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Abstract

Orthogonal polynomials of several variables have a vector-valued three-term recurrence rela-
tion, much like the corresponding one-dimensional relation. This relation requires only knowl-
edge of certain recurrence matrices, and allows simple and stable evaluation of multivariate
orthogonal polynomials. In the univariate case, various algorithms can evaluate the recurrence
coefficients given the ability to compute polynomial moments, but such a procedure is absent
in multiple dimensions. We present a new Multivariate Stieltjes (MS) algorithm that fills this
gap in the multivariate case, allowing computation of recurrence matrices assuming moments
are available. The algorithm is essentially explicit in two and three dimensions, but requires
the numerical solution to a non-convex problem in more than three dimensions. Compared
to direct Gram-Schmidt-type orthogonalization, we demonstrate on several examples in up to
three dimensions that the MS algorithm is far more stable, and allows accurate computation of
orthogonal bases in the multivariate setting, in contrast to direct orthogonalization approaches.

1 Introduction

Orthogonal polynomials are a mainstay tool in numerical analysis and scientific computing, and serve
as theoretical and computational foundations for numerical algorithms involving approximation and
quadrature [26, [, [10].

It is well-known even in the multivariate setting that such families of polynomials satisfy three-
term recurrence relations [13] [16] [15] [14], [29] 30, [6], which are commonly exploited for stable eval-
uation and manipulation of such polynomials. Identification or numerical approximation of the
coeflicients in such relations is therefore of great importance, and in the univariate setting many
algorithms for accomplishing such approximations exist [9, [19]. Such procedures are absent in the
multivariate setting; this paper provides one algorithmic solution to fill this gap.

1.1 Challenges with computing orthogonal polynomials

Throughout, we assume the ability to compute generalized polynomial moments, i.e., there is some
algorithm available to us that evaluates p — [, p(z)du(xz) for a given positive measure p on R<.
This assumption is required for univariate algorithms as well.

With moment information, one could devise a linear algebraic scheme that orthogonalizes some
known basis (say monomials) into an orthonormal basis, seemingly providing a solution to the eval-
uation of orthogonal polynomials. But in finite precision, even stable orthonormalization algorithms
can be ineffective due to the high condition number of the map from integral moments to the or-
thonormal basis; we demonstrate this in Figure Thus, even computational identification of an
orthonormal polynomial basis is challenging, let alone computation of recurrence matrices.



Although computing moments with respect to fairly general multivariate measures yu is certainly
an open challenge, it is not the focus of this article: We focus on the separate, open challenge of
computing recurrence coefficients (allowing stable evaluation of multivariate polynomials) given the
ability to compute moments.

1.2 Contributions

The main contribution of this paper is to extend existing methods for computing recurrence coeffi-
cients from the univariate case to the multivariate case. Recognizing that the Stieltjes algorithm for
computing recurrence coefficients in univariate problems has shown tremendous success [23| [24] [8],
we devise a new, Multivariate Stieltjes (MS) algorithm for computing recurrence coefficients (ma-
trices in the multivariate setting), and hence also for computing a multivariate orthonormal basis.
Thus, our contribution, the Multivariate Stieltjes algorithm, is a new method for tackling the chal-
lenge identified in Section We demonstrate with several numerical examples the (substantially)
improved stability of the MS algorithm compared to alternative Gram-Schmidt-type approaches for
computing an orthonormal basis.

The tools we employ are, qualitatively, direct multivariate generalizations of existing univariate
ideas. However, the technical details in the multivariate case are so disparate from the univariate case
that we must employ somewhat different theories and develop new algorithms. Our MS algorithm
has explicit steps in two and three dimensions, but requires non-convex optimization in four or more
dimensions. We first review some existing methods to compute univariate recurrence coefficients
(see Section and introduce notation, properties, and the three-term relation for multivariate
polynomials in Section[2.2] In Section[3] we propose a canonical basis that identifies a computational
strategy for direct evaluation of multivariate polynomials. We follow this by Section [4] which shows
that if u is tensorial, then a tensor-product basis is in fact a canonical basis. Algorithms are discussed
in Section |5f Section describes a direct procedure using orthonormalization given polynomial
moments. The new multivariate Stieltjes procedure is described in Section[5.2] Finally, we present a
wide range of numerical examples in Section [6] which compares these approaches, and demonstrates
the improved accuracy of the MS procedure.

We mention that our goals are similar to the results in [1} 27], which produce explicit recurrence
relations. However, these results are either specialized to certain domains, or use recurrence matrices
as known ingredients. Our procedures compute recurrence matrices for general measures, and hence
are quite different.

1.3 Assumptions and caveats

Throughout this manuscript, we assume that integral moments of arbitrary polynomials are avail-
able/computable. For “simple” domains, we realize this through mapped/tensorized quadrature
(which is sometimes exact and sometimes approximate). For more complicated domains, we dis-
cretize the measure p as the empirical measure associated to a large number of realizations that
are independently and identically distributed according to p. Thus, sometimes our numerical ex-
amples compute orthogonal polynomials with respect to an approximate measure. However, we use
a sufficiently dense grid that such approximation error is relatively small. We emphasize that this
approximation error is not the focus of this article; our goal is to devise a scheme that, given the
ability to compute moments, accurately computes an orthonormal polynomial basis.

The new MS algorithm we develop is effective compared to direct orthonormalization schemes
when the condition number of the Gram moment matrix is large. For, e.g., small dimensions d
and polynomial degree, this moment matrix typically is not too ill-conditioned, and so there is
little benefit in the MS algorithm for such situations. However, when one requires polynomials of
moderately large degree, or when the Gram matrix is extremely ill-conditioned, we show that the
MS algorithm is effective.

Finally, we note that the technique we present leverages theories associated with total-degree



spaces of polynomials, and does not directly apply to more exotic spaces. In particular, we assume
that p is non-degenerate with respect to d-variate polynomials. This is ensured if, for example, u
has a positive Lebesgue density over any open ball in R?.

