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Abstract. We consider the Stochastic Boolean Function Evaluation (SBFE) problem where
the task is to efficiently evaluate a known Boolean function f on an unknown bit string x
of length n. We determine f(x) by sequentially testing the variables of x, each of which is
associated with a cost of testing and an independent probability of being true. If a strategy
for solving the problem is adaptive in the sense that its next test can depend on the outcomes
of previous tests, it has lower expected cost but may take up to exponential space to store.
In contrast, a non-adaptive strategy may have higher expected cost but can be stored in
linear space and benefit from parallel resources. The adaptivity gap, the ratio between the
expected cost of the optimal non-adaptive and adaptive strategies, is a measure of the benefit
of adaptivity. We present lower bounds on the adaptivity gap for the SBFE problem for
popular classes of Boolean functions, including read-once DNF formulas, read-once formulas,
and general DNFs. Our bounds range from Ω(logn) to Ω(n/ logn), contrasting with recent
O(1) gaps shown for symmetric functions and linear threshold functions.

1 Introduction

We consider the question of determining adaptivity gaps for the Stochastic Boolean Function Evalu-
ation (SBFE) problem, for different classes of Boolean formulas. In an SBFE problem, we are given
a (representation of a) Boolean function f : {0, 1}n → {0, 1}, a positive cost vector c = [c1, . . . , cn],
and a probability vector p = [p1, . . . , pn]. The problem is to determine the value f(x) on an initially
unknown random input x ∈ {0, 1}n. The value of each xi can only be determined by performing a
test, which incurs a cost of ci. Each xi is equal to 1 (is true) with independent probability pi. Tests
are performed sequentially and continue until f(x) can be determined. We say f(x) is determined
by a set of tests if f(x) = f(x′) for all x′ ∈ {0, 1}n such that x′

i = xi for every i in the set of tests.
For example, if f(x) = x1 ∨ . . . ∨ xn then testing continues until a test is performed on some xi

such that xi = 1 at which point we know f(x) = 1, or until all n tests have been performed with
outcome xi = 0 for each xi so we know f(x) = 0. The problem is to determine the order to perform
tests that minimizes the total expected cost of the tests.

We will call a testing order a strategy which we can think of as a decision tree for evaluating f .
A strategy can be adaptive, meaning that the choice of the next test xi can depend on the outcome
of previous tests. In some practical settings, however, it is desirable to consider only non-adaptive
strategies. Non-adaptive strategies often take up less space than adaptive strategies, and they may
be able to be evaluated more quickly if tests can be performed in parallel [20], such as in the
problem of detecting network faults [23] or in group testing for viruses, such as the coronavirus [28].
A non-adaptive testing strategy is a permutation of the tests where testing continues in the order
specified by the permutation until the value of f(x) can be determined from the outcomes of the
tests performed so far. A non-adaptive strategy also corresponds to a decision tree where all non-leaf
nodes on the same level contain the same test xi.
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The adaptivity gap measures how much benefit can be obtained by using an adaptive strategy.
Consider a class F of n-variable functions f : {0, 1}n → {0, 1}. Let OPTN (f, c, p) be the expected
evaluation cost of the optimal non-adaptive strategy on function f under costs c and probabilities p.
Similarly, OPTA(f, c, p) is the expected evaluation cost of the optimal adaptive strategy on f under
c and p. The adaptivity gap of the function class F is

max
f∈F

sup
c,p

OPTN (f, c, p)

OPTA(f, c, p)
.

The SBFE problem for a class of Boolean formulas F restricts the evaluated f to be a member of
F . In this paper we prove bounds on the adaptivity gaps for the SBFE problem on read-once DNF
formulas, DNF formulas, and read-once formulas. (See Section 1.3 for definitions.) A summary of
our results can be found in Table 1.

All the bounds in the table have a dependence on n, meaning that none of the listed SBFE
problems has a constant adaptivity gap. This contrasts with recent work of Ghuge et al. [14], which
shows that the adaptivity gaps for the SBFE problem for symmetric Boolean functions and linear
threshold functions are O(1).

For any SBFE problem, the non-adaptive strategy of testing the xi in increasing order of ci has
an expected cost that is within a factor of n of the optimal adaptive strategy [25]. Thus n is an
upper bound on the adaptivity gap for all SBFE problems.

Table 1. A summary of our results. We also prove an O(
√
n) upper bound for tribes formulas i.e., read-once

DNFs with unit costs where every term has the same number of variables. We say all probabilities are equal
if p1 = p2 = . . . = pn.

Formula Class Adaptivity Gap

Read-once DNF

Θ(logn) for unit costs, uniform distribution

Ω(
√
n) for unit costs

Ω(n1−ϵ/ logn) for uniform distribution

Read-once Ω(ϵ3n1−2ϵ/ ln(2)) for unit costs, equal probabilities

DNF
Ω(n/ logn) for unit costs, uniform distribution

Θ(n) for uniform distribution

Outline: We present our results on formula classes in increasing order of generality. In Section 2,
we warm up with a variety of results on read-once DNF formulas in different settings. In Section 3,
we prove our main technical result for read-once formulas, drawing on branching process identities
and concentration inequalities. In Section 4, we prove our most general results on DNF formulas
(the bounds also apply to the restricted class of DNF formulas with a linear number of terms). Note
that we state our lower bound results in the most restricted context because they of course apply to
more general settings. Due to space constraints, we defer some proofs to Appendix A.

1.1 Connection to st-connectivity in uncertain networks

Our result for read-once formulas has implications for a problem of determining st-connectivity in
an uncertain network, studied by Fu et al. [13]. The input is a multi-graph with a source node s and
a destination node t. Each edge corresponds to a variable xi indicating whether it is usable, which
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is true with probability pi. Testing the usability of edge i costs ci. The st-connectivity function for
the multi-graph is true if and only if there is a path of usable edges from s to t. The problem is to
find a strategy to evaluate the st-connectivity function that has minimum expected cost.

The st-connectivity function associated with a multi-graph can be represented by a read-once
formula if and only if the multi-graph is a two-terminal series-parallel graph. This type of graph
has two distinguished nodes, s and t, and is formed by recursively combining disjoint series-parallel
graphs either in series, or in parallel (see [12] for the precise definitions).4 Fu et al. performed
experiments with both adaptive and non-adaptive strategies for this problem, comparing their per-
formance, but did not prove theoretical adaptivity gap bounds. Since the st-connectivity function on
a series-parallel graph is a read-once formula, our lower bound on the adaptivity gap for read-once
formulas applies to the problem of st-connectivity.

