Laplace 0.460 (2) 0.549 (2) 0.568 (3) 0.581 (3) 0.572 (4)
Poisson 0.334 (5) 0.380 (5) 0.390 (5) 0.411 (5) 0.443 (5)

Fig. 7. Semi-supervised model architecture using the geometry regular-
ization. The geometry regularization is imposed as an auxiliary task in
all the hidden layers forcing the hidden representations to be consistent
with the geometrical structure of the data. In this way, our model takes
into account labeled and unlabeled observations.

5 DISCUSSION

The improved performance of the geometric regularization
for learning unsupervised two-dimensional representations
(Section 4.3) and semi-supervised learning (Section 4.6) can
be largely attributed to PHATE and UMAP’s ability to cap-
ture important aspects of the high-dimensional geometry
in the two-dimensional latent space we considered. This
observation gives rise to two potential concerns regarding
our proposed approach. The first one is that our regular-
ization will be sensitive to the manifold learning algorithm
used to compute the reference embedding E that we use
as a prior. Indeed, geometry-regularized embeddings might

inherit some of the less desirable properties of E , such as an
absence of global structure caused by a mistuned or poorly
designed manifold learning algorithm [69]. Similar issues
can arise if geometry regularization with any distance-based
reference algorithm is applied to data where the chosen
distance is not an adequate dissimilarity measure between
observations.

The second concern relates to the dimensionality of the
latent space. While in Section 4.3 we focused on the two-
dimensional case to enable qualitative assessments and data
exploration —the main purpose of PHATE and UMAP—
other autoencoder applications may require a higher di-
mensional latent space. We test GRAE (PHATE) and some
competing methods with a bottleneck size of 2, 4, 6 and
8 in Appendix B.4. The results show that GRAE typically
outperforms other approaches in representing the latent
factors and classes in a convincing way for all bottleneck
sizes on most problems, even though the benefit in the
reconstruction error seems to disappear for higher dimen-
sions. Furthermore, the semi-supervised results of Section
4.6 indicate that the geometric regularization can be suc-
cessfully used to learn higher-dimensional intermediary
representations in neural networks. Additionally, most ex-
ploratory data analysis focuses on a low-dimensional (i.e.
single digit) representation of the data for practical reasons
as higher dimensions are difficult for humans to explore.
Nevertheless, the use of geometric regularization and more
generally manifold learning for learning all-purpose high-
dimensional representations (e.g., 128D or 256D) remains
an open problem.

6 CONCLUSION

We proposed the geometry regularized autoencoder
(GRAE), a general parametric framework to enhance au-
toencoders’ latent representation by taking advantage of
established manifold learning methods. By imposing a geo-
metrical soft constraint on the bottleneck of the autoencoder,
we demonstrated empirically how GRAE can achieve good
visualizations and good latent representations on several
performance metrics compared to AE and other methods
motivated by geometry. Furthermore, GRAE is equipped
with an inverse mapping that often produces a better re-
construction than AE. We also show that a similar regu-
larization applied to a neural network results in superior
performance for the semi-supervised problem. While the
primary focus of this work is on using PHATE and UMAP
embeddings to regularize the networks, we leave to future
work the study of other manifold learning algorithms as
constraints for learning AE representations with better ge-
ometry and the benefits they bring in terms of visualiza-
tions, reconstruction, and data generation.
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APPENDIX A
DATASETS

We provide here a detailed description of the nine datasets
used in the experiments presented in Section 4. The first one
is the classic manifold problem known as the “Swiss Roll”
where data points lie on a two dimensional plane “rolled”
in a three dimensional ambient space. Classical approaches
such as PCA or MDS typically fail to recover the non linear
geometry of the data, as they rely on pairwise Euclidean
distances instead of the true geodesic distances along the
curvature of the roll. We generated 10,000 points on the
Swiss Roll using the scikit-learn library. The manifold
is then stretched along the main ”straight” axis (which
facilitates uncoiling for all considered manifold learning
methods) and Gaussian noise is added.