2 Background and notation

We use the standard multi-index notation in d € IN dimensions. With Ny the set of nonnegative
integers, a multi-index in d dimensions is denoted by a = (ay,...,a4) € Nd. For a € N¢, and
z = (z1,...,24) € R, we write monomials as z® = z{*,...,25%. The number |a| == a3 + - + ay
is the degree of z®. We denote the space of d-variate polynomials of exactly degree n € Ny, and up
to degree n, respectively, by

P¢ = span {2 : |a| = n,a € N¢}, ¢ := span {z® : |a| < n,a € N¢},

The dimensions of these spaces are, respectively,

-1 n
rn:ri ::dimIPfL:(n+d ), Rn:RflL ::dimeL:(n+d)=ZTj,
n n —

Since the dimension d will be arbitrary but fixed in our discussion, we will frequently suppress
notational dependence on d and write r,, R,. We will also require differences between dimensions
of subspaces,

d—2
Arnt=rn—rn1=(n+ ) n >0, d>2,
n
where we define r_; := 0. We will not be concerned with Ar,, when d = 1, although one could define
Ar, = 0 in this case.
Throughout we assume that x is a given positive measure on R?, with d € N. The support of x

may be unbounded. We assume that, given any non-trivial polynomial p, we have,

0 < (p,p) < oo, (f.9) = / F(@)g()du(z). (1)

and we implicitly assume that [ ¢(z)du(z) is computationally available for arbitrary polynomials
g. Our main goal is to compute an orthonormal polynomial basis, where orthonormality is defined
through the inner product above.

2.1 Univariate orthogonal polynomials

In the univariate case, let u be a positive Borel measure on R with finite moments. A standard
Gram-Schmidt process applied to monomials with the inner product (-,-) yields a sequence of or-
thonormal polynomials {p,(z)}22,, which satisfies (pn,pm) = Im.n, where §,, ,, is the Kronecker
delta. In practical settings, it is well-known that utilizing the three-term recurrence formula for
evaluation is more computationally stable compared to direct orthonormalization techniques. There
exist coefficients by and {an, by }nen, with a, = a,(u) and b, = b, (1), such that

xpn(x) = bn-&-lpn—i—l(x) + a7L+1pn(m) + bnpn—l(x)v n Z Oa (2)

where b, > 0 for all n € Ng, and pg = 1/bg, p—1 = 0. Availability of the coefficients (ay,b,) not
only enables evaluation via the recurrence above, but also serve as necessary ingredients for various
computational approximation algorithms, e.g., quadrature. Thus, knowledge of these coefficients
is of great importance in the univariate case. In some cases these coefficients are explicitly known
[25], and in cases when they are not, several algorithms exist to accurately compute approximations
|4, 120 211 28], [7, [12} 9} [19]. The procedure we present in this paper is generalization of the (univariate)
Stieltjes procedure [23] [24] [§].



2.2 Multivariate orthogonal polynomials

Now let 1 be a measure on R?. Again a Gram-Schmidt process applied to the multivariate monomials
%, a € N¢ produces a sequence of orthogonal polynomials in several variables. However, in the
multivariable setting it is more natural to proceed in a degree-graded fashion: We shall say that
p € T1¢ is an orthogonal polynomial of degree n > 0 with respect to du if

<p7 Q> = Oa \V/q S H,,dl_l.

Of course, p = 1 is the unique unit-norm degree-0 polynomial with positive leading coefficient. The
definition above allows us to introduce, V¢, the space of orthogonal polynomials of degree of exactly
n; that is

Vi={pelll: (p,q)=0vgen?_}.

Our assumption (1)) on non-degeneracy of y implies that dim V¢ = dim P2 = r,,. This allows us to
state results in terms of size-r,, vector functions containing orthonormal bases of fo for n > 0. We
fix an(y) orthonormal basis for each n € Ny,

)T

Prn = (P(nj))j=1 = Pm,1)s > Pnyrn)) " s span{p(, ;) }5ey = Vi, (3)

This fixed basis p,, has a three-term recurrence relation analogous to : There exist unique matrices
Apy1; € R™*™ Bpiq,; € R™> ™41 such that

2iPn (%) = Bui1,iPnt1 () + Api1,ipn (@) + BY ;pr—1(), i € [d]. (4)

where we define p_; = 0 and po(z) = 1. These matrices must satisfy the conditions,

rank(By, ;) = rn_1, rank(B,,) = 7p, B, = (Bg)l, ce B{d)T € Rdrn-1xn (5)

see [6, Theorem 3.3.4].

Given an orthonormal basis {p, }n>0, there are certain recurrence matrices that make the relation
true. However, polynomials generated by for an arbitrary set of matrices A, ; and B, ; need
not be orthogonal polynomials. The following are a set of necessary conditions, the commuting
conditions, that we will require.

Theorem 2.1 ([31, Theorem 2.4)). If A,,; and B, ; fori € [d] and n € Ng are recurrence matrices
corresponding to an orthonormal polynomial sequence, then they satisfy the following conditions for
every i,j € [d] and n € N:

Bn+1,i3;{+1,j 4+ Ang1,iAnt1,j + Bf,iBn,j = Bn+1,jB3:+1,i 4+ Angi1,jAn+1,i + Bz;,jBn,i, (6a)
By Ant1,j + AniBnj = BnjAnt1,i + An i B, (6b)
Bn,iBny1,j = Bn,jBni1,i, (6¢)

where holds for n =0 also.

The conditions above can be derived by expressing certain matrix moments using two different
applications of . More informally, for a fixed n corresponds to d sets of conditions of size
rn that determine the 7,41 degrees of freedom in p,4+1. In order for all these conditions to be
consistent, the recurrence matrices must satisfy certain constraints, namely (@

One starting point for our multivariate Stieltjes algorithm is the following direct observation:
Inspection of the recurrence relation reveals that the coefficient matrices can be computed via:

Apira = / eon(@pT ()i, Buiri = / 20 (@)PT, (2)du. 7
R4 R

Note that A,41,; is determined by (quadratic moments of) p,,, but B,4+1,; does not have a similar
characterization using only degree-n orthogonal polynomials.



3 Evaluation of polynomials

The three-term relation does not immediately yield an evaluation scheme. We discuss in this
section one approach for such an evaluation, which prescribes a fixed orthonormal basis. (That is,
we remove “most” of the unitary equivalence freedom for p,,.) Our solution for this is introduction
of a particular “canonical” form.

3.1 Canonical bases

The three-term recurrence for a fixed ¢ € [d] is an underdetermined set of equations for p,41,
and hence this cannot be used in isolation to evaluate polynomials. To make the system determined,
one could consider for all ¢ € [d] simultaneously. To aid in this type of procedure, we make a
special choice of orthonormal basis that we will see amounts to choosing a particular sequence of
unitary transformations.