1.2 Related work

It is well-known that the SBFE problem for the Boolean OR function given by f(x) = x1 ∨ . . .∨ xn

has a simple solution: test the variables xi in increasing order of the ratio ci/pi until a test reveals a
variable set to true, or until all variables are tested and found to be false (cf. [30]). This strategy is
non-adaptive, meaning that the SBFE problem for the Boolean OR function has an adaptivity gap
of 1. That is, there is no benefit to adaptivity.

Gkenosis et al. [16] introduced the Stochastic Score Classification problem, which generalizes the
SBFE problem for both symmetric Boolean functions and for linear threshold functions. Ghuge et
al. [14] showed that the Stochastic Score Classification problem has an adaptivity gap of O(1). In
the unit-cost case, Gkenosis et al. showed the gap is at most 4 for symmetric Boolean functions, and
at most ϕ (the golden ratio) for the not-all-equal function [16].

Adaptivity gaps were introduced by Dean et al. [7] in the study of the stochastic knapsack problem
which, in contrast to the SBFE problem for Boolean functions, is a maximization problem. It has an
adaptivity gap of 4 [7,9]. Adaptivity gaps have also been shown for other stochastic maximization
problems (e.g., [8,19,5,24,2]). Notably, the problem of maximizing a monotone submodular function
with stochastic inputs, subject to any class of prefix-closed constraints, was shown to have an O(1)
adaptivity gap [20,5].

Adaptivity gaps have also been shown for stochastic covering problems, which, like SBFE, are
minimization problems. Goemans et al. [17] showed that the adaptivity gap for the Stochastic Set
Cover problem, in which each item can only be chosen once, is Ω(d) and O(d2), where d is the size
of the target set to be covered. If the items can be used repeatedly, the adaptivity gap is Θ(log d).

Agarwal et al. [1] and Ghuge et al. [15] proved bounds of Ω(Q) and O(Q logQ) respectively,
on the adaptivity gap for the more abstract Stochastic Submodular Cover Problem in which each
item can only be used once. Applied to the special case of Stochastic Set Cover, the upper bound
is O(d log d), which improves the above O(d2) bound. They also gave bounds parameterized by the
number of rounds of adaptivity allowed. We note that, as shown by Deshpande et al. [10], one
approach to solving SBFE problems is to reduce them to special cases of Stochastic Submodular
Cover. However, this approach does not seem to have interesting implications for SBFE problem
adaptivity gaps.

4 The term series-parallel circuits (systems) refers to a set of parallel circuits that are connected in series
(see, e.g., [11,31]). Viewed as graphs, they correspond to the subset of two-terminal series-parallel graphs
whose st-connectivity functions correspond to read-once CNF formulas. We note that Kowshik used the
term “series-parallel graph” in a non-standard way to refer only to this subset; Fu et al. in citing Kowshik,
used the term the same way [27,13].
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1.3 Preliminaries

Consider a Boolean function f : {0, 1}n → {0, 1}, a positive cost vector c = [c1, . . . , cn], and
probability vector p = [p1, . . . , pn]. We assume ci > 0 and 0 < pi < 1 for i ∈ [n] where [n]
denotes the set {1, . . . , n}. Let strategy S be a decision tree for evaluating f(x) on an unknown
input x ∈ {0, 1}n. We define costc(f, x, S) as the total cost of the variables tested by S on input x
until f(x) is determined. We say x ∼ p if Pr(x) =

∏︁
i:xi=1 pi

∏︁
i:xi=0(1 − pi). Then costc,p(f, S) :=

Ex∼p[costc(f, x, S)] is the expected evaluation cost of strategy S when x is drawn according to the
product distribution induced by p.

For fixed n, let A be the set of adaptive strategies on n variables and N be the set of non-adaptive
strategies on n variables. We are interested in the quantities

OPTA(f, c, p) := min
S∈A

costc,p(f, S) and OPTN (f, c, p) := min
S∈N

costc,p(f, S).

We will omit c and p from the notation when the costs and probabilities are clear from context.
A (Boolean) read-once formula is a tree, each of whose internal nodes are labeled either ∨ or ∧.
The internal nodes have two or more children. Each leaf is labeled with a Boolean variable xi ∈
{x1, . . . , xn}. The formula computes a Boolean function in the usual way.5 A (Boolean) DNF formula
is a formula of the form T1 ∨ T2 ∨ . . . Tm for some m ≥ 1, such that each term Ti is the conjunction
(∧) of literals. A literal is a variable xi or a negated variable ¬xi. The DNF formula is read-once if
distinct terms contain disjoint sets of variables, without negations. Read-once DNF formulas whose
terms all contain the same number w of literals are sometimes known as tribes formulas of width w
(cf. [29]).

2 Warm Up: Adaptivity Gaps for Read-Once DNFs

Let f : {0, 1}n → {0, 1} be a read-once DNF formula. Boros and Ünyülurt [3] showed that the
following approach gives an optimal adaptive strategy for evaluating f (this has been rediscovered
in later papers [18,27,26]). Let f = T1 ∨ T2 . . . ∨ Tk be a DNF formula with k terms. For each term
Tj , let ℓ(j) be the number of variables in term Tj . Order the variables of Tj as xj1 , xj2 , . . . xjℓ(j)

in non-decreasing order of the ratio ci/(1 − pi), i.e., so that cj1/(1 − pj1) ≤ cj2/(1 − pj2) ≤ . . . ≤
cjℓ(j)/(1 − pjℓ(j)). For evaluating the single term Tj , an optimal strategy tests the variables in Tj

sequentially, in the order xj1 , xj2 , . . . xjℓ(j) , until a variable is found to be false, or until all variables
are tested and found to be true.

Denote the probability of the term evaluating to true as P (Tj) =
∏︁ℓ(j)

i=1 pji and the expected cost
of this evaluation of the term as

C(Tj) =

ℓ(j)∑︂
i=1

(

i∑︂
k=1

cjk

i−1∏︂
r=1

pjr ).

An optimal algorithm for evaluating f applies the above strategy sequentially to the terms T of f ,
in non-decreasing order of the ratio C(T )/P (T ), until either some term is found to be satisfied by
x, so f(x) = 1, or all terms have been evaluated and found to be falsified by x, so f(x) = 0. We will
use this optimal adaptive strategy in the remainder of the section.

In what follows, we will frequently describe non-adaptive strategies as performing the n possible
tests in a particular order. We mean by this that the permutation representing the strategy lists the
tests in this order. The testing stops when the value of f can be determined.