We generate an additional synthetic manifold bench-
mark dataset by uniformly sampling 8,000 points from two
non-overlapping helices on a torus (”Toroidal Helices”).
Conceptually, the data lies on two distinct one-dimensional
closed curves in the input space and a good data embedding
should disentangle them.

Three image datasets focus on full object rotations, where
samples lie on one or multiple circular manifolds. One
problem is derived from the MNIST dataset [70], where
three digits are picked randomly and rotated 360 times at
one-degree intervals, for a total of 1080 images. The second
one is known as the Teapot problem [52], in which 400 RGB
images of size 76 x 128 feature a rotating textured teapot.
The final object rotation problem is the well-known COIL-
100 benchmark [71].

We benchmark methods on two additional image
datasets. The first one (”Object Tracking”) was created with
a 16 x 16 small character moving on a 64 x 64 background.
Approximately 2000 RGB images were generated and Gaus-
sian noise was added to the background. The intrinsic man-
ifold consists of the plane spanned by the x and y character
coordinates on the background. The second is known as the
UMIST Faces dataset [72], where different views (over a 90◦

interval) of the faces of 20 different subjects are shown in
575 gray scale images of size 112 x 92.

The final datasets aim to assess the potential of the
considered methods in analyzing biological data. One
dataset consists of single-cell mass cytometry data measur-
ing iPSC reprogramming of mouse embryonic fibroblasts
(hereinafter, ”iPSC”) as introduced in [54]. The data show
the expression of 33 markers in 220,450 embryonic cells
at various stages of development. We know from [7] that
the cells, while initially similar, eventually specialize into
two different groups, leading to a two-branch Y-shaped
manifold. The only known ground truth in this case is the
age of the cell when measured. Another task is exploring
single-cell RNA-sequencing data of human stem cells (”EB
differentiation”) [7]. The data was sequenced over 5 3-day
intervals during a 27-day time course and includes approx-
imately 17,000 cells after preprocessing. The goal here is to
observe how cells specialize in different lineages.

APPENDIX B
TRAINING DETAILS

B.1 Architecture and Training
For the synthetic and biological datasets, the neural network
architecture for all models consists of 3 fully-connected
hidden layers in the encoder and in the decoder with a 2D
latent space, producing the following sequence of neurons
between the input and output layers: 800-400-200-2-200-400-
800. For the image datasets, we use a similar architecture
except the first layer is replaced by two convolutional layers
with max pooling and the last layer of the decoder is
replaced with two deconvolution layers. We apply ReLU ac-
tivations on all of the layers except in the bottleneck and the
output of the decoder. We used Adam [73] as the optimizer
for all experiments and early stopping for regularization.
Models were allowed to train for up to 1000 epochs on iPSC
and EB Differentiation, 2000 epochs on COIL-100 and 4000
epochs on the other problems. Patience was set to 30 epochs
for iPSC, 100 epochs for EB Differentiation, 200 epochs
for COIL-100 and 400 epochs for the remaining datasets.
For Diffusion Nets, the maximum number of epochs and
patience were both multiplied by a factor of 10 for a fairer
comparison as Diffusion Nets do not use mini-batch train-
ing (and therefore only compute one gradient update per
”epoch”).

B.2 Hyperparameter Tuning
Hyperparameters were optimized for each model using a
random search over the parameter space. In addition to
tuning the learning rate and the batch size for training
the neural networks, most parameters specific to a given
method were also sampled, such as the diffusion parameter
for GRAE (PHATE) and the margin size for EAER-Margin.
The range and sampling distribution for each parameter is
presented in Table 6. In total, 30 hyperparameter combina-
tions were sampled for each model on each dataset, and the
best one was selected using a 3-fold cross-validation scheme
(only 1-fold in the case of iPSC given the large number of
observations). Specifically, MSE on the validation fold was
used as the selection metric.

