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Abstract

Orthogonal polynomials of several variables have a vector-valued three-term recurrence rela-

tion, much like the corresponding one-dimensional relation. This relation requires only knowl-

edge of certain recurrence matrices, and allows simple and stable evaluation of multivariate

orthogonal polynomials. In the univariate case, various algorithms can evaluate the recurrence

coe�cients given the ability to compute polynomial moments, but such a procedure is absent

in multiple dimensions. We present a new Multivariate Stieltjes (MS) algorithm that fills this

gap in the multivariate case, allowing computation of recurrence matrices assuming moments

are available. The algorithm is essentially explicit in two and three dimensions, but requires

the numerical solution to a non-convex problem in more than three dimensions. Compared

to direct Gram-Schmidt-type orthogonalization, we demonstrate on several examples in up to

three dimensions that the MS algorithm is far more stable, and allows accurate computation of

orthogonal bases in the multivariate setting, in contrast to direct orthogonalization approaches.

1 Introduction

Orthogonal polynomials are a mainstay tool in numerical analysis and scientific computing, and serve
as theoretical and computational foundations for numerical algorithms involving approximation and
quadrature [26, 9, 10].

It is well-known even in the multivariate setting that such families of polynomials satisfy three-
term recurrence relations [13, 16, 15, 14, 29, 30, 6], which are commonly exploited for stable eval-
uation and manipulation of such polynomials. Identification or numerical approximation of the
coe�cients in such relations is therefore of great importance, and in the univariate setting many
algorithms for accomplishing such approximations exist [9, 19]. Such procedures are absent in the
multivariate setting; this paper provides one algorithmic solution to fill this gap.

1.1 Challenges with computing orthogonal polynomials

Throughout, we assume the ability to compute generalized polynomial moments, i.e., there is some
algorithm available to us that evaluates p 7!

R
d p(x)dµ(x) for a given positive measure µ on d.

This assumption is required for univariate algorithms as well.
With moment information, one could devise a linear algebraic scheme that orthogonalizes some

known basis (say monomials) into an orthonormal basis, seemingly providing a solution to the eval-
uation of orthogonal polynomials. But in finite precision, even stable orthonormalization algorithms
can be ine↵ective due to the high condition number of the map from integral moments to the or-
thonormal basis; we demonstrate this in Figure 7. Thus, even computational identification of an
orthonormal polynomial basis is challenging, let alone computation of recurrence matrices.
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Although computing moments with respect to fairly general multivariate measures µ is certainly
an open challenge, it is not the focus of this article: We focus on the separate, open challenge of
computing recurrence coe�cients (allowing stable evaluation of multivariate polynomials) given the
ability to compute moments.

1.2 Contributions

The main contribution of this paper is to extend existing methods for computing recurrence coe�-
cients from the univariate case to the multivariate case. Recognizing that the Stieltjes algorithm for
computing recurrence coe�cients in univariate problems has shown tremendous success [23, 24, 8],
we devise a new, Multivariate Stieltjes (MS) algorithm for computing recurrence coe�cients (ma-
trices in the multivariate setting), and hence also for computing a multivariate orthonormal basis.
Thus, our contribution, the Multivariate Stieltjes algorithm, is a new method for tackling the chal-
lenge identified in Section 1.1. We demonstrate with several numerical examples the (substantially)
improved stability of the MS algorithm compared to alternative Gram-Schmidt-type approaches for
computing an orthonormal basis.

The tools we employ are, qualitatively, direct multivariate generalizations of existing univariate
ideas. However, the technical details in the multivariate case are so disparate from the univariate case
that we must employ somewhat di↵erent theories and develop new algorithms. Our MS algorithm
has explicit steps in two and three dimensions, but requires non-convex optimization in four or more
dimensions. We first review some existing methods to compute univariate recurrence coe�cients
(see Section 2.1) and introduce notation, properties, and the three-term relation for multivariate
polynomials in Section 2.2. In Section 3, we propose a canonical basis that identifies a computational
strategy for direct evaluation of multivariate polynomials. We follow this by Section 4, which shows
that if µ is tensorial, then a tensor-product basis is in fact a canonical basis. Algorithms are discussed
in Section 5; Section 5.1 describes a direct procedure using orthonormalization given polynomial
moments. The new multivariate Stieltjes procedure is described in Section 5.2. Finally, we present a
wide range of numerical examples in Section 6, which compares these approaches, and demonstrates
the improved accuracy of the MS procedure.

We mention that our goals are similar to the results in [1, 27], which produce explicit recurrence
relations. However, these results are either specialized to certain domains, or use recurrence matrices
as known ingredients. Our procedures compute recurrence matrices for general measures, and hence
are quite di↵erent.

1.3 Assumptions and caveats

Throughout this manuscript, we assume that integral moments of arbitrary polynomials are avail-
able/computable. For “simple” domains, we realize this through mapped/tensorized quadrature
(which is sometimes exact and sometimes approximate). For more complicated domains, we dis-
cretize the measure µ as the empirical measure associated to a large number of realizations that
are independently and identically distributed according to µ. Thus, sometimes our numerical ex-
amples compute orthogonal polynomials with respect to an approximate measure. However, we use
a su�ciently dense grid that such approximation error is relatively small. We emphasize that this
approximation error is not the focus of this article; our goal is to devise a scheme that, given the
ability to compute moments, accurately computes an orthonormal polynomial basis.

The new MS algorithm we develop is e↵ective compared to direct orthonormalization schemes
when the condition number of the Gram moment matrix is large. For, e.g., small dimensions d

and polynomial degree, this moment matrix typically is not too ill-conditioned, and so there is
little benefit in the MS algorithm for such situations. However, when one requires polynomials of
moderately large degree, or when the Gram matrix is extremely ill-conditioned, we show that the
MS algorithm is e↵ective.

Finally, we note that the technique we present leverages theories associated with total-degree
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spaces of polynomials, and does not directly apply to more exotic spaces. In particular, we assume
that µ is non-degenerate with respect to d-variate polynomials. This is ensured if, for example, µ
has a positive Lebesgue density over any open ball in d.

2 Background and notation

We use the standard multi-index notation in d 2 dimensions. With 0 the set of nonnegative
integers, a multi-index in d dimensions is denoted by ↵ = (↵1, . . . ,↵d) 2 d

0. For ↵ 2 d
0, and

x = (x1, . . . , xd) 2 d, we write monomials as x↵ = x
↵1
1 , . . . , x

↵d
d . The number |↵| := ↵1 + · · ·+ ↵d

is the degree of x↵. We denote the space of d-variate polynomials of exactly degree n 2 0, and up
to degree n, respectively, by

d
n := span {x↵ : |↵| = n,↵ 2 d

0}, ⇧d
n := span {x↵ : |↵|  n,↵ 2 d

0},

The dimensions of these spaces are, respectively,

rn = r
d
n := dim d

n =

✓
n+ d� 1

n

◆
, Rn = R

d
n := dim⇧d

n =

✓
n+ d

n

◆
=

nX

j=0

rj ,

Since the dimension d will be arbitrary but fixed in our discussion, we will frequently suppress
notational dependence on d and write rn, Rn. We will also require di↵erences between dimensions
of subspaces,

�rn := rn � rn�1 =

✓
n+ d� 2

n

◆
, n � 0, d � 2,

where we define r�1 := 0. We will not be concerned with �rn when d = 1, although one could define
�rn = 0 in this case.