5 Some definitions of a read-once formula allow negations in the internal nodes of the formula. By DeMor-
gan’s laws, these negations can be “pushed” into the leaves of the formula, resulting in a formula whose
internal nodes are ∨ and ∧, such that each variable xi appears in at most one leaf.
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2.1 Unit Costs and the Uniform Distribution

Algorithm 1: Evaluating a read-once DNF where each variable has unit cost and uniform
distribution.
Input : n > 0, read-once DNF f : {0, 1}n → {0, 1} with m terms
Output: π // O(logn)-approximation non-adaptive strategy for f
π ← [] // empty list

for i = 1 to m do
if |Ti| ≤ 2 logn then // Ti is ith shortest term in f

π ← π + all variables in Ti

else
π ← π + first 2 logn variables in Ti

end

end
π ← π + remaining variables not in π

We begin by showing that the adaptivity gap for read-once DNFs, in the case of unit costs and
the uniform distribution, is at most O(log n).

Theorem 1. Let f : {0, 1}n → {0, 1} be a read-once DNF formula. For unit costs and the uniform
distribution, there is a non-adaptive strategy S such that cost(f, S) ≤ O(log n) · OPTA(f).

Proof (Proof Sketch). Using the characterization of the optimal adaptive strategy due to Boros and
Ünyülurt [3], we show that Algorithm 1 gives a non-adaptive strategy that has expected cost at
most O(log n) times the optimal adaptive strategy. The algorithm crucially relies on the observation
that the optimal adaptive algorithm tests terms in non-decreasing order of length for unit costs and
the uniform distribution. To see this, observe C(T )/P (T ) is non-decreasing when terms are ordered
by length in this setting. For terms with length at most 2 log n, we can test every variable without
paying more than O(log n) times the optimal adaptive strategy. For terms with length greater than
2 log n, we can test 2 log n variables and only need to continue testing with probability 1/n2.

We complement Theorem 1 with a matching lower bound. We prove the theorem by exhibiting a
read-once DNF with

√
n identical terms. We upper bound the optimal adaptive strategy and argue

any non-adaptive strategy has to make log n tests per term to verify f(x) = 0 which occurs with
constant probability.

Theorem 2. Let f : {0, 1}n → {0, 1} be a read-once DNF formula. For unit costs and the uniform
distribution, OPTN (f) ≥ Ω(log n) · OPTA(f).

2.2 Unit Costs and Arbitrary Probabilities

We give an upper bound of the adaptivity gap for read-once DNF formulas with unit costs and
arbitrary probabilities in the special case where all terms have the same number of variables. This
is known as a tribes formula [29]. Let the number of terms be m. We now describe two non-adaptive
strategies which yield a n/m-approximation and a m-approximation, respectively. Then, by choosing
the non-adaptive strategy based on the the number of terms m, we are guaranteed a min{n/m,m} ≤
O(

√
n)-approximation.
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Lemma 1. Consider a read-once DNF f : {0, 1}n → {0, 1} where each term has the same number
of variables. For unit costs and arbitrary probabilities, there is a non-adaptive strategy S ∈ N such
that cost(f, S) ≤ n/m · OPTA(f).

Proof (Proof of Lemma 1). Consider a random input x and the optimal adaptive strategy described
at the start of this section. If f(x) = 0, the optimal adaptive strategy must certify that each term
is 0 which requires at least m tests. Since any non-adaptive strategy will make at most n tests,
the ratio between the cost incurred on x by a non-adaptive strategy, and by the optimal adaptive
strategy, is at most n/m. Otherwise, if f(x) = 1, the optimal adaptive strategy will certify that a
term is true after testing some number of false terms. Now consider the non-adaptive version of this
optimal adaptive strategy which tests terms in the same fixed order but must test all variables in
a term before proceeding to the next term. For each false term that the optimal adaptive strategy
tests, the non-adaptive strategy will test every variable for a total of n/m tests. Since the optimal
adaptive strategy must make at least one test per false term, the ratio between the cost incurred
on x by the non-adaptive strategy, and the cost incurred by the optimal strategy, is at most n/m.
Since the ratio n/m holds for all x, the lemma follows.

Lemma 2. Consider a read-once DNF f : {0, 1}n → {0, 1} where each term has the same number
of variables. For unit costs and arbitrary probabilities, there is a non-adaptive strategy S ∈ N with
expected cost cost(f, S) ≤ m · OPTA(f).

Proof (Proof of Lemma 2). Fix a random input x. If f(x) = 0, the optimal adaptive strategy certifies
that every term is false. Let Ci be the number of tests it makes until finding a false variable on the
ith term. Consider the non-adaptive “round-robin” strategy which progresses in rounds, making one
test in each term per round. Within a term, the non-adaptive strategy tests variables in the same
fixed order as the optimal adaptive strategy. Then the cost of the non-adaptive strategy is m·maxi Ci

whereas the cost of the optimal adaptive strategy is
∑︁m

i=1 Ci. It follows that the adaptivity gap is
at most m. Otherwise, if f(x) = 1, the optimal adaptive strategy must certify that a term is true by
making at least n/m tests. Any non-adaptive strategy will make at most n tests so the adaptivity
gap is at most m.

Together, the O(n/m)- and O(m)-approximations imply the following result.

Theorem 3. Let f : {0, 1}n → {0, 1} be a read-once DNF formula where each term has the same
number of variables. For unit costs and arbitrary probabilities, there is a non-adaptive strategy S ∈ N
with cost(f, S) ≤ O(

√
n) · OPTA(f).

We complement Theorem 3 with a matching lower bound. We prove the theorem by exhibiting
a read-once DNF with 2

√
n identical terms. By making one special variable in each term have a low

probability of being true and arguing it must always be tested first, the non-adaptive strategy has to
search at random for which special variable is true when every other special variable is false which
happens with constant probability.

Theorem 4. Let f : {0, 1}n → {0, 1} be a read-once DNF formula. For unit costs and arbitrary
probabilities, OPTN (f) ≥ Ω(

√
n) · OPTA(f).

2.3 Arbitrary Costs and the Uniform Distribution

We prove Theorem 5 by exhibiting a read-once DNF with 2ℓ terms each of length ℓ. Within each
term, the cost of each variable increases geometrically with a ratio of 2. The challenge is choosing ℓ
so that 2ℓℓ = n. We accomplish this by using a modified Lambert W function [6] which is how we
calculate nϵ.
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Theorem 5. For all ϵ > 0, there exists nϵ > 0 such that the following holds for all read-once DNF
formulas f : {0, 1}n → {0, 1} where n > nϵ: There exists a cost assignment such that for the uniform
distribution, OPTN (f) ≥ Ω(n1−ϵ/ log n) · OPTA(f).