Parameter Models Distribution Values

learning rate All log-uniform [2e-4, 2e-3]
batch size All uniform [32, 100]

λ All but AE, DAE and β-VAE log-uniform [1e-2, 1e2]
n neighbors/knn All but AE and Diffusion Nets uniform {5, 10, 20}

n neighbors Diffusion Nets uniform {10, 20, 50}
t GRAE(PHATE) uniform {10, 25, 50, 100, 250}

gamma GRAE(PHATE) uniform {0, 1}
min dist GRAE(UMAP) uniform [0, .99]
epsilon Diffusion Nets uniform [1, 70]

eta (EV constraint) Diffusion Nets log-uniform [1e-2, 1e2]
margin EAER-Margin log-uniform [.01, 10]
β β-VAE log-uniform [1e-4, 10]

dropout probability DAE (Images) uniform [.1, .7]
noise standard deviation DAE (Manifolds, Biological data) log-uniform [1e-4, .1]

TABLE 6
Hyperparameter distributions for the random search procedure for all

datasets. As an exception, for the iPSC data, lambda was restricted to
the [.5, 1e2] range and t was restricted to {100, 250} in an effort to
learn embeddings visually distinguishable from those produced by
vanilla AE. Further, using 5 neighbors with Diffusion Nets led to a
number of numerical difficulties with the underlying diffusion maps

implementation. We chose to replace it with 50 neighbors, which gave
better results.

While the β-VAE authors recommend using β > 1 to
favor disentanglement, we found such values to generally
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lead to scrambled embeddings on our problem set. We
therefore extended the range of the hyperparameter search
to lower values of β to recover more interesting visualiza-
tions. For reference, we included examples of standard VAE
embeddings (β = 1) in Figure 8.

As for the DAE, we use dropout noise (mask) on the
images datasets and additive gaussian noise on the manifold
and biological datasets.

B.3 Software

Experiments were executed using Python 3.8 and Torch
1.7.1 for the deep learning components. We used author
implementations for UMAP (0.4.2) and PHATE (1.0.4). pyD-
iffMap (0.2.0.1) was used as the Diffusion Maps implemen-
tation behind Diffusion Nets. Other major utilities include
numpy 1.19.1 and scikit-learn 0.23.0 [74]. We used
our own implementations of EAER-Margin, Diffusion Nets,
DAE, CAE and β-VAE. As for TAE, we reused the original
source code for the topological soft constraint and adapted
it to our AE architecture.

B.4 Increased bottleneck size

We show and discuss additional results with higher bot-
tleneck dimensions in Figure 9 where we compare GRAE
with the AE, β-VAE, CAE, and Diffusion Nets. We compare
the results using the reconstruction error and either the R2

or accuracy metrics across several datasets. The regression
and classification metrics indicate that the manifold prior
used by GRAE is still useful to recover latent factors in
higher dimensional representations, most notably on the
Teapot, Object Tracking and COIL-100 datasets. This ad-
vantage does not extend to reconstruction however, where
GRAE usually performs comparably to other methods as
dimensionality increases. We hypothesize that this obser-
vation could be related to the manifold structural overlaps
we discussed in Section 4.4, which are less likely to occur
in a latent space of increased dimensionality. As for other
methods, CAE performs well on the UMIST dataset on both
the reconstruction and classification benchmarks. Diffusion
Nets recovers the latent factors well on Teapot and Object
Tracking problems—as one would expect given a geometric
loss term—but still does not manage to disentangle the
Rotated Digits in 4D or 6D.

Fig. 8. VAE (β = 1) embeddings on 8 datasets. Higher values of β led
to similarly noisy embeddings. We did not manage to train a VAE with
β = 1 on the EB differentiation data.
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Fig. 9. Empirical metrics with various bottleneck sizes on the image
datasets for some of the considered methods. We reused the best
hyperparameters found in our main experiment and display the average
of 10 runs and 95% CI. Left column) Log MSE (lower is better). The
GRAE MSE advantage subsides as the bottleneck size increases. Right
column) Accuracy or R2 (higher is better) to assess representation
quality. GRAE is consistently the best or second-best method in 4 of the
datasets across all dimensions, showing that geometry regularized em-
beddings can better reflect latent factors or classes on some problems,
even with a bottleneck size larger than 2. The higher R2 performance of
most models on Teapot with a two-dimensional bottleneck is a conse-
quence of the polar coordinate conversion (see Appendix C for details)
that we could not apply in higher dimensions. We could not compute
results for CAE and Diffusion Nets on COIL100 due to computational
limitations.