Throughout we assume that µ is a given positive measure on d, with d 2 . The support of µ
may be unbounded. We assume that, given any non-trivial polynomial p, we have,

0 < hp, pi < 1, hf, gi :=
Z

f(x)g(x)dµ(x). (1)

and we implicitly assume that
R
q(x)dµ(x) is computationally available for arbitrary polynomials

q. Our main goal is to compute an orthonormal polynomial basis, where orthonormality is defined
through the inner product above.

2.1 Univariate orthogonal polynomials

In the univariate case, let µ be a positive Borel measure on with finite moments. A standard
Gram-Schmidt process applied to monomials with the inner product h·, ·i yields a sequence of or-
thonormal polynomials {pn(x)}1n=0, which satisfies hpn, pmi = �m,n, where �m,n is the Kronecker
delta. In practical settings, it is well-known that utilizing the three-term recurrence formula for
evaluation is more computationally stable compared to direct orthonormalization techniques. There
exist coe�cients b0 and {an, bn}n2 , with an = an(µ) and bn = bn(µ), such that

xpn(x) = bn+1pn+1(x) + an+1pn(x) + bnpn�1(x), n � 0, (2)

where bn > 0 for all n 2 0, and p0 = 1/b0, p�1 ⌘ 0. Availability of the coe�cients (an, bn) not
only enables evaluation via the recurrence above, but also serve as necessary ingredients for various
computational approximation algorithms, e.g., quadrature. Thus, knowledge of these coe�cients
is of great importance in the univariate case. In some cases these coe�cients are explicitly known
[25], and in cases when they are not, several algorithms exist to accurately compute approximations
[4, 20, 21, 28, 7, 12, 9, 19]. The procedure we present in this paper is generalization of the (univariate)
Stieltjes procedure [23, 24, 8].
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2.2 Multivariate orthogonal polynomials

Now let µ be a measure on d. Again a Gram-Schmidt process applied to the multivariate monomials
x
↵, ↵ 2 d

0 produces a sequence of orthogonal polynomials in several variables. However, in the
multivariable setting it is more natural to proceed in a degree-graded fashion: We shall say that
p 2 ⇧d

n is an orthogonal polynomial of degree n > 0 with respect to dµ if

hp, qi = 0, 8q 2 ⇧d
n�1.

Of course, p ⌘ 1 is the unique unit-norm degree-0 polynomial with positive leading coe�cient. The
definition above allows us to introduce, Vd

n, the space of orthogonal polynomials of degree of exactly
n; that is

Vd
n = {p 2 ⇧d

n : hp, qi = 0, 8q 2 ⇧d
n�1}.

Our assumption (1) on non-degeneracy of µ implies that dimVd
n = dim d

n = rn. This allows us to
state results in terms of size-rn vector functions containing orthonormal bases of Vd

n for n � 0. We
fix an(y) orthonormal basis for each n 2 0,

n = (p(n,j))
n
j=1 = (p(n,1), . . . , p(n,rn))

T
, span{p(n,j)}rnj=1 = Vd

n, (3)

This fixed basis n has a three-term recurrence relation analogous to (2): There exist unique matrices
An+1,i 2 rn⇥rn , Bn+1,i 2 rn⇥rn+1 , such that

xi n(x) = Bn+1,i n+1(x) +An+1,i n(x) +B
T
n,i n�1(x), i 2 [d]. (4)

where we define �1 = 0 and 0(x) = 1. These matrices must satisfy the conditions,

rank(Bn,i) = rn�1, rank(Bn) = rn, Bn :=
�
B

T
n,1, . . . , B

T
n,d

�T 2 drn�1⇥rn , (5)

see [6, Theorem 3.3.4].
Given an orthonormal basis { n}n�0, there are certain recurrence matrices that make the relation

(4) true. However, polynomials generated by (4) for an arbitrary set of matrices An,i and Bn,i need
not be orthogonal polynomials. The following are a set of necessary conditions, the commuting

conditions, that we will require.

Theorem 2.1 ([31, Theorem 2.4]). If An,i and Bn,i for i 2 [d] and n 2 0 are recurrence matrices

corresponding to an orthonormal polynomial sequence, then they satisfy the following conditions for

every i, j 2 [d] and n 2 :

Bn+1,iB
T
n+1,j +An+1,iAn+1,j +BT

n,iBn,j = Bn+1,jB
T
n+1,i +An+1,jAn+1,i +BT

n,jBn,i, (6a)

Bn,iAn+1,j +An,iBn,j = Bn,jAn+1,i +An,jBn,i, (6b)

Bn,iBn+1,j = Bn,jBn+1,i, (6c)

where (6a) holds for n = 0 also.

The conditions above can be derived by expressing certain matrix moments using two di↵erent
applications of (4). More informally, (4) for a fixed n corresponds to d sets of conditions of size
rn that determine the rn+1 degrees of freedom in n+1. In order for all these conditions to be
consistent, the recurrence matrices must satisfy certain constraints, namely (6).

One starting point for our multivariate Stieltjes algorithm is the following direct observation:
Inspection of the recurrence relation (4) reveals that the coe�cient matrices can be computed via:

An+1,i =

Z

d

xi n(x)
T
n (x)dµ, Bn+1,i =

Z

d

xi n(x)
T
n+1(x)dµ. (7)

Note that An+1,i is determined by (quadratic moments of) n, but Bn+1,i does not have a similar
characterization using only degree-n orthogonal polynomials.
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3 Evaluation of polynomials

The three-term relation (4) does not immediately yield an evaluation scheme. We discuss in this
section one approach for such an evaluation, which prescribes a fixed orthonormal basis. (That is,
we remove “most” of the unitary equivalence freedom for n.) Our solution for this is introduction
of a particular “canonical” form.

3.1 Canonical bases

The three-term recurrence (4) for a fixed i 2 [d] is an underdetermined set of equations for n+1,
and hence this cannot be used in isolation to evaluate polynomials. To make the system determined,
one could consider (4) for all i 2 [d] simultaneously. To aid in this type of procedure, we make a
special choice of orthonormal basis that we will see amounts to choosing a particular sequence of
unitary transformations.

Definition 3.1. Let { n}n2 0 be an orthonormal set of polynomials with recurrence matrices An,i

and Bn,i for i 2 [d], n 2 0. We say that { n}n2 0 is a canonical (orthonormal) basis, and that

the matrices An,i and Bn,i are in canonical form if the following is true: For every n 2 we have

the condition

B
T
nBn =

X

i2[d]

B
T
n,iBn,i = ⇤n, (8)

where Bn is as defined in (5), and the matrices {⇤n}n2 are a sequence of diagonal matrices with

the elements of each matrix appearing in non-decreasing order.