3 Main Result: Read-Once Formulas

Theorem 6. Fix ϵ > 0. There is a read-once formula f : {0, 1}n → {0, 1}, such that for unit costs
and pi =

1+ϵ
2 for all i ∈ [n], OPTN (f) ≥ Ω

(︁
ϵ3n1−2ϵ/ log 2

)︁
· OPTA(f).

Before we prove Theorem 6, we describe the read-once formula f and present the technical
lemmas we use in the proof. Without loss of generality, assume n = 2 · 2d − 2 for some positive
integer d. We define the function f(x) on inputs x ∈ {0, 1}n in terms of a binary tree with depth
d. The edges of the tree are numbered 1 through n, and variable xi corresponds to edge i. Each
variable xi has a

1+ϵ
2 probability of being true. Say that a leaf of the tree is “alive” if xi = 1 for all

edges i on the path from the root to the leaf. We define f(x) = 1 if and only if at least one leaf of
the tree is alive. A strategy for evaluating f will continue testing until it can certify that there is at
least one alive leaf, or that no alive leaf exists.

x1 = 1

x2 = 0

x3 = 1 x4 = 1

x5 = 1

x6 = 1 x7 = 0

x8 = 0

x9 = 0

x10 = 0 x11 = 1

x12 = 0

x13 = 1 x14 = 0

Fig. 1. The binary tree corresponding to the read-once formula we construct when n = 14. In particular,
f(x) = (x1 ∧ ((x2 ∧ (x3 ∨ x4)) ∨ (x5 ∧ (x6 ∨ x7)))) ∨ (x8 ∧ ((x9 ∧ (x10 ∨ x11)) ∨ (x12 ∧ (x13 ∨ x14)))). Notice
that f(x) = 1 for this x because the third leaf from the left is alive (all its ancestors are true).

Now consider the multi-graph that is produced from the tree by merging all leaves into a single
node. The function f is the st-connectivity function of this multi-graph. It is easy to show, by
induction on the depth of the tree, that the multi-graph is two-terminal series-parallel, with s the
root, and t the node produced by merging the leaves of the tree. Thus f is computed by a read-once
formula.

We refer to the edges of the tree that join a leaf to its parent as leaf edges, and the other edges
as internal edges. We say that a non-adaptive strategy S is leaf-last if it first tests all non-leaf edges
of the tree, and then tests the leaf edges.
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In the proof of Theorem 6, we consider an alternative cost assignment where we pay unit costs for
the tests on leaf edges, as usual, but tests on internal edges are free. The expected cost of a strategy
under the usual unit cost assignment is clearly lower bounded by its expected cost when internal
edges are free. Note that when internal edges are free, there is no disadvantage in performing all the
tests on internal edges first, so there is an optimal non-adaptive strategy which is leaf-last in the
sense that all the leaf edges appear last. Our first technical lemma describes a property of a leaf-last
strategy. We defer the proof of this lemma, and of the ones that follow, to the end of this section. In
all of the lemma statements, we assume f is as just described, and expected costs are with respect
to unit costs and test probabilities pi =

1+ϵ
2 . We use L to denote the number of leaves in the tree.

Lemma 3. There exists a leaf-last non-adaptive strategy S for evaluating f which, conditioned on
the event that there is at least one alive leaf, has minimum expected cost when internal edges are free
relative to all non-adaptive strategies. Further, for any such S and any ℓ ∈ [L − 1], conditioned on
the existence of at least one alive leaf, the probability that S first finds an alive leaf on the ℓth leaf
test is at least the probability S first finds an alive leaf on the (ℓ+ 1)st leaf test.

The next lemma gives us an inequality that we will use to lower bound the cost of the optimal
non-adaptive strategy.

Lemma 4. Let L be a positive integer and p1 ≥ p2 ≥ . . . ≥ pL be non-negative real numbers. Now

let p ≥ p1 and define L′ = ⌊
∑︁L

ℓ=1 pℓ/p⌋. Then
∑︁L

ℓ=1 ℓpℓ ≥
∑︁L′

ℓ=1 ℓp.

Our analysis depends on there being at least constant probability that f(x) = 1, or equivalently,
that there is at least one alive leaf. The next lemma assures us that this is indeed the case. The
proof of the lemma depends on our choice of having each pi be slightly larger than 1/2; it would not
hold otherwise.

Lemma 5. With probability at least ϵ, there is at least one alive leaf in the binary tree representing
f .

With these key lemmas in hand, we prove Theorem 6.

Proof (Proof of Theorem 6). We will show that the adaptivity gap is large. Intuitively, we rely on the
fact that if there is at least one alive leaf, then an adaptive strategy can find an alive leaf cheaply, by
beginning at the root of the tree and moving downward only along edges that are alive. In contrast, a
non-adaptive strategy cannot stop searching along “dead” branches. However, it is not immediately
clear that the cost of the non-adaptive strategy is high because there are conditional dependencies
between the probabilities that two leaves with the same ancestor(s) are alive. To prove the desired
result, we need to show that, despite these dependencies, the optimal non-adaptive strategy must
have high expected cost.

We begin by showing that the expected cost of any non-adaptive strategy is at least ϵ2

16n
1− ϵ

log 2 .
We want to lower bound the expected cost of the optimal strategy OPTN (f):

min
S∈N

Ex[cost(f, x, S)] ≥ min
S

E[costL(f, x, S)] = min
S′

E[costL(f, x, S′)] (1)
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where costL(f, x, S) is the number of leaf tests S makes on x until f(x) is determined, and S′ is a
leaf-last strategy. Then

(1) = min
S′

⎛⎝ ∑︂
x:f(x)=1

Pr(x) · costL(f, x, S′) +
∑︂

x:f(x)=0

Pr(x) · costL(f, x, S′)

⎞⎠
≥ min

S′

∑︂
x:f(x)=1

Pr(x) · costL(f, x, S′)

= min
S′

L∑︂
ℓ=1

ℓPr(S′ first finds alive leaf on ℓth leaf test)

where L = 2d is the number of leaves in the binary tree. Initially, all leaves have a
(︁
1+ϵ
2