Definition 3.1. Let {p,}nen, be an orthonormal set of polynomials with recurrence matrices A, ;
and By, ; fori € [d], n € Ng. We say that {pn}nen, s a canonical (orthonormal) basis, and that
the matrices A, ; and By, ; are in canonical form if the following is true: For every n € N we have
the condition

B;‘Z;Bn = B;J;ZBn,z = Anv (8)
i€[d]

where B, is as defined in , and the matrices {A, }nen are a sequence of diagonal matrices with
the elements of each matriz appearing in non-decreasing order.

Although the condition for canonical form appears only explicitly through a condition on B, ;,
the matrices A,, ; are coupled with B,, ; through the commuting conditions in so that canonical
form is implicitly a condition on the A, ; matrices as well. The utility of a canonical basis is revealed
by the following result.

Theorem 3.1 (See also [0, Theorem 3.3.5]). Let the orthonormal basis {pn}nen, be a canonical
basis so that the associated matrices A, ; and By ; satisfy . Then,

Ant1Pntr = (Z wiBfH,i) Pn — (Z Bf+1,iAn+1,i> Pn — (Z Bgﬂ,iB;{,i) Pn-1, 9)

i€ld] i€ld] i€ld]
for each n > 0, where A,,4q1 € R™+1X™+1 4s diagonal and positive-definite (and hence invertible).

Proof. The relation @D is computed by (vertically) stacking the d relations for i € [d]. Although
this stacked system is overdetermined, it is consistent since must hold for all ¢ € [d]. Multiplying
both sides of the stacked system by B | yields (9], and we need only explain why Ay 1 = BE By
is diagonal and positive-definite. The diagonal property is immediate since the basis is canonical,
and clearly is positive semi-definite. That it is in fact positive-definite is a consequence of the rank
condition , ensuring that 7,1 = rank (By,+1) = rank (A, 41). O

Equation @ demonstrates how knowledge of (A,+1 4, Bn+17i)i6[d] translates into direct evalua-
tion of p,+1: the right-hand side of @D is computable, and need only be scaled elementwise by the
inverse diagonal of A, ;1. The main requirement for this simple technique for evaluation is that the
recurrence matrices are in canonical form. Fortunately, it is fairly simple to transform any valid
recurrence matrices into canonical form.



3.2 Transformation to canonical form

There is substantial freedom in how the basis elements of the vectors p,, are chosen. In particular,
let {Up},,~o be an arbitrary family of orthogonal matrices defining a new basis @,

U (2) = Uppn(z), U, € R™>", uru, =1. (10)
A manipulation of shows that the basis elements q,, satisfy a three-term relation,

szn(x) - Dn+1,iQn+1(x) + Cn+1,i¢ln(1') + Drrl;iq:ln—l(x)a 1€ [d]v

where the new matrices C), ; and D,,; can be explicitly derived from the unitary matrices U,, and
the recurrence matrices for p,,,

Cn,i - nflAn,iU131717 Dn,i - nlen,iUga (Zvn) S [d} X NO- (11)

Our goal now is to take arbitrary valid recurrence matrices (A, ;, By,;) and identify the unitary
transform matrices {U, }nen so that (C, i, Dy;) are in canonical form. Since B B,, is symmetric,
then it has an eigenvalue decomposition,

with diagonal eigenvalue matrix A, and unitary matrix V,,, where we assume the diagonal elements
of A,, are in non-increasing order. Then by defining,

U, =V]I, n>1,
which identifies C), ; and D, ; through , we immediately have that

> DI Dpi=> (VB Vi)Vl BniVn) = VI B BV, = Ay,
i€[d] 1€[d]

and hence @, is a canonical basis, with C, ; and D, ; the associated recurrence matrices in canonical
form. Thus, for each fixed n, a transformation to canonical form is accomplished via a single size-r,
symmetric eigenvalue decomposition.

The discussion above also reveals how much non-uniqueness there is in the choice of canonical
form through non-uniqueness in the symmetric eigenvalue decomposition: each row of U, is non-
unique up to a sign, and arbitrary unitary transforms of sets of rows corresponding to invariant
subspaces of B! B,, are allowed. If the non-increasing diagonal elements of A,, have distinct values,
then each of the functions in the vector q,, is unique up to a multiplicative sign.

3.3 Three-term relation conditions on matrices

Our computational strategy computes A, ;, B, ; through manipulations of polynomials computed
via @D, which are assumed to be orthonormal polynomials. One subtlety is that if we prescibe
recurrence matrices (through a computational procedure), then usage of @D requires additional
conditions to be equivalent to . This equivalence is summarized as follows, and forms the basis
for the conditions we aim to impose in our algorithm.

Theorem 3.2 (|6, Theorem 3.5.1]). Given matrices Ay i, Bn,i, let Pn, n > 0 be generated through
@D. Then {py,} is orthonormal with respect to some positive-definite bilinear functional on R? if
and only if:

o A, ; is symmetric for all (i,n) € [d] x Np.

e B, ; satisfies the rank condition in : rank(B,, ;) = Tp_1.

o The matrices satisfy the commuting conditions @

Additional conditions are required to ensure that the stated positive-definite functional is integra-

tion with respect to a measure u, but since our algorithm considers only finite n, such a distinction
is not needed for us.



4 Recurrence matrices and canonical form for tensorial mea-
sures
We take a slight detour in this section to identify recurrence matrices and associated canonical
forms for tensorial measures p. If p is a tensorial measure, ie., u = ®§-l:1uj, where each p; is a
positive measure on R satisfying the non-degeneracy condition , then there exists a sequence of
univariate orthonormal polynomials for each j € [d]. In particular, fixing j, there exist coefficients
{ajn}nexn € R and {bjn,}nen, C (0,00) such that the sequence of polynomials defined by the
recurrence,
2Pjn(%5) = bjnt1Pjnt1(€5) + @jnPin(2) + bjnpjn—1(25), n =0,

are Li;‘ (R)-orthonormal, With these univariate polynomials, we can directly construct multivariate
orthonormal polynomials via tensorization,

d
pa(a?) = Hpj}%' (xj)v a € ]Ng, (13)
j=1

where degp, = |a]. We now construct vectors containing polynomials of a specific degree as in .
With J,, denote any ordered set of the multi-indices « satisfying |a] = n > 0, define,

P = (Datmt)s - -+ s Doy ) J,, = (a("’l), .. .,a("’r")> , (14)

where |a(™*)| = n for each k € [r,]. Clearly this set {pn}nen, is a sequence of multivariate
orthogonal polynomials. The next subsection explicitly computes the associated recurrence matrices.