Although the condition for canonical form appears only explicitly through a condition on Bn,i,
the matrices An,i are coupled with Bn,i through the commuting conditions in (2.1) so that canonical
form is implicitly a condition on the An,i matrices as well. The utility of a canonical basis is revealed
by the following result.

Theorem 3.1 (See also [6, Theorem 3.3.5]). Let the orthonormal basis { n}n2 0 be a canonical

basis so that the associated matrices An,i and Bn,i satisfy (8). Then,

⇤n+1 n+1 =

0

@
X

i2[d]

xiB
T
n+1,i

1

A n �

0

@
X

i2[d]

BT
n+1,iAn+1,i

1

A n �

0

@
X

i2[d]

BT
n+1,iB

T
n,i

1

A n�1, (9)

for each n � 0, where ⇤n+1 2 rn+1⇥rn+1 is diagonal and positive-definite (and hence invertible).

Proof. The relation (9) is computed by (vertically) stacking the d relations (4) for i 2 [d]. Although
this stacked system is overdetermined, it is consistent since (4) must hold for all i 2 [d]. Multiplying
both sides of the stacked system by B

T
n+1 yields (9), and we need only explain why ⇤n+1 = B

T
n+1Bn+1

is diagonal and positive-definite. The diagonal property is immediate since the basis is canonical,
and clearly is positive semi-definite. That it is in fact positive-definite is a consequence of the rank
condition (5), ensuring that rn+1 = rank (Bn+1) = rank (⇤n+1).

Equation (9) demonstrates how knowledge of (An+1,i, Bn+1,i)i2[d] translates into direct evalua-
tion of n+1: the right-hand side of (9) is computable, and need only be scaled elementwise by the
inverse diagonal of ⇤n+1. The main requirement for this simple technique for evaluation is that the
recurrence matrices are in canonical form. Fortunately, it is fairly simple to transform any valid
recurrence matrices into canonical form.
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3.2 Transformation to canonical form

There is substantial freedom in how the basis elements of the vectors n are chosen. In particular,
let {Un}n�0 be an arbitrary family of orthogonal matrices defining a new basis n,

n(x) := Un n(x), Un 2 rn⇥rn , U
T
n Un = I. (10)

A manipulation of (4) shows that the basis elements n satisfy a three-term relation,

xi n(x) = Dn+1,i n+1(x) + Cn+1,i n(x) +D
T
n,i n�1(x), i 2 [d],

where the new matrices Cn,i and Dn,i can be explicitly derived from the unitary matrices Un and
the recurrence matrices for n,

Cn,i = Un�1An,iU
T
n�1, Dn,i = Un�1Bn,iU

T
n , (i, n) 2 [d]⇥ 0. (11)

Our goal now is to take arbitrary valid recurrence matrices (An,i, Bn,i) and identify the unitary
transform matrices {Un}n2 so that (Cn,i, Dn,i) are in canonical form. Since B

T
nBn is symmetric,

then it has an eigenvalue decomposition,

B
T
nBn = Vn⇤nV

T
n , (12)

with diagonal eigenvalue matrix ⇤n and unitary matrix Vn, where we assume the diagonal elements
of ⇤n are in non-increasing order. Then by defining,

Un = V
T
n , n � 1,

which identifies Cn,i and Dn,i through (11), we immediately have that
X

i2[d]

D
T
n,iDn,i =

X

i2[d]

(V T
n B

T
n,iVn�1)(V

T
n�1Bn,iVn) = V

T
n B

T
nBnVn = ⇤n,

and hence n is a canonical basis, with Cn,i and Dn,i the associated recurrence matrices in canonical
form. Thus, for each fixed n, a transformation to canonical form is accomplished via a single size-rn
symmetric eigenvalue decomposition.

The discussion above also reveals how much non-uniqueness there is in the choice of canonical
form through non-uniqueness in the symmetric eigenvalue decomposition: each row of Un is non-
unique up to a sign, and arbitrary unitary transforms of sets of rows corresponding to invariant
subspaces of BT

nBn are allowed. If the non-increasing diagonal elements of ⇤n have distinct values,
then each of the functions in the vector n is unique up to a multiplicative sign.

3.3 Three-term relation conditions on matrices

Our computational strategy computes An,i, Bn,i through manipulations of polynomials computed
via (9), which are assumed to be orthonormal polynomials. One subtlety is that if we prescibe
recurrence matrices (through a computational procedure), then usage of (9) requires additional
conditions to be equivalent to (4). This equivalence is summarized as follows, and forms the basis
for the conditions we aim to impose in our algorithm.

Theorem 3.2 ([6, Theorem 3.5.1]). Given matrices An,i, Bn,i, let n, n � 0 be generated through

(9). Then { n} is orthonormal with respect to some positive-definite bilinear functional on
d
if

and only if:

• An,i is symmetric for all (i, n) 2 [d]⇥ 0.

• Bn,i satisfies the rank condition in (5): rank(Bn,i) = rn�1.

• The matrices satisfy the commuting conditions (6).

Additional conditions are required to ensure that the stated positive-definite functional is integra-
tion with respect to a measure µ, but since our algorithm considers only finite n, such a distinction
is not needed for us.
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4 Recurrence matrices and canonical form for tensorial mea-
sures

We take a slight detour in this section to identify recurrence matrices and associated canonical
forms for tensorial measures µ. If µ is a tensorial measure, i.e., µ = ⌦d

j=1µj , where each µj is a
positive measure on satisfying the non-degeneracy condition (1), then there exists a sequence of
univariate orthonormal polynomials for each j 2 [d]. In particular, fixing j, there exist coe�cients
{aj,n}n2 ⇢ and {bj,n}n2 0 ⇢ (0,1) such that the sequence of polynomials defined by the
recurrence,

xjpj,n(xj) = bj,n+1pj,n+1(xj) + aj,npj,n(xj) + bj,npj,n�1(xj), n � 0,

are L
2
µj
( )-orthonormal, With these univariate polynomials, we can directly construct multivariate

orthonormal polynomials via tensorization,

p↵(x) :=
dY

j=1

pj,↵j (xj), ↵ 2 d
0, (13)

where deg p↵ = |↵|. We now construct vectors containing polynomials of a specific degree as in (3).
With Jn denote any ordered set of the multi-indices ↵ satisfying |↵| = n � 0, define,

n = (p↵(n,1) , . . . , p↵(n,rn))
T
, Jn :=

⇣
↵
(n,1)

, . . . ,↵
(n,rn)

⌘
, (14)

where |↵(n,k)| = n for each k 2 [rn]. Clearly this set { n}n2 0 is a sequence of multivariate
orthogonal polynomials. The next subsection explicitly computes the associated recurrence matrices.

4.1 Recurrence matrices

Given the ordering of multi-indices defined by the sets (Jn)n2 0 , we require a function that identifies
the location of the index ↵

(n,k) + ej in the set Jn+1. Fixing the sets {Jn}n�0, we define a function
c : d

0 ⇥ [d] ! as,

c

⇣
↵
(n,k)

, i

⌘
= The index q 2 [rn+1] such that ↵(n,k) + ei = ↵

(n+1,q)
.