)︁d
probability

of being alive where d = log2((n + 2)/2). By Lemma 3, the probability that the next leaf is alive
cannot increase as the optimal non-adaptive strategy S∗ performs its test. Set

p =

(︃
1 + ϵ

2

)︃d

and pℓ = Pr(S∗ first finds alive leaf on ℓth test). Therefore, Lemma 4 with p and pℓ tells us that

L∑︂
ℓ=1

ℓpℓ ≥
L′∑︂
ℓ=1

ℓ

(︃
1 + ϵ

2

)︃d

≥
(︃
1 + ϵ

2

)︃d
ϵ2

8
(︁
1+ϵ
2

)︁2d ≥ ϵ2

8(n+2
2 )log2(

1+ϵ
2 )

≥ ϵ2

16
n1− ϵ

log 2 (2)

where we use the inequality that L′ ≥ ϵ/(2
(︁
1+ϵ
2

)︁d
). To see this, recall that

∑︁L
ℓ=1 pℓ/p ≥ L′ and,

since the right-hand side is greater than 1, 2L′ ≥
∑︁L

ℓ=1 pℓ/p. By Lemma 5,
∑︁L

ℓ=1 pℓ ≥ ϵ so L′ ≥
ϵ/(2

(︁
1+ϵ
2

)︁d
). The last inequality in Equation (2) follows from log2(

1+ϵ
2 ) ≤ ϵ

log 2 − 1 which can be
shown by comparing the y-intercepts and derivatives for ϵ > 0.

Next, we show that the expected cost of the adaptive strategy is at most (n+1)
ϵ

log 2 /ϵ. Consider
an adaptive strategy which starts by querying the two edges of the root and recurses as follows: if an
edge is alive it queries its two child edges and otherwise stops. Observe that this simple depth-first
search adaptive strategy will make at most two tests for every alive edge in the binary tree. Therefore
the expected number of tests an adaptive strategy must make is at most twice the expected number
of alive edges. By the branching process analysis in the proof of Lemma 5, twice the expected number
of alive edges is

2

d∑︂
i=0

(1 + ϵ)i ≤ 2

log2 n∑︂
i=0

(1 + ϵ)i = 2
(1 + ϵ)log2(n)+1 − 1

(1 + ϵ)− 1
≤ 4

nlog2(1+ϵ)

ϵ
≤ 4

n
ϵ

log 2

ϵ
(3)

where the last inequality follows from log2(1 + ϵ) ≤ ϵ
log 2 which we can see by comparing the y-

intercepts and slopes for ϵ > 0. Then Theorem 6 follows from Equations (2) and (3).

Proof (Proof of Lemma 3). A leaf-last non-adaptive strategy S satisfying the given conditional
optimality property clearly exists, because any non-adaptive strategy can be made leaf-last by moving
the leaf tests to the end without affecting its cost when internal edges are free. Define pℓ(S) as the
probability that S finds an alive leaf for the first time on leaf test ℓ. We may write the expected
number of leaf tests of S as

∑︁L
ℓ=1 ℓpℓ(S).
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Now suppose for contradiction that there is some ℓ′ such that pℓ′(S) < pℓ′+1(S). Let S′ be S
but with the ℓ′th and (ℓ′ +1)th tests swapped. We will show that the expected number of leaf tests
made by S′ is strictly lower than the expected number of leaf tests made by S. Observe that

L∑︂
ℓ=1

ℓpℓ(S)−
L∑︂

ℓ=1

ℓpℓ(S
′) = ℓ′(pℓ′(S)− pℓ′(S

′)) + (ℓ′ + 1)(pℓ′+1(S)− pℓ′+1(S
′)).

Notice that pℓ′(S) < pℓ′+1(S) ≤ pℓ′(S
′) where the first inequality follows by assumption and the

second inequality follows because moving a test on a particular leaf edge to appear earlier in the
permutation can only increase the probability that its leaf is the first alive leaf found. In addition,
since the combined probability we first find an alive leaf in either the ℓ′th or (ℓ′ + 1)th test is
the same in either order of tests, pℓ′(S) + pℓ′+1(S) = pℓ′(S

′) + pℓ′+1(S
′). Together, we have that

−(pℓ′(S)− pℓ′(S
′)) = pℓ′+1(S)− pℓ′+1(S

′) > 0. Therefore
∑︁L

ℓ=1 ℓpℓ(S)−
∑︁L

ℓ=1 ℓpℓ(S
′) = pℓ′+1(S)−

pℓ′+1(S
′) > 0 and S′ makes fewer leaf tests in expectation even though S was optimal by assumption.

A contradiction!

Proof (Proof of Lemma 4). Define δℓ = p− pℓ ≥ 0 for ℓ ∈ [L′]. Observe that L′ ≤ L since p ≥ pℓ for
all ℓ ∈ [L′]. Then

L∑︂
ℓ=1

ℓpℓ =

L′∑︂
ℓ=1

ℓ(p− δℓ) +

L∑︂
ℓ=L′+1

ℓpℓ =

L′∑︂
ℓ=1

ℓp−
L′∑︂
ℓ=1

ℓδℓ +

L∑︂
ℓ=L′+1

ℓpℓ. (4)

Now all that remains to be shown is that the sum of the last two terms in Equation (4) is non-
negative. Notice that

L′∑︂
ℓ=1

pℓ +

L∑︂
ℓ=L′+1

pℓ ≥
L′∑︂
ℓ=1

p =⇒
L∑︂

ℓ=L′+1

pℓ ≥
L′∑︂
ℓ=1

(p− pℓ) =

L′∑︂
ℓ=1

δℓ.

Then

L′∑︂
ℓ=1

ℓδℓ ≤ L′
L′∑︂
ℓ=1

δℓ ≤ L′
L∑︂

ℓ=L′+1

pℓ ≤
L∑︂

ℓ=L′+1

ℓpℓ.