4.1 Recurrence matrices

Given the ordering of multi-indices defined by the sets (.J,,)nen,, we require a function that identifies
the location of the index a(™*) + e; in the set J,41. Fixing the sets {.J,, }n>0, we define a function
c:Nd x [d] — N as,

c (a("’k),i) = The index ¢ € [r,41] such that al™k) 4 e, = o t1a),
Note that ¢(a, i) is well-defined for all o € N¢ and i € [d]. We can now identify recurrence matrices

for the polynomials p,, explicitly in terms of univariate recurrence coefficients.

Theorem 4.1. With the set of polynomials (]pn)ff:O defined by and , then the recurrence
matrices are given by,

Tn

T
— i - T
Apt1, = diag (ai’agn,k)ﬂ)kzl , Bt = E bi,a§7L'k)+1er”L’kern+1,c(a("=k),i)’ (15)
k=1
where agn’ ) s the ith component of a(™*) and em,j %5 an m-dimensional vector with entry 1 in

location j and zeros elsewhere.

Proof. Fixing any n € Ny and ¢ € [d], and for each k € [r,], the kth component of the vector p,,
satisfies,

TiPy(n,k) (:E) = (xipa(n,k) (ZL’Z)) Hpasn,k) (.’EJ)
it
= bi,nt1Pam k) fey (@) + Gint1Damm () + biynpa(n,k)_ed,i(x).

By comparing the final expression above with the three-term recurrence , the components of the
matrices A,41,; and By41,; can be identified and are given as in ([15]). O



When p is tensorial, then computational methods for evaluating p, need not explicitly use
recurrence matrices: the relations and show that one needs only knowledge of univariate
recurrence coefficients a; ,,, b; ,. Computation of these coefficients from the marginal measure p; is
well-studied and has several solutions (cf. ) However, if one wanted the recurrence matrices
for this situation, they are explicitly available through the result above. We next show that, up to
a permutation, such tensorized basis elements form a canonical basis.

4.2 Canonical form for tensorial measures

The explicit formulas in allow us to investigate the canonical condition :

d d

T _ T . 2 2

Bn B, = Bn,z‘Bn,i = diag ( E bi,agnfl,l)Jrl? cees E bi7a§7L1,rr~n1)+1>
i€[d] i=1 =1

In order for p,, to be a canonical basis, the diagonal elements above must be non-increasing. While it
is not transparent on how to accomplish this for generic univariate coefficients (a; n,bin)ixne[dxNs
one can always computationally achieve this by reordering the elements of p,, equivalently by
reordering the elements of J,,, according to the elements on the right-hand side above.

Corollary 4.1.1. Define permutation operators Py, : [rn—1] = [rn—1] given by,

d d
PUAD 2P0 = Y i 2 Y e
i=1 ’ i=1

for each k € [r,]. Defining a new basis, tpn = (Dgn.poen ) pys then {un}52 is a canonical basis.

We re-emphasize that identifying a canonical basis through an algorithmic version of the proce-
dure above is not computationally advantageous compared to direct usage of and . However,
the procedure above gives us a method for oracle evaluation of recurrence matrices associated to a
tensorial measure .

5 Algorithms for computing recurrence coefficient matrices

We discuss two strategies for computing the recurrence matrices (A, ;, Bp;). The first is a straight-
forward Moment Method (MM-M) that directly uses moments (e.g., of monomials) to compute an
orthonormal basis that can be used directly with to compute the matrices. However, this ap-
proach is very ill-conditioned for moderately large degree and hence has limited utility. The second
approach we present is the main novel advancement of this paper, a multivariate Stieltjes (MS)
algorithm that computes the recurrence matrices through an alternative procedure.

5.1 The moment method (MM-M)

A straightforward way to compute recurrence coeflicients in the univariate case is to first perform an
orthogonalization step to numerically generate orthogonal polynomials as linear expansions in some
specified basis (say monomials), and second to exploit the linear expansion expressions to compute
the recurrence coefficients. This works in the multivariate setting as well. We suppose that a(ny)
polynomial basis {¢; }j cn 18 given with the properties,

R,
span {¢;}; ) = e, n € Npy.
T <j<rpp1 = dego; =n+1.



Again, a simple example is that ¢;(x) is a multivariate monomial z® for some total ordering of
the multi-indices o that respects the partial order induced by the ¢*(IN¢) nor We assume that
quadratic ¢; moments are available, allowing us to compute a Gram matrix,

(Gn)ij =m(i,j), Gy € Rftnxfin, m(i, j) = /@(x)fbj(x)du(w)- (16)
Given this matrix, we can compute monomial expansion coefficients for the orthonormal basis py,:
Gy = L,LY, (Dos ---» Pn)" = L;'®,, &, = (61, ..., ¢r,)" € R, (17)

where p; is an r;-vector containing degree-j orthonormal polynomials. Combining this with , the
recurrence matrices can be directly computed,

An-i—l,i = E;lGn,iE;T, Bn+1,i = f;lén+17iigfl, 1€ [d], (18)

where E; Lis the r, x R,, matrix formed from the last r, rows of L1 G € REn*En hag entries

(Gn,i)i,j = /xl¢l(x)¢J(x)du(x)7 i7j € [Rn]’ (19)

and én+177j € REn*Ent1 equals the first R, rows of Grn+1,i- Thus, so long as the polynomial moments
m(i,j) and can be evaluated, then this allows direct computation of the recurrence matrices.
Of course, if only an orthonormal basis (without recurrence matrices) is desired, then one may stop
at .

The main drawbacks to the procedures above stem from accuracy concerns due to ill-conditioning
of the G,, matrices. If the ¢; are selected as “close” to an orthonormal basis, then the GG,, matrices
can be well-conditioned, but a priori knowledge of such a basis is not available in general scenar-
ios. However, this method is flexible in the sense that with minor modifications one may compute
an orthonormal basis (but not necessarily recurrence matrices) for very general, non-total-degree,
polynomial spaces, such as hyperbolic cross spaces.