Note that c(↵, i) is well-defined for all ↵ 2 d
0 and i 2 [d]. We can now identify recurrence matrices

for the polynomials n explicitly in terms of univariate recurrence coe�cients.

Theorem 4.1. With the set of polynomials ( n)
1
n=0 defined by (14) and (13), then the recurrence

matrices are given by,

An+1,i = diag
⇣
a
i,↵(n,k)

i +1

⌘rn

k=1
, Bn+1,i =

rnX

k=1

b
i,↵(n,k)

i +1
ern,ke

T
rn+1,c(↵(n,k),i), (15)

where ↵
(n,k)
i is the ith component of ↵

(n,k)
and em,j is an m-dimensional vector with entry 1 in

location j and zeros elsewhere.

Proof. Fixing any n 2 0 and i 2 [d], and for each k 2 [rn], the kth component of the vector n

satisfies,

xip↵(n,k)(x) =
⇣
xip↵(n,k)

i
(xi)

⌘Y

j 6=i

p
↵(n,k)

j
(xj)

= bi,n+1p↵(n,k)+ed,i(x) + ai,n+1p↵(n,k)(x) + bi,np↵(n,k)�ed,i(x).

By comparing the final expression above with the three-term recurrence (4), the components of the
matrices An+1,i and Bn+1,i can be identified and are given as in (15).

7



When µ is tensorial, then computational methods for evaluating n need not explicitly use
recurrence matrices: the relations (14) and (13) show that one needs only knowledge of univariate
recurrence coe�cients aj,n, bj,n. Computation of these coe�cients from the marginal measure µj is
well-studied and has several solutions (cf. (2.1)). However, if one wanted the recurrence matrices
for this situation, they are explicitly available through the result above. We next show that, up to
a permutation, such tensorized basis elements form a canonical basis.

4.2 Canonical form for tensorial measures

The explicit formulas in (15) allow us to investigate the canonical condition (8):

B
T
nBn =

X

i2[d]

B
T
n,iBn,i = diag

 
dX

i=1

b
2
i,↵(n�1,1)

i +1
, . . . ,

dX

i=1

b
2

i,↵
(n�1,rn�1)

i +1

!

In order for n to be a canonical basis, the diagonal elements above must be non-increasing. While it
is not transparent on how to accomplish this for generic univariate coe�cients (ai,n, bi,n)i⇥n2[d]⇥ ,
one can always computationally achieve this by reordering the elements of n, equivalently by
reordering the elements of Jn, according to the elements on the right-hand side above.

Corollary 4.1.1. Define permutation operators Pn : [rn�1] ! [rn�1] given by,

P (k + 1) � P (k) =)
dX

i=1

b
2
i,↵(n�1,k+1)

i +1
�

dX

i=1

b
2
i,↵(n�1,k)

i +1
,

for each k 2 [rn]. Defining a new basis, n := (p↵(n,P (k)))
rn
k=1, then { n}1n=0 is a canonical basis.

We re-emphasize that identifying a canonical basis through an algorithmic version of the proce-
dure above is not computationally advantageous compared to direct usage of (14) and (13). However,
the procedure above gives us a method for oracle evaluation of recurrence matrices associated to a
tensorial measure µ.

5 Algorithms for computing recurrence coe�cient matrices

We discuss two strategies for computing the recurrence matrices (An,i, Bn,i). The first is a straight-
forward Moment Method (MM-M) that directly uses moments (e.g., of monomials) to compute an
orthonormal basis that can be used directly with (7) to compute the matrices. However, this ap-
proach is very ill-conditioned for moderately large degree and hence has limited utility. The second
approach we present is the main novel advancement of this paper, a multivariate Stieltjes (MS)
algorithm that computes the recurrence matrices through an alternative procedure.

5.1 The moment method (MM-M)

A straightforward way to compute recurrence coe�cients in the univariate case is to first perform an
orthogonalization step to numerically generate orthogonal polynomials as linear expansions in some
specified basis (say monomials), and second to exploit the linear expansion expressions to compute
the recurrence coe�cients. This works in the multivariate setting as well. We suppose that a(ny)
polynomial basis {�j}j2 is given with the properties,

span {�j}Rn

j=1 = ⇧d
n, n 2 0.

rn < j  rn+1 =) deg �j = n+ 1.

8



Again, a simple example is that �j(x) is a multivariate monomial x↵ for some total ordering of
the multi-indices ↵ that respects the partial order induced by the `

1( d
0) norm1. We assume that

quadratic �j moments are available, allowing us to compute a Gram matrix,

(Gn)i,j = m(i, j), Gn 2 Rn⇥Rn , m(i, j) =

Z
�i(x)�j(x)dµ(x). (16)

Given this matrix, we can compute monomial expansion coe�cients for the orthonormal basis n:

Gn = LnL
T
n , ( 0, . . . , n)

T = L
�1
n �n, �n = (�1, . . . , �Rn)

T 2 Rn , (17)

where j is an rj-vector containing degree-j orthonormal polynomials. Combining this with (7), the
recurrence matrices can be directly computed,

An+1,i = eL�1
n Gn,i

eL�T
n , Bn+1,i = eL�1

n
eGn+1,i

eL�T
n+1, i 2 [d], (18)

where eL�1
n is the rn ⇥Rn matrix formed from the last rn rows of L�1

n , Gn,i 2 Rn⇥Rn has entries

(Gn,i)i,j =

Z
xi�i(x)�j(x)dµ(x), i, j 2 [Rn], (19)

and eGn+1,i 2 Rn⇥Rn+1 equals the first Rn rows of Gn+1,i. Thus, so long as the polynomial moments
m(i, j) and (19) can be evaluated, then this allows direct computation of the recurrence matrices.
Of course, if only an orthonormal basis (without recurrence matrices) is desired, then one may stop
at (17).

The main drawbacks to the procedures above stem from accuracy concerns due to ill-conditioning
of the Gn matrices. If the �i are selected as “close” to an orthonormal basis, then the Gn matrices
can be well-conditioned, but a priori knowledge of such a basis is not available in general scenar-
ios. However, this method is flexible in the sense that with minor modifications one may compute
an orthonormal basis (but not necessarily recurrence matrices) for very general, non-total-degree,
polynomial spaces, such as hyperbolic cross spaces.

5.2 The Multivariate Stieltjes algorithm (MS)

In this section we describe a Stieltjes-like procedure for computing recurrence matrices, which par-
tially overcomes ill-conditioning issues of the moment method. Like the univariate procedure, we
directly compute the recurrence matrices instead of attempting to orthogonalize the basis, and the
procedure is iterative on the degree n. Thus, throughout this section we assume that the recur-
rence matrices {Am,i, Bm,i}i2[d],mn are available, and our goal is to compute An+1,i and Bn+1,i for

i 2 [d]. Our main strategy for accomplishing this will be to satisfy certain “degree-(n+ 1)” matrix
moment conditions subject to the constraints identified in 3.2.