Proof (Proof of Lemma 5). Let Zi denote the number of alive edges at level i. Then the statement
of Lemma 5 becomes Pr(0 < Zd) ≥ ϵ. Using standard results from the study of branching processes,
we know that

E[Zd] = µd and Var(Zd) =
(︁
µ2d − µd

)︁ σ2

µ(µ− 1)

where µ is the expectation and σ is the variance of the number of alive “children” from a single alive
edge (see e.g., p. 6 in Harris [22]). In our construction,

µ = 2

(︃
1 + ϵ

2

)︃
= (1 + ϵ) and σ2 = 2

(︃
1 + ϵ

2

)︃(︃
1− 1 + ϵ

2

)︃
=

1− ϵ2

2

since the children of one edge follow the binomial distribution. Then E[Zd] = (1 + ϵ)d and

Var(Zd) =
(︁
(1 + ϵ)2d − (1 + ϵ)d

)︁ 1− ϵ2

2(1 + ϵ)ϵ
≤ 1

2ϵ

(︁
(1 + ϵ)d

)︁2
=

1

2ϵ
E[Zd]

2.
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We will now use Cantelli’s inequality (see page 46 in Boucheron et al. [4]) to show that Pr(Zd >

0) ≥ ϵ. Cantelli’s tells us that Pr(X − E[X] ≥ λ) ≤ Var(X)
Var(X)+λ2 for any real-valued random variable

X and λ > 0. Choose X = −Zd and λ = E[Zd]. Then

Pr(Zd ≤ E[Zd]− E[Zd]) ≤
Var(Zd)

Var(Zd) + E[Zd]2

and, by taking the complement,

Pr(Zd > 0) ≥ E[Zd]
2

Var(Zd) + E[Zd]2
≥ E[Zd]

2

1
2ϵE[Zd]2 + E[Zd]2

=
2ϵ

1 + 2ϵ
≥ ϵ (5)

for 0 < ϵ ≤ 1/2. Then Lemma 5 follows from Equation (5).

4 DNF Formulas

We will show near-linear and linear in n lower bounds for DNF formulas under the uniform distri-
bution with unit and arbitrary costs, respectively. Since the function we exhibit has linear terms,
the lower bounds also apply to the class of linear-size DNF formulas.

Theorem 7. Let f : {0, 1}n → {0, 1} be a DNF formula. For unit costs and the uniform distribution,
OPTN (f) ≥ Ω(n/ log n) · OPTA(f).

Proof. Without loss of generality, assume n = 2d+d for some positive integer d. Consider the address
function f with 2d terms which each consist of d shared variables appearing in all terms, and a single
dedicated variable appearing only in that term. We may write f = T0 ∨ T1 ∨ · · · ∨ T2d−1 where Ti

consists of the shared variables negated according to the binary representation of i and the single
dedicated variable.

By testing the d shared variables, the optimal adaptive strategy can learn which single term
is unresolved and test the corresponding dedicated variable in a total of d + 1 tests. In contrast,
any non-adaptive strategy has to search for the unresolved dedicated test at random which gives
expected 2d/2 cost. (We can ensure the non-adaptive strategy tests the shared variables first by
making them free which can only decrease the expected cost.) It follows that the adaptivity gap is
Ω(2d/d) = Ω(n/ log n).

We can easily modify the address function in the proof of Theorem 7 to prove an Ω(n) lower
bound for DNF formulas under the uniform distribution and arbitrary costs. In particular, make the
cost of each shared variable 1/d. Then the adaptive strategy pays d · (1/d) + 1 = 2 while the non-
adaptive strategy still pays Ω(n). The O(n) upper bound comes from the increasing cost strategy
and analysis in [25].

Theorem 8. Let f : {0, 1}n → {0, 1} be a DNF formula. For the uniform distribution, OPTN (f) ≥
Θ(n) · OPTA(f).

5 Conclusion and Open Problems

We have shown bounds on the adaptivity gaps for the SBFE problem for well-studied classes of
Boolean formulas. Our proof of the lower bound for read-once formulas depended on having pi’s
that are slightly larger than 1/2 but we conjecture that a similar or better lower bound holds for the
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uniform distribution. We note that our lower bound for read-once formulas also applies to (linear-
size) monotone DNF formulas, since the given read-once formula based on the binary tree has a
DNF formula with one term per leaf. Another open question is to prove a lower bound for monotone
DNF formulas that matches our lower bound for general DNF formulas.

A long-standing open problem is whether the SBFE problem for read-once formulas has a
polynomial-time algorithm (cf. [18,30]). The original problem only considered adaptive strategies,
and it is also open whether there is a polynomial-time (or pseudo polynomial-time) constant or log n
approximation algorithm for such strategies. Happach et al. [21] gave a pseudo polynomial-time
approximation algorithm for the non-adaptive version of the problem, which outputs a non-adaptive
strategy with expected cost within a constant factor of the optimal non-adaptive strategy. Because
of the large adaptivity gap for read-once formulas, as shown in this paper, the result of Happach et
al. does not have any implications for the open question of approximating the adaptive version of
the SBFE problem for read-once formulas.
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A Additional Proofs

Proof (Proof of Theorem 1). Suppose f is a read-once DNF formula. We will prove that for unit costs
and the uniform distribution, there is a non-adaptive strategy S such that cost(f, S) ≤ O(log n) ·
OPTA(f).

Let m be the number of terms in f . Because each variable xi appears in at most one term, we
have that m ≤ n. As a warm-up, we begin by proving adaptivity gaps for two special cases of f .

https://doi.org/https://doi.org/10.1287/ijoc.2021.1124
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Case 1: All terms have at most 2 log n variables Under the uniform distribution and with unit costs,
the pi are all equal, and the ci are all equal. Thus in this case, the optimal adaptive strategy described
previously tests terms in increasing order of length. The adaptive strategy skips in the sense that if
it finds a variable in a term that is false, it moves to the next term without testing the remaining
variables in the term. Suppose we eliminate skipping from the optimal adaptive strategy, making the
strategy non-adaptive. Since all terms have at most 2 log n variables, this increases the testing cost
for any given x by a factor of at most 2 log n. Thus the cost of evaluating f(x) for a fixed x increases
by a factor of at most 2 log n from an optimal adaptive strategy to a non-adaptive strategy, leading
to an adaptivity gap of at most 2 log n.

Case 2: All terms have more than 2 log n variables Consider the following non-adaptive strategy
that operates in two phases. In Phase 1, the strategy tests a fixed subset of 2 log n variables from
each term, where the terms are taken in increasing length order. In Phase 2, it tests the remaining
untested variables in fixed arbitrary order. Since each term has more than 2 log n variables, the value
f can only be determined in Phase 1 if a false variable is found in each term during that phase.

Say that an assignment x is bad if the value of f cannot be determined in Phase 1, meaning
that a false variable is not found in every term during the phase. The probability that a random x
satisfies all the tested 2 log n variables of a particular term is 1/n2. Then, by the union bound, the
probability that x is bad is at most m/n2 ≤ n/n2 = 1/n.