5.2 The Multivariate Stieltjes algorithm (MS)

In this section we describe a Stieltjes-like procedure for computing recurrence matrices, which par-
tially overcomes ill-conditioning issues of the moment method. Like the univariate procedure, we
directly compute the recurrence matrices instead of attempting to orthogonalize the basis, and the
procedure is iterative on the degree n. Thus, throughout this section we assume that the recur-
rence matrices {A,, ;, Bm’i}ie[d],mgn are available, and our goal is to compute A, ; and By ; for
i € [d]. Our main strategy for accomplishing this will be to satisfy certain “degree-(n + 1)” matrix
moment conditions subject to the constraints identified in

The availability of the matrices for index m < n implies that p,, for all m < n can be evaluated
through the procedure in (In practice we transform A,, ;, By, ; for m < n to be in canonical
form.) We will compute A,,+1 ; directly, but compute factorized components and subblocks of B, 11,
and we identify those subblocks now. Consider the truncated singular value decomposition of B, 41,

T T T .
Bnt1,i = Unt1,i2n+1,iVis1,i = Unt1,i 8041, (Vn+1,i Vn+1,i) ) i € [d], (20)
where Up41,i, Vot1,i have orthonormal columns and are of sizes,

Tn X Tn Tn X Tn Tn X Tn
Unt1,: €R ; Ynt1, €ER ; Vg1, € R 75

1Degree-graded lexicographic ordering over multi-indices is an example of one such ordering.



and X, 11, is diagonal with non-negative entries in non-increasing order. 3,11 ; must be invertible
due to . In we have further decomposed the right-singular V;,11,; matrices into blocks, with
V the first r, rows, and V the remaining rows:

Goors : S
Vay1i = < ‘7n+ ] Vig1,s € R Vpg1,i € REMH1XTn (21)
n+1,:

We do not assume that the B,,41,; are in canonical form, and therefore have freedom to specify the
unitary transform for degree n+ 1. Without loss we implicitly choose the unitary transform U, ;1 in
(11) so that V;, 411 is equal to the first r,, columns of the size-r,4+1 identity matrix. This uniquely
identifies Vn+171,

~ ~

Vo1 =1, Va1, = 0. (22)

We therefore need only compute ‘A/n+17i, ‘7”+17i for i > 2.

The remainder of this section is structured as follows: We define certain moment matrices through
a modified polynomials basis in Section which immediately yields the A,,y; ; matrices. Section
shows how we compute the U and ¥ SVD matrices of B. We introduce “mixed” moments
in Section that allow us to obtain the V block of the V matrices. The remaining block V'
is computed using different strategies depending on the dimension d of the problem. For d = 2,
Sectionshows that V' can be computed almost directly. For d > 3 dimensions, we must enforce
the commuting conditions @, which is somewhat easily done in d = 3 dimensions, but requires
nontrivial optimization for d > 3.

5.2.1 Moment matrices — computing A, ;

The MS algorithm begins by considering moments of polynomials that are not explicitly known a
priori, but are easily generated during an algorithmic procedure. In particular we introduce the
moment matrices,

Sui = [ apupldn(o) Tois = [ Busribhi sdula), (23)
both 7, X 7, matrices, where the modified polynomial basis p is defined as,

Pr+1,i(T) == 2iPn — Apg1,iPn — Brj;,i]pnfl' (24)

Note that availability of {A,,;, Bm’i}ie[ d),m<n along with the ability to evaluate p, imply that the

moment matrices in can be approximated via quadrature, just as is frequently done for the ¢;
moments of Section (.1}
Inspection of immediately reveals that,

Ant1i = Sn, (25)

and hence A,,11 ; is directly computable. In addition, A,,4+1; is symmetric (since S, ; is symmetric)
and hence this satisfies the first condition in This then allows pp+1,; to be evaluated, and hence
allows T5, ; j to be computed. While evaluating A, 41 ; is fairly straightforward from S, ;, computing
By 41, from T, ; ; is more involved.

5.2.2 Stieltjes symmetric moments — computing Uy,1 4, 20414

The matrices T, ;; of symmetric moments allow us to compute the U and ¥ matrices in the SVD
of B. A direct computation with the three-term recurrence and the definition reveals that

T 2 T
T = Bn+1,z‘Bn+1,i = n+1,i2n+1,iUn+1,i' (26)

10



Therefore for each ¢ € [d], we can first compute the square, symmetric matrix T;, ; ;, and subsequently
its eigenvalue decomposition, ordering the eigenvalues in decreasing order. Then the eigenvector
matrix of T, ;; is Un41,; and the square root of the eigenvalue matrix equals »,1,;. We can
also conclude that T, ;; is full-rank: Since p, contains linearly independent polynomials, then
2;Pn contains linearly independent polynomials, and hence p,41,; contains linearly independent
polynomials. Since T}, ; ; is the Gram matrix for p,4;,; and we have assumed p is non-degenerate,
then it must be of full rank. This observation then implies that 3, ; is invertible, and hence that
our computed By, 41 ; is also full rank. Therefore, we have satisfied the second condition in Now
we are left only to compute the rectangular V;,;1; matrices, which will involve enforcing the third
condition (the commuting conditions).

5.2.3 Stieltjes mixed moments — computing ‘7n+17¢

Using mixed moments T}, ; ; with ¢ # j, we can compute the square matrices ‘A/n+1,i, which are
subblocks of V,,41,;. (Recall from that V41 ; is already known for j = 1, so we consider only
j > 2.) A similar computation as the Stieltjes procedure in yields that T), ; ; = Bn+1,iBZ;+1,j-
By using the decomposition of By, 41; in , we conclude that

~ ~ ~

V. Vo + VaiiVos1y = St iUn Do iUns1.550 15 i,j € [d]. (27)
Letting ¢ = 1 and utilizing , we have,
Vi1 = Sni11Un 11 Tn1,Uns1,5 5011 Jj=2, (28)

where everything on the right-hand side is known and computable.
Note that here we have only utilized T3, ; ; for 1 = # j. The case 1 # ¢ # j is vacuous for d = 2,

and we will see that the remaining block V' can already be computed. When d > 3, we do require
1 # i # j to identify V.

5.2.4 d = 2: Orthonormality conditions for 17"4_1,1-

For d = 2, we now need only compute ‘7,1+172. Since Ar,, = 1 for every n when d = 2, then 17n+1,2
is a 1 x r, vector. To reduce notational clutter, we consider fixed n and use the following notation,

y = ‘773;1’2 S an.
Then since V,,41,2 has orthonormal columns, i.e., V,,’L11+172Vn+1,2 = I, , we have,
ny = Im, - VnaLan—i-l,Q, (29)
which defines y up to a sign. More precisely, we have
y=*tz, (30)

where z is computed either as a rank-1 Cholesky factor or as the positive semi-definite square root
of the right-hand side of (29)). Although it appears the multiplicative sign needs to be chosen, if we
choose (4,7) = (1,2) in (6¢), then we have

(Bn,lUn+172Zn+172Vn+l,2 + Bn,lUn+1,2Zn+1,2z) =B, 2Bn+1.1-
Thus the choice of sign makes no difference because the last column of B, 1, is a zero vector.