The availability of the matrices for index m  n implies that m for all m  n can be evaluated
through the procedure in 3.1. (In practice we transform Am,i, Bm,i for m  n to be in canonical
form.) We will compute An+1,i directly, but compute factorized components and subblocks of Bn+1,i,
and we identify those subblocks now. Consider the truncated singular value decomposition of Bn+1,i,

Bn+1,i = Un+1,i⌃n+1,iV
T
n+1,i = Un+1,i⌃n+1,i

⇣
bV T
n+1,i

eV T
n+1,i

⌘
, i 2 [d], (20)

where Un+1,i, Vn+1,i have orthonormal columns and are of sizes,

Un+1,i 2 rn⇥rn , ⌃n+1,i 2 rn⇥rn , Vn+1,i 2 rn+1⇥rn ,

1Degree-graded lexicographic ordering over multi-indices is an example of one such ordering.
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and ⌃n+1,i is diagonal with non-negative entries in non-increasing order. ⌃n+1,i must be invertible
due to (5). In (20) we have further decomposed the right-singular Vn+1,i matrices into blocks, with
bV the first rn rows, and eV the remaining rows:

Vn+1,i =

 
bVn+1,i

eVn+1,i

!
, bVn+1,i 2 rn⇥rn eVn+1,i 2 �rn+1⇥rn (21)

We do not assume that the Bn+1,i are in canonical form, and therefore have freedom to specify the
unitary transform for degree n+1. Without loss we implicitly choose the unitary transform Un+1 in
(11) so that Vn+1,1 is equal to the first rn columns of the size-rn+1 identity matrix. This uniquely
identifies Vn+1,1,

bVn+1,1 = Irn ,
eVn+1,1 = 0. (22)

We therefore need only compute bVn+1,i,
eVn+1,i for i � 2.

The remainder of this section is structured as follows: We define certain moment matrices through
a modified polynomials basis in Section 5.2.1, which immediately yields the An+1,i matrices. Section
5.2.2 shows how we compute the U and ⌃ SVD matrices of B. We introduce “mixed” moments
in Section 5.2.3 that allow us to obtain the bV block of the V matrices. The remaining block eV
is computed using di↵erent strategies depending on the dimension d of the problem. For d = 2,
Section 5.2.4 shows that eV can be computed almost directly. For d � 3 dimensions, we must enforce
the commuting conditions (6), which is somewhat easily done in d = 3 dimensions, but requires
nontrivial optimization for d > 3.

5.2.1 Moment matrices – computing An+1,i

The MS algorithm begins by considering moments of polynomials that are not explicitly known a

priori, but are easily generated during an algorithmic procedure. In particular we introduce the
moment matrices,

Sn,i :=

Z
xi n

T
ndµ(x), Tn,i,j :=

Z
en+1,ieT

n+1,jdµ(x), (23)

both rn ⇥ rn matrices, where the modified polynomial basis e is defined as,

en+1,i(x) := xi n �An+1,i n �B
T
n,i n�1. (24)

Note that availability of {Am,i, Bm,i}i2[d],mn along with the ability to evaluate n imply that the

moment matrices in (23) can be approximated via quadrature, just as is frequently done for the �j

moments of Section 5.1.
Inspection of (7) immediately reveals that,

An+1,i = Sn,i, (25)

and hence An+1,i is directly computable. In addition, An+1,i is symmetric (since Sn,i is symmetric)
and hence this satisfies the first condition in 3.2. This then allows en+1,i to be evaluated, and hence
allows Tn,i,j to be computed. While evaluating An+1,i is fairly straightforward from Sn,i, computing
Bn+1,i from Tn,i,j is more involved.

5.2.2 Stieltjes symmetric moments – computing Un+1,i,⌃n+1,i

The matrices Tn,i,i of symmetric moments allow us to compute the U and ⌃ matrices in the SVD
of B. A direct computation with the three-term recurrence (4) and the definition (23) reveals that

Tn,i,i = Bn+1,iB
T
n+1,i = Un+1,i⌃

2
n+1,iU

T
n+1,i. (26)

10



Therefore for each i 2 [d], we can first compute the square, symmetric matrix Tn,i,i, and subsequently
its eigenvalue decomposition, ordering the eigenvalues in decreasing order. Then the eigenvector
matrix of Tn,i,i is Un+1,i and the square root of the eigenvalue matrix equals ⌃n+1,i. We can
also conclude that Tn,i,i is full-rank: Since n contains linearly independent polynomials, then
xi n contains linearly independent polynomials, and hence en+1,i contains linearly independent
polynomials. Since Tn,i,i is the Gram matrix for en+1,i and we have assumed µ is non-degenerate,
then it must be of full rank. This observation then implies that ⌃n+1,i is invertible, and hence that
our computed Bn+1,i is also full rank. Therefore, we have satisfied the second condition in 3.2. Now
we are left only to compute the rectangular Vn+1,i matrices, which will involve enforcing the third
condition (the commuting conditions).

5.2.3 Stieltjes mixed moments – computing bVn+1,i

Using mixed moments Tn,i,j with i 6= j, we can compute the square matrices bVn+1,i, which are
subblocks of Vn+1,i. (Recall from (22) that Vn+1,j is already known for j = 1, so we consider only
j > 2.) A similar computation as the Stieltjes procedure in (26) yields that Tn,i,j = Bn+1,iB

T
n+1,j .

By using the decomposition of Bn+1,i in (20), we conclude that

bV T
n+1,i

bVn+1,j + eV T
n+1,i

eVn+1,j = ⌃
�1
n+1,iU

T
n+1,iTn,i,jUn+1,j⌃

�1
n+1,j , i, j 2 [d]. (27)

Letting i = 1 and utilizing (22), we have,

bVn+1,j = ⌃
�1
n+1,1U

T
n+1,1Tn,1,jUn+1,j⌃

�1
n+1,j , j � 2, (28)

where everything on the right-hand side is known and computable.
Note that here we have only utilized Tn,i,j for 1 = i 6= j. The case 1 6= i 6= j is vacuous for d = 2,

and we will see that the remaining block eV can already be computed. When d � 3, we do require
1 6= i 6= j to identify eV .

5.2.4 d = 2: Orthonormality conditions for eVn+1,i

For d = 2, we now need only compute eVn+1,2. Since �rn = 1 for every n when d = 2, then eVn+1,2

is a 1⇥ rn vector. To reduce notational clutter, we consider fixed n and use the following notation,

y := eV T
n+1,2 2 rn .

Then since Vn+1,2 has orthonormal columns, i.e., V T
n+1,2Vn+1,2 = Irn , we have,

yyT = Irn � bV T
n+1,2

bVn+1,2, (29)

which defines y up to a sign. More precisely, we have

y = ±z, (30)

where z is computed either as a rank-1 Cholesky factor or as the positive semi-definite square root
of the right-hand side of (29). Although it appears the multiplicative sign needs to be chosen, if we
choose (i, j) = (1, 2) in (6c), then we have

⇣
Bn,1Un+1,2⌃n+1,2

bVn+1,2 ±Bn,1Un+1,2⌃n+1,2z
⌘
= Bn,2Bn+1,1.