B.5 Training times
We present the training times for GRAE and some compared
methods in Table 7. GRAE (PHATE) and GRAE (UMAP)
compare favorably to other distance-based methods, such as
TAE and EAER-Margin, while showing overall reasonable
runtimes when compared to other methods.

B.6 Hardware
All experiments were run on nodes equipped with an Intel
Gold 6148 Skylake @ 2.4 GHz CPU, 16 GB of available RAM,
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Metrics
Dataset Model Time (min.) AE-normalized

Swiss Roll

GRAE (PHATE) 1.01 2.04
GRAE (UMAP) 0.74 1.48

AE 0.50 1.00
EAER-Margin 0.67 1.34

TAE 5.50 11.03
DAE 0.51 1.02
CAE 0.69 1.38
β-VAE 0.53 1.07

COIL100

GRAE (PHATE) 9.84 1.11
GRAE (UMAP) 14.38 1.63

AE 8.84 1.00
EAER-Margin 13.83 1.56

TAE 13.04 1.47
DAE 13.39 1.51
CAE 71.06 8.03
β-VAE 9.26 1.05

iPSC

GRAE (PHATE) 27.29 2.80
GRAE (UMAP) 15.18 1.56

AE 9.76 1.00
EAER-Margin 44.46 4.55

TAE 106.13 10.87
DAE 9.96 1.02
CAE 14.04 1.44
β-VAE 10.93 1.12

TABLE 7
Average training times over 3 runs for each model trained for 100

epochs with a batch size of 128. Training times include all required
steps, such as precomputing E for GRAE and fitting the AE

architecture. GRAE (PHATE) and GRAE (UMAP) use the scalable
GRAE version presented in Figure 2. Diffusion Nets was not

benchmarked due to the lack of mini-batch training. We further display
the average runtimes normalized by the vanilla AE time.

and an NVIDIA V100 GPU with 16 GB of memory.

APPENDIX C
R2 METRIC DETAILS

Disentanglement of the latent factors of the various meth-
ods is assessed by fitting a linear regression to predict
said factors using the embedding coordinates as regressors.
High-quality embeddings should indeed be indicative of the
data generating process and represent ground truth factors
adequately, subject to a simple transformation. We report
the resulting R2 of the linear model to measure the strength
of the relationship between the embeddings and a given
ground truth factor. While in theory the R2 metric can be
negative, we elected to clip it to the range [0, 1] for better
plot scaling. This was mainly required by the occasional
poor performance of β−VAE on the Object Tracking dataset.

Additionally, on datasets with class structure in addition
to a ground truth specific to each class (e.g. Rotated Digits),
we partition the embedding according to class labels, fit
linear regressions independently on each part to predict the
ground truth and report the average R2 over all partitions.

For circular manifolds (e.g. Teapot, Rotated Digits), we
center the manifolds before switching to polar coordinates
and use the resulting angles as predictors. Furthermore,
we align one angle of the ground truth and the embedded
points to mitigate a ”spin” in the embedding, which would
break the linear relationship. While COIL-100 also has the
aforementioned circular structure for each object, the rel-
atively low density of samples for each ”ring” (55 in the

training set, 10 in the test set) prevented all models from
reaching a satisfactory R2 score using the angles. Thus we
chose not to report it.

C.1 Semi-supervised learning ablation study
Here we show the results of a semi-supervised ablation
study. We found significant differences in performance be-
tween the vanilla network and our approach for networks
of different sizes. The results are shown in Figure 10.
The geometric regularization in our approach improves the
robustness of the network as it achieves fairly consistent
accuracy for different numbers of layers. In contrast, the
vanilla neural network’s performance degrades when more
layers are included, suggesting it is more vulnerable to
overfitting.

Fig. 10. Ablation study for the number of layers in the semi-supervised
architecture. Here we give the test accuracy results for semi-supervised
classification in MNIST and PBMC datasets with 1% and 5% of labeled
data. We compare a vanilla NN against our regularized version (GRNN)
for various numbers of hidden layers in the architecture. Our regular-
ization makes the network resilient to overfitting, and achieves better
accuracy in all cases.