Therefore, we arbitrarily choose the sign. This completes the computation of By41; for d = 2; in
this case we need not impose the commuting conditions, but they are needed for d > 2.

11



5.2.5 d > 2,n=0: Falling back on moments

For d > 2 and n = 0, then B,,;1; € R'*? and hence I~/n+1,i e R (@-1) We have two conditions to
impose on this vector of length d — 1 > 2:

e The scalar-valued commuting condition (the others do not apply for n = 0).
e A unit-norm condition on the column vector V,,41; (as is used in the previous section)

This amounts to 2 conditions on this vector (although the second condition does not determine
a multiplicative sign). However, as this approach combining all these conditions can be relatively
cumbersome to simply determine a vector, in this case we fall back to using MM routines. When
n = 0, the MM Gramians are typically well-conditioned. Therefore, when d > 2 and n = 0, we use
to compute the Bj ; matrices.

5.2.6 d> 2, n>0: The commuting conditions — computing 17n+1’i

We recall that our remaining task is to compute ‘N/m_l,i € RA+1%™n for 2 < § < d. Our tools to
accomplish this will be (i) the commuting conditions (ii) orthonormality conditions on the columns
of Viy1,4, and (iii) the mixed moments T}, ; ; for 1 # i # j. For n > 0, the commuting condition

(6c) with ¢ = 1 implies:
T T _ :
B aUnt1,i8n41,5 (Vn+1,j Vn+1,j) = Bn By, J=2, (31)

where only ‘7”+Lj is unknown. Note that we have made the choice for 17”_5_171, which implies
that the last Ar,y; columns of By, jBp41,1 vanish, i.e., the last Ar,; columns of read,

Knt1,;Vnt1,; =0, Knt1,j = Bn1Upt1,j8n41,; € R (32)
Thus, the columns of ‘7n+17j lie in the kernel of the known matrix K,41 ;. Le., we have,

VI, =90, U, € RM*Am, C;j € RAT*ATn+1 (33)
where C; is unknown and ¥; is known (computable), containing an orthonormal basis for ker(K,,11 ;),
range(¥;) = ker(K,41,5), \I!jT\IJj =Inr, xAr, -

We now use orthonormality of the columns of V;, 11 ;. In particular this implies,
T ) TOT
CiCj =Dj = Inr, = V; Vi1 iVai1,; 95

Since D; is a symmetric, positive semi-definite matrix, then C; must be given by,
Cj = E;Wj, Ej = ( v Dj OATnX(ATn«FI*ATn)) ) Wj e IRAT"HXAT”_Hv (34)

where W} is a unitary matrix, and \/Ej is the symmetric positive semi-definite matrix square root of
D;. We therefore need only determine W;. The final linear conditions we impose are the remaining
mixed moment conditions from Section involving T}, ; ; for 1 # i # j > 2. Using and
writing in terms of the unknown W;, W; yields,

EiWiWJTEf =Hy;; 2<i4,j<d, i#] (35)
subject to WjTWj =IAr,y 2<j<d.

where,

o T —1 T —1 T 17
Hyig =9 (Z,101,:Un41,iT0,6,iUn+1,550 51 5 — Va1,iVot1,5) Y5,
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is a computable matrix. This optimization problem for {W; }?=2 must be solved to determine the W

matrices. Once these are determined, then ‘7n+1’i is determined through and . This is a non-
convex optimization, and is a generalization of a weighted orthogonal Procrustes problem (WOPP).
Even the original WOPP has no known direct solution, so that numerical optimization must be
employed to solve the above problem [11]. Fortunately, when d = 3 some extra manipulations do
yield a direct solution.

5.2.7 d=3: Circumventing the WOPP

When d = 3, the problem simplifies substantially since we need only compute Wy, W3. First
we note that if any pair of orthogonal matrices (Ws, W3) satisfies , then so does the pair
(Ianr, .., WsWZ). Therefore, we may choose Wy = Ia,, ,, without loss. This then determines

17n+1’2 through and .
The determination of W3 in now reduces to an instance of a WOPP:

EyW{E] = Hpa3, subjectto W{Ws=Ia,, ., (36)

We now notice that E; defined in is rectangular, but when d = 3 has only one more column
than row, i.e., Ar,, =n =1 and thus Ar,;1 =1+ Ar,. Then with

Ej = X; (Y; Oi1yx1) Z5
the reduced singular value decompositions of Fy and E3, then can be rewritten as
Ity x (a2 Wlntoyx 1) = Ys ' X9 Hp23X3Y5 !, W = 2] W3Zs,

where W is an orthogonal matrix of size Ar,+; = n + 2. Determining W uniquely identifies W3,
but the above relation shows that the (n + 1) x (n + 1) principal submatrix of W is given by
Yy ' XTI H, 23X3Y; '. To determine the last row and column of W, we write,

—1yT —1
Yy ' X Hpo3XaYy5 ! |

W = v |, w, v unknown,
w’ |

and since W is an orthogonal matrix and must have orthonormal columns, then the first n + 1
entries of w are determined up to a sign, and the signs can be determined by enforcing pairwise
orthogonality conditions among the first n + 1 columns. The final column v can be determined
(up to an inconsequential sign) as a unit vector orthogonal to the first n 4+ 1 columns. Thus, W is
computable, which in turn determines W3, and completes the solution to for d = 3.