Thus the choice of sign makes no di↵erence because the last column of Bn+1,1 is a zero vector.
Therefore, we arbitrarily choose the sign. This completes the computation of Bn+1,i for d = 2; in
this case we need not impose the commuting conditions, but they are needed for d > 2.

11



5.2.5 d > 2, n = 0: Falling back on moments

For d > 2 and n = 0, then Bn+1,i 2 1⇥d, and hence eVn+1,i 2 1⇥(d�1). We have two conditions to
impose on this vector of length d� 1 � 2:

• The scalar-valued commuting condition (6a) (the others do not apply for n = 0).

• A unit-norm condition on the column vector Vn+1,i (as is used in the previous section)

This amounts to 2 conditions on this vector (although the second condition does not determine
a multiplicative sign). However, as this approach combining all these conditions can be relatively
cumbersome to simply determine a vector, in this case we fall back to using MM routines. When
n = 0, the MM Gramians are typically well-conditioned. Therefore, when d > 2 and n = 0, we use
(18) to compute the B1,i matrices.

5.2.6 d > 2, n > 0: The commuting conditions – computing eVn+1,i

We recall that our remaining task is to compute eVn+1,i 2 �n+1⇥rn for 2  i  d. Our tools to
accomplish this will be (i) the commuting conditions (ii) orthonormality conditions on the columns
of Vn+1,i, and (iii) the mixed moments Tn,i,j for 1 6= i 6= j. For n > 0, the commuting condition
(6c) with i = 1 implies:

Bn,1Un+1,j⌃n+1,j

⇣
bV T
n+1,j

eV T
n+1,j

⌘
= Bn,jBn+1,1, j � 2, (31)

where only eVn+1,j is unknown. Note that we have made the choice (22) for eVn+1,1, which implies
that the last �rn+1 columns of Bn,jBn+1,1 vanish, i.e., the last �rn+1 columns of (31) read,

Kn+1,j
eVn+1,j = 0, Kn+1,j := Bn,1Un+1,j⌃n+1,j 2 rn�1⇥rn . (32)

Thus, the columns of eVn+1,j lie in the kernel of the known matrix Kn+1,j . I.e., we have,

eV T
n+1,j =  jCj ,  j 2 rn⇥�rn , Cj 2 �rn⇥�rn+1 , (33)

where Cj is unknown and j is known (computable), containing an orthonormal basis for ker(Kn+1,j),

range( j) = ker(Kn+1,j),  T
j  j = I�rn⇥�rn .

We now use orthonormality of the columns of Vn+1,j . In particular this implies,

CjC
T
j = Dj := I�rn � T

j
bV T
n+1,j

bVn+1,j j .

Since Dj is a symmetric, positive semi-definite matrix, then Cj must be given by,

Cj = EjWj , Ej :=
⇣p

Dj 0�rn⇥(�rn+1��rn)

⌘
, Wj 2 �rn+1⇥�rn+1 , (34)

where Wj is a unitary matrix, and
p
Dj is the symmetric positive semi-definite matrix square root of

Dj . We therefore need only determine Wj . The final linear conditions we impose are the remaining
mixed moment conditions from Section 5.2.3 involving Tn,i,j for 1 6= i 6= j � 2. Using (27) and
writing in terms of the unknown Wi,Wj yields,

EiWiW
T
j E

T
j = Hn,i,j 2  i, j  d, i 6= j (35)

subject to W
T
j Wj = I�rn+1 2  j  d.

where,

Hn,i,j =  
T
i (⌃

�1
n+1,iU

T
n+1,iTn,i,jUn+1,j⌃

�1
n+1,j � bV T

n+1,i
bVn+1,j) j ,
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is a computable matrix. This optimization problem for {Wj}dj=2 must be solved to determine the Wj

matrices. Once these are determined, then eVn+1,i is determined through (33) and (34). This is a non-
convex optimization, and is a generalization of a weighted orthogonal Procrustes problem (WOPP).
Even the original WOPP has no known direct solution, so that numerical optimization must be
employed to solve the above problem [11]. Fortunately, when d = 3 some extra manipulations do
yield a direct solution.

5.2.7 d = 3: Circumventing the WOPP

When d = 3, the problem (35) simplifies substantially since we need only compute W2,W3. First
we note that if any pair of orthogonal matrices (W2,W3) satisfies (35), then so does the pair
(I�rn+1 ,W3W

T
2 ). Therefore, we may choose W2 = I�rn+1 without loss. This then determines

eVn+1,2 through (33) and (34).
The determination of W3 in (35) now reduces to an instance of a WOPP:

E2W
T
3 E

T
3 = Hn,2,3, subject to W

T
3 W3 = I�rn+1 (36)

We now notice that Ej defined in (34) is rectangular, but when d = 3 has only one more column
than row, i.e., �rn = n = 1 and thus �rn+1 = 1 +�rn. Then with

Ej = Xj

�
Yj 0(n+1)⇥1

�
Z

T
j ,

the reduced singular value decompositions of E2 and E3, then (36) can be rewritten as

I(n+1)⇥(n+2)WI(n+2)⇥(n+1) = Y
�1
2 X

T
2 Hn,2,3X3Y

�1
3 , W = Z

T
2 W3Z3,

where W is an orthogonal matrix of size �rn+1 = n + 2. Determining W uniquely identifies W3,
but the above relation shows that the (n + 1) ⇥ (n + 1) principal submatrix of W is given by
Y

�1
2 X

T
2 Hn,2,3X3Y

�1
3 . To determine the last row and column of W , we write,

W =

0

@
Y

�1
2 X

T
2 Hn,2,3X3Y

�1
3

v
wT

1

A , w, v unknown,

and since W is an orthogonal matrix and must have orthonormal columns, then the first n + 1
entries of w are determined up to a sign, and the signs can be determined by enforcing pairwise
orthogonality conditions among the first n + 1 columns. The final column v can be determined
(up to an inconsequential sign) as a unit vector orthogonal to the first n + 1 columns. Thus, W is
computable, which in turn determines W3, and completes the solution to (35) for d = 3.

6 Numerical test

We present numerical results showcasing the e↵ectiveness of the MS algorithm for computing orthog-
onal polynomials on two and three-dimensional domains. We measure the e�cacy of any particular
method through a numerical orthogonality condition. Each method first generates computational
approximations to the matrices {An,i, Bn,i}, and subsequently can generate computational approx-
imations bn to an orthonormal basis n. Fixing a maximum degree N , we then use quadrature
(approximate or exact as described) to evaluate the error matrix,

E =

0

B@
M0,0 · · · M0,N
...

. . .
...

MN,0 · · · MN,N

1

CA� IRN , Mm,n =

Z
m(x) T

n (x)dµ(x), (37)
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where E is an RN ⇥ RN matrix. We will both show plots of this error matrix and also report
entrywise maximum values, kEk1,1 = maxi,j2[RN ] |Ei,j |. In all experiments, we set N = 39 for
d = 2, and N = 15 for d = 3. (These choices result in RN = 820 and RN = 816, respectively.) We
compare four methods:

• (Exact) When µ is a tensor-product measure, we use the procedure in Section 4 and summa-
rized in Algorithm 1 to first explicitly compute the recurrence matrices, and subsequently to
evaluate polynomials through the procedure in Section 3.