Now let us focus on the good (not bad) assignments x. For each good x, our strategy must
find a false variable in each term of f , which requires at least one test per term for any adaptive
or non-adaptive strategy. The cost incurred by our non-adaptive strategy on a good x is at most
2m log n, since the strategy certifies that f(x) = 0 by the end of Phase 1. Therefore, the expected
cost incurred by our non-adaptive strategy S is

cost(f, S) ≤ Pr(x good) · E[cost(f, x, S)|x good]

+ Pr(x bad) · E[cost(f, x, S)|x bad]

≤ 1 · 2m log n+
1

n
· n ≤ 3m log n

using the fact that E[cost(f, x, S)|x bad] ≤ n, since there are only n tests, with unit costs.
The expected cost of any strategy, including the optimal adaptive strategy, is at least

OPTA(f) ≥ min
S∈A

Pr(f(x) = 0) · E[cost(f, x, S)|f(x) = 0] ≥ P (f(x) = 0) ·m

= (1− Pr(f(x) = 1)) ·m ≥ (1− Pr(x bad)) ·m ≥
(︃
1− 1

n

)︃
·m ≥ m

2

for n ≥ 2. It follows that the adaptivity gap is at most 6 log n.

Case 3: Everything else We now generalize the ideas in the above two cases. Let f be a read-once
DNF that does not fall into Case 1 or Case 2. We can break this DNF into two smaller DNFs,
f = f1 ∨ f2 where f1 contains the terms of f of length at most 2 log n and f2 contains the terms of
f of length greater than 2 log n.

Let S be the non-adaptive strategy that first applies the strategy in Case 1 to f1 and then, if
f1(x) = 0, the strategy in Case 2 to f2. Since S cannot stop testing until it determines the value of
f , in the case that f1(x) = 0, it will test all variables in f1 and then proceed to test variables f2.

Let S∗ be the optimal adaptive strategy for evaluating read-once DNFs, described above. We
know S∗ will test terms in non-decreasing order of length since all tests are equivalent. So, like S,
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S∗ tests f1 first and then, if f1(x) = 0, it continues to f2. It follows that we can write the expected
cost of S on f as

E[cost(f, x, S)] = E[cost(f1, x, S1)] + Pr(f1(x) = 0) · E[cost(f2, x, S2)|f1(x) = 0]

where S1 is the first stage of S, where f1 is evaluated, and S2 is the second stage of S, where f2 is eval-
uated. Notice that, by the independence of variables, E[cost(f2, x, S2)|f1(x) = 0] = E[cost(f2, x, S2)].
We can similarly write the expected cost of S∗ on f . Then the adaptivity gap is

OPTN (f)

OPTA(f)
≤ E[cost(f1, x, S1)] + Pr(f1(x) = 0) · E[cost(f2, x, S2)]

E[cost(f1, x, S∗
1 )] + Pr(f1(x) = 0) · E[cost(f2, x, S∗

2 )]
(6)

where S∗
1 is S∗ applied to f1 and S∗

2 is S∗ beginning from the point when it starts evaluating f2.
Using the observation that (a+ b)/(c+d) ≤ max{a/c, b/d} for positive real numbers a, b, c, d, we

know that

(6) ≤ max

{︃
E[cost(f1, x, S1)]

E[cost(f1, x, S∗
1 )]

,
E[cost(f2, x, S2)]

E[cost(f2, x, S∗
2 )]

}︃
= O(log n)

where the upper bound follows from the analysis of Cases 1 and 2.

Proof (Proof of Theorem 2). Suppose f is a read-once DNF formula. For unit costs and the uniform
distribution, we will show that OPTN (f) ≥ Ω(log n) · OPTA(f).

For ease of notation, assume
√
n is an integer. Consider a read-once DNF f with

√
n terms

where each term has
√
n variables. By examining the number of tests in each term, we can write the

optimal adaptive cost as

OPTA(f) ≤
√
n

√
n∑︂

i=1

i

2i
≤

√
n

∞∑︂
i=1

i

2i
= 2

√
n.

The key observation is that, within a term, the adaptive strategy queries variables in any order
since each variable is equivalent to any other. Then the probability that the strategy queries exactly
i ≤

√
n variables is 1/2i.

Next, we will lower bound the expected cost of the optimal non-adaptive strategy

OPTN (f) = min
S∈N

Ex∼{0,1}n [cost(f, x, S)]

≥ min
S∈N

Pr(f(x) = 0)E[cost(f, x, S)|f(x) = 0]

where x ∼ {0, 1}n indicates x is drawn from the uniform distribution. First, we know Pr(f(x) =
0) ≥ .5. To see this, consider a random input x ∼ {0, 1}n. The probability that a particular term is
true is 1/2

√
n so the probability that all terms are false (i.e., f(x) = 0) is

(︃
1− 1

2
√
n

)︃√
n

=

⎛⎝(︃1− 1

2
√
n

)︃2
√

n
⎞⎠

√
n/2

√
n

≥
(︃

1

2e

)︃√
n/2

√
n

≥ .5

where the first inequality follows from the loose lower bound that (1− 1/x)x ≥ 1/(2e) when x ≥ 2
and the second inequality follows when n ≥ 8. Second, we know

E[cost(f, x, S)|f(x) = 0]

≥ Pr(one term needs Ω(log n) tests|f(x) = 0) · log4 n
2

·
√
n

2
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where we used the symmetry of the terms to conclude that if any term needsΩ(log n) tests to evaluate
it then any non-adaptive strategy will have to spend Ω(log n) on half the terms in expectation.

All that remains is to lower bound the probability one term requires Ω(log n) tests given f(x) = 0.
Observe that this probability is

1− (1− Pr(a particular term needs Ω(log n) tests|f(x) = 0))
√
n

≥ 1−
(︃
1− 1√

n

)︃√
n

≥ 1− 1

e
≥ .63

where we will now show the first inequality. We can write the probability that a particular term
needs log4(n)/2 tests given f(x) = 0 as

Pr (x1 = 1|f(x) = 0) · · ·Pr
(︁
xlog4(n)/2

= 1|f(x) = 0, x1 = · · · = xlog4(n)/2−1 = 1
)︁

=
2
√
n−1 − 1

2
√
n − 1

· · · 2
√
n−1−log4(n)/2 − 1

2
√
n−log4(n)/2 − 1

≥

(︄
2
√
n−1−log4(n)/2 − 1

2
√
n−log4(n)/2 − 1

)︄log4(n)/2

≥
(︃
1

4

)︃log4(n)/2

=
1√
n
.

For the first equality, we use the observation that conditioning on f(x) = 0 eliminates the possibility
every variable is true so the probability of observing a true variable is slightly smaller. For the first
inequality, notice that (2i−1 − 1)/(2i − 1) is monotone increasing in i. For the second, observe that
i ≥

√
n− log4(n)/2 for our purposes and so (2i−1 − 1)/(2i − 1) ≥ 1/4 when n ≥ 16.