6 Numerical test

We present numerical results showcasing the effectiveness of the MS algorithm for computing orthog-
onal polynomials on two and three-dimensional domains. We measure the efficacy of any particular
method through a numerical orthogonality condition. Each method first generates computational
approximations to the matrices {4, ;, Bn;}, and subsequently can generate computational approx-
imations p, to an orthonormal basis p,. Fixing a maximum degree N, we then use quadrature
(approximate or exact as described) to evaluate the error matrix,

)

=+ | -ia My, = / pm@pl(@)du(z),  (37)
Myo -+ Mynw

)

Moo -+ Mon
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where E is an Ry X Ry matrix. We will both show plots of this error matrix and also report
entrywise maximum values, ||Elloo,c0 = max; je(ry] |Ei ;|- In all experiments, we set N = 39 for
d =2, and N = 15 for d = 3. (These choices result in Ry = 820 and Ry = 816, respectively.) We
compare four methods:

e (Exact) When p is a tensor-product measure, we use the procedure in Section 4| and summa-
rized in Algorithm [I] to first explicitly compute the recurrence matrices, and subsequently to
evaluate polynomials through the procedure in Section

e (MS) The novel algorithm of this manuscript, the Multivariate Stieltjes algorithm, described in
Section [5.2] and summarized in Algorithm

e (MM-M) The moment method of Section involving direct orthogonalization of the monomial
basis, i.e., the functions ¢; are monomials .

e (MM-L) The moment method of Section involving direct orthogonalization of the tensorial
Legendre polynomial basis, i.e., the functions ¢; are tensorial Legendre polynomials with
respect to the uniform measure v whose support is a bounding box of the support of u.

All methods assume the ability to compute (general) polynomial moments in order to carry out
computations, and we describe in subsections below how we approximately or exactly compute
these moments via quadrature. Each experiment uses the same quadrature rule for all methods. A
summary of the experiments (i.e., the various measures p) is given in Table

Table 1: Abbreviation and subsection for the examples considered.

Example Abbreviation  Dimension  Section
Jacobi weight function JAC 2,3 6.1.1
Uniform measure on an annulus ANN 2 6.1.2
Uniform measure between polar curves CUR 2 6.1.3
Uniform Measure within a torus TOR 3 6.1.4
Uniform measure on a rectangle minus a ball HOL 2 6.2.1
Uniform measure on Madagascar MAP 2 6.2.2

6.1 Experiments with moments via tensorized Gaussian quadrature

In this subsection we compute polynomial moments with respect to the measure u via tensorized
Gaussian quadrature. In all cases except Section this quadrature is exact (in infinite precision).

6.1.1 JAC: Tensorized Jacobi measure

For an initial investigation, we consider a tensorial measure,

d
dp(x) = [] Blow, B:) (1 — )™ (1 + 25), ze[-1,14 i, Bi > —1,

i=1

where B(:,-) is the Beta function, which is a tensorized Jacobi (or Beta) measure. To compute
moments, we utilize tensorized Gauss quadrature of sufficiently high order so that all integrals are
exact (in exact arithmetic). We randomly generated the v, 3; parameters by uniformly sampling
over the interval (—1,10), resulting in the choices:

(a1, 0) = (3.80,0.78), (B1, ) = (7.34,8.26), d=2
(a1, s, a3) = (1.61,0.32,3.01), (B1, Ba, B3) = (—0.89,9.83,7.67), d=3
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Figure 1: JAC results, Section Visualization of the error matrix F in dimension d = 2 (top) and d = 3 (bottom).
From left to right in each row: the Exact, MS, MM-M, and MM-L algorithms. We choose 10° as the upper saturation
point for all colormaps as values beyond this indicate O(1) error; we continue to impose this saturation value for all
subsequent error plots.

Figurevisualizes the Gramian error matrix F in for d = 2,3. One observes that the Exact
and MS algorithms performs very well, but both the MM-M and MM-L algorithms suffer accumulation
of roundoff error. Even in this case, when the MM-L algorithm uses a “reasonable” choice of basis for
orthogonalization, instabilities develop quickly. In this simple case when quadrature is numerically
exact, a standard orthogonalization routine produces unstable results.

6.1.2 ANN: Measure on an Annulus

Our second test is the uniform measure p with support in an annular region in d = 2 dimensions
centered at the origin. In polar coordinates (r,6), this is represented as,

supp(p) = {(r,0) |01 <0 <6y, m(0) <r<ry0)}, (38)

where (01,62) = (0,27) and (r1(0),72(0)) = (0.5,1.0). Quadrature with respect to the uniform
measure on this domain can exactly integrate polynomials (in the z variable) using a tensor-product
quadrature over (r,6) space using Fourier quadrature in § and Legendre-Gauss quadrature in the r
variable. We use a large enough quadrature rule so that all integrals are numerically exact.

In this case we do not know exact formulas for the recurrence matrices, so we rely on the metric
E. Figure [2| shows again that the MS algorithm performs better than the MM-M and MM-L methods
for large degrees.

6.1.3 CUR: Measure within polar curves

We now consider a more difficult example again in d = 2 dimensions. We again use a curve defined
as (38)), but this time it is a region bounded between two Archimedean spirals. In particular, we set,

(61,62) = (0,6m), (r1(0),m2(0)) = (0.86,0).
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Figure 2: ANN results, Section Top: Visualization of the error matrix E for the MS, MM-M, and MM-L algorithms
from left to right. Bottom: Evaluations of the r,’th entry of p, for degree n =1, 3,5 using the MS algorithm.

Again we choose p as the uniform measure over the region defined in .

We write integrals as iterated, with the inner integral over r exactly computable using Legendre-
Gauss quadrature. But the outer integral in 6 involves terms both polynomial and trigonometric
polynomial in #, and we approximately integrate these values with a 105-point Fourier quadrature
rule. As can be seen in Figure |3 the novel MS procedure once again is much more stable than the
MM-M and MM-L approaches.

6.1.4 TOR: Uniform measure inside a torus

We consider the uniform measure over the interior of a torus, whose parametric representation of
the boundary is given by,

x1(0, ¢) = (R + rcos(f)) cos ¢, x2(0, ¢) = (R + rcos(9)) sin ¢, x3(0, ¢) = rsin(9),

for ,¢ € [0,27). The interior of the torus is defined by (\/z? + 2 — R?)? + 22 < r2. We choose
r=1and R=2.

Quadrature with respect to the uniform measure on this domain can exactly integrate polynomials
using a tensor-product quadrature over (r, 0, ¢) space using Fourier quadrature in 6 and ¢ and an
Legendre-Gauss quadrature in the r variable. We use a large enough quadrature rule so that all
integrals are numerically exact. In Figure [4] we again observe that MS outperforms MM-M and MM-L.
However, these two moment-based procedures give more reasonable results in this case since the
polynomial degree is relatively low.