• (MS) The novel algorithm of this manuscript, the Multivariate Stieltjes algorithm, described in
Section 5.2 and summarized in Algorithm 2.

• (MM-M) The moment method of Section 5.1, involving direct orthogonalization of the monomial
basis, i.e., the functions �j are monomials x↵.

• (MM-L) The moment method of Section 5.1, involving direct orthogonalization of the tensorial
Legendre polynomial basis, i.e., the functions �j are tensorial Legendre polynomials with
respect to the uniform measure ⌫ whose support is a bounding box of the support of µ.

All methods assume the ability to compute (general) polynomial moments in order to carry out
computations, and we describe in subsections below how we approximately or exactly compute
these moments via quadrature. Each experiment uses the same quadrature rule for all methods. A
summary of the experiments (i.e., the various measures µ) is given in Table 1

Table 1: Abbreviation and subsection for the examples considered.

Example Abbreviation Dimension Section

Jacobi weight function JAC 2, 3 6.1.1
Uniform measure on an annulus ANN 2 6.1.2
Uniform measure between polar curves CUR 2 6.1.3
Uniform Measure within a torus TOR 3 6.1.4
Uniform measure on a rectangle minus a ball HOL 2 6.2.1
Uniform measure on Madagascar MAP 2 6.2.2

6.1 Experiments with moments via tensorized Gaussian quadrature

In this subsection we compute polynomial moments with respect to the measure µ via tensorized
Gaussian quadrature. In all cases except Section 6.1.3, this quadrature is exact (in infinite precision).

6.1.1 JAC: Tensorized Jacobi measure

For an initial investigation, we consider a tensorial measure,

dµ(x) =
dY

i=1

B(↵i,�i)(1� xi)
↵i(1 + xi)

�i , x 2 [�1, 1]d ↵i,�i > �1,

where B(·, ·) is the Beta function, which is a tensorized Jacobi (or Beta) measure. To compute
moments, we utilize tensorized Gauss quadrature of su�ciently high order so that all integrals are
exact (in exact arithmetic). We randomly generated the ↵i,�i parameters by uniformly sampling
over the interval (�1, 10), resulting in the choices:

(↵1,↵2) = (3.80, 0.78), (�1,�2) = (7.34, 8.26), d = 2

(↵1,↵2,↵3) = (1.61, 0.32, 3.01), (�1,�2,�3) = (�0.89, 9.83, 7.67), d = 3
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Figure 1: JAC results, Section 6.1.1: Visualization of the error matrix E in dimension d = 2 (top) and d = 3 (bottom).
From left to right in each row: the Exact, MS, MM-M, and MM-L algorithms. We choose 100 as the upper saturation
point for all colormaps as values beyond this indicate O(1) error; we continue to impose this saturation value for all
subsequent error plots.

Figure 1 visualizes the Gramian error matrix E in (37) for d = 2, 3. One observes that the Exact
and MS algorithms performs very well, but both the MM-M and MM-L algorithms su↵er accumulation
of roundo↵ error. Even in this case, when the MM-L algorithm uses a “reasonable” choice of basis for
orthogonalization, instabilities develop quickly. In this simple case when quadrature is numerically
exact, a standard orthogonalization routine produces unstable results.

6.1.2 ANN: Measure on an Annulus

Our second test is the uniform measure µ with support in an annular region in d = 2 dimensions
centered at the origin. In polar coordinates (r, ✓), this is represented as,

supp(µ) =
�
(r, ✓)

��✓1  ✓  ✓2, r1(✓)  r  r2(✓)
 
, (38)

where (✓1, ✓2) = (0, 2⇡) and (r1(✓), r2(✓)) = (0.5, 1.0). Quadrature with respect to the uniform
measure on this domain can exactly integrate polynomials (in the x variable) using a tensor-product
quadrature over (r, ✓) space using Fourier quadrature in ✓ and Legendre-Gauss quadrature in the r

variable. We use a large enough quadrature rule so that all integrals are numerically exact.
In this case we do not know exact formulas for the recurrence matrices, so we rely on the metric

E. Figure 2 shows again that the MS algorithm performs better than the MM-M and MM-L methods
for large degrees.

6.1.3 CUR: Measure within polar curves

We now consider a more di�cult example again in d = 2 dimensions. We again use a curve defined
as (38), but this time it is a region bounded between two Archimedean spirals. In particular, we set,

(✓1, ✓2) = (0, 6⇡), (r1(✓), r2(✓)) = (0.8✓, ✓).
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Figure 2: ANN results, Section 6.1.2. Top: Visualization of the error matrix E for the MS, MM-M, and MM-L algorithms
from left to right. Bottom: Evaluations of the rn’th entry of n for degree n = 1, 3, 5 using the MS algorithm.

Again we choose µ as the uniform measure over the region defined in (38).
We write integrals as iterated, with the inner integral over r exactly computable using Legendre-

Gauss quadrature. But the outer integral in ✓ involves terms both polynomial and trigonometric
polynomial in ✓, and we approximately integrate these values with a 106-point Fourier quadrature
rule. As can be seen in Figure 3, the novel MS procedure once again is much more stable than the
MM-M and MM-L approaches.

6.1.4 TOR: Uniform measure inside a torus

We consider the uniform measure over the interior of a torus, whose parametric representation of
the boundary is given by,

x1(✓,�) = (R+ r cos(✓)) cos�, x2(✓,�) = (R+ r cos(✓)) sin�, x3(✓,�) = r sin(✓),

for ✓,� 2 [0, 2⇡). The interior of the torus is defined by (
p
x
2
1 + x

2
2 � R

2)2 + x
2
3 < r

2. We choose
r = 1 and R = 2.

Quadrature with respect to the uniform measure on this domain can exactly integrate polynomials
using a tensor-product quadrature over (r, ✓,�) space using Fourier quadrature in ✓ and � and an
Legendre-Gauss quadrature in the r variable. We use a large enough quadrature rule so that all
integrals are numerically exact. In Figure 4 we again observe that MS outperforms MM-M and MM-L.
However, these two moment-based procedures give more reasonable results in this case since the
polynomial degree is relatively low.

6.2 Moments via Monte Carlo techniques

We now consider two more complicated domains, where integration is performed approximately
using a Monte Carlo quadrature rule. I.e., we approximate moments with respect to a uniform
measure over a domain D via,

Z

D
p(x)dx ⇡ 1

M

MX

m=1

p(xm),
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Figure 3: CUR results, Section 6.1.3. Top: Visualization of the error matrix E for the MS, MM-M, and MM-L algorithms
from left to right. Bottom: Evaluations of the rn’th entry of n for degree n = 1, 3, 5 using the MS algorithm.