Proof (Proof of Theorem 4). Suppose f is a read-once DNF. For unit costs and arbitrary probabili-
ties, we prove OPTN (f) ≥ Ω(

√
n) · OPTA(f).

Consider the read-once DNF with m = 2
√
n identical terms where each term has ℓ =

√
n/2

variables. In each term, let one variable have 1/ℓ probability of being true and the remaining variables
have a (ℓ/m)1/(ℓ−1) probability of being true. Within a term, the optimal adaptive strategy will test
the variable with the lowest probability of being true first. Using this observation, we can write

OPTA(f) ≤ [Pr(x1 = 0) · 1 + Pr(x1 = 1) · ℓ] ·m
≤ [(1− 1/ℓ) · 1 + (1/ℓ) · ℓ] ·m ≤ 4

√
n

where x1 is the first variable tested in each term. The first inequality follows by charging the optimal
adaptive strategy for all ℓ tests in the term if the first one is true. The second inequality follows since
the variable with probability 1/ℓ of being true is tested first for n ≥ 18 (i.e., 1/ℓ < (ℓ/m)1/(ℓ−1) for
such n).

In order to lower bound the cost of the optimal non-adaptive strategy, we will argue that there
is a constant probability of an event where the non-adaptive strategy has to test Ω(n) variables. In
particular,

OPTN (f) ≥min
S∈N

Pr(exactly one term is true)

·E[cost(f, x, S)| exactly one term is true].

By the symmetry of the terms, observe that

E[cost(f, x, S)| exactly one term is true] ≥
√
n/2 ·

√
n = n/2.
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That is, the optimal non-adaptive strategy has to search blindly for the single true term among all
2
√
n terms, making

√
n/2 tests each for half the terms in expectation.

All that remains is to show there is a constant probability exactly one term is true. The probability
a particular term is true is (1/ℓ)((ℓ/m)1/(ℓ−1))(ℓ−1) = 1/m. Since all variables are independent, the
probability that exactly one of the m terms is true is

m · Pr(a term is true) · Pr(a term is false)m−1

=m · 1

m
·
(︃
1− 1

m

)︃m−1

≥ 1

2e

(m−1)/m

≥ 1

2e
.

It follows that OPTN (f) ≥ 1
2e · n

2 = Ω(n) so the adaptivity gap is Ω(
√
n).

Proof (Proof of Theorem 5). Suppose f is a read-once formula. For arbitrary costs and the uniform
distribution, OPTN (f) ≥ Ω(n1−ϵ/ log n) · OPTA(f).

Define W (w) := w1−ϵ log2(w
1−ϵ) for positive real numbers w.6 We will choose nϵ in terms of the

function W so that W (n) < n for n ≥ nϵ. First, consider the first and second derivatives of W :

W ′(w) =
1− ϵ

wϵ

(︃
log2(w

1−ϵ) +
1

log 2

)︃
W ′′(w) =

1− ϵ

w1+ϵ

[︃
−ϵ

(︃
log2(w

1−ϵ) +
1

log 2

)︃
+

1− ϵ

log 2

]︃
.

For fixed ϵ > 0, observe that as w goes to infinity, W (w) < w, W ′(w) < 1, and W ′′(w) < 0. Therefore
there is some point nϵ so that for all n ≥ nϵ, the slope of W is decreasing, the slope of W is less
than the slope of n, and W (n) is less than n. Equivalently, n ≥ W (n) = n1−ϵ log2(n

1−ϵ). We will
use this inequality when lower bounding the asymptotic behavior of the adaptivity gap.

For n ≥ nϵ we construct the n-variable read-once DNF formula f as follows. First, let rn be a
real number such that n = n1−rn log2(n

1−rn). We know that rn exists for all n ≥ 4 by continuity
since n1−0 log2(n

1−0) ≥ n ≥ n1−1 log2(n
1−1). Let f be the read-once DNF formula with m terms

of length ℓ, where ℓ = log2(n
1−rn) and m = 2ℓ. Thus the total number of variables in f is mℓ =

n1−rn log2(n
1−rn) = n as desired. We assume for simplicity that ℓ is an integer. The bound holds by

a similar proof without this assumption.
To obtain our lower bound on evaluating this formula, we consider expected evaluation cost

with respect to the uniform distribution and the following cost assignment: in each term, choose an
arbitrary ordering of the variables and set the cost of testing the ith variable in the term to be 2i−1.

Consider a particular term. Recall the optimal adaptive strategy for evaluating a read-once DNF
formula presented at the start of Section 2. Within a term, this optimal strategy tests the variables
in non-decreasing cost order, since each variable has the same probability of being true. Since it
performs tests within a term until finding a false variable or certifying the term is true, we can
upper bound the expected cost of this optimal adaptive strategy in evaluating f as follows:

OPTA(f) ≤ m ·
[︃
1

2
· (1) + 1

4
· (1 + 2) + . . .+

1

2ℓ
· (1 + . . .+ 2ℓ−1)

]︃
≤ m · ℓ.

In contrast, the optimal non-adaptive strategy does not have the advantage of stopping tests in
a term when it finds a false variable. We will lower bound the expected cost of the optimal non-
adaptive strategy in the case that exactly one term is true. By symmetry, any non-adaptive strategy
will have to randomly search for the term and so pay 2ℓ for half the terms in expectation.

6 Notice that W is similar to a Lambert W function eyy, after changing the base of the logarithm and
substituting y = log(w1−ϵ)[6].
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All that remains is to show there is a constant probability exactly one term is true. The probability
that a particular term is true is 1/2ℓ and so the probability that exactly one term is true is

m · 1

2ℓ
·
(︃
1− 1

2ℓ

)︃m−1

≥ m

2ℓ
·
(︃

1

2e

)︃(m−1)/2ℓ

≥ 1

2e

where the last inequality follows since m = 2ℓ. Then the expected cost OPTN (f) of the optimal
non-adaptive strategy is at least

Pr(exactly one term is true) · 2ℓ · m
2

= Ω(m · 2ℓ) = Ω(m · n1−rn) ≥ Ω(m · n1−ϵ)

where we used that 2ℓ = n1−rn and n1−rn log2(n
1−rn) = n ≥ n1−ϵ log2(n

1−ϵ) since n ≥ nϵ. It follows
that the adaptivity gap is Ω(n1−ϵ/ log n).
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