6.2 Moments via Monte Carlo techniques

We now consider two more complicated domains, where integration is performed approximately
using a Monte Carlo quadrature rule. I.e., we approximate moments with respect to a uniform
measure over a domain D via,

M
[ vl 57 3 ).

m=1
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Figure 3: CUR results, Section
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where D is a two-dimensional domain and {z,,}»_, are iid random samples from p. In all exam-
ples we use a single, fixed instance of the Monte Carlo samples. Therefore one can consider this
computing approximately orthogonal polynomials with respect to the uniform measure over D, or
as computing (numerically) exactly orthogonal polynomials with respect to a size-M discrete mea-
sure. We emphasize again that our goal is not to construct accurate quadrature rules, but rather

to construct orthogonal polynomials given some quadrature rules. In all simulations here we take
M = 108.

6.2.1 HOL: Square with a hole

We consider the uniform measure p over the two dimension domain [—1,1]%\ By (0), where B;(0) is
the origin-centered unit ball of radius 1. Figure[5|shows results for this experiment. The MS algorithm
again performs the best, but we see a notably increased error in the orthogonality metric compared
with the previous examples. We attribute this increased error to an increase in the condition number
of the associated matrices of the MS. We investigate this in more detail in Section
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Figure 5: HOL results, Section Visualization of the error matrix E for the MS, MM-M, and MM-L algorithms from
left to right. Bottom: Evaluations of the r,’th entry of p,, for degree n = 1, 3,5 using the MS algorithm.

6.2.2 MAP: Measure on map of Madagascar

Our final two-dimensional example is the region of the country of Madagascar. We draw random
samples from this region via rejection sampling over a latitude-longitude bounding box, where the
rule for inclusion in the domain is defined by positive elevation, which can be sampled via the data
in [22]. We map the bounding box to [—1,1]? for simpler plotting.

As can be seen in Figure [] our orthogonality metric explodes very quickly for the MM-M and
MM-L, even for relatively small polynomial degree. The MS succeeds to a much greater degree, but
produces relatively large errors. Again we attribute this to increased ill-conditioning of associated
matrices in our procedure, see the uptrend of condition number in Section
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Figure 6: MAP results, Section Top: Visualization of the error matrix E for the MS, MM-M, and MM-L algorithms
from left to right. Bottom: Evaluations of the r,’th entry of p, for degree n =1, 3,5 using the MS algorithm.

6.3 Stability investigation via condition numbers

We justify the accuracy of the MS, MM-M, and MM-L algorithms by investigating the condition numbers
of some of the associated matrices in each procedure. For the MM-M and MM-L algorithms, we inves-
tigate the condition number of the Gram matrix G,, in . For MS, we investigate the condition
number of the moment matrix 7}, ; ; in plotting the average of condition number of T, ; ; over
all 4.

Figure |7] shows these condition numbers for all our previous examples. We note that the G,
matrices are badly ill-conditioned for larger degrees, but the 7, matrices are much better conditioned.
In addition, we see that for the MAP and HOL cases the condition number of T}, is larger than for
other cases, which motivates why even the MS algorithm struggles for these domains.

6.4 The Christoffel function

The ability to stably compute an orthogonal basis in multiple dimensions allows us to investigate
interesting phenomena. Let u be uniform over a compact set in R%, and consider the diagonal K
of the degree-N normalized reproducing kernel, and its inverse Ay, the Christoffel function,

N
K() = 5= 3" h(@)pao) (@) = 1/Kn(@),
n=0

so that Ky (x)du(x) is a probability density. Random sampling from this probability measure
is known to result in near-optimal sample complexity for constructing least-squares polynomial
approximations to functions in the Li norm [5]. Plotting such densities is itself interesting, but
even more so is that fact that as N 1 oo, such densities weakly converge to the Monge-Ampere
measure over supp(p) [2, [18], which is a fundamental quantity of theoretical interest in polynomial
approximation in several variables [3]. As analytic forms for such measures are unknown for
general domains, it is interesting to use numerical algorithms to investigate the finite but large N
behavior of K, which is not possible directly without the ability to stably compute an orthonormal
basis. Figure [§] plots both Ky and Ay for four of our two-dimensional domains with N = 39.
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7 Conclusions

In this paper, we extend existing approaches for computing recurrence coefficients from the univariate
case to the multivariate case. We propose a new, Multivariate Stieltjes (MS) algorithm for computing
recurrence matrices that allows stable evaluation of multivariate orthonormal polynomials.

We demonstrate with several numerical examples the substantially improved stability of the new
algorithm compared to direct orthogonalization approaches. For both small dimension and small
polynomial degree, there is little benefit, but MS outperforms other methods when one requires
polynomials of moderately large degree.

The algorithm is essentially explicit in two and three dimensions, but requires the numerical
solution to a non-convex optimization problem in more than three dimensions, whose investigation
would be a natural extension of this work.
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Algorithm 1: Algorithm via three-term relation

1

2
3
4
5
6

Input: dimension d and univariate recurrence coefficients {a; n, b; » }2_g, i € [d]
forn=1to N do

for i =1 to d do
compute ¢ (a("’k), z) defined in Section ;
compute A, ;, By, ; by
end
end

Output: coefficient matrices {4, ;, Bm}ffzo

Algorithm 2: Stieltjes procedure

1

© W N o A W N

10
11

12

13
14
15
16
17
18
19
20
21
22
23
24
25
26

27
28
29

30

31

Input: dimension d, max degree N, measure du on support €.
forn=0to N —1do
for i =1 to d do
evaluate orthonormal polynomials p,, by (9) ;
compute A, 11, using moment matrices () ;
evaluate the modified polynomials basis Py ; by ;
compute symmetric moments 75, ; ; by ;
compute U, 11, and ¥,,11; in the SVD of B, 11, from :
for j=i+1toddo

L compute the mixed moment T, ; ; by ;

determine ‘7n+171 and IN/n_H,i by , and assemble the matrix V41 1 by ;
compute By411 by ;

for j =2 to d do

compute ‘7n+17j by ;

compute yy’ by :
if d=2 then

‘ compute y by
else if d=3 then
if n=0 then
‘ compute B4 ; following the strategy in Section
else

compute K41, ; from and its kernel ¥; ;
compute F; from ;
if j=2 then
‘ Set W2 = IAMJrl
else

L compute W5 from following the strategy in Section

assemble the matrix V, 1 ; by ;
else
‘ solve W; from

| determine C; by , and thus ‘7n+1,jby
| compute Byy1,; by ;
Output: coefficient matrices {4, ;, By},
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