Figure 4: TOR results, Section 6.1.4. Visualization of the error matrix E for the MS, MM-M, and MM-L algorithms from
left to right.
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where D is a two-dimensional domain and {xm}Mm=1 are iid random samples from µ. In all exam-
ples we use a single, fixed instance of the Monte Carlo samples. Therefore one can consider this
computing approximately orthogonal polynomials with respect to the uniform measure over D, or
as computing (numerically) exactly orthogonal polynomials with respect to a size-M discrete mea-
sure. We emphasize again that our goal is not to construct accurate quadrature rules, but rather
to construct orthogonal polynomials given some quadrature rules. In all simulations here we take
M = 108.

6.2.1 HOL: Square with a hole

We consider the uniform measure µ over the two dimension domain [�1, 1]2\B1(0), where B1(0) is
the origin-centered unit ball of radius 1. Figure 5 shows results for this experiment. The MS algorithm
again performs the best, but we see a notably increased error in the orthogonality metric compared
with the previous examples. We attribute this increased error to an increase in the condition number
of the associated matrices of the MS. We investigate this in more detail in Section 6.3.

Figure 5: HOL results, Section 6.2.1: Visualization of the error matrix E for the MS, MM-M, and MM-L algorithms from
left to right. Bottom: Evaluations of the rn’th entry of n for degree n = 1, 3, 5 using the MS algorithm.

6.2.2 MAP: Measure on map of Madagascar

Our final two-dimensional example is the region of the country of Madagascar. We draw random
samples from this region via rejection sampling over a latitude-longitude bounding box, where the
rule for inclusion in the domain is defined by positive elevation, which can be sampled via the data
in [22]. We map the bounding box to [�1, 1]2 for simpler plotting.

As can be seen in Figure 6, our orthogonality metric explodes very quickly for the MM-M and
MM-L, even for relatively small polynomial degree. The MS succeeds to a much greater degree, but
produces relatively large errors. Again we attribute this to increased ill-conditioning of associated
matrices in our procedure, see the uptrend of condition number in Section 6.3.
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Figure 6: MAP results, Section 6.2.2: Top: Visualization of the error matrix E for the MS, MM-M, and MM-L algorithms
from left to right. Bottom: Evaluations of the rn’th entry of n for degree n = 1, 3, 5 using the MS algorithm.

6.3 Stability investigation via condition numbers

We justify the accuracy of the MS, MM-M, and MM-L algorithms by investigating the condition numbers
of some of the associated matrices in each procedure. For the MM-M and MM-L algorithms, we inves-
tigate the condition number of the Gram matrix Gn in (16). For MS, we investigate the condition
number of the moment matrix Tn,i,i in (23) plotting the average of condition number of Tn,i,i over
all i.

Figure 7 shows these condition numbers for all our previous examples. We note that the Gn

matrices are badly ill-conditioned for larger degrees, but the Tn matrices are much better conditioned.
In addition, we see that for the MAP and HOL cases the condition number of Tn is larger than for
other cases, which motivates why even the MS algorithm struggles for these domains.

6.4 The Christo↵el function

The ability to stably compute an orthogonal basis in multiple dimensions allows us to investigate
interesting phenomena. Let µ be uniform over a compact set in d, and consider the diagonal KN

of the degree-N normalized reproducing kernel, and its inverse �N , the Christo↵el function,

KN (x) =
1

RN

NX

n=0

T
n (x) n(x), �N (x) = 1/KN (x),

so that KN (x)dµ(x) is a probability density. Random sampling from this probability measure
is known to result in near-optimal sample complexity for constructing least-squares polynomial
approximations to functions in the L

2
µ norm [5]. Plotting such densities is itself interesting, but

even more so is that fact that as N " 1, such densities weakly converge to the Monge-Ampère
measure over supp(µ) [2, 18], which is a fundamental quantity of theoretical interest in polynomial
approximation in several variables [17, 3]. As analytic forms for such measures are unknown for
general domains, it is interesting to use numerical algorithms to investigate the finite but large N

behavior of KN , which is not possible directly without the ability to stably compute an orthonormal
basis. Figure 8 plots both KN and �N for four of our two-dimensional domains with N = 39.
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Figure 7: Top row: Condition numbers of the moment matrices Tn,i,i in (23) used in the MS algorithm (averaged
over i 2 [d]). Middle row: Condition numbers for the Gram matrices Gn in (16) used in the MM-M algorithm. Bottom
row: Same as the middle row but for the MM-L algorithm.

Figure 8: The normalized reproducing diagonal KN (top row) and normalized Christo↵el function �N (bottom row)
for N = 39.
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7 Conclusions

In this paper, we extend existing approaches for computing recurrence coe�cients from the univariate
case to the multivariate case. We propose a new, Multivariate Stieltjes (MS) algorithm for computing
recurrence matrices that allows stable evaluation of multivariate orthonormal polynomials.

We demonstrate with several numerical examples the substantially improved stability of the new
algorithm compared to direct orthogonalization approaches. For both small dimension and small
polynomial degree, there is little benefit, but MS outperforms other methods when one requires
polynomials of moderately large degree.

The algorithm is essentially explicit in two and three dimensions, but requires the numerical
solution to a non-convex optimization problem in more than three dimensions, whose investigation
would be a natural extension of this work.
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Algorithm 1: Algorithm via three-term relation

Input: dimension d and univariate recurrence coe�cients {ai,n, bi,n}Nn=0, i 2 [d]
1 for n = 1 to N do

2 for i = 1 to d do

3 compute c
�
↵
(n,k)

, i
�
defined in Section 4.1 ;

4 compute An,i, Bn,i by (15)
5 end

6 end

Output: coe�cient matrices {An,i, Bn,i}Nn=0

Algorithm 2: Stieltjes procedure

Input: dimension d, max degree N , measure dµ on support ⌦.
1 for n = 0 to N � 1 do

2 for i = 1 to d do

3 evaluate orthonormal polynomials n by (9) ;
4 compute An+1,i using moment matrices ((25)) ;
5 evaluate the modified polynomials basis en,i by (24) ;
6 compute symmetric moments Tn,i,i by (23) ;
7 compute Un+1,i and ⌃n+1,i in the SVD of Bn+1,i from (26) ;
8 for j = i+ 1 to d do

9 compute the mixed moment Tn,i,j by (23) ;

10 determine bVn+1,1 and eVn+1,i by (22), and assemble the matrix Vn+1,1 by (21) ;
11 compute Bn+1,1 by (20) ;
12 for j = 2 to d do

13 compute bVn+1,j by (28) ;
14 compute yyT by (29) ;
15 if d=2 then

16 compute y by (30)
17 else if d=3 then

18 if n=0 then

19 compute Bn+1,j following the strategy in Section 5.2.5
20 else

21 compute Kn+1,j from (32) and its kernel  j ;
22 compute Ej from (34) ;
23 if j=2 then

24 Set W2 = I�rn+1

25 else

26 compute W3 from (36) following the strategy in Section 5.2.7

27 assemble the matrix Vn+1,j by (21) ;
28 else

29 solve Wj from (35)

30 determine Cj by (34), and thus eVn+1,jby(33)

31 compute Bn+1,j by (20) ;

Output: coe�cient matrices {An,i, Bn,i}Nn=0